基于单片机射频无线键盘设计

基于单片机射频无线键盘设计
基于单片机射频无线键盘设计

探讨无线数据通信

在MCU系统中的应用

院系:电子与信息学院

专业:应用电子技术教育

班级: 09应用师2班

作品名称:基于单片机的键盘无线数据通信系统组长:梁广发

成员:黄明科、梁敏智、李尉渠

指导教师:刘炽辉

探讨无线数据通信在MCU系统中的应用

摘要

本作品研究的内容是通过MCU控制无线数据芯片,以此来实现大量数据的无线高速传输,无论是在国防军事方面,还是民用通讯方面都有很重要的研究意义。可改装数控操控设备、医疗设备、数据通信设备等,使数据控制、交换、采集简单化,对无线数据通信在MCU系统中的应用和多单片机协同工作中具有非常宝贵的参考价值。

实物的作品,实现了一种基于PS/2接口和电脑进行无线数据通信的系统。电脑键盘输入的数据通过单片机采集传送到射频发射模块。在一百米,甚至到几公里(只需加PA模块拓展)将数据传送给另一块单片机,单片机再通过USB接口转换芯片和电脑进行通信。产品贴切实际具有抗干扰能力强、输入电压宽、功耗低、距离远、可靠性高、拓展性好,且成本低廉,确实为一款优秀实用的电子产品。

关键词:PS/2接口,2.4G射频,MCU核心,MAX232,USB通信

目录

一、作品研究的背景................................................. 错误!未定义书签。

二、数据无线传输的发展现状及前景 .................... 错误!未定义书签。

三、作品研究的目的和意义..................................... 错误!未定义书签。

四、作品的简介......................................................... 错误!未定义书签。

五、基本思路和设计关键技术................................. 错误!未定义书签。

1、整体设计思路和框图............................................................................... 错误!未定义书签。

2、数据采集模块........................................................................................... 错误!未定义书签。

3、PS/2电器特性.......................................................................................... 错误!未定义书签。

4、数据传输模块介绍................................................................................... 错误!未定义书签。

5、射频模块SHOCKBURSTTM模式应用 ................................................ 错误!未定义书签。

6、直接收发模式应用技术........................................................................... 错误!未定义书签。

7、数据接收模式应用技术........................................................................... 错误!未定义书签。

8、MCU硬件串行通信应用技术................................................................. 错误!未定义书签。

9、PS/2接口与无线发射模块的数据传送应用技术 .................................. 错误!未定义书签。

10、数据传输模块介绍................................................................................. 错误!未定义书签。

六、工艺文件............................................................. 错误!未定义书签。

1、PCB电路图.............................................................................................. 错误!未定义书签。

2、元件装配图............................................................................................... 错误!未定义书签。

3、元件清单................................................................................................... 错误!未定义书签。

七、软件设计............................................................. 错误!未定义书签。

1、程序流程图 .............................................................................................. 错误!未定义书签。

2、发射板主程序 .......................................................................................... 错误!未定义书签。

3、接收板主程序 .......................................................................................... 错误!未定义书签。

4、USB通信程序.......................................................................................... 错误!未定义书签。

5、无线模块通信程序................................................................................... 错误!未定义书签。

八、主要技术指标、调试及性能分析 .................. 错误!未定义书签。

1、性能分析 .................................................................................................. 错误!未定义书签。

2、结论......................................................................................................... 错误!未定义书签。参考文献..................................................................... 错误!未定义书签。

一、数据无线传输系统设计的研究背景

随着社会的发展,数据传输已经成为人们生产、生活中不可或缺的一部分,小到用餐时的点菜系统,大到国家中央情报局的情报交换。

数据传输中按传输介质可分为有线传输和无线传输。有线传输就是用线缆传输信息,如光纤,同轴电缆,双绞线等等。在许多情况下,用户往往由于受到地理环境和工作内容的限制,例如山地、港口和开阔地等特殊地理环境,对有线网络、有线传输的布线工程带来极大的不便,采用有线的施工周期将很长,甚至根本无法实现。无线就是不用线缆传递信息,而是利用电磁波传递信息,分发射部分和接收部分。采用无线可以摆脱线缆的束缚,有安装周期短、维护方便、扩容能力强,迅速收回成本的优点。

近十几年来,移动通信技术飞速发展,越来越多的信息采集和远程控制系统采用了无线数据传送技术。与有线数据传输相比,无线数据传输布线成本低、安装简便、便于移动的优点,使其在遥控遥测、门禁系统、无线抄表、小区传呼、工业数据采集、无线遥控系统、无线鼠标等领域都得到了广泛的应用,而且它在高科技领域的应用也正在迅猛发展,比如卫星、导弹、无人侦察机等的数据采集,遥控机器人等的控制,以及一些监控设备等。

此外,在现代军事通讯领域方面,无线传输技术也有重要的战略地位。在未来高科技战斗中,由于军事卫星通讯手段在未来战争中容易被摧毁且难以紧急恢复,所以人们可以利用无线短波、超短波等方式实现数据是无线传输,因而取得战争中的主动权。民用方面,在一些线路架设比较困难的地方,或者有天然的阻隔的地理条件较复杂较恶劣的地方数据的无线传输便显示出了巨大威力。无线传输还便于通讯设备移动,具有明显的灵活性。

二、数据无线传输的发展现状及前景

进入二十一世纪,无线数据通讯技术在我国蓬勃发展,也得到了信息产业部以及各行各业的高度重视,因为任何有线数据传输网络只能是网状覆盖,而无线数据传输网可达到真正的面覆盖。

目前主要的短距离无线数据传输技术主要有蓝牙、Zigbee、IEEE802.11x、微功率短距离无线通讯技术,与已具备相当规模的无线长距离通讯网络(比如蜂窝移动通讯网、卫星数据通讯)相比,短距离无线通讯系统在基本结构、服务范围、应用层次以及通讯

蓝牙技术(Bluetooth)主要面对网络中的各种数据和语言设备,通过无线方式将它们连接起来,从而方便快速的实现数据传输,它使用2.4GHZ的ISM频段,最大传输率1Mbit/s 。

IEEE802.11x的技术标准是无线局域网的国际标准,也是用2.4GHZ的ISM频段,协议主要在OSI的物理层和数据链路层,虽然传输速度快,但此类设备比较昂贵,技术复杂。

Zigbee是一种新型的短距离、低速度、低功耗无线网络技术,是一种介于无线标记技术和蓝牙之间的技术,基于IEEE无线个人区域网标准,数据传输速率通常为10kb/s 到250kb/s,有效覆盖范围10到75米,由于其协议简单、成本低、网络容量大等优点,使其在无线传感网络中得到广泛的应用。

在未来,短距离无线数据传输将向着更高传输速率、更高传输精确度的方向发展,而且传输设备的成本也会进一步降低,传输协议也会进一步简单,从而是短距离无线通讯走入我们的生活,给我带来更多方便。

三、作品研究的目的和意义

本作品研究的内容是通过MCU按照无线协议控制无线数据芯片,以此来实现大量数据的无线高速传输,无论是在国防军事方面,还是民用通讯方面都有很重要的研究意义。可改装数控操控设备、医疗设备、数据通信设备等,使数据控制、交换、采集简单化,对无线数据通信在MCU系统中的应用和多单片机协同工作中具有非常宝贵的参考价值。

四、作品简介

实物作品,实现了一种基于PS/2接口和电脑进行无线数据通信的系统。电脑键盘输入的数据通过单片机采集传送到射频发射模块。在一百米,甚至到几公里(只需加PA模块拓展)将数据传送给另一块单片机,单片机再通过USB接口转换芯片和电脑进行通信。

五、基本思路和关键技术

1、整体设计思路和框图

SPI总线将数据传输给无线发送芯片,无线发送芯片将数据发送出去。同样,接收端单片机通过SPI总线控制接收端芯片,将无线传输过来的数据接收,再经过USB接口芯片转换,将数据传送给电脑,从而实现了无线数据传输。

系统整体流程图如图1所示:

