纳米技术进我心

纳米技术进我心
纳米技术进我心

纳米技术进我心

在2016年的暑假时,我和爸爸妈妈一起去芜湖县陶辛水韵划船乘凉赏荷花。

水波荡漾,船儿摇动,清风徐来,朵朵荷花最引人注目在欣赏玉洁冰清、亭亭玉立的荷花同时,善于在日常生活中发现的我在荷叶上叶片上发现了“端倪”。

静静的湖面上布满了翠色欲滴的荷叶,把湖面盖得严严实实的,晶莹剔透的露珠在荷叶上晃动,一阵风吹过来,露珠就像断了线的珍珠向湖里滚落。

“为什么荷叶上停留不住水珠呢?”我的脑子里又开始挂满了一个又一个大大的问号。

回到了家,第一件事就是翻出我那一本厚厚的《科技百科全书》,在“科技篇”,我找到了我想要的答案。

书上说,荷叶上停留不住水珠是因为荷叶上面有一层细细的毛,用肉眼看不见,而且它表面还有一层蜡膜,当水珠在荷叶上时就会掉下来,所以水珠就不能停留在荷叶上面了。

这就不得不提到我国正在大力发展的纳米技术,“纳米”可不是我们平时吃的米,而是一种极小的长度单位,一纳米等于十亿分之一米,也等于千分之一微米,只有用显微镜才能看得见,大约是三四个原子的宽度,而荷叶上的“纳米”分子密度与水的分子密度不同,水融不进荷叶,所以荷叶上停留不住水珠。

然而在当今的中国,“纳米技术”被较多地应用于一些高档楼盘的内外墙面粉刷,比如说作为2008届奥运会的样板工程的北京体育馆水立方和鸟巢的改造工程;还有复旦大学刚刚研制成功的可以自我清洁的“纳米二氧化钛光催化玻璃”已经大力运用到医院手术室器材以及汽车后视镜等方面;再比如说,在国外例如日本等地也已将纳米技术开发成功并投入使用。最早做户式中央空调的清华同方人工环境公司表示,下一步他们将研究室内的空气处理系统,不断地融合数字控制、纳米材料、光电效应、环保介质等现代高新技术,提供温度、湿度适宜、纯净新鲜的室内空气。

这就是神奇的纳米科技,一种为国家、社会、家庭以及个人造福的科学技术!!!

初三(12)班

侯子玥

纳米技术发展史

纳米技术发展史 【摘要】纳米技术是21世纪科技发展的制高点,是新工业革命的主导技术,它将引起一场各个领域生产方式的变革,也将改变未来人们的生活方式和工作方式,使得我们有必要认识一下纳米技术的发展史。纳米技术的发展史是一个很长的过程,同时也是一个广泛应用的过程。 【关键词】发展纳米技术纳米材料 纳米技术基本概念 纳米技术是以纳米科学为基础,研究结构尺度在0.1~100nm范围内材料的性质及其应用,制造新材料、新器件、研究新工艺的方法和手 段。纳米技术以物理、化学的微观研究理论为 基础,以当代精密仪器和先进的分析技术为手 段,是现代科学(混沌物理、量子力学、介观物 理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)相结合的产物。在纳米领域,各传统学科之间的界限变得模糊,各学科高度交叉和融合。 纳米技术包含下列四个主要方面: 1、纳米材料:当物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。

过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于 自然界,只是以前没有认识到这个尺度 范围的性能。第一个真正认识到它的性 能并引用纳米概念的是日本科学家,他 们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。磁性材料也是如此,象铁钴合金,把它做成大约20—30纳米大小,磁畴就变成单磁畴,它的磁性要比原来高1000倍。80年代中期,人们就正式把这类材料命名为纳米材料。2、纳米动力学,主要是微机械和微电机,或总称为微型电动机械系统,用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等.用的是一种类似于集成电器设计和制造的新工艺。特点是部件很小,刻蚀的深度往往要求数十至数百微米,而宽度误差很小。这种工艺还可用于制作三相电动机,用于超快速离心机或陀螺仪等。在研究方面还要相应地检测准原子尺度的微变形和微摩擦等。虽然它们目前尚未真正进入纳米尺度,但有很大的潜在科学价值和经济价值。3、纳米生物学和纳米药物学,如在云母表面用纳米微粒度的胶体金固定dna的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,dna的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,

