Stabilisation of sodium caseinate hydrolysate foams

Stabilisation of sodium caseinate hydrolysate foams
Stabilisation of sodium caseinate hydrolysate foams

Stabilisation of sodium caseinate hydrolysate foams

Daniel J.Walsh,Kathrina Russell,Richard J.FitzGerald

*

Department of Life Sciences,University of Limerick,Limerick,Ireland

Received 11July 2007;accepted 9September 2007

Abstract

The foam expansion and drainage properties of hydrolysed NaCn (with a degree of hydrolysis (DH)of 0.5%)were studied at pH 2.0,4.0and 6.0.Foaming properties were compared with foams generated with non-heat-treated and heat-treated NaCn (80°C for 20min).At pH 6.0,hydrolysed NaCn displayed higher mean foam expansion and lower mean foam drainage values than the non-heat-treated and heat-treated control samples.Studies with the inclusion of glucose,sucrose and lactose indicated that lactose enhanced the foaming properties of the hydrolysate at pH 4.0.The inclusion of xanthan,guar,arabic,karaya and locust bean gum (LBG),and a combination of LBG and guar gum had di?erent e?ects on the foaming properties of the hydrolysate and control samples between pH 2.0and 6.0.The results provide new information of the e?ects of low (sugars)and high (gum)molecular weight agents in modifying the foaming prop-erties of casein ingredients.

ó2007Elsevier Ltd.All rights reserved.

Keywords:Foam expansion;Foam drainage;Sugars;Gum polysaccharides

1.Introduction

Foams are colloidal systems in which tiny air bubbles are dispersed in an aqueous continuous phase (Damoda-ran,1997).Many processed foods consumed daily are liquid or solid foams,such as the head of soft drinks and beer,whipped cream,mousses,meringue,bread and ice cream.In all of these products,proteins are the main sur-face-active agents that aid in the formation and stabilisa-tion of the dispersed gas phase.Foams may be formed in several ways including,whipping,shaking and sparging.All three methods,especially whipping rely on shear forces to form the foam.During foam formation proteins rapidly adsorb at the air–water interface,decrease surface tension,increase the viscous and elastic properties of the liquid phase and form a stabilising ?lm around gas bubbles which promote foam formation (Zayas,1997).A number of fac-tors a?ect the foaming properties of proteins including,

protein type,composition and concentration,pH,salt type and concentration,lipids,carbohydrate type and concen-tration,foaming method,temperature and viscosity of liquid phase.Foams are thermodynamically unstable and over time may destabilise by a number of mechanisms including,disproportionation and coalescence (Prins,1988).

Foam stabilisers are ingredients that decrease this insta-bility in that they contribute to the uniformity or consis-tency of a product when subjected to an array of conditions encountered during production,storage and use.Typical foam stabilisers are thickening or gelling agents such as gums,starches,pectins and gelatin.These agents act by either increasing the viscosity of the continu-ous phase or by forming a three-dimensional network that retards the movement of components within the foam.Glucose,sucrose and lactose are low molecular weight sug-ars,which at a high enough concentration may stabilise foams by increasing the viscosity of the continuous phase.Gums are water-soluble polysaccharides of high molec-ular weight derived from a variety of sources such as bac-teria and plants.Di?erences in gum composition,structure

0963-9969/$-see front matter ó2007Elsevier Ltd.All rights reserved.doi:10.1016/j.foodres.2007.09.003

*

Corresponding author.Tel.:+35361202598;fax:+35361331490.E-mail address:dick.?tzgerald@ul.ie (R.J.FitzGerald).

https://www.360docs.net/doc/0c1147022.html,/locate/foodres

Available online at https://www.360docs.net/doc/0c1147022.html,

Food Research International 41(2008)

43–52

and molecular weight confers each with unique properties

suitable for di?erent food applications.The choice of

gum for a particular processed food depends on its ability

to interact with other food components(Janaki&Sashi-

dhar,1998).The in?uence of xanthan gum,guar gum,

locust bean gum,gum karaya,and gum arabic on foam

formation and stability were investigated in this study.

Xanthan gum,isolated from Xanthomonas campestris is a

b-1,4-linked glucose polymer with b-D-mannose,4-b-glucu-

ric acid-1,2-a-D-mannose side chain(Katzbauer,1998).

Xanthan gum has high solubility in water,high viscosity

at low concentrations,high stability and solubility in acidic

systems and excellent stability to freezing and thawing

(Garc?′a-Ochoa,Santos,Casas,&Go′mez,2000).Guar

gum is produced from the seeds of the Cyamopsis tetrago-

nolobus plant.This polysaccharide,rich in galactomannan

is commonly used in many food products because of its low

cost,high solubility at low temperature and high viscosity

at low concentration.Due to these attributes,guar gum

is frequently used in many dairy products to minimise syn-

eresis and improve freeze–thaw stability(Sudhakar,Sing-

hal,&Kulkarni,1996).Locust bean gum(LBG)is

produced from seeds of the Ceratonia silliquia plant.The

gum is mainly composed of galactomannan but the struc-

ture di?ers to that of guar gum.LBG is usually used in

combination with other gums in food products.As with

guar gum,LBG is mainly used in dairy products such as

frozen desserts(Whistler&BeMiller,1999),however,it

also provides excellent spread-ability and stability to

cheese-spreads,sour cream,cream dips and yoghurt.In

ice-cream LBG provides heat shock resistance,desirable

texture and chewyness(Regand&Go?,2003).Gum kar-

aya is an exudate of the Sterculia urens tree.It is a highly

complex polysaccharide composed of D-galacturonic acid, D-glucuronic acid,D-galactose and L-rhamnose.Gum kar-aya yields an opaque solution and is used as a meringue