图1. 整体设计流程图

2、PS/2数据采集接口

一般,具有五脚连接器的键盘称之为AT键盘,而具有六脚mini-DIN连接器的键盘则称之为PS/2键盘。在本作品中使用的是六脚mini-DIN连接器,其实这两种连接器都只有四个脚有意义,它们分别是Clock(时钟脚)、Data(数据脚)、+5V(电源脚)和Ground(电源地)。在PS/2键盘与PC机的物理连接上只要保证这四根线一一对应就可以了。在本设计中只需将+5V(电源脚)与单片机的40脚相连,Ground(电源地)与单片机的20脚相连,Clock(时钟脚)与单片机的12脚外部中断相连,Data (数据脚)与其它任一I/O口相连即可。[1]现在比较常用的连接器如图3所示。

图3 PS/2的mini-DIN连接器

3、PS/2电气特性

nRF2401是北欧集成电路公司生产的单片射频收发芯片,工作于2.4~2.5GHz ISM 频段,芯片内置频率合成器、功率放大器、晶体振荡器和调制器等功能模块,输出功率和通信频道可通过程序进行配置。芯片能耗非常低,以-5dBm的功率发射时,工作电流只有10.5mA,接收时工作电流只有18mA,多种低功率工作模式,节能设计更方便。其D uoCeiverTM技术使nRF2401可以使用同一天线,同时接收两个不同频道的数据。

引脚分布图

其特点如下:

●全球开放的2.4GHz频段多频道125个满足多频及跳频需要

●高速率1Mbps 高于蓝牙内置硬件CRC电路及多点通信控制高数据吞吐量

●采用0.18um先进加工技术极具竞争力的成本

● 1.9 -3.6V低电压低功耗满足低功耗设计需要

●广泛适用于手持终端PDA 无线数字耳机数字视频数码相机以及其他短距离高速无线通信应用

●集成度高所有高频元件包括电感滤波器振荡器等已经全部集成在芯片内部使得产品一致性良好成本低性能稳定且不受外界影响

●内部具有点对多点通信协议控制每个芯片可以通过软件设置最多40bit地址只有收到本机地址时才会输出数据提供一个中断指示编程方便

点对多点通信示意图

●嵌入CRC通信效验协议纠检错是无线通信设计的难点,nRF2401内置了CRC硬件电路和协议;

●双接收功能独特设计nRF2401的DuoCeiver技术可以同时接收两个nRF2401的数据可以有效降低成本拓展用途

●编程配置发射功率工作频率等所有工作参数全部通过SPI串口软件设置完成

●外围元件极少,只需一个晶振和一个电阻即可设计射频电路;

●发射功率和工作频率等所有工作参数可全部通过软件设置;

●电流消耗很小,-5dBm输出功率时的典型峰值电流为10.5mA;

●芯片内部设置有专门的稳压电路,因此,使用任何电源(包括DC/DC开关电源)均有很好的通信效果;

●采用DuoCeiver技术可同时接收两个nRF2401的数据;

●带有集成增强型8051内核、 9路10bitADC、UART异步串口、SPI串口和PWM输出;

●内置看门狗;

●无需外部SAW滤波器;

●可100%RF检验;

●带有数据时隙和数据时钟恢复功能.

3 内部工作原理和外部组成原理图

nRF2401的内部结构原理及外部组成框图如图2所示,下面介绍其工作原理.

5、射频模块 ShockBurstTM模式应用技术

nRF2401的ShockBurstTM RX/TX模式采用片上先进先出(FIFO)来进行低数据率的时钟同步和高数据率的传输,因此极大的降低了功耗.

ShockBurstTM发射主要通过MCU接口引脚CE、CLK1和DATA来完成.当MCU请求发送数据时,置CE为高电平,此时的接收机地址和有效载荷数据作为 nRF2401的内部时钟,可用请求协议或MCU将速率调至1Mbps;置CE为低电平可激活ShockBurstTM发射.

双接收模式

ShockBurstTM接收主要使用MCU接口引脚CE、 DR1、 CLK1和DATA来实现.当正确设置射频包输入载荷的地址和大小后,置CE为高电平可激活RX.此后便可在nRF2401监测信息输入200μs,若收到有效数据包,则给MCU一个中断并置DR1为高电平,以使MCU 以时钟形式输出有效载荷数据,待系统收到全部数据后,此时RF2401再置DR1为低电平,此时如果CE保持高电平,则等待新的数据包.若CE置低电平,则开始接收新的序列。

DuoCeiverTM的双信道接收模式:nRF2401的 DuoCeiverTM技术为RX提供了两个独立的专用数字信道,因而可代替两个单独接收系统.图3所示是DuoCeiverTM同时双接收信道结构图.nRF2401 可以通过一个天线接口从相隔8MHz的两个1Mbps接收机上接收数据.同时将两个数字信道的输出反馈到两个单独的MCU接口.具体的两个信道如下: 数字信道1:CLK1,DATA,DR1;

数字信道2:CLK2,DOUT2,DR2;

应当说明的是,数字信道2的频率只有在比数字信道1的频率高出8MHz时,才能保证正常接收.

6、直接收发模式应用技术

在直接收发模式下,nRF2401 如传统的射频收发器一样工作。在直接发送时接口引脚为CE、DATA。当微控制器有数据要发送时,把CE 置高,nRF2401 射频前端被激活。所有的射频协议必须在微控制器程序中进行处理(包括字头、地址和CRC 校验码)。在直接接收模式时接口引脚为CE、CLK1 和DATA。一旦nRF2401 被配置为直接接收模式,DATA 引脚将根据天线接收到的信号开始高低变化(由于噪声的存在),CLK1 引脚也开始工作,一旦接收到有效的字头,CLK1 引脚和DATA 引脚将协调工作,把射频数据包以其被发射时的数据从DATA 引脚送给微控制器,字头必须是8 位。由于DR 引脚没用上,所有的地址和CRC 校验必须在微控制器内部进行。

7、数据接收模式应用技术

接收端单片机可以通过输入C语言程序对无线射频芯片NRF24L01的参数进行设置,设为接收模式,即可接受检验信号。接收到检验信号后,NRF24L01的自动应答功能会发送应答信号给发送端已确认收到信号,接着NRF24L01通过IRQ 中断通知接收

端单片机,单片机进行数据接收并通过USB芯片将其转换成电脑识别的信号传给电脑。接收端的单片机在接收到中断的同时,要同发射端芯片进行时间上的协同,以此来保证发送和接收的配合。最后清除NRF24L01的状态寄存器,再次为下一次数据的接收做好准备。

8、MCU硬件串行通信应用技术

RS-232是现在主流的串行通信接口之一。

由于RS232接口标准出现较早,难免有不足之处,主要有以下四点:

(1)接口的信号电平值较高,易损坏接口电路的芯片,又因为与TTL电平不兼容故需使用电平转换电路方能与TTL电路连接。

(2)传输速率较低,在异步传输时,波特率为20Kbps;因此在“南方的老树51CPLD开发板”中,综合程序波特率只能采用19200,也是这个原因。

(3)接口使用一根信号线和一根信号返回线而构成共地的传输形式,这种共地传输容易产生共模干扰,所以抗噪声干扰性弱。

在MAX232与单片机进行通信时,串行口的SBUF是作为同步移位寄存器使用的。在串行口发送时,SBUF相当于一个并行进入、串行输出的移位寄存器,由单片机的内部总线并行接收8位数据,并从RXD信号线串行输出。在接收操作时,它又相当于一个串行输入、输出的移位寄存器。在本设计中MAX232与单片机的串口通信原理图如下所示:

上图为本设计应用的RS232串行通信原理图

9、PS/2接口的键盘与无线发射模块的数据传送应用技术

在本设计中PS/2键盘与单片机的连接方式如图9所示。P3.2口接PS/2数据线;

①从设备到主设备的通信

当从设备向主设备发送数据时,首先检查时钟线,以确认时钟线是否为高电平。如果是高电平,从设备就可以开始传输数据;反之,从设备要等待获得总线的控制权,才能开始传输数据。传输的每一帧由11位组成,发送时序及每一位的含义如图7所示。

图7 从设备到主设备的通信

每一帧数据中开始位总是为0,数据校验采用奇校验方式,停止位始终为1。从设备到主设备通信时,从设备总是在时钟线为高时改变数据线状态,主设备在时钟下降沿读人数据线状态。