浅谈纳米技术的研究与应用

浅谈纳米技术的研究与应用 1.引言 当集成电路代替电子管和半导体晶体管的初期,1959年美国诺贝尔奖获得者查理·费曼(Richard Phillips Feynman),在美国加州理工学院召开的美国物理年会上预言:“如果人们能够在原子/分子的尺度上来加工材料,制造装置,将会有许多激动人心的新发现,人们将会打开一个崭新的世界。”这在当时只是一个美好的梦想。 如今,这个预言和梦想终于实现了。费曼所预言的材料就是现在的纳米。 今天,不少科学家又在预言,纳米科技将在新世纪里得到惊人的发展,纳米科技将给人类的科学技术和生活带来革命性的变化。科学家认为,纳米时代的到来不会很久,它在未来的应用将远远超过计算机,并成为未来信息时代的核心。 我国著名科学家钱学森早在1991年就指出:“纳米左右和纳米以下的结构将是下一阶段科技发展的重点,会是一次技术革命,从而将是21世纪的又一次产业革命。” 英国理论物理学家斯蒂芬·霍金是继爱因斯坦之后最杰出的物理学家。他预测:“未来一千年人类有可能对DNA基因重新设计。而生化纳米材料则是设计DNA基因所必须具备的医药材料基础。” 近年来,科学家勾画了一幅若干年后的蓝图:纳米电子学将使量子元件代替微电子备件,巨型计算机可装入口袋;通过纳米化,易碎的陶瓷可以变成韧性的;世界还将出现1μm以下的机器甚至机器人;纳米技术还能给药物的传输提供新的方式和途径,对基因进行定点等。 海内外科技界广泛认为,纳米材料和技术的大规模应用可望在10年内实现。现阶段纳米材料和技术正向新材料、微电子、计算机、医学、航天航空、环境、能源、生物技术和农业等诸多领域渗透,并已得到不同程度的应用。 1998年8月20日,《美国商业周刊》发表文章指出,21世纪有三个领域可能取得重大突破:生命科学和生物技术;纳米材料和纳米技术;从外星球获得能源。并指出这是人类跨入21世纪所面临的新的挑战和机遇。诺贝尔奖获得者罗雷尔也曾说过:“70年代重视微米的国家如今都成为发达国家,现在重视纳米技术的国家很可能成为21世纪先进国家。” 1974年,Taniguchi最早使用纳米技术(Nanotechnology)一词描述精细机械加工。1977年美国麻省理工学院的德雷克斯勒也提倡纳米科技的研究。但当时多数主流科学家对此持怀疑态度。1982年发明了扫描隧道显微镜(STM),以空前的分辨率揭示了一个“可见的”原子、分子世界。到80年代末,STM已不仅是一个可观察的手段,而且已成为可以排布原子的工具。STM与AFM(原子力显微镜)

浅谈纳米技术及其应用

浅谈纳米技术及其应用 1 概述 1.1 引言 纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物。纳米技术兴起于20世纪80年代,随着它的逐步发展和完善,人类将必然在认识和改造自然方面进入一个前所未有的新阶段。 1.2 纳米技术的发展 最早提出纳米尺度上科学和技术问题的是著名物理学家、诺贝尔奖获得者理查德·费曼教授[1]。1959年他在一次题为《在底部还有很大空间》的演讲中提出:物理学的规律不排除用单个原子制造物品的可能。也就是说,人类能够用最小的机器制造更小的机器。直至达到分子或原子状态,最后可以直接按意愿操纵原子并制造产品。这正是关于纳米技术最早的构想。 20世纪70年代,科学家开始从不同角度提出有关纳米技术的构想。美国康奈尔大学Granqvist和Buhrman[2]利用气相凝集的手段制备出纳米颗粒,提出了纳米晶体材料的概念,成为纳米材料的创始者。之后,麻省理工学院教授德雷克斯勒[3]积极提倡纳米科技的研究并成立了纳米科技研究小组。 纳米科技的迅速发展是在20世纪80年代末、90年代初。1981年发明了可以直接观察和操纵微观粒子的重要仪器——扫描隧道显微镜(STM)、原子力显微镜(AFM),为纳米科技的发展起到了积极的促进作用。1984年德国学者格莱特[4]把粒径6nm的金属粉末压成纳米块,经研究其内部结构,指出了它界面奇异结构和特异功能。1987年,美国实验室用同样的方法制备了纳米TiO 多晶体。 2

纳米光电子技术的发展及应用

纳米光电子技术的发展及应用 摘要:纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术,研究结构尺寸在0.1至100纳米范围内材料的性质和应用。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学和现代技术结合的产物,由纳米技术而产生一些先进交叉学科技术,本文主要讲述的纳米光电子技术就是纳米技术与光电技术的结合的一个实例,随着纳米技术的不断成熟和光电子技术的不断发展,两者的结合而产生的纳米光电子器件也在不断的发展,其应用也在不断扩大。 关键词:纳米技术纳米光电子技术纳米光电子器件应用 一、前言 纳米材料与技术是20世纪80年代末才逐步发展起来的前沿性,交叉性的学科领域,为21世纪三大高新科技之一。而如今,纳米技术给各行各业带来了崭新的活力甚至变革性的发展,该性能的纳米产品也已经走进我们的日常生活,成为公众视线中的焦点。[2 纳米技术的概念由已故美国著名物理学家理查德。费因曼提出,而不同领域对纳米技术的看法大相径庭,就目前发展现状而言大体分为三种:第一种,是美国科学家德雷克斯勒博士提出的分子纳米技术。而根据这一概念,可以制造出任何种类的分子结构;第二种概念把纳

米技术定位为微加工技术的极限,也就是通过纳米技术精度的“加工”来人工形成纳米大小的结构的技术;第三种概念是从生物角度出发而提出的,而在生物细胞和生物膜内就存在纳米级的结构 二、纳米技术及其发展史 1993年,第一届国际纳米技术大会(INTC)在美国召开,将纳米技术划分为6大分支:纳米物理学、纳米生物学、纳米化学、纳米电子学、纳米加工技术和纳米计量学,促进了纳米技术的发展。由于该技术的特殊性,神奇性和广泛性,吸引了世界各国的许多优秀科学家纷纷为之努力研究。纳米技术一般指纳米级(0.1一100nm)的材料、设计、制造,测量、控制和产品的技术。纳米技术主要包括:纳米级测量技术:纳米级表层物理力学性能的检测技术:纳米级加工技术;纳米粒子的制备技术;纳米材料;纳米生物学技术;纳米组装技术等。其中纳米技术主要为以下四个方面 1、纳米材料:当物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。 2、纳米动力学:主要是微机械和微电机,或总称为微型电动机械系统(MEMS),用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等. 3、纳米生物学和纳米药物学:如在云母表面用纳米微粒度的胶体金固定dna的粒子,在二氧化硅表面的叉指形电极做生物分