stabiliser(Whistler&BeMiller,1999).Gum arabic an exu-

date of the Acacia tree is heterogenous in nature and rich in

acidic arabinogalactans.Gum arabic is composed of gum

(70%)and a protein–polysaccharaide complex(30%).

Gum arabic is used widely as a food ingredient because

of its high solubility and low viscosity in solution.The

gum is an useful foam stabiliser and develops a high viscos-

ity after heating.Gum arabic is mostly used in confection-

ary and beverage products.

Caseins and caseinate are exploited in food formulations

for their emulsifying,whipping and high water binding

properties(Mulvihill,1992).Due to their excellent nutritive

value,enzymatically hydrolysed caseins have been gener-

ated for use in chemically de?ned formulas for clinical

nutrition.Casein hydrolysates are used as functional food

ingredients,and for infant foods,nutritional forti?cation,

pharmaceutical,and nutraceutical applications.Extensive

enzymatic hydrolysis of caseins results in complete destruc-

tion of functional properties,whereas limited hydrolysis

can bring about an improvement in functional properties

(Chobert et al.,1996;Gru?erty&Fox,1988Flanagan&FitzGerald,2002).The preparation of hydrolysates with improved functional properties is dependent on the speci-?city of the enzyme activity used in their generation.Slat-tery and FitzGerald(1998)showed that at low degree of hydrolysis,casein hydrolysates generated with Protamex?, a Bacillus proteinase complex,had improved foaming properties at high and low pH.The objective of this study was to determine the e?ect of di?erent sugars and gums on the foam expansion and stability characteristics of hydroly-sed sodium caseinate.

2.Materials and methods

2.1.Materials

Protamex?was supplied by Novo Nordisc(Baegsvaerd, Denmark).Sodium caseinate was supplied by Armour Pro-teins SAS(Saint-Brice-en-Cogles,France).All gums and sugars were obtained from Sigma(Dublin,Ireland).All other reagents were analytical grade.

2.2.Hydrolysis of sodium caseinate(NaCn)

NaCn(3L,10%(w/w)protein)was hydrolysed with Protamex at50°C.The pH was maintained constant at 7.5by constant addition of4N NaOH.Sodium azide (0.02%(w/w))was added as an anti-microbial agent.The degree of hydrolysis(DH),de?ned as the percentage of peptide bonds hydrolysed,was calculated from the volume and molarity of NaOH required to maintain constant pH (Adler-Nissen,1986).The enzyme-to-substrate ratio(E:S) used,(0.04%(w/w)),was calculated on the basis of weight of protein in the sodium caseinate suspension and the weight of protein in the Protamex preparation.Protein content was determined using the macro-Kjeldahl proce-dure(IDF(International Dairy Federation),1993)and a nitrogen-to-protein conversion factor of6.38.Hydrolysis of sodium caseinate was allowed to proceed to a DH of 0.5%,at this point the reaction was terminated by heating at80°C for20min.After heating the sodium caseinate was cooled,divided into aliquots and stored atà18°C until required.

Heat-treated sodium caseinate(3L,10%protein(w/w)) was prepared by the slow addition of sodium caseinate to distilled/deionised water with constant stirring at20°C. The pH was adjusted to7.5with1N HCl or1N NaOH at20°C.Sodium azide(0.02%(w/w))was added as an anti-microbial agent.The suspension was heated,while stirring,to80°C and maintained at this temperature for 20min.On cooling the sample was divided into aliquots and stored atà18°C until required.

Non-heat-treated sodium caseinate(1%(w/w)protein) was prepared by the slow addition of sodium caseinate (85.35%protein(w/v))to distilled/deionised water with constant stirring for1h at20°C.The pH was adjusted to2.0,4.0or6.0with1N HCl or1N NaOH at20°C.