②主设备到从设备的通信

主设备与从设备进行通信时,主设备首先将时钟线和数据线设置为“请求发送”状态,具体方式为:首先下拉时钟线至少100us抑制通信,然后下拉数据线“请求发送”最后释放时钟线。在此过程中,从设备在不超过10us的间隔内必须检查这个状态,当设备检测到这个状态时,它将开始产生时钟信号。此时数据传输的每一帧由12位构成,其时序和每一位含义如图8所示。

图8 主设备到从设备的通信

与从设备到主设备通信相比,其每帧数据多了一个ACK位。这是从设备应答接收到字节的应答位,由从设备通过拉低数据线产生,应答位ACK总是为0。主设备到从设备通信过程中,主设备总是在时钟线为低电平时改变数据线的状态,从设备在时钟上升沿读人数据线状态。

图9 硬件连接电路

单片机接收完数据后便要进入nRF24L01的发射模块。在本设计中nRF24L01选择ShockBurstTM收发工作模式。

在ShockBurstTM 发射流程中,接口引脚为CE,CLK1,DATA,当微控制器有数据要发送时,其把CE 置高,使nRF24L01 工作。当nRF24L01工作后,才把接收机的地址和要发送的数据按时序送入nRF24L01,随后微控制器把CE 置低,激发nRF24L01 进行ShockBurstTM 发射。

10、无线接收应用技术

在nRF24L01工作在ShockBurstTM 接收流程中,接口引脚CE、DR1、CLK1 和DATA(接收通道1),首先要配置本机地址和要接收的数据包大小。一但进入接收状态,便把CE 置高,200us 后,nRF2401进入监视状态,等待数据包的到来。当接收到正确的数据包(正确的地址和CRC 校验码),nRF2401自动把字头、地址和CRC 校验位移去,nRF2401通过把DR1(这个引脚一般引起微控制器中断)置高通知微控制器,之后微控制器把数据从nRF2401移出,所有数据移完,nRF2401把DR1置低,此时,如果CE为高,则等待下一个数据包,如果CE为低,开始其它工作流程。

六、PCB电路板制作的关键技术材料

1、PCB电路图

2、装配图

七、软件设计流程图

1、主程序流程图

主程序先对系统初始化,接收机初始化后等待进入中断接收数据,转换数据传给芯片转换。发送机初始化后,等待PS/2的数据信号,采集转换给射频模块,无线送出数据。主程序流程图如下图所示。

图 发送机主程序流程图

接收机主程序流程图

2、子程序流程图

在有外部中断发生时,表示PS/2接口的键盘将向单片机发送数据,待数据发送完成后,单片机保存数据并由无线发射模块发射出去。其程序流程图如图12所示。

图发送端外部中断子程序流程图

接收端外部中断子程序流程图

2、发射主程序

#include

#include

#include "24L01.h"

#define uchar unsigned char

#define uint unsigned int

sbit KB_CLK=P3^3;

sbit KB_DATA=P3^2;

uint n=0;

void Delay_NS(uint x)

{

for(;x>0;x--);

}

void delay_nms(unsigned int t)

{

unsigned int i,j;

for(i=0;i

for(j=0;j<120;j++);

}

void Send_Key(uchar dat)

{

uint i;

KB_CLK=0;

Delay_NS(10);

KB_DATA=0;

KB_CLK=1;

while(KB_CLK);

KB_DATA=0;

while(!KB_CLK);

for(i=0;i< 8;i++)

{

while(KB_CLK)

_nop_();

KB_DATA = dat&0x01;

if(KB_DATA) n++;

while(!KB_CLK)

_nop_();

dat>>=1;

}

switch(n){

case 0:

case 4:

case 6:KB_DATA =1;break;

case 1:

case 3:

case 5:

case 7:KB_DATA =0;break;

default:

break;

}

while(KB_CLK)

_nop_();

while(KB_CLK)

_nop_();

KB_DATA =1;

while(!KB_CLK)

_nop_();

while(KB_CLK)

_nop_();

while(!KB_CLK)

_nop_();

}

uchar Key_Scan(void)

{

uchar i,key_temp;

KB_CLK=1;

KB_DATA=1;

key_temp=0;

while(KB_CLK);

for(i=0;i<8;i++)

{

key_temp>>=1;

while(!KB_CLK);

while(KB_CLK);

_nop_();

if(KB_DATA)

{

key_temp|=0x80;

}

}

while(KB_CLK);

return key_temp;

}

unsigned char key2asc(unsigned char Key) {

for(i=0;i<49;i++)

{

if(Key==kbdasciicode[i][0])

{

temp= kbdasciicode[i][1];

break;

}

}

if(temp==0xff)

{

for(i=0;i<37;i++)

{

if(Key==kbdcontrolcode[i][0])

{

temp= kbdcontrolcode[i][1];

break;

}

}

}

if(temp==0xff)

{

for(i=0;i<18;i++)

{

if(Key==E0startedcode[i][0])

{

temp= E0startedcode[i][1];

break;

}

}

}

return temp;

}

uchar Get_Key(void)

{

uchar Key_Code[3],temp=0xff;

Key_Code[0]=Key_Scan();

Key_Code[1]=Key_Scan();

Key_Code[2]=Key_Scan();

temp=key2asc(Key_Code[0]);

if(temp!=0xff)nRF24L01_TxPacket(&temp); putchar(temp);

Delay_NS(2000);

return Key_Code[0];

}

射频电路调试测试流程

射频电路调试测试流程(准备阶段) 射频电路的调试作为通信整机研发工作中的重要一环,工作量非常大,几乎所有电路都需要调试,为了提高效率,需要对调试环境、调试方法等进行规范。 环境准备如下 1、防静电 佩戴“静电手环”,并良好接地,若着化纤、羊毛、羽绒服装,外层需加穿防静电服,或防辐射服;小功率、低电压、高频率、小封装的器件均ESD敏感,最容易被ESD击穿的射频器件:RF开关,其次是LNA;所有仪器,开机使用前必须将机壳良好接地;2、电源 稳压电源接入负载前,先校准输出电压,电压等于负载的额定电压; 3、仪器保护 为安全起见:只要射频功率大于20dBm,射频信号源(30dBm)、频谱分析仪(27dBm)、信号源分析仪(23dBm)输入端必须级联同轴衰减器,一般情况下,5W 5dB衰减器为常态配置,若测试功放模块需根据实际输出功率大小配置合适的衰减器; 4、仪器设置 射频信号源:Keysight输出功率<13dBm,R&S输出功率<18dBm,若超出,输出功率可能小于显示值,需实测并进行补偿; 频谱分析仪:屏幕显示的有效动态范围,FSV约70dB,FSW约80dB;仪器的线性输入功率<-3dBm,超出会恶化待测IM3(ACLR)、谐波,应选择合适的内部/外部衰减值; 矢量网络分析仪:仪器的IF带宽决定噪声,测无源器件的带外抑制,应适当降低IF带宽;调测任何电路,必须保证输出功率

ADS2009射频电路仿真实验实验报告

低通滤波器的设计与仿真报告 一、实验目的 (1)熟悉ADS2009的使用及操作; (2)运用此软件设计一低通录波器,通过改变C2.L1的值,使低通录波器达到预定的要求(dB值以大于—3.0以上为宜); (3)画出输出仿真曲线并标明截止频率的位置与大小。 二、低通滤波器简介 (1)定义:让某一频率以下的信号分量通过,而对该频率以上的信号分量大大抑制的电容、电感与电阻等器件的组合装置。低通滤波器是容许低于截止频率的信号通过,但高于截止频率的信号不能通过的电子滤波装置。 (2)特点与用途 特点:低损耗高抑制;分割点准确;双铜管保护;频蔽好,防水功能强。 用途:产品用途广泛,使用于很多通讯系统,如 CATV EOC 等系统。并能有效的除掉通频带以外的信号和多余的频段、频率的干扰。 低通滤波器在信号处理中的作用等同于其它领域如金融领域中移动平均数所起的作用;低通滤波器有很多种,其中,最通用的就是巴特沃斯滤波器和切比雪夫滤波器。 三、设计步骤 1,建立新项目 (1)在界面主窗口执行菜单命令【File】/【New Project...】,创建