纳米科技的发展及未来的发展方向

纳米科技的发展及未来的发展方向 论文 理学院 08光信息科学与技术 张箐 0836017

纳米科技的发展及未来的发展方向 一:纳米科技的起源: 纳米是长度度量单位,一纳米为十亿分之一米。纳米科技这一初始概念是已故美国著名物理学家、诺贝尔物理学奖得主费恩曼(R.Feynman)于1959年在美国加州理工学院作题为“在低部还有很大空间”的讲演中提出的。费恩曼指出:如果人类能够在原子或分子尺度上来加工材料、制备装置,则将会有许多激动人心的新发现。他还强调:人们需要新型的微型化仪器来操纵纳米结构并测定其性质。费恩曼憧憬说:试想,如果有一天,人们可以按自己的意志来安排一个个原子,将会产生怎样的奇怪现象。 与所有的天才假想一样,费恩曼的科学思想起初并未被接受。然而科技的迅猛发展很快证明了费恩曼是正确的。继费恩曼之后,许多科学家又尽情发挥想像力,从不同角度继续编织纳米技术的神奇梦想。 纳米科技的迅速发展是在1980年代末1990年代初。1980年代初,宾尼希(C.Binnig)和罗雷尔(H.Rohrer)等人发明了费恩曼所期望的纳米科技研究的重要仪器--扫描隧穿显微镜(scanning tunneling microscopy,STM)。STM 不仅以极高的分辨率揭示出了“可见”的原子、分子微观世界,同时也为操纵原子、分子提供了有力工具,从而为人类进入纳米世界打开了一扇更加宽广的大门。 与此同时,纳米尺度上的多学科交叉迅速形成了一个有广泛学科内容和潜在应用前景的研究领域。1990年,纳米技术获得了重大突破。美国IBM公司阿尔马登研究中心(Almaden Research Center)的科学家使用STM把35个氙原子移动到各自的位置,组成了“IBM”三个字母,这三个字母加起来不到3纳米长。 1990年7月,第一届国际纳米科学技术大会和第五届国际扫描隧穿显微

纳米技术的应用与前景

纳米技术的应用与前景 纳米技术作为一种高新科技,我认为其本质不亚于当年的电子与半导体科技,有着我们未所发掘到潜能与实用价值,在这个世代,各种技术的发展迅速,随着纳米技术的进一步发展,可以作为一种催化剂,促使各行各业的迅猛发展。 纳米技术是近年来出现的一门高新技术。“纳米”主要是指在纳米(一种长度计量单位,等于1/1000,000,000米)尺度附近的物质,其表现出来的特殊性能用于不同领域而称之为“纳米技术”,其具体定义见词条“纳米科技”。 纳米技术目前已成功用于许多领域,包括医学、药学、化学及生物检测、制造业、光学以及国防等等。本词条为纳米技术应用的总纲,包括如下领域: 1、纳米技术在新材料中的应用 2、纳米技术在微电子、电力等领域中的应用 3、纳米技术在制造业中的应用 4、纳米技术在生物、医药学中的应用 5、纳米技术在化学、环境监测中的应用 6、纳米技术在能源、交通等领域的应用 尽管从理论到实践是一个相当困难的过程,但纳米技术已经证明,可以利用扫描隧道电子显微镜等工具移动原子个体,使它们形成在自然界中永远不可能存在的排列方式,如IBM 公司的标志图案、比例为百亿分之一的世界地图、或一把琴弦只有50纳米粗的亚显微吉他。纳米材料的应用有着诱人的技术潜力,它的应用范围包括从制造工业、航天工业到医学领域等。美国全国科学基金会曾发表声明说:“当我们进入21世纪时,纳米技术将对世界人民的健康、财富和安全产生重大的影响,至少如同20世纪的抗生素、集成电路和人造聚合物那样。”科学家们预计,纳米技术在新世纪中的应用前景广阔,已经涵盖了材料、测量、机械、电子、光学、化学、生物等众多领域,信息技术与纳米技术的关系已密不可分。 从纳米科技发展的历史来看,人们早在1861年建立所谓肢体化学时即开始了对纳米肢体的研究。但真正对纳米进行独立的研究,则是1959年,这一年,著名美国物理学家、诺贝尔奖金获得者德·费曼在美国物理学年会上作了一次报告。他在报告中认为,能够用宏观的机器来制造比其体积小的机器,而这较小的机器又可制作更小的机器,这样一步步达到分子程度。费曼还幻想在原子和分子水平上操纵和控制物质。 在70年代末,美国MIT(麻省理工大学)的W.R.Cannon等人发明了激光气相法合成数十纳米尺寸的硅基陶瓷粉末。80年代初,德国物理学家H.Gleiter等人用气体冷凝发制备了具有清洁表面的纳米颗粒,并在超真空条件下原位压制了多晶纳米固体。现在看来,这些研究都属于纳米材料的初步探索。 科学家预言,尺寸为分子般大小、厚度只有一根头发丝的几百万分之一的纳米机械装置将在今后数年内投入使用。学术实验室和工业实验室的研究人员在开发分子马达、自组装材料等纳米机械部件方面取得了飞速进展。纳米机器具有可以操纵分子的微型“手指”和指挥这些手指如何工作、如何寻找所需原材料的微型电脑。这种手指完全可以由碳纳米管制成,碳纳米管是1991年发现的一种类似头发的碳分子,其强度是钢的100倍,直径只有头发的五万分之一。美国康奈尔大学的研究人员利用有机物和无机物组件开发出一个分子大小的马达,一些人称之为纳米技术领域的“T型发动机”。 纳米科技中具有主导或牵头作用的是纳米电子学,因为它是微电子学发展的下一代。纳米电子学是来自电子工业,是纳米技术发展的一个主要动力。纳米电子学立足于最新的物理理论和最先进的工艺手段,按照全新的理念来构造电子系统,并开发物质潜在的储存和处理