44 D.J.Walsh et al./Food Research International41(2008)43–52

Sodium azide(0.02%(w/v))was added as an anti-microbial agent.This control was prepared prior to all analyses. 2.3.Foam formation

Foaming properties of NaCn samples,i.e.hydrolysates, non-heat-treated control,and heat-treated control at1% (w/v)protein were determined,in duplicate,at pH2.0, 4.0and6.0as detailed by Slattery and FitzGerald(1998). Sample pH was adjusted using1N HCl or1N NaOH at 20°C.After foam formation the percentage foam expan-sion was calculated from Eq.(1)and percentage foam sta-bility or foam drainage stability(after30min)was calculated from Eq.(2)

Foam Expansione%T

?Volume of cylinderàMass of foam in cylinder

Mass of foam in cylinder

?100

e1T

Foam Stabilitye%T?Mass of foam after30min

Mass of foam at time zero

?100

e2T

2.4.Foaming in presence of sugars

The e?ect of glucose,lactose and sucrose(all at1%(w/ v))on the foaming properties of NaCn hydrolysates and controls at1%(w/v)protein was determined,in duplicate. Each sugar was added to NaCn samples prior to pH adjustment to2.0,4.0and6.0with1N HCl or1N NaOH. Percentage foam expansion and foam stability(after 30min)were measured as previously described.

2.5.Foaming in presence of gums

The e?ect of xanthan gum,guar gum,gum arabic,gum karaya and LBG on the foaming properties of the NaCn hydrolysates and controls(1%(w/v)protein)was deter-mined,in duplicate.LBG was solubilised in distilled water (1L),at95°C,to a?nal gum concentration of2%(w/v). The solution,after cooling to20°C was centrifuged(Sorv-all RC5C Plus,Unitech,Dublin)at1520g for10min.The supernatant obtained by centrifugation was freeze-dried (LABCONCO,AGB Scienti?c,Dublin)and was used in subsequent foaming studies.Gums(0.1%(w/v))were added to sodium caseinate samples prior to pH adjustment. Percentage foam expansion and foam stability(after 30min)were measured as previously described.

2.6.Foaming properties in presence of guar gum and LBG

NaCn samples at1%protein were foamed in the pres-ence of guar gum(0.1%and0.2%(w/v)),LBG(0.1%and 0.2%(w/v))and di?erent combinations of guar gum: LBG(0.05:0.05%(w/v)and0.1:0.1%(w/v).Gums were added to NaCn hydrolysates and controls prior to pH adjustment.Percentage foam expansion and foam stability (after30min)were measured in duplicate as previously described.

3.Results and discussion

Foam expansion values for non-heated,heated-treated and hydrolysed(0.5%DH)NaCn were measured at pH

2.0,4.0and6.0(Fig.1a).At pH2.0all samples possessed

a high foam expansion with values in the range of1000%. The high foam expansion at pH2.0may be due to the increased positive charge on the casein molecules at this acidic pH resulting in greater repulsion and solubility. Hydrolysed NaCn possessed the greatest foam expansion at higher pH with mean values of1277%and1511%at pH4.0and6.0,respectively.In agreement with Slattery and Fitzgerald(1998),percentage foam expansion increased with increasing pH.In general,proteolytic hydrolysis results in a decrease in molecular weight and an increase in exposed ionisable amino and carbonyl groups leading to improved solubility as the pH moves away from the isoelectric point(Nielsen,1997).Both heated and non-heat-treated NaCn displayed diminished foam expansion at pH4.0(Fig.1a).This?nding is in

D.J.Walsh et al./Food Research International41(2008)43–5245

agreement with Slattery and Fitzgerald(1998),who reported that intact NaCn had poor foaming properties at this pH.In contrast,other studies have reported that foam volume and stability was greatest at the p I of a pro-tein(Kim&Kinsella,1985;Uraizee&Narsimhan,1996). Reduced foam expansion at this pH may be due to a reduc-tion in the overall net charge and solubility as the pH approached the p I.Jahaniaval,Kakuda,Abraham,and Marcone(2000)showed that at pH3.75–4.0,non-aggre-gated casein may exhibit greater hydrophobicity and enhanced functional properties compared to casein at alka-line pH.Clarkson,Cui,and Darton(2000)showed that bovine serum albumin,immunoglobulin G and lysozyme had diminished foam properties at the p I due to extensive aggregation of protein.Di?erences in the foam expansion of heat-treated and non-heat-treated NaCn were observed at pH4.0(Fig.1a).Presumably,the di?erences in foam expansion observed between these samples at this pH relates to the di?erent degrees of hydration of each sample as a result of prior heat treatments and the proximity of the sample pH to the p I.Heat-treated sodium caseinate was subjected to80°C for20min before cooling and freezing to–18°C for storage.This heat treatment,although below reported temperatures known to cause thermally induced modi?cations of casein(Guo,Fox,Flynn,&Mohammad, 1989;Law,Horne,Banks,&Leaver,1994),however,could increase the rate and degree of hydration of sodium casei-nate.Non-heat treated sodium caseinate was resuspended from a dry powder before being subjected to foaming.This heat-treatment followed by freezing and thawing may result in improved hydration of sodium caseinate leaving it more susceptible to pH e?ects.Foam expansion values for these two samples increased as the pH increased from 4.0to6.0(Fig.1a).No signi?cant di?erence in foam expan-sion was observed between heated and non-heat-treated sodium caseinate at pH6.0(Fig.1a).