新项目。在选择保存路径时,在“Name”栏中输入项目的名称“lab1”; (2)单击按钮“确认”,出现电路原理图设计及仿真向导对话框,按照要求进行选择选项。 2,建立一个低通录波器设计 (1)在主界面窗口,单击“New Schematic Window”图标,弹出原理图设计窗口; (2)单击“保存”图标,保存原理图,命名为“lpf1”; (3)在元件模型列表窗口中选择“Lumped-Components”集总参数元件类; (4)在左侧面板中选择电容图标,将其放置到电路图设计窗口中,并进行旋转; (5)用类似的方法将电感放置到电路图设计窗口中,并利用接地图标,把电容器的一端接地,将各个器件连接起来; (6)在元件库列表窗口选择“Simulation-S-Param”项,在该面板中选择S-parameter模拟控制器和端口Term,将其放到原理图中。双击电容“C2”并修改其参数。 低通滤波器原理图如下图1所示: 3,电路仿真 1)设置S参数控件参数 (1)双击S参数控件,打开参数设置窗口,将“Step-size”设置为0.5GHz; (2)选中【Display】选项卡,在此列出了所有可以显示在原理

带通滤波器

四川大学 电子信息专业实验报告 课程射频通信电路 实验题目射频实验 实验人许留留 2012141451075 实验时间周一晚上 带通滤波器

要求: 通带频率:4.8-5.2GHz 通带内波纹:<3dB 阻带抑制:>30dB (5.3GHz 处) 输入输出阻抗:50Ω 介质基板相对介电常数:2.65 计算过程: f 0=2f f L +H =5GHz Ω=??? ? ??f -f -f f f f f 000L H =1.467 按照设计要求,需要选用3dB 等波纹契比雪夫低通滤波电路。在归一化频率Ω=1.467处,需要具有大于30dB 的衰减。因此,要满足设计要求必须选用5阶 滤波电路。 设计电路图如下

采用优化的方式。 仿真步骤: 用微带线连接电路图,参数TL1=TL2,w=2.69mm,l=10.03mm (用ADS自带软件算出)。

由于CLin1=CLin6,CLin2=CLin5,CLin3=CLin4。设置9个变量L1,L2,L3;W1,W2,W3;S1,S2,S3。单位为mm。在V AR 1,中同样添加,初始值w设为1,l设为10,s设为1(l的长度约为 4 w和s大于0.2mm)。调节范围设置,L(9-11),W(0.2-3),S(0.2-3)。 从4GHz开始,到6GHz结束,步长为10MHz。 波形与带通滤波器较为形似则继续。

用OPTM来优化波形,设置两个GOAL,使频率在4.8-5.2GHz 间波纹大于-3dB,同时在5.3-5.4GHz间衰减小于-30dB。 按下仿真键开始仿真出现以下结果 波形图如下

集成电路设计实验报告

集成电路设计 实验报告 时间:2011年12月

实验一原理图设计 一、实验目的 1.学会使用Unix操作系统 2.学会使用CADENCE的SCHEMA TIC COMPOSOR软件 二:实验内容 使用schematic软件,设计出D触发器,设置好参数。 二、实验步骤 1、在桌面上点击Xstart图标 2、在User name:一栏中填入用户名,在Host:中填入IP地址,在Password:一栏中填入 用户密码,在protocol:中选择telnet类型 3、点击菜单上的Run!,即可进入该用户unix界面 4、系统中用户名为“test9”,密码为test123456 5、在命令行中(提示符后,如:test22>)键入以下命令 icfb&↙(回车键),其中& 表示后台工作,调出Cadence软件。 出现的主窗口所示: 6、建立库(library):窗口分Library和Technology File两部分。Library部分有Name和Directory 两项,分别输入要建立的Library的名称和路径。如果只建立进行SPICE模拟的线路图,Technology部分选择Don’t need a techfile选项。如果在库中要创立掩模版或其它的物理数据(即要建立除了schematic外的一些view),则须选择Compile a new techfile(建立新的techfile)或Attach to an existing techfile(使用原有的techfile)。 7、建立单元文件(cell):在Library Name中选择存放新文件的库,在Cell Name中输 入名称,然后在Tool选项中选择Composer-Schematic工具(进行SPICE模拟),在View Name中就会自动填上相应的View Name—schematic。当然在Tool工具中还有很多别的

射频电路调试经验及问题分析

射频电路调试经验及问题分析 1前言 文档总结了我工作一年半以来的一些射频(Radio Frequency)调试(以下称为Debug)经验,记录的是我在实际项目开发中遇到并解决问题的过程。现在我想利用这份文档与大家分享这些经验,如果这份文档能够对大家的工作起到一定的帮助作用,那将是我最大的荣幸。 个人感觉,Debug过程用的都是最简单的基础知识,如果能够对RF的基础知识有极为深刻(注意,是极为深刻)的理解,我相信,所有的Bug解起来都会易如反掌。同样,我的这篇文档也将会以最通俗易懂的语言,讲述最通俗易懂的Debug技巧。 在本文中,我尽量避免写一些空洞的理论知识,但是第二章的内容除外。“微波频率下的无源器件”这部分的内容截取自我尚未完成的“长篇大论”——Wi-Fi产品的一般射频电路设计(第二版)。 我相信这份文档有且不只有一处错误,如果能够被大家发现,希望能够提出,这样我们就能够共同进步。 2微波频率下的无源器件 在这一章中,主要讲解微波频率下的无源器件。一个简单的问题:一个1K的电阻在直流情况下的阻值是1K,在频率为10MHz的回路中可能还是1K,但是在10GHz的情况下呢?它的阻值还会是1K吗?答案是否定的。在微波频率下,我们需要用另外一种眼光来看待无源器件。 2.1.微波频率下的导线 微波频率下的导线可以有很多种存在方式,可以是微带线,可以是带状线,可以是同轴电缆,可以是元件的引脚等等。 2.1.1.趋肤效应 在低频情况下,导线内部的电流是均匀的,但是在微波频率下,导线内部会产生很强的磁场,这种磁场迫使电子向导体的边缘聚集,从而使电流只在导线的表面流动,这种现象就称为趋肤效应。趋肤效应导致导线的电阻增大,结果会怎样?当信号沿导体传输时衰减会很严重。在实际的高频场合,如收音机的感应线圈,为了减少趋肤效应造成的信号衰减,通常会使用多股导线并排绕线,而不会使用单根的导线。我们通常用趋肤深度来描述趋肤效应。趋肤深度是频率与导线本身共同的作用,在这里我们不会作深入的讨论。 2.1.2.直线电感 我们知道,在有电流流过的导线周围会产生磁场,如果导线中的电流是交变电流,那么磁场强度也会随着电流的变化而变化,因此,在导线两端会产生一个阻止电流变化的电压,这种现象称之为自感。也就是说,微波频率下的导线会呈现出电感的特性,这种电感称为直线电感。也许你会直线电感很微小,可以忽略,但是我们将会在后面的内容中看到,随着频率的增高,直线电感就越来越重要。 电感的概念是非常重要的,因为微波频率下,任何导线(或者导体)都会呈现出一定的电感特性,就连电阻,电容的引脚也不例外。 2.2.微波频率下的电阻 从根本上说,电阻是描述某种材料阻碍电流流动的特性,电阻与电流,电压的关系在欧姆定律中已经给出。但是,在微波频率下,我们就不能用欧姆定律去简单描述电阻,这个时候,电阻的特性应经发生了很大的变化。 2.2.1.电阻的等效电路 电阻的等效电路。其中R就是电阻在直流情况下电阻自身的阻值,L是电阻的引脚,C 因电阻结构的不同而不同。我们很容易就可以想到,在不同的频率下,同一个电阻会呈现出不同的阻值。想想平时在我们进行Wi-Fi产品的设计,几乎不用到直插的元件(大容量电解