纳米二氧化钛的现状与发展概要

纳米二氧化钛的现状与发展 作者:未知时间:2007-11-24 15:17:00 国外纳米TiO2的生产现状 20世纪80年代以前,纳米TiO2的研究开发目的主要是作为精细陶瓷原料、催化剂、传感器等,需求量不大,没有形成大的生产规模。80年代以后,开发的纳米TiO2用作透明效应和紫外线屏蔽剂,为纳米TiO2打开了市场,使纳米TiO2的生产和需求大大增加,成为钛白工业和涂料工业的一个新的增长点。 由于纳米TiO2在催化及环境保护等方面具有广阔的应用前景,并可用于日用产品、涂料、电子、电力等工业部门,因此,纳米TiO2展现出巨大的市场前景。日本、美国、英国、德国和意大利等国对纳米TiO2进行了深入的研究,并已实现纳米TiO2的工业化生产。目前全世界已经有十几家公司生产纳米TiO2,总生产能力估计在(6000~10000)t/a,单线生产能力一般为(400~500)t/a。 根据莎哈里本公司统计,2003年全球纳米TiO2销售量仅为1800t左右,其消费量与产品应用见表1。 表1 2003年全球纳米TiO2消费量与产品应用 近几年,有关纳米TiO2的新建装置已很少报道,主要是已建成装置的生产能力已远远超出市场的实际消费量,多数厂家处于开工不足或停产的状态。主要原因是目前国际上公认的纳米TiO2制备和应用技术还有待于提高,技术要点和难点主要表现在以下几个方面:①国际上纳米TiO2的价格为(30~40)万元/t,其成本大致是销售价格的2/5,原料和工艺路线的选择是降低生产成本的关键因素;②纳米TiO2的晶型和粒度控制技术;③金红石型纳米TiO2的表面处理技术;④纳米TiO2应用分散技术;⑤纳米TiO2应用功能的提升技

纳米技术在医学领域的应用和重要影响

纳米技术在医学领域的应用 和重要影响 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

纳米技术在医学领域的应用和重要影响 摘要:纳米技术与生物医学的结合, 为医学界提供了全新的思路和便利, 纳米材料在医学领域的应用取得了显著效果。随着纳米材料在生物医学领域更广泛的应用, 临床医疗将变得节奏更快、效率更高, 诊断、检查更准确, 治疗更有效, 人们的生命安全将得到更大的保障。 关键词:纳米材料,纳米技术,生物医学,应用,重要影响 “纳米(nm)”是一种度量长度的单位,一个纳米是百万分之一毫米,也就是十亿分之一米,大约相当于45个原子串起来的长度。根据2011年10月18日欧盟委员会通过的纳米材料的定义,纳米材料是一种由基本颗粒组成的粉状或团块状天然或人工材料,这一基本颗粒的一个或多个三维尺寸在1nm-100nm之间,并且这一基本颗粒的总数量在整个材料的所有颗粒总数中占50%以上。简单来说就是,一种由具有尺寸在100nm以下的微小结构的固体颗粒组成的材料。纳米技术是指一种在单个原子与分子层次上对物质的数量、种类和结构形态等进行精确的识别、观测和控制的技术,并在纳米尺度(1—100nm)内研究物质的特性和相互作用来达到创制新物质的高新技术。这项技术是在20世纪80年代末、90年代初才逐步发展起来的前沿、交叉性新兴学科,它具有创造新生产工艺、新物质和新产品的巨大潜能和前景,它将在21世纪掀起一场新的产业革命。 科技快速发展的今天, 科学技术的各个领域相互融合、渗透,其中纳米科技的发展促进了高新技术一体化的进程, 引起了科技界的高度重视。我国著名科学家钱学森曾经预言“纳米左右和纳米以下的结构将是下一阶段科技发展的重点,会是一次技术革命, 从而将是21世纪的又一次产业革命”。纳米技术的发展正越来越成为世界各国科技界所关注的焦点,谁能在这一领域取得领先,谁就能占据21世纪科学的制高点。 美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域迅猛发展。随着纳米技术在癌症诊断和生物分子追踪的应用,医学纳米技术已经被列为美国优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断,2004年,美国国立卫生研究院所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、