The stability of foams at pH2.0,4.0and6.0was mea-sured over time(Fig.1b).At pH2.0the mean foam stabil-ity was45%with no signi?cant di?erences between controls.At pH4.0,greatest foam stability was seen for hydrolysed sodium caseinate followed by non-heated and heated with mean values of65%,52%and23%,respec-tively(Fig.1b).At pH 6.0,all samples displayed an increase in foam stability than at pH4.0(Fig.1b).The improvement in foam stability observed at pH6.0may be due to increases in solubility and viscosity of caseins as has been observed previously(Konstance&Strange, 1991).Of all samples tested the hydrolysed sodium casei-nate at pH6.0had the greatest foam expansion and stabil-ity with values of1511%and88%,respectively,of all samples at di?erent pH values(Fig.1b).The limited degree of hydrolysis of this sample may have resulted in improve-ments in hydration,solubility and the?lm forming proper-ties of caseins.These improvements in foam stability are consistent with?ndings of Slattery and FitzGerald (1998).Mohanty,Mulvihill,and Fox(1988)reported that the increased stability of acidic casein foams with increas-ing pH may be due to decreased electrostatic repulsion between protein molecules.Studies of the e?ect of pH have mostly shown both the foam volume and foam stability to be greatest at the p I of a protein(Clarkson et al.,2000). This is due to enhanced surface adsorption as a result of decreased repulsive force at the interface and lower solubil-ity.However,for certain proteins coagulation and aggrega-tion occurs at the p I,and in this case the amount of foaming is reduced.

3.1.E?ect of di?erent sugars on foam expansion

The e?ect of glucose,sucrose and lactose at a concentra-tion of1%(w/v)on the foam expansion of non-heat-trea-ted,heat-treated and hydrolysed sodium caseinate at pH 2.0,4.0and6.0were investigated(Fig.2a–c).Neither sugar had any signi?cant e?ect on the foam expansion of non-heat-treated sodium caseinate at the pH values tested (Fig.2a).In the case of heat-treated sodium caseinate the only signi?cant improvement in foam expansion was observed at pH 4.0in the presence of each sugar (Fig.2b).It is possible that the presence of each sugar at a concentration of1%reduced the extent of aggregation of caseins near the p I.The foam expansion for this heat-treated sample at pH4.0increased from561%for the con-trol to an average of763%in the presence of each sugar (Fig.2b).The only signi?cant improvement in foam expan-sion of hydrolysed sodium caseinate was observed at pH 4.0in the presence of lactose and glucose(Fig.2c).Lactose and glucose at a concentration of1%(w/v)increased the foam expansion of hydrolysed sodium caseinate from 1277%for the control to1583%and1417%,respectively (Fig.2c).These results are noteworthy in that they demon-strate that a small degree of hydrolysis is required to improve the foam expansion of sodium caseinate near the isoelectric point and that the selective addition of sugar can furthermore improve the expansion capabilities.

3.2.E?ect of di?erent sugars on foam stability

The e?ect of glucose,sucrose and lactose at a concentra-tion of1%(w/v)on the foam stability of di?erent sodium caseinate samples at pH2.0,4.0and6.0were determined (Fig.3a–c).There are few reports in the literature on the use of sugars to stabilise sodium caseinate foams.In the case of non-heat-treated sodium caseinate neither sugar yielded any signi?cant improvement in the foam stability at pH2.0and6.0(Fig.3a).Lactose increased the foam sta-bility of non-heat-treated sodium caseinate from52%for the control to59%in the presence of this sugar at pH4.0 (Fig.3a).At pH2.0and6.0,sucrose was the only sugar capable of signi?cantly improving the foam stability of heated sodium caseinate relative to control(Fig.3b).At pH 4.0the foam stability of heated sodium caseinate increased from23%to48%in the presence of either sugar (Fig.3b).It appears that at pH4.0,glucose,sucrose and lactose at a concentration of1%display di?erent abilities

46 D.J.Walsh et al./Food Research International41(2008)43–52

to improve the foam stability of heat-treated sodium case-inate.No signi?cant improvement in the foam stability of hydrolysed sodium caseinate was observed in the presence of either sugar at pH2.0and6.0(Fig.3c).Both glucose and lactose signi?cantly improved the foam stability of hydrolysed sodium caseinate at pH4.0from65%for the control to75%and80%,respectively.

3.3.E?ect of di?erent gums on foam expansion

The e?ect of di?erent gums at a concentration of0.1% w/v on the foam expansion of di?erent sodium caseinate samples at pH2.0,4.0and6.0was investigated(Fig.4a–c).In the case of non-heat-treated sodium caseinate only