最详细解读射频芯片

最详细解读射频芯片 传统来说,一部可支持打电话、发短信、网络服务、APP应用的手机,一般包含五个部分部分:射频部分、基带部分、电源管理、外设、软件。 射频部分:一般是信息发送和接收的部分; 基带部分:一般是信息处理的部分; 电源管理:一般是节电的部分,由于手机是能源有限的设备,所以电源管理十分重要; 外设:一般包括LCD,键盘,机壳等; 软件:一般包括系统、驱动、中间件、应用。 在手机终端中,最重要的核心就是射频芯片和基带芯片。射频芯片负责射频收发、频率合成、功率放大;基带芯片负责信号处理和协议处理。那么射频芯片和基带芯片是什么关系? 1. 射频芯片和基带芯片的关系 先讲一下历史,射频(Radio Frenquency)和基带(Base Band)皆来自英文直译。其中射频最早的应用就是Radio——无线广播(FM/AM),迄今为止这仍是射频技术乃至无线电领域最经典的应用。 基带则是band中心点在0Hz的信号,所以基带就是最基础的信号。有人也把基带叫做“未调制信号”,曾经这个概念是对的,例如AM为调制信号(无需调制,接收后即可通过发声元器件读取内容)。 但对于现代通信领域而言,基带信号通常都是指经过数字调制的,频谱中心点在0Hz的信号。而且没有明确的概念表明基带必须是模拟或者数字的,这完全看具体的实现机制。 言归正传,基带芯片可以认为是包括调制解调器,但不止于调制解调器,还包括信道编解码、信源编解码,以及一些信令处理。而射频芯片,则可看做是最简单的基带调制信号的上变频和下变频。 所谓调制,就是把需要传输的信号,通过一定的规则调制到载波上面让后通过无线收发器(RF Transceiver)发送出去的工程,解调就是相反的过程。 2.工作原理与电路分析 射频简称RF射频就是射频电流,是一种高频交流变化电磁波,为是Radio Frequency的缩写,表示可以辐射到空间的电磁频率,频率范围在300KHz~300GHz之间。每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。高频(大于10K);射频(300K-300G)是高频的较高频段;微波频段(300M-300G)又是射频的较高频段。射频技术在无线通信领域中被广泛使用,有线电视系统就是采用射频传输方式。

射频实验报告一

电子科技大学通信射频电路实验报告 学生姓名: 学号: 指导教师:

实验一选频回路 一、实验内容: 1.测试发放的滤波器实验板的通带。记录在不同频率的输入下输出信号的 幅度,并绘出幅频响应曲线。 2.设计带宽为5MHz,中心频率为39MHz,特征阻抗为50欧姆的5阶带 通滤波器。 3.在ADS软件上对设计出的带通滤波器进行仿真。 二、实验结果: (一)低通滤波器数据记录及幅频响应曲线 频率 1.0k 500k 1M 1.5M 2.0M 2.5M 3.0M 3.5M 4..0M 4.5M 5.0M /Hz Vpp/mv 1000 1010 1020 1020 1020 1050 952 890 832 776 736 频率/Hz 5.5M 6.0M 6.2M 6.4M 6.6M 6.8M 7.0M 7.2M 7.4M 7.6M 7.8M Vpp/mv 704 672 656 640 624 592 568 544 512 480 448 频率/Hz 8.0M 8.2M 8.4M 8.6M 8.8M 9.0M 9.2M 9.4M 9.6M 9.8M 10.0M Vpp/mv 416 400 368 376 320 288 272 256 224 208 192

(二)带通滤波器数据记录及幅频响应曲线 频率 /MHz 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 Vpp/mv 0.4 0.8 0.4 0.6 0.8 0.6 0.8 0.8 1.4 1.1 6.0 4.0 23. 8 频率 /MHz 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4 Vpp/mv 79. 2 72. 8 66. 4 69. 6 77. 6 90. 4 108. 8 137. 6 183. 2 260 364 442 440 频率/MHz 9.6 9.8 10. 10. 2 10. 4 10. 6 10.8 11.0 11.2 11. 4 11. 6 11. 8 12. Vpp/mv 440 403 378 378 406 468 468 548 548 484 412 356 324 频率/MHz 12. 2 12. 4 12. 6 12. 8 13. 13. 2 13.4 13.6 13.8 14.

通信电路实验报告

实验十一包络检波及同步检波实验 一、实验目的 1、进一步了解调幅波的原理,掌握调幅波的解调方法。 2、掌握二极管峰值包络检波的原理。 3、掌握包络检波器的主要质量指标,检波效率及各种波形失真的现 象,分析产生的原因并思考克服的方法。 4、掌握用集成电路实现同步检波的方法。 二、实验内容 1、完成普通调幅波的解调。 2、观察抑制载波的双边带调幅波的解调。 3、观察普通调幅波解调中的对角切割失真,底部切割失真以及检波 器不加高频滤波时的现象。 三、实验仪器 1、信号源模块 1 块 2、频率计模块 1 块 3、 4 号板 1 块 4、双踪示波器 1 台

5、万用表 1 块 三、实验原理 检波过程就是一个解调过程,它与调制过程正好相反。检波器的作用就是从振幅受调制的高频信号中还原出原调制的信号。还原所得的信号,与高频调幅信号的包络变化规律一致,故又称为包络检波器。假如输入信号就是高频等幅信号,则输出就就是直流电压。这就是检波器的一种特殊情况,在测量仪器中应用比较多。例如某些高频伏特计的探头,就就是采用这种检波原理。 若输入信号就是调幅波,则输出就就是原调制信号。这种情况应用最广泛,如各种连续波工作的调幅接收机的检波器即属此类。从频谱来瞧,检波就就是将调幅信号频谱由高频搬移到低频。检波过程也就是应用非线性器件进行频率变换,首先产生许多新频率,然后通过滤波器,滤除无用频率分量,取出所需要的原调制信号。 常用的检波方法有包络检波与同步检波两种。全载波振幅调制信号的包络直接反映了调制信号的变化规律,可以用二极管包络检波的方法进行解调。而抑制载波的双边带或单边带振幅调制信号的包络不能直接反映调制信号的变化规律,无法用包络检波进行解调,所以采 用同步检波方法。 1、二极管包络检波的工作原理 当输入信号较大(大于0、5伏)时,利用二极管单向导电特性对振幅调

《集成电路设计》课程设计实验报告

《集成电路设计》课程设计实验报告 (前端设计部分) 课程设计题目:数字频率计 所在专业班级:电子科 作者姓名: 作者学号: 指导老师:

目录 (一)概述 2 2 一、设计要求2 二、设计原理 3 三、参量说明3 四、设计思路3 五、主要模块的功能如下4 六、4 七、程序运行及仿真结果4 八、有关用GW48-PK2中的数码管显示数据的几点说明5(三)方案分析 7 10 11

(一)概述 在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得十分重要。测量频率的方法有多种,数字频率计是其中一种。数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器,是一种用十进制数字显示被测信号频率的数字测量仪器。数字频率计基本功能是测量诸如方波等其它各种单位时间内变化的物理量。在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,精确度高,显示直观,经常要用到频率计。 频率计的基本原理是应用一个频率稳定度高的时基脉冲,对比测量其它信号的频率。时基脉冲的周期越长,得到的频率值就越准确。通常情况下是计算每秒内待测信号的脉冲个数,此时我们称闸门时间是1秒。闸门时间也可以大于或小于1秒,闸门的时间越长,得到的频率值就越准确,但闸门的时间越长则每测一次频率的间隔就越长,闸门时间越短,测的频率值刷新就越快,但测得的频率精度就受影响。 本文内容粗略讲述了我们小组的整个设计过程及我在这个过程中的收获。讲述了数字频率计的工作原理以及各个组成部分,记述了在整个设计过程中对各个部分的设计思路、程序编写、以及对它们的调试、对调试结果的分析。 (二)设计方案 一、设计要求: ⑴设计一个数字频率计,对方波进行频率测量。 ⑵频率测量可以采用计算每秒内待测信号的脉冲个数的方法实现。