纳米科技的发展现状及前景

纳米技术(nanotechnology),也称毫微技术,是研究结构尺寸在0.1至100纳米范围内材料的性质和应用的一种技术。 1981年扫描隧道显微镜发明后,诞生了一门以0.1到100纳米长度为研究分子世界,它的最终目标是直接以原子或分子来构造具有特定功能的产品。因此,纳米技术其实就是一种用单个原子、分子射程物质的技术。纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。纳米科学与技术主要包括:纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学、纳米力学等。这七个相对独立又相互渗透的学科和纳米材料、纳米器件、纳米尺度的检测与表征这三个研究领域。纳米材料的制备和研究是整个纳米科技的基础。其中,纳米物理学和纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最重要的内容 从迄今为止的研究来看,关于纳米技术分为三种概念: 第一种,是1986年美国科学家德雷克斯勒博士在《创造的机器》一书中提出的分子纳米技术。根据这一概念,可以使组合分子的机器实用化,从而可以任意组合所有种类的分子,可以制造出任何种类的分子结构。这种概念的纳米技术还未取得重大进展。 第二种概念把纳米技术定位为微加工技术的极限。也就是通过纳米精度的"加工"来人工形成纳米大小的结构的技术。这种纳米级的加工技术,也使半导体微型化即将达到极限。现有技术即使发展下去,从理论上讲终将会达到限度,这是因为,如果把电路的线幅逐渐变小,将使构成电路的绝缘膜变得极薄,这样将破坏绝缘效果。此外,还有发热和晃动等问题。为了解决这些问题,研究人员正在研究新型的纳米技术。 第三种概念是从生物的角度出发而提出的。本来,生物在细胞和生物膜内就存在纳米级的结构。DNA分子计算机、细胞生物计算机的开发,成为纳米生物技术的重要内容1993年,第一届国际纳米技术大会(INTC)在美国召开,将纳米技术划分为6大分支:纳米物理学、纳米生物学、纳米化学、纳米电子学、纳米加工技术和纳米计量学,促进了纳米技术的发展。由于该技术的特殊性,神奇性和广泛性,吸引了世界各国的许多优秀科学家纷纷为之努力研究。纳米技术一般指纳米级(0.1一100nm)的材料、设计、制造,测量、控制和产品的技术。纳米技术主要包括:纳米级测量技术:纳米级表层物理力学性能的检测技术:纳米级加工技术;纳米粒子的制备技术;纳米材料;纳米生物学技术;纳米组装技术等。关键突破 1990年,IBM公司阿尔马登研究中心的科学家成功地对单个的原子进行了重排,纳米技术取得一项关键突破。他们使用一种称为扫描探针的设备慢慢地把35个原子移动到各自的位置,组成了IBM三个字母。这证明费曼是正确的,二个字母加起来还没有3个纳米长。不久,科学家不仅能够操纵单个的原子,而且还能够“喷涂原子”。使用分子束外延长生长技术,科学家们学会了制造极薄的特殊晶体薄膜的方法,每次只造出一层分子。目前,制造计算机硬盘读写头使用的就是这项技术。著名物理学家、诺贝尔奖获得者理查德· 费曼预言,人类可以用小的机器制作更小的机器,最后将变成根据人类意愿,逐个地排列原子,制造产品,这是关于纳米技术最早的梦想。 纳米技术包含下列四个主要方面:

纳米科学与技术的发展历史

纳米科学与技术的发展历史 物三李妍 1130060110 纳米科学与技术(简称纳米科技)是80年代后期发展起来的,面向21 世纪的综合交叉性 学科领域,是在纳米尺度上新科学概念和新技术产生的基础.它把介观体系物理、量子力学、混沌物理等为代表的现代科学和以扫描探针显微技术、超微细加工、计算机等为代表的高技术相结合, 在纳米尺度上(0.1nm到10nm之间)研究物质(包括原子、分子)的特性和相互 作用,以及利用原子、分子及物质在纳米尺度上表现出来的特性制造具有特定功能的产品,实现生产方式的飞跃。 历史背景 对于纳米科技的历史, 可以追溯到30多年前着名物理学家、诺贝尔奖获得者Richard Feynman于美国物理学会年会上的一次富有远见性的报告 . 1959 年他在《低部还有很大 空间》的演讲中提出:物理学的规律不排除用单个原子制造物品的可能。也就是说, 人类 能够用最小的机器制造更小的机器。直至达到分子或原子状态, 最后可以直接按意愿操纵原子并制造产品。他在这篇报告中幻想了在原子和分子水平上操纵和控制物质.他的设想 包括以下几点: (1)如何将大英百科全书的内容记录到一个大头针头部那么大的地方; (2) 计算机微型化; (3)重新排列原子.他提醒到, 人类如果有朝一日能按自己的主观意愿排列原子的话, 世界将会发生什么? (4) 微观世界里的原子.在这种尺度上的原子和在体块材 料中原子的行为表现不同.在原子水平上, 会出现新的相互作用力、新颖的性质以及千奇 百怪的效应. 就物理学家来说, 一个原子一个原子地构建物质并不违背物理学规律.这正 是关于纳米技术最早的构想。20 世纪70 年代, 科学家开始从不同角度提出有关纳米技术的构想。美国康奈尔大学Granqvist 和Buhrman 利用气相凝集的手段制备出纳米颗粒, 提出了纳米晶体材料的概念, 成为纳米材料的创始者。之后, 麻省理工学院教授德雷克斯勒积极提倡纳米科技的研究并成立了纳米科技研究小组。纳米科技的迅速发展是在20 世纪 80 年代末、90 年代初。1981 年发明了可以直接观察和操纵微观粒子的重要仪器——— 扫描隧道显微镜(STM)、原子力显微镜(AFM), 为纳米科技的发展起到了积极的促进作用。1984 年德国学者格莱特把粒径6 nm 的金属粉末压成纳米块, 经研究其内部结构, 指出了它界面奇异结构和特异功能。1987 年, 美国实验室用同样的方法制备了纳米TiO2 多晶体。1990 年7月第一届国际纳米科学技术会议与第五届国际扫描隧道显微学会议在美国巴尔