D.J.Walsh et al./Food Research International41(2008)43–5247

xanthan gum at pH2.0and LBG at pH4.0signi?cantly increased the foam expansion to1203%and1007%com-pared to the control foam expansion of1067%and783% at these pH values,respectively(Fig.4a).Of all the gums tested only xanthan gum and LBG at pH2.0signi?cantly improved the foam expansion of heat-treated sodium caseinate(Fig.4b).Gum Arabic,karaya and xanthan com-pletely destroyed the ability of heated and non-heat-treated sodium caseinate to foam(Fig.4a and b).Upon the addi-tion of0.1%xanthan gum to sodium caseinate at pH4.0 insoluble white strands were formed.These strands were most likely the product of thermodynamic incompatibility (Tolstoguzov,1998,2003).Hemar,Tamehana,Munro,and Singh(2001)reported the presence of thread-like structures in0.5%xanthan gum/sodium caseinate solutions at neutral pH when visualised by confocal scanning laser microscopy. The authors explained that sodium caseinate promoted the self-association of xanthan molecules as a result of thermo-dynamic incompatability due to both casein and xanthan possessing a net negative charge at neutral pH.Although no thread-like structures were evident in sodium caseinate solutions containing gum arabic and karaya an incompat-ability was observed.The cause of this incompatibility could not be deduced from these studies.However,because Schmitt,Sanchez,Thomas,and Hardy(1999),reported gum arabic carried a net negative charge for pH values above2.0a similar interaction maybe involved for this gum.Only xanthan gum signi?cantly improved the foam expansion of hydrolysed sodium caseinate at pH2.0and 4.0from1043%and1277%to1339%and1538%,respec-tively(Fig.4c).Of the caseinate samples studied a combi-nation of limited hydrolysis and addition of0.1% xanthan gum o?ered greatest improvement in the foam expansion of sodium caseinate(Fig.4c).

3.4.E?ect of di?erent gums on foam stability

The e?ect of gum type on the foam stability of di?erent sodium caseinate samples at pH2.0,4.0and6.0was deter-mined(Fig.5a–c).Only xanthan gum increased the foam stability of non-heat-treated sodium caseinate,at pH2.0, from48%to66%(Fig.5a).No improvement in foam sta-bility was observed at pH4.0in the presence of any gum (Fig.5a).Xanthan gum increased the foam stability of non-heat-treated sodium caseinate from66%to100%at pH6.0(Fig.5a).Additionally,at pH6.0,LBG,gum arabic and karaya increased the foam stability of this sample to approximately71%(Fig.5a).Similar trends were observed for heat-treated sodium caseinate where at pH2.0,xanthan gum was the only gum that signi?cantly increased the foam stability relative to the control(Fig.5b).In contrast to the non-heat-treated sample the addition of LBG and guar gum to heat-treated sodium caseinate at pH4.0produced foams with a stability of45%compared to23%for the con-trol(Fig.5b).Puri?ed guar and LBG have been reported not to exhibit any surface activity(Gaonkar,1991).Fur-thermore,galactomannan hydrocolloids such as guar and LBG act by modifying the rheological properties of the aqueous phase of emulsions(Dickinson,2002).Because surface-active properties are involved in emulsion and foam formation it is plausible that both gums stabilised the caseinate foams via an increase in the viscosity of the

48 D.J.Walsh et al./Food Research International41(2008)43–52

liquid phase.Xanthan,arabic and karaya gums all decreased the stability of foams produced at pH4.0by heat-treated sodium caseinate(Fig.5b).All gums apart from guar gum signi?cantly increased the foam stability of heat-treated sodium caseinate at pH6.0(Fig.5b).Great-est foam stability was obtained for this sample in the pres-ence of xanthan gum where the stability increased from 51%to100%at pH6.0(Fig.5b).At pH2.0,the di?erent gums used had little to no signi?cant improvement on the foam stability of hydrolysed sodium caseinate(Fig.5c). However,at pH4.0both guar gum and LBG signi?cantly increased the foam stability to79%and84%compared to the control value of65%(Fig.5c).At pH6.0,hydrolysed sodium caseinate with out any gum possessed high foam stability with a value of88%(Fig.5c).Of interest was the fact that xanthan gum was the only gum capable of increasing the foam stability of this sample at pH6.0.As with the other sodium caseinate samples the stability of hydrolysed sodium caseinate increased to100%at pH6.0 in the presence of xanthan gum(Fig.5c).

3.5.E?ect of gum combinations on the foam expansion of sodium caseinate

The e?ect of di?erent combinations of guar gum and LBG on the foam expansion of sodium caseinate was inves-tigated at pH2.0,4.0and6.0(Fig.6a–c).Of all the sodium caseinate samples tested,only the foam expansion of non-heat-treated sodium caseinate at pH2.0in the presence of 0.2%guar gum was signi?cantly increased from1068%to 1345%(Fig.6a).At pH4.0,a signi?cant increase in the foam expansion of non-heat-treated sodium caseinate was observed in the presence of0.1%LBG and0.1% LBG+0.1%guar gum(Fig.6a).No signi?cant improve-ment was observed in the foam expansion of heat-treated sodium caseinate using di?erent combinations of gum at any of the pH values tested(Fig.6b).The di?erences in foam expansion between heat-treated and non-heat-treated sodium caseinate in the presence of di?erent combinations of guar and LBG were interesting(Fig.6a and b).The results indicated that the preparation of sodium caseinate had a pronounced e?ect on the foam expansion of sodium caseinate.The only signi?cant improvement in the foam expansion of hydrolysed sodium caseinate was observed in the presence of0.2%guar gum at pH4.0(Fig.6c).It is interesting to observe that at a gum concentration of 0.1%both guar and LBG had a similar e?ect on the foam expansion of hydrolysed sodium caseinate at pH 4.0 (Fig.6c).However,at a0.2%gum concentration only guar gum improved the foam forming properties of hydrolysed sodium caseinate(Fig.6c).It appears that although both gums are classi?ed as galactomannans their structural di?erences may have had a major contributing e?ect on their ability to in?uence foam formation.There was no evidence of any synergistic interactions between guar gum and LBG to improve the foam expansion of any of the sodium caseinate samples at pH2.0,4.0and6.0(Fig.6a–c).