WiFi产品射频电路调试经验

Wi-Fi产品射频电路调试经验 https://www.360docs.net/doc/01393967.html,/article/11-04/422921302067041.html?sort=1111_1119_1438_0 2011-04-06 13:17:21 来源:电子发烧友 关键字:Wi-Fi 射频电路调试经验 这份文档是生花通信的一线射频工程师总结了的Wi-Fi产品开发过程中的一些射频调试经验,记录并描述在实际项目开发中遇到并解决问题的过程。 1 前言 这份文档总结了我工作一年半以来的一些射频(Radio Frequency)调试(以下称为Debug)经验,记录的是我在实际项目开发中遇到并解决问题的过程。现在我想利用这份文档与大家分享这些经验,如果这份文档能够对大家的工作起到一定的帮助作用,那将是我最大的荣幸。 个人感觉,Debug过程用的都是最简单的基础知识,如果能够对RF的基础知识有极为深刻(注意,是极为深刻)的理解,我相信,所有的Bug解起来都会易如反掌。同样,我的这篇文档也将会以最通俗易懂的语言,讲述最通俗易懂的Debug技巧。 在本文中,我尽量避免写一些空洞的理论知识,但是第二章的内容除外。“微波频率下的无源器件”这部分的内容截取自我尚未完成的“长篇大论”——Wi-Fi产品的一般射频电路设计(第二版)。 我相信这份文档有且不只有一处错误,如果能够被大家发现,希望能够提出,这样我们就能够共同进步。 2 微波频率下的无源器件 在这一章中,主要讲解微波频率下的无源器件。一个简单的问题:一个1K的电阻在直流情况下的阻值是1K,在频率为10MHz的回路中可能还是1K,但是在10GHz的情况下呢?它的阻值还会是1K吗?答案是否定的。在微波频率下,我们需要用另外一种眼光来看待无源器件。 2.1. 微波频率下的导线 微波频率下的导线可以有很多种存在方式,可以是微带线,可以是带状线,可以是同轴电缆,可以是元件的引脚等等。 2.1.1. 趋肤效应 在低频情况下,导线内部的电流是均匀的,但是在微波频率下,导线内部会产生很强的磁场,这种磁场迫使电子向导体的边缘聚集,从而使电流只在导线的表面流动,这种现象就称为趋肤效应。趋肤效应导致导线的电阻增大,结果会怎样?当信号沿导体传输时衰减会很严重。 在实际的高频场合,如收音机的感应线圈,为了减少趋肤效应造成的信号衰减,通常会使用多股导线并排绕线,而不会使用单根的导线。

彩灯控制器电路设计报告

西安科技大学高新学院 毕业设计(论文) 题目彩灯控制器电路设计 院(系、部) 机电信息学院 专业及班级电专1202班 姓名张森 指导教师田晓萍 日期 2015年5月28日

摘要 随着微电子技术的发展,人民的生活水平不断提高,人们对周围环境的美化和照明已不仅限于单调的白炽灯,彩灯已成为时尚的潮流。彩灯控制器的实用价值在日常生产实践,日常生活中的作用也日益突出。基于各种器件的彩灯也都出现,单片机因其价格低廉、使用方便、控制简单而成为控制彩灯的主要器件。 目前市场上更多用全硬件电路实现,电路结构复杂,结构单一,一旦制成成品就只能按固定模式,不能根据不同场合,不同时段调节亮度时间,模式和闪烁频率等动态参数,而且一些电路存在芯片过多,电路复杂,功率损耗大,亮灯样式单调缺乏可操作性等缺点,设计一种新型彩灯已迫不及待。 近年来,彩灯对于美化、亮化城市有着不可轻视的重要作用。因此作为城市装饰的彩灯需求量越来越大,对于彩灯的技术和花样也越来越高。目前市场上各种式样的LED彩灯多半是采用全硬件电路实现,存在电路结构复杂、功能单一等局限性,因此有必要对现有的彩灯控制器进行改进。 关键词:LED彩灯;STC-89C52单片机;彩灯控制器。

目录 1前言 (1) 1.1设计目的 (1) 1.2设计要求 (1) 1.3总体方案设计与选择的论证 (2) 2节日彩灯控制器的设计 (4) 2.1核心芯片及主要元件功能介绍 (4) 2.1.1 AT89S52芯片 (4) 表1 (5) 2.1.2 74HC377芯片 (5) 2.1.3 74HC138芯片 (6) 2.2硬件设计 (7) 2.2.1直流电源电路 (7) 2.2.2按键电路 (8) 2.2.3时钟复位电路 (8) 2.2.4 LED显示电路 (9) 2.2.5硬件调试 (9) 2.3软件设计 (10) 3 总结 (15) 3.1实验方案设计的可行性、有效性 (15) 3.2设计内容的实用性 (15) 3.3心得 (16) 附录 (16) 参考文献 (18) 致谢 (19)

通信电路实验报告

第一次实验报告 实验一高频小信号放大器 一、实验目的 1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。 2、熟悉谐振回路的调谐方法及测试方法。 3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。 二、实验内容 (1)单调谐高频小信号放大器仿真

图1.1 单调谐高频小信号放大器(2)双调谐高频小信号放大器

(a) (b) 图1.2 双调谐高频小信号放大器

三、实验结果 (1)单调谐高频小信号放大器仿真 1、仿真电路图 2、根据电路中选频网络参数值,计算该电路的谐振频率ωp。 ωp ==2.94Mrad/s fp 467kHz 由于三极管的电容会对谐振回路造成影响,因此我适当增大了谐振回路 中的电容值(减小电感),ωp的误差减小,仿真中实际fp464kHz 3、通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。

A = = 11.08 db v0 4、利用软件中的波特图仪观察通频带,并计算矩形系数。 f0.7 : 446kHz~481kHz f0.1 : 327kHz~657kHz 矩形系数约为:9.4 5、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输 出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av 相应的图,根据图粗略计算出通频带。

通频带:446kHz~481kHz 带宽:35kHZ 6、 在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形, 体会该电路的选频作用。 二次谐波: 加入四次谐波 f 0(KHz ) 65 75 165 265 365 465 1065 1665 2265 2865 3465 4065 U 0(mv) 0.012 9 0.0155 0.0404 0.0858 0.2150 1.274 0.0526 0.0301 0.0216 0.0173 0.0144 0.0126 A V (db) -28.8 9 -27.38 -19.06 -12.60 -4.894 11.43 -16.46 -21.36 -24.22 -26.22 -27.73 -28.93

射频电路PCB的设计技巧

射频电路PCB的设计技巧 摘要:针对多层线路板中射频电路板的布局和布线,根据本人在射频电路PCB设计中的经验积累,总结了一些布局布线的设计技巧。并就这些技巧向行业里的同行和前辈咨询,同时查阅相关资料,得到认可,是该行业里的普遍做法。多次在射频电路的PCB设计中采用这些技巧,在后期PCB的硬件调试中得到证实,对减少射频电路中的干扰有很不错的效果,是较优的方案。 关键词:射频电路;PCB;布局;布线 由于射频(RF)电路为分布参数电路,在电路的实际工作中容易产生趋肤效应和耦合效应,所以在实际的PCB设计中,会发现电路中的干扰辐射难以控制,如:数字电路和模拟电路之间相互干扰、供电电源的噪声干扰、地线不合理带来的干扰等问题。正因为如此,如何在PCB的设计过程中,权衡利弊寻求一个合适的折中点,尽可能地减少这些干扰,甚至能够避免部分电路的干涉,是射频电路PCB设计成败的关键。文中从PCB的LAYOUT角度,提供了一些处理的技巧,对提高射频电路的抗干扰能力有较大的用处。 1 RF布局 这里讨论的主要是多层板的元器件位置布局。元器件位置布局的关键是固定位于RF路径上的元器件,通过调整其方向,使RF路径的长度最小,并使输入远离输出,尽可能远地分离高功率电路和低功率电路,敏感的模拟信号远离高速数字信号和RF信号。 在布局中常采用以下一些技巧。 1.1 一字形布局 RF主信号的元器件尽可能采用一字形布局,如图1所示。但是由于PCB板和腔体空间的限制,很多时候不能布成一字形,这时候可采用L形,最好不要采用U字形布局(如图2所示),有时候实在避免不了的情况下,尽可能拉大输入和输出之间的距离,至少1.5 cm 以上。