纳米介绍

纳米与纳米技术的内容 "纳米"是英文nano的译名,是一种长度单位,原称毫微米,就是10的-9次方米(10亿分之一米),约相当于45个原子串起来那么长。纳米结构通常是指尺寸在100纳米以下的微小结构。 从具体的物质说来,人们往往用细如发丝来形容纤细的东西,其实人的头发一般直径为20-50微米,并不细。单个细菌用肉眼看不出来,用显微镜测出直径为5微米,也不算细。极而言之,1纳米大体上相当于4个原子的直径。假设一根头发的直径为0.05毫米,把它径向平均剖成5万根,每根的厚度即约为1纳米。 纳米技术包含下列四个主要方面: 1、纳米材料:当物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。 这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。 如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。 过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度范围的性能。第一个真正认识到它的性能并引用纳米概念的是日本科学家,他们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。磁性材料也是如此,象铁钴合金,把它做成大约20—30纳米大小,磁畴就变成单磁畴,它的磁性要比原来高1000倍。80年代中期,人们就正式把这类材料命名为纳米材料。 为什么磁畴变成单磁畴,磁性要比原来提高1000倍呢?这是因为,磁畴中的单个原子排列的并不是很规则,而单原子中间是一个原子核,外则是电子绕其旋转的电子,这是形成磁性的原因。但是,变成单磁畴后,单个原子排列的很规则,对外显示了强大磁性。 这一特性,主要用于制造微特电机。如果将技术发展到一定的时候,用于制造磁悬浮,可以制造出速度更快、更稳定、更节约能源的高速度列车。 ⒉纳米动力学,主要是微机械和微电机,或总称为微型电动机械系统(MEMS),用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等.用的是一种类似于集成电器设计和制造的新工艺。特点是部件很小,刻蚀的深度往往要求数十至数百微米,而宽度误差很小。这种工艺还可用于制作三相电动机,用于超快速离心机或陀螺仪等。在研究方面还要相应地检测准原子尺度的微变形和微摩擦等。虽然它们目前尚未真正进入纳米尺度,但有很大的潜在科学价值和经济价值。 理论上讲:可以使微电机和检测技术达到纳米数量级。 ⒊纳米生物学和纳米药物学,如在云母表面用纳米微粒度的胶体金固定dna的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平

纳米材料及其应用前景

纳米材料及其应用前景 摘要:21世纪,纳米技术、纳米材料在科技领域将扮演重要角色。纳米技术是当今世界最有前途的决定性技术之一。本文简要地概述了纳米材料的基本特性以及其在力学、磁学、电学、热学等方面的主要应用,并简单展望了纳米材料的应用前景。 关键词:纳米材料;功能;应用; 一、纳米材料的基本特性 所谓纳米材料是指材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料。由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增 殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和 增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50 多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直 难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、 强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。 使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油 钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用 变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面 有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作 用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的 隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体 器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管 放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室 温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研 制出由碳纳米管组成的逻辑电路。

纳米技术的现状、应用、发展趋势及存在问题

纳米技术的现状、应用、发展趋势及存在问题 21世纪,信息科学技术、生命科学技术和纳米科学技术是科学技术发展的主流。人们普遍认为,纳米技术是信息和生命科学技术能够进一步发展的共同基础。纳米技术所带动的技术革命及其对人类的影响,远远超过电子技术。 纳米生物技术是国际生物技术领域的前沿和热点问题,在医药卫生领域有着广泛的应用和明确的产业化前景,特别是纳米药物载体、纳米生物传感器和成像技术以及微型智能化医疗器械等,将在疾病的诊断、治疗和卫生保健方面发挥重要作用。 目前,国际上纳米生物技术在医药领域的研究已取得一定的进展。美国、日本、德国等国家均已将纳米生物技术作为21世纪的科研优先项目予以重点发展。 纳米技术:于细微之处显神奇 纳米技术是在纳米尺度内,通过对物质反应、传输和转变的控制来实现创造新的材料、器件和充分利用它们的特殊的性能,并且探索在纳米尺度内物质运动的新现象和新规律。由于纳米正好处于原子、分子为代表的微观世界和以人类活动空间为代表的宏观世界的中间地带,被称为纳米世界,也是物理、化学、材料科学、生命科学以及信息科学发展的新领地。纳米材料中包含了若干个原子、分子,使得人们可以在原子层面上进行材料和器件的设计和制备。几十个原子、分子或成千个原子、分子"组合"在一起时,表现出既不同于单个原子、分子的性质,也不同于大块物体的性质,这种"组合"被称为"超分子"或"人工分子"。"超分子" ·石墨烯·分子筛·碳纳米管·黑磷·类石墨烯·纳米材料 江苏先丰纳米材料科技有限公司是国际上提供石墨烯产品很早的公司之一,现专注于石墨烯、

的性质,如它的熔点、磁性、电容性、导电性、发光性和颜色及水溶性都有重大变化。当"超分子"继续长大或以通常的方式聚集成大块材料时,奇特的性质又会失去。通俗来说,纳米材料一方面可以被当作一种"超分子",充分地展现出量子效应;而另一方面它也可以被当作一种非常小的"宏观物质",以至于表现出特性。同时,许多化学和生物反应的过程也发生在纳米尺度的层面上,因此探测纳米尺度内物理、化学和生物性质的变化,将加深对生命科学的理解。对由数量不多的电子、原子或分子组成的体系中新规律的认识和如何操纵或组合他们,是当今纳米科学技术的主要问题之一。当前纳米技术的研究和应用主要在材料和制备、微电子和计算机技术、医学与健康、航天和航空、环境和能源、生物技术和农业等方面。 在纳米材料制备科学和技术研究方面一个重要的趋势是加强控制工程的研究,这包括颗粒尺寸、形状、表面、微结构的控制。由于纳米颗粒的小尺寸效应、表面效应和量子尺寸效应都同时在起作用,它们对材料某一种性能的贡献大小、强弱往往很难区分,是有利的作用,还是不利的作用更难以判断,这不但给某一现象的解释带来困难,同时也给设计新型纳米结构带来很大的困难。如何控制这些效应对纳米材料性能的影响,如何控制一种效应的影响而引出另一种效应的影响,这都是控制工程研究亟待解决的问题。国际上近一两年来,纳米材料控制工程的研究主要有以下几个方面:一是纳米颗粒的表面改性,通过纳米微粒的表面做异性物质和表面的修饰可以改变表面带电状态、表面结构和粗糙度;二是通过纳米微粒在多孔基体中的分布状态(连续分布还是孤立分布)来控制量子尺寸效·石墨烯·分子筛·碳纳米管·黑磷·类石墨烯·纳米材料 江苏先丰纳米材料科技有限公司是国际上提供石墨烯产品很早的公司之一,现专注于石墨烯、