A synergistic increase in the viscosity of xanthan–guar or xanthan–LBG suspensions has been reported(Garc?′a-Ochoa et al.,2000).Such a viscosity increase would have a signi?cant e?ect on the foaming properties of sodium caseinate.In fact,an anti-synergistic e?ect was revealed when guar gum and LBG were used in combination.For example,non-heat-treated sodium caseinate at pH2 possessed a foam expansion of1007%and897%in the

D.J.Walsh et al./Food Research International41(2008)43–5249

separate presence of0.1%LBG and0.1%guar gum,respec-tively(Fig.6a).However,the foam expansion of the same sample in the presence of both gums simultaneously, yielded a foam expansion of652%at pH2.0(Fig.6a).If no synergistic interactions were present the foam expansion should at least equal the sum of the individual foam expan-sion values i.e.1904%.Similar anti-synergistic e?ects were evident for the other caseinate samples in the presence of the same gums at pH2.0,4.0and6.0.

3.6.E?ect of gum combinations on the foam stability of sodium caseinate

The e?ect of di?erent combinations of guar gum and LBG on the foam stability of sodium caseinate was inves-

50 D.J.Walsh et al./Food Research International41(2008)43–52

tigated at pH2.0,4.0and6.0(Fig.7a–c).The concentra-tion of gum and gum type appears to be a critical factor in determining the foam stability of di?erent sodium case-inate samples at di?erent pH values.Non heat-treated sodium caseinate displayed signi?cantly increased stability in the presence of0.2%guar gum at pH2.0and4.0with a mean stability of84%compared to control values of48% and52%,respectively(Fig.7a).At pH 6.0,0.2%guar gum,0.1%and0.2%LBG signi?cantly increased the foam stability of non-heat-treated sodium caseinate(Fig.7a).In general of the combinations tested,0.2%guar gum was the optimal gum and concentration to stabilise non heat-trea-ted sodium caseinate(Fig.7a).

Heat treated sodium caseinate was stabilised by0.2% guar gum and0.1%guar gum+0.1%LBG at pH 2.0 (Fig.7b).Greatest stability for this sample was obtained with0.2%guar gum where the stability increased from 42%to100%at pH2.0(Fig.7b).At pH4.0,all gums sig-ni?cantly improved the foam stability of heat-treated sodium caseinate(Fig.7b).Greatest stability was obtained when the caseinate was foamed in the presence0.1%guar gum+0.1%LBG where the stability increased from 22.5%to69%at pH4.0(Fig.7b).At pH6.0,all gums apart from0.05%guar gum+0.05%LBG increased the foam stability of heat treated sodium caseinate(Fig.7b).In a similar fashion to the non-heat-treated sodium caseinate 0.2%guar gum produced the most stable foam at pH6.0 (Fig.7a and b).The mixture of0.1%guar gum+0.1% LBG was the only gum component capable of improving the foam stability of hydrolysed sodium caseinate at pH 2.0(Fig.7c).Although no reports of synergism exist between guar and LBG such an increase was observed under these select set of circumstances.At pH4.0,all gums signi?cantly improved the foam stability of hydrolysed sodium caseinate compared to control(Fig.7c).The hydrolysate generated foam in the presence of0.2%guar gum possessed a stability of100%compared to the same sample without gum which had a stability of65%at pH 4.0(Fig.7c).No signi?cant improvement in foam stability was obtained when the hydrolysed sodium caseinate was foamed in the presence of any gum at pH6.0(Fig.7c).

4.Conclusion

The foaming properties of hydrolysed and heat-treated NaCn were altered,in a pH dependent manner,on the inclusion of sugar and gum polysaccharide components. Judicious choice of these components may lead to enhanced foam expansion and drainage stability,and therefore their inclusion as foam enhancing agents merits further study from a scienti?c and commercial perspective. References

Adler-Nissen,J.(1986).A review of food protein hydrolysis–speci?c areas.In Enzymatic Hydrolysis of Food Proteins(pp.57–109).New York:Elsevier Applied Science.Clarkson,J.R.,Cui,Z.F.,&Darton,R.C.(2000).E?ect of solution conditions on protein damage in foam.Biochemical Engineering Journal,4(2),107–114.

Chobert,J.M.,Briand,L.,Gue′guen,J.,Popineau,Y.,Larre′,C.,& Haertle′,T.(1996).Recent advances in enzymatic modi?cations of food proteins forimproving their functional properties.Nahrung,40(4), 177–183.

Damodaran,S.(1997).Protein-stabilized foams and emulsions.In S.