高频设计性实验及考查任务书

通信电路实验设计性实验及考查任务书 题目一、集成模拟乘法器在通信中的应用设计 1.设计目的:掌握模拟乘法器的功能及应用;综合运用射频通信电路的理论知识,加 强电路设计、仿真和调试能力。 2.设计任务:用集成模拟乘法器MC1496设计其应用电路。 3.设计要求: (1) 进行电路设计、并用multisim进行电路仿真和电路调试。至少实现如下功能: a)单音普通调幅波,调制度可调;双边带调幅波。 b)混频功能 c)二倍频。 d)自行设计其他功能 (仿真时,必须充分仿真电路的各个指标和参数,如静态工作点的影响,温度特性、 频率特性、重要元件对电路的影响、交流分析等等。) (2) 在设计电路的基础上,自行设计实验步骤,测出试验数据和指标,并与仿真数据比较,写出调试碰到的问题和体会 (3)自行设计实现其他功能,要求实用合理. (4)写出实验报告,实验报告必须符合设计(综合)性实验要求,有原理图,设计思想,方案比较或可行性,设计指标仿真与实验的比较等 报告要求 报告包括以下几个部分内容: 1.概述,论述你所做的设计的内容,技术要求,难点或者特色等等 2.给出整体方案,简述优势 3.设计模块电路,给出参数计算和分析,性能指标, 4.给出仿真内容或者实验数据,包括静态工作点的计算,交流分析,功能仿真等等 5.总结 6.参考书目和文章

通信电路实验设计性实验及考查任务书 题目二 .调幅系统实验 1. 设计目的:掌握高频系统设计的概念,掌握调幅发射接收和整机组成原理,加强电路 设计和仿真能力,掌握系统联调的方法,培养解决实际设计问题的能力 1. 任务:设计一调幅发射接收系统 2. 设计要求 (1)进行电路设计、并用multisim进行电路仿真和电路调试。至少实现如下功能: a)自行设计产生载波,发射载波频率任意 b)设计调幅发射和接收模块,并联合仿真。 c)调制信号可以自行产生,也可以用音频信号,, d)发射功率最好在50mW以内。 e)自行设计仿真其它功能 (仿真时,必须充分仿真电路的各个指标和参数,如静态工作点的影响,温度特性、频率特性、重要元件对电路的影响、交流分析等等。) (2) 在设计电路的基础上,自行设计实验步骤,实现发射与接收联调,测出试验数据和 指标,并与仿真数据比较,写出调试碰到的问题和体会 (3)自行设计实现其他功能,要求实用合理. (4)写出实验报告,实验报告必须符合设计(综合)性实验要求,有原理图,设计思想,方 案比较或可行性,设计指标仿真与实验的比较等 报告要求 报告包括以下几个部分内容: 1.概述,论述你所做的设计的内容,技术要求,难点或者特色等等 2.给出整体方案,简述优势 3.设计模块电路,给出参数计算和分析,性能指标, 4.给出仿真内容或者实验数据,包括静态工作点的计算,交流分析,功能仿真等等 5.总结 6.参考书目和文章

cmos模拟集成电路设计实验报告

北京邮电大学 实验报告 实验题目:cmos模拟集成电路实验 姓名:何明枢 班级:2013211207 班内序号:19 学号:2013211007 指导老师:韩可 日期:2016 年 1 月16 日星期六

目录 实验一:共源级放大器性能分析 (1) 一、实验目的 (1) 二、实验内容 (1) 三、实验结果 (1) 四、实验结果分析 (3) 实验二:差分放大器设计 (4) 一、实验目的 (4) 二、实验要求 (4) 三、实验原理 (4) 四、实验结果 (5) 五、思考题 (6) 实验三:电流源负载差分放大器设计 (7) 一、实验目的 (7) 二、实验内容 (7) 三、差分放大器的设计方法 (7) 四、实验原理 (7) 五、实验结果 (9) 六、实验分析 (10) 实验五:共源共栅电流镜设计 (11) 一、实验目的 (11) 二、实验题目及要求 (11) 三、实验内容 (11) 四、实验原理 (11) 五、实验结果 (14) 六、电路工作状态分析 (15) 实验六:两级运算放大器设计 (17) 一、实验目的 (17) 二、实验要求 (17) 三、实验内容 (17) 四、实验原理 (21) 五、实验结果 (23) 六、思考题 (24) 七、实验结果分析 (24) 实验总结与体会 (26) 一、实验中遇到的的问题 (26) 二、实验体会 (26) 三、对课程的一些建议 (27)

实验一:共源级放大器性能分析 一、实验目的 1、掌握synopsys软件启动和电路原理图(schematic)设计输入方法; 2、掌握使用synopsys电路仿真软件custom designer对原理图进行电路特性仿真; 3、输入共源级放大器电路并对其进行DC、AC分析,绘制曲线; 4、深入理解共源级放大器的工作原理以及mos管参数的改变对放大器性能的影响 二、实验内容 1、启动synopsys,建立库及Cellview文件。 2、输入共源级放大器电路图。 3、设置仿真环境。 4、仿真并查看仿真结果,绘制曲线。 三、实验结果 1、实验电路图

射频电路设计困境及对策

射频电路设计地困境及对策 hc360慧聪网通信行业频道 2004-04-16 11:23:41 射频电路地设计技术一度专属于少数专家掌握并拥有其自己地专用芯片组,如今已能和数字电路模块及模拟电路模块集成在同一块 IC 里了.再则,射频电路设计中固有地临界尺寸要求,更增加了工程压力. 要点●射频电路设计师必须经常采用间接测量电路性能地方式,来推断电路故障地原因. ●射频电路设计问题正在影响数字电路设计和模拟电路设计. ●将射频电路集成在同一块印制电路板或 IC 上,这会促使人们使用一种新地设计方法. ● EDA 厂商正在开始提供集成时域仿真和频域仿真地分析工具. 射频电路设计就是对发射电磁信号地电路进行设计.射频意为无线电频率,因为射频电路在其初期,只能发射调幅和调频两个波段地无线电信号.今天,把高频电路设计称为“射频电路设计”,只是沿用了历史名称.图1表明,自从 20 世纪 60 年代使用 UHF 电视技术以来,广播设备使用高于 300000 MHz地频率.从那时以来,通信设备地内容、频率和带宽都增加了.安捷伦科技平台地经理Joe Civello说,对模拟/混合信号 IC 设计师地挑战正以前所未有地速度在加剧.在加大带宽和提高最终产品功能地市场需求推动下,设计正在进入更高地频率范围,并不断提高复杂性.工程师们正在把射频电路与模拟及数字纳M电路集成在一起.吉比级数据速率正在使数字电路像微波电路那样工作.不断扩充而更复杂地无线通信标准,如 WiFi<无线相容性认证)802.11a/b/g、超宽带和蓝牙标准,都要求设计师去评估其设计对系统整体性能地影响. 形状因子、功耗和成本推动着模拟电路设计、射频电路设计和数字电路设计地日益集成化.便携式设备小巧轻便,功耗和成本尽可能低.集成度直接影响着最终电子产品地制造成本、尺寸和重量,通常也决定所需功率地大小.设计师从材料清单中每去掉一个元件,维持该元件地供应链所需日常开支就会随之减少,最终产品地制造成本就会下降,产品尺寸也会缩小. 德州仪器公司(TI>负责无线应用地研究经理Bill Krenik说,射频电路地设计一向是很困难地,因为缺乏恰当地检测仪器,使高频信号地分析复杂化了.工程师们不得不采取间接地测量方法,并根据他们能够观察到地电路行为状态来推断电路特性.随着工程师们在同一块芯片上实现数字电路、模拟电路和射频电路,种种集成问题就使这一问题进一步复杂化.通过衬底传输或通过 IC 表面辐射地数字信号会影响射频或模拟部分地噪声敏感度.这些潜在地影响大多会结合在一起,从而使最初地硅片存在各种问题.传统地调试方法也许不再适用,这意味着你必须正确地进行设计,并在设计投片之前就要准确无误地对尽可能多地物理效应建立模型.当设计方法不能准确地建立硅片地模型时,设计小组通常别无选择,只能把器件制造出来,再去观察其工作状态.走这条途径就像一场赌注很高地赌博,多数公司只是把它作为最后地一招. 模拟电路和射频电路历来都制作在各自地芯片上,这样可以更方便地在系统中隔离噪声,防止耦合到电路地敏感节点中.工程师们把这几类设计元件都集成在同一块芯片上时,就不能忽视噪声问题.假如没有某种形式地精确硅衬底模型,工程师们也许要到硅片从工厂退回后才会知道问题地存在.这类产品地开发几乎总是需要一个由各个工程领域地专家组成地小组.很少有哪个设计师既有射频专业知识,又有模拟电路专业知识;再则,射频电路专家和模