最新人教版四年级语文下册《纳米技术就在我们身边》知识点

统编版四年级语文下册第7课 《纳米技术就在我们身边》知识点 知识点 课文主题归纳: 这是一篇介绍纳米、纳米技术的文章。作者以通俗易懂的语言向我们介绍了纳米技术的神奇,以及纳米技术在我们生活中的应用,告诉我们在不远的将来纳米技术将改变我们的生活。 全文共分三部分: 第一部分(1):写21世纪是纳米的世纪。 第二部分(2~4):具体介绍什么是纳米技术,以及纳米技术的应用。第三部分(5):写在不远的将来,纳米技术将改变我们的生活。 课内重点词语: 纳米拥有冰箱除臭蔬菜钢铁 隐形健康细胞疾病预防病灶 需要功能材料深刻 多音字: 臭:chòu臭味xiù 乳臭未干 率:lǜ 概率shuài 率领

形近字: 蔬(蔬菜)疏(亲疏)钢(钢铁)刚(刚才)健(健康)建(建筑) 生字组词: 纳:纳米接纳容纳吐故纳新 拥:拥有拥抱拥挤蜂拥而至 箱:冰箱信箱邮箱箱子 臭:除臭臭气臭味遗臭万年 蔬:蔬菜果蔬时蔬瓜果菜蔬 碳:低碳碳酸二氧化碳 钢:钢铁钢笔钢琴百炼成钢 隐:隐蔽隐藏隐患若隐若现 健:健康强健健身健忘 康:健康康乐小康康庄大道 胞:细胞胞衣胞兄侨胞同胞 疾:疾病顽疾疾驰疾恶如仇 防:预防防御国防防微杜渐 灶:灶台灶王病灶另起炉灶 需:需要必需军需各取所需

词语解释: 【无能为力】用不上力量;没有能力或能力达不到。 【特性】某人或某事物所特有的性质。 【造福】给人带来幸福。 【杀菌】用日光、高温、过氧乙酸、酒精抗生素等杀死病菌。【癌症】生有恶性肿瘤的病。 【预防】事先防备。 【病灶】机体上发生病变的部分。 近义词: 特性——特征神奇——奇妙 结实——牢固灵敏——灵活 反义词: 普通——特别先进——落后 吸收——释放降低——增加

微纳米加工技术及其应用

绪论 1:纳米技术是制造和应用具有纳米量级的功能结构的技术,这些功能结构至少在一个方向的几何尺寸小于100nm。 2:微纳米技术包括集成电路技术,微系统技术和纳米技术;而微纳米加工技术可获得微纳米尺度的功能结构和器件。 3:平面集成加工是微纳米加工技术的基础,其基本思想是将微纳米机构通过逐层叠加的方式筑在平面衬底材料上。(类似于3d打印机?) 4:微纳米加工技术由三个部分组成:薄膜沉积,图形成像(必不可少),图形转移。如果加工材料不是衬底本身材料需进行薄膜沉积,成像材料的图形需转化为沉积材料的图形时需进行图形转移。(衬底材料,成像材料,沉积材料的区别和联系) 5:图形成像工艺可分为三种类型:平面图形化工艺,探针图形化工艺,模型图形化工艺。平面图形化工艺的核心是平行成像特性,其主流的方法是光学曝光即“光刻“技术;探针图形化工艺是一种逐点扫描成像技术,探针既有固态的也有非固态的,由于其逐点扫描,故其成像速度远低于平行成像方法;模型图形化工艺是利用微纳米尺寸的模具复制出相应的微纳米结构,典型工艺是纳米压印技术,还包括模压和模铸技术。 6:微米加工和纳米加工的主要区别体现在被加工结构的尺度上,一般以100nm 作为分界点。 光学曝光技术 1:光学曝光方式和原理 可分为掩模对准式曝光和投影式曝光。其中,掩模对准式曝光又可分为接触式曝光和邻近式曝光,投影式曝光又可分为1∶1投影和缩小投影(一般为1∶4和1∶5)。 接触式曝光可分为硬接触和软接触。其特点是:图形保真度高,图形质量高,但由于掩模与光刻胶直接接触,掩模会受到损伤,使得掩模的使用寿命较低。采用邻近式曝光可以克服以上的缺点,提高掩模寿命,但由于间隙的存在,使得曝光的分辨率低,均匀性差。 掩模间隙与图形保真度之间的关系 W=k√ 其中w为模糊区的宽度。 掩模对准式曝光机基本组成包括:光源(通常为汞灯),掩模架,硅片台。 适用范围:掩模对准式曝光已不再适用于大规模集成电路的生产,但却广泛应用于小批量,科研性质的以及分辨率要求不高的微细加工中。 投影式曝光:投影式曝光广泛应用于大批量大规模集成电路的生产。 评价曝光质量的两个参数:分辨率和焦深。