Damodaran&A.Paraf(Eds.),Food proteins and their applications (pp.57–110).New York:Marcel Dekker,Inc.

Dickinson,E.(2002).Hydrocolloids at interfaces and the in?uence on the properties of dispersed systems.Food Hydrocolloids,17(1),25–

39.

Flanagan,J.F.,&FitzGerald,R.J.(2002).Functionality of Bacillus proteinase hydrolysates of sodium caseinate.International Dairy Journal,12,737–748.

Gaonkar,A.G.(1991).Surface and interfacial activities and emulsion characteristics of some food hydrocolloids.Food Hydrocolloids,5, 329–337.

Garc?′a-Ochoa,F.,Santos,V.E.,Casas,J. A.,&Go′mez,E.(2000).

Xanthan gum:production,recovery and properties.Biotechnology Advances,18,549–579.

Gru?erty,M.B.,&Fox,P.F.(1988).Milk alkaline proteinase.Journal of Dairy Research,55,609–630.

Guo,M.,Fox,P.F.,Flynn,A.,&Mohammad,K.S.(1989).Heat-induced changes in sodium caseinate.Journal of Dairy Research,56, 503–512.

Hemar,Y.,Tamehana,M.,Munro,P.A.,&Singh,H.(2001).Viscosity, microstructure and phase behaviour of aqueous mixtures of commer-cial milk protein products and xanthan gum.Food Hydrocolloids,15, 565–574.

IDF(International Dairy Federation).(1993).Milk:Determination of nitrogen content(Kjeldahl method),(standard20B).Brussels. Jahaniaval,F.,Kakuda,Y.,Abraham,V.,&Marcone,M.F.(2000).

Soluble protein fractions from pH and heat treated sodium caseinate: Physicochemical and functional properties.Food Research Interna-tional,33,637–647.

Janaki,B.,&Sashidhar,R.B.(1998).Physicochemical analysis of gum kondagogu(Cochlospermum gossypium):A potential food additive.

Food Chemistry,61,231–236.

Katzbauer, B.(1998).Properties and applications of xanthan gum.

Polymer Degradation and Stability,59,81–84.

Kim,S.H.,&Kinsella,J.E.(1985).Surface activity of food proteins;

relationships between surface pressure development,viscoelasticity of interfacial?lms and foam stability of bovine serum albumin.Journal of Food Science,50,1526–1530.

Konstance,R.P.,&Strange, E. D.(1991).Solubility and viscous properties of casein and caseinates.Journal of Food Science,56(2), 556–559.

Law,A.J.R.,Horne,D.S.,Banks,J.M.,&Leaver,J.(1994).Heat-induced changes in the whey proteins and https://www.360docs.net/doc/0c1147022.html,chwissenschaft, 49,125–129.

Mohanty,B.,Mulvihill,D.M.,&Fox,P.F.(1988).Emulsifying and foaming properties of acidic caseins and sodium caseinate.Food Chemistry,28,17–30.

Mulvihill,D.M.(1992).Production,functional properties and utilization of milk protein products.In P. F.Fox(Ed.),Advanced Dairy Chemistry-1.Proteins(pp.369–401).London:Elsevier Applied Science.

Prins, A.(1988).Principles of foam stability.In E.Dickinson&G.

Stainsby(Eds.),Advances in food emulsions and foams(pp.91–122).

Essex,England:Elsevier Applied Science.

Regand,A.,&Go?,H.D.(2003).Structure and ice cream recrystalliza-tion in frozen stabilized ice cream model systems.Food Hydrocolloids, 17,95–102.

Schmitt, C.,Sanchez, C.,Thomas, F.,&Hardy,J.(1999).Complex coacervation between b-lactoglobulin and acacia gum in aqueous medium.Food Hydrocolloids,13,483–496.

D.J.Walsh et al./Food Research International41(2008)43–5251

Slattery,H.,&FitzGerald,R.J.(1998).Functional properties and bitterness of sodium caseinate hydrolysates prepared with a Bacillus proteinase.Journal of Food Science,63(3),1–5.

Sudhakar,V.,Singhal,R.S.,&Kulkarni,P.R.(1996).Starch-galacto-mannan interactions:Functionality and rheological aspects.Food Chemistry,55(3),259–264.

Nielsen,P.M.(1997).Functionality of protein hydrolysates.In S.

Damodaran&A.Paraf(Eds.),Food Proteins and their Applications (pp.443–472).New York:Marcel Dekker.

Tolstoguzov,V. B.(1998).Physico-chemical modi?cation of food proteins:Food emulsions.Nahrung,42(3),205–209.Tolstoguzov,V.B.(2003).Some thermodynamic considerations in food formulation.Food Hydrocolloids,17,1–23.

Uraizee,F.,&Narsimhan,G.(1996).E?ects of kinetics of adsorption and coalescence on continuous foam concentration of proteins:Compar-ison of experimental results with model predictions.Biotechnology and Bioengineering,51,384–398.

Whistler,R.L.,&BeMiller,J.N.(1999).Carbohydrate chemistry for food scientists.St.Paul,MN:Eagan Press.