RLC串联谐振电路(Multisim仿真实训)

新疆大学 实习(实训)报告 实习(实训)名称: __________ 电工电子实习(EDA __________ 学院: __________________ 专业班级_________________________________ 指导教师______________________ 报告人____________________________ 学号 ______ 时间: 实习主要内容: 1. 运用Multisim仿真软件自行设计一个RLC串联电路,并自选合适的参数。 2. 用调节频率法测量RLC串联谐振电路的谐振频率f 0 ,观测谐振现象。 3. 用波特图示仪观察幅频特性。 4?得出结论并思考本次实验的收获与体会。 主要收获体会与存在的问题: 本次实验用Multisim 仿真软件对RLC串联谐振电路进行分析,设计出了准确的电路模型,也仿真出了正确的结果。通过本次实验加深了自己对RLC振荡电路的理解与应用,更学习熟悉了Multisim 仿真软件,达到了实验的目

的。存在的问题主要表现在一些测量仪器不熟悉,连接时会出现一些错误,但最终都实验成功了。 指导教师意见: 指导教师签字: 年月日 备注: 绪论 Multisim仿真软件的简要介绍 Multisim是In terctive Image Tech no logies公司推出的一个专门用于电子电 路仿真和设计的软件,目前在电路分析、仿真与设计等应用中较为广泛。该软件以图形界面为主,采用菜单栏、工具栏和热键相结合的方式,具有一般Windows 应用软件的界面风格,用户可以根据自己的习惯和熟练程度自如使用。尤其是多种可放置到设计电路中的虚拟仪表,使电路的仿真分析操作更符合工程技术人员的工作习惯。下面主要针对Multisim11.0软件中基本的仿真与分析方法做简单介绍。 EDA就是“ Electronic Design Automation ”的缩写技术已经在电子设计领 域得到广泛应用。发达国家目前已经基本上不存在电子产品的手工设计。一台电子产品的设计过程,从概念的确立,到包括电路原理、PCB版图、单片 机程序、机内结构、FPGA的构建及仿真、外观界面、热稳定分析、电磁兼容分析在内的物理级设计再到PCB钻孔图、自动贴片、焊膏漏印、元器件清 单、总装配图等生产所需资料等等全部在计算机上完成。EDA已经成为集成 电路、印制电路板、电子整机系统设计的主要技术手段。 功能: 1. 直观的图形界面 整个操作界面就像一个电子实验工作台,绘制电路所需的元器件和仿真所需的测试仪器均可直接拖放到屏幕上,轻点鼠标可用导线将它们连接起来,软件仪器的控制面板和操作方式都与实物相似,测量数据、波形和特性曲线如同在真实仪器上看到的;

射频ADS微波HFSS相关 射频电路基础实验教学大纲改

《射频电路基础实验》教学大纲 一、课程名称 射频电路基础实验 Experiment of Basis of RF Circuit 二、学时与学分 32学时;2学分 三、授课对象 电信系四年级本科生 四、先修课程 微波技术基础 五、教学目的 本实验课是一门独立设置实验课,旨在通过课堂的讲解和现场实验操作,使学生了解射频电路设计的基础知识,掌握主要射频器件的基本原理和工作特性及其测试方法,熟悉射频测试仪器矢量网络分析仪和频谱仪的工作原理和使用方法。通过实验,培养学生的实践动手能力,促进对专业理论知识的理解,提高学生的综合技术素质,培养其创新能力。 六、主要内容、基本要求及学时分配 实验一网络分析仪和频谱仪的原理及其使用 主要内容:了解网络分析仪和频谱仪的工作原理及熟悉使用操作方法。 基本要求:了解矢量网络分析仪工作原理,掌握正确的操作步骤,并理解网络分析仪测量的射频电路的S参数的物理意义;了解频谱分析仪的一般功能原理,初步掌握 AT5011频谱分析仪的使用方法,学会使用AT5011频谱分析仪观察简单信号的频 谱特性。 学时分配:4学时 实验二射频电路设计辅助软件ADS的使用方法 主要内容:学习射频电路仿真软件ADS(Advance Design System)的初步使用、构造原理图及仿真的方法。 基本要求:学会使用射频电路仿真软件ADS进行基本射频电路设计与仿真的操作方法。

学时分配:4学时 实验三射频滤波器实验 主要内容:学习射频低通、带通滤波器的工作原理和使用ADS软件设计滤波器的方法,并使用网络分析仪测量射频滤波器的幅频特性参数。 基本要求:掌握微带线低通和带通滤波器的工作原理、设计方法与测量方法。 学时分配:4学时 实验四射频功率分配器实验 主要内容:学习射频功率分配器的工作原理和使用ADS软件设计功率分配器的方法,并使用网络分析仪测量功率分配器的特性参数。 基本要求:掌握射频功率分配器的工作原理、设计方法与测量方法。 学时分配:4学时 实验五GSM可调增益放大器实验 主要内容:学习射频放大器的工作原理和使用ADS软件设计射频放大器的方法,介绍GSM 标准对射频放大器的设计要求以及可调增益放大器的设计方法,并使用网络分析 仪测量已有的GSM可调增益放大器的性能参数。 基本要求:掌握射频放大器的工作原理,并初步掌握射频放大器的设计方法和测量方法,并了解GSM标准的射频放大器的要求以及可调增益放大器的设计方法。 学时分配:4学时 实验六CDMA频段平衡式放大器实验 主要内容:学习射频平衡放大器的工作原理,介绍CDMA-IS95标准对射频放大器的设计要求以及平衡放大器的设计方法,并使用网络分析仪测量已有的CDMA频段平 衡放大器的性能参数。 基本要求:掌握射频平衡放大器的工作原理,并初步掌握射频放大器的设计方法和测量方法,并了解CDMA-IS95标准的射频放大器的要求。 学时分配:4学时 实验七射频PLL锁相环实验 主要内容:学习射频PLL锁相环的工作原理,并利用频谱仪测试射频PLL锁相环的主要性能

HY016射频设计6_射频匹配电路调试

HY016射频设计6_射频匹配电路调试 全部频段在QSPR中校准通过后,便可以进行电路优化了,也就是我们通常说的调匹配。 我们实验室采用的是盲调,即以最终实测性能的好坏来决定最终的匹配电路;与之对应的另一种方法是根据器件规格书,用网络分析仪逐个端口调试,使其和规格书要求相对应。对于RDA PhaseII方案,盲调性能挺好。 对于频分电路(FDD LTE/WCDMA/CDMA),重点是调双工器的输入输出端匹配;对于时分电路(TDD-LTE/TDSCDMA),重点是调滤波器的输入输出匹配。双工的调试相对复杂,本文会以HY016欧洲版中B20双工为例进行说明。 射频电路调试的最终原则包括: 1,发射端兼顾电流和线性度,也就是在ACLR余量足够的情况下尽可能的降低最大发射功率的电流,同时兼顾整个频段中高中低信道的平坦度。 2,接收端以提高接收灵敏度为最终原则 3,不是把某块板子的性能调到最佳为准;而是要留够余量,保证量产大批量板子的性能都能达到良好为准 双工器电路我通常的调试步骤: 1,初始bom采用datasheet的参考匹配 2,调节公共端的到地电感,让低、中、高信道特性一致,包括电流和ACLR 3,调节公共端的串联电感/电容,找出ACLR和电流的最佳权衡 4,调节发射端输入匹配,找出ACLR和电流的最佳权衡,最终确认发射端匹配 5,在QSPR下直接校准接收进行接收调试:若信道间差距过大就优先到地电感;若信道间差距不大则优化串联电感/电容;调试完成后实测灵敏度最终确认接收匹配 调试发射电路时,需要和仪表相连。通常在用QSPR完成校准后,再在QPST->PDC中导入并激活ROW_Gen_Commercial.MBN便可以和仪表通信了。关于MBN激活这部分,会在后续工厂文件部分详细说明,这里不再展开。

相关文档
最新文档