纳 米 技 术 专 题

纳米技术专题——综述 一门前途无量的新兴技术-纳米技术 前言 提到从九十年代初起,纳米技术(Nanotechnology)得到迅速发展,显示出勃勃生机。它是信息技术、生命科学技术和许多其它技术能够进一步发展的共同基础,将对人类未来产生深远的影响,并且孕育着巨大的商机。 提到本文将根据收集到的国内外资料,对纳米技术进行介绍,以飧读者。 一、纳米技术的由来和发展 提到提到纳米技术,首先要了解纳米这一长度单位。一纳米是十亿分之一米,或千分之一微米。直观上讲,人的头发直径一般为20-50微米,单个细菌用显微镜测出直径为5微米,而1纳米大体上相当于4个原子的直径。传统的特性理论和设备操作的模型和材料是基于临界范围普遍大于100纳米的假设,当材料的颗粒缩小到只有几纳米到几十纳米时,材料的性质发生了意想不到的变化。由于组成纳米材料的超微粒尺度,其界面原子数量比例极大,一般占总原子数的40%-50%左右,使材料本身具有宏观量子隧道、表面和界面等效应,从而具有许多与传统材料不同的物理、化学性质,这些性质不能被传统的模式和理论所解释。 提到纳米技术就是研究结构尺寸在0.1至100纳米(有些资料为1至100纳米)范围内材料的性质和应用。它的本质是一种可以在分子水平上,一个原子、一个原子地来创造具有全新分子形态的结构的手段,使人类能在原子和分子水平上操纵物质;它的目标是通过在原子、分子水平上控制结构来发现这些特性,学会有效的生产和运用相应的工具,合成这些纳米结构,最终直接以原子和分子来构造具有特定功能的产品。 提到因而,各个不同学科的科学家潜心研制和分析纳米结构,试图发现单个分子、原子在纳米级范围内不能被传统的模式和理论所解释的现象以及众多分子下这些现象的发展,他们的工作奠定了纳米技术的基础,推动了纳米技术的发展。 提到让我们简单回顾一下它的历史: 提到1959年,著名物理学家、诺贝尔奖获得者理查德·费曼在美国加州理工学院召开的美国物理学会年会上预言:如果人们可以在更小尺度上制备并控制材料的性质,将会打开一个崭新的世界。这一预言被科学界视为纳米材料萌芽的标志。 提到1974年,科学家唐尼古奇最早使用纳米技术一词描述精密机械加工。70年代美国康奈尔大学格兰维斯特和布赫曼利用气相凝集的手段制备纳米颗粒,开始了人工合成纳米材料。 提到1982年,研究纳米的重要工具-扫描隧道显微镜被发明。

纳米技术简介

纳米科技导论 课程小论文 题目:纳米技术简介 学号 班级 教师

摘要:纳米材料作为材料科学中的重要一元,近年来受到科学界的广泛重视。本文将从纳米材料的概况,制备工艺,及其部分应用等方面作出综合评价 关键词:纳米材料制备方法 1、纳米材料概述 纳米是一种长度单位,一纳米相当于十亿分之一米,大约相当于几十个原子的长度.人类对纳米的研究是在高技术领域或继信息技术和生命科学之后的又一个里程碑.正如中国的纳米首席科学家张立德所说: “大多数人竟然一无所知,纳米即将是一次产业革命”.由于物质组成的精细度达到纳米级时,就能表现出一些奇特的物理、化学的性能,从而为新材料的产生创造条件.纳米技术能在原子和分子水平上操纵物质,创造和制备优异性能的材料.因此,纳米技术是一项引领时代潮流的前沿技术,是科技之峰颠. 1982 年,科学家发明了纳米的重要工具——扫描隧道显微镜为我们揭示了一个可见的原子、分子世界,对纳米科技的发展产生了积极的促进作用. 1.1纳米材料分类 纳米材料是指在三维空间中至少有一维处在纳米尺度范围,或由他们作为基本单元构成的材料。如果按维数,纳米材料的基本单元可分为三类: 1.零维,指在空间三维尺度均在纳米尺度,如纳米尺度颗粒、原子团簇等。 2.一维,指在空间中有两维处于纳米尺度,如纳米四、纳米管、纳米棒等。 3.二维,指在三维空间中有一维在纳米尺度,如超薄膜、多层膜、超晶格等。 因为这些单元往往具有量子性质,所以对零维、一维、二维的基本单元又分别有量子点,量子线,量子阱之称。 1.2纳米材料特性 纳米材料是新型材料,由于它的尺寸小、比表面大及量子尺寸效应,它具有常规粗晶材料不具备的特殊性能。 1.2.1 小尺寸效应 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米微粒的颗粒表面层附近原子密度减小,导致声、光、电磁、热力学等待性呈现新的小尺寸效应。例如:光吸收显著增加并产生吸收峰的等离子共振频移;磁有序态向磁无序态的转变;超导相向正常相的转变;声子谱发生改变。 1.2.2 表面效应 纳米微粒尺寸小,表面能高,位于表面原子占相当大的比例。随着粒径减小,表面原子数迅速增加。这是由于粒径小,表面积急剧变大所致。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其它原子结合。例如:金属的纳米粒子在空气中会燃烧,无机的纳米粒空子暴露在空气中会吸附,并与气体进行反应。 1.2.3量子尺寸效应 当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象以及纳米半导体微粒存在不连续的最高被占据分子轨道和最低轨道能级而使能隙变宽现象均称为量子尺寸效应。量子尺寸效应直接解释了纳米粒子特别的热能、磁能、静磁能、静电能、光子能量以及超导态的凝聚能等一系列的与宏观特性有着显著不同的特性。 1.2.4宏观量子隧道效应 微观粒子具有贯穿势垒的能力称为隧道效应。近年来,人们发现了一些宏观量,例如微颗粒的磁化强度,量子相干器件中的磁通量等亦具有隧道效应,称为宏观的量子隧道效应。 宏观量子隧道效应的研究对基础研究及实用都有着重要意义。它限定了磁带、磁盘进行

相关文档
最新文档