Zayas,J. F.(1997).Foaming properties of proteins.In Functionality of Proteins in Food(pp.260–309).Berlin,Germany:Springer-Verlag.

52 D.J.Walsh et al./Food Research International41(2008)43–52

硫代硫酸钠标准溶液配制与标定.

硫代硫酸钠标准溶液配制与标定 硫代硫酸钠滴定液L) 配制 称取26g硫代硫酸钠(Na2S2O3·5H2O)(或无水硫代硫酸钠16g),溶于1000ml纯水中,缓缓煮沸10分钟,冷却,放置两周后滤过备用。 2.标定 (1)标定方法 称取在120℃干燥至恒重的基准重铬酸钾,称准至,置于碘量瓶中,加水25ml使溶解,加碘化钾,轻轻振摇使溶解,加20%硫酸20ml,摇匀,密塞;在暗处放置10分钟后,加水150ml稀释,用配制好的硫代硫酸钠滴定液L)滴定,至近终点时,加淀粉指示液3ml(5g/L),继续滴定至蓝色消失而显亮绿色,同时作空白实验。(2)计算: m————重铬酸钾 g; c(Na2S2O3)——硫代硫酸钠标准溶液的量浓度,mol/L; V1————滴定时硫代硫酸钠标准溶液的用量 ml; V2————空白滴定时硫代硫酸钠标准溶液的用量 ml; ——与(L)硫代硫酸钠标准溶液相当的以克表示的重铬酸钾的质量。 (Na2S2O3)=L 1 硫代硫酸钠的标准溶液的配制 称取26g硫代硫酸钠(Na 2 S 2 O 3 ?5H 2 O)或16g无水硫代硫酸钠,溶于1000mL 水中,缓缓煮沸10min,冷却。放置两周后过滤备用。 2 硫代硫酸钠标准溶液的标定 测定方法 称取℃烘至质量恒定的基准重铬酸钾,称准至。置于碘量瓶中,溶于25mL 水中,加2g碘化钾及20mL硫酸溶液(φ=20%),摇匀,于暗处放置10min,加150mL水,用配制好的硫代硫酸钠溶液滴定,近终点时加3mL淀粉指示液(5g/L),继续滴定至溶液由蓝色变为亮绿色。同时作空白试验。 计算 硫代硫酸钠标准溶液浓度按式(18-4)计算: 式中:c(Na 2 S 2 O 3 )-硫代硫酸钠标准溶液物质量的浓度,单位为摩尔每升(mol/L); m-重铬酸钾的质量,单位为克(g); V 1 -硫代硫酸钠的用量,单位为(mL); V -空白试验中硫代硫酸钠溶液用量,单位为(mL); -重铬酸钾摩尔质量,单位为kg/mol。

硫代硫酸钠标准溶液配制及注意事项

硫代硫酸钠标准溶液配制 及注意事项

一、实验目的 1.掌握Na2S2O3溶液的配制方法和保存条件; 2.学习碘量法标定Na2S2O3溶液的方法; 3.了解淀粉指示剂的作用原理和正确判断终点的方法。

二、实验原理 结晶硫代硫酸钠(Na 2S 2O 3·5H 2O )一般都含有少量S 、Na 2SO 4、Na 2CO 3及NaCl 等杂质,同时还容易风化和潮解,通常先配制近似浓度的Na 2S 2O 3溶液,用间接碘法来标定Na 2S 2O 3溶液的浓度。 Na 2S 2O 3溶液不稳定,容易与空气中的氧气、水中的CO 2作用,以及微生物作用分解,导致浓度的变化。因此需用新煮沸后冷却的蒸馏水配制,并加入少量Na 2CO 3,使溶液呈微碱性并抑制细菌生长。 配好的Na 2S 2O 3溶液应贮于棕色瓶中,放置暗处,经7~14天后再标定。1.Na 2S 2O 3标准溶液的配制

标定Na 2S 2O 3溶液的浓度可用KIO 3作基准物。在酸性溶液中KIO 3与过量KI 作用,析出的I 2,以淀粉为指示剂,用Na 2S 2O 3溶液滴定,有关反应式如下: IO 3-+ 5I -+ 6H + == 3I 2 + 3H 2O I 2 + 2S 2O 32-== 2I -+ S 4O 62- 2.Na 2S 2O 3标准溶液的标定

三、主要仪器与试剂 1.仪器: 滴定管、锥形瓶、移液管、容量瓶、分析天平。2.药品: Na2S2O3·5H2O、Na2CO3、KIO3基准试剂、 0.5 mol·L 1H2SO4、20% KI、0.5% 淀粉溶液。

2019-2020学年高中化学 4.1 硫代硫酸钠与酸反应速率的影响教案2 苏教版选修6.doc

2019-2020学年高中化学 4.1 硫代硫酸钠与酸反应速率的影 响教案2 苏教版选修6 教学要求: 1、学会通过实验探究影响硫代硫酸钠与酸反应速率的各种因素; 2、了解并认识浓度、温度等因素对反应速率的影响及某些规律,掌握测定、比较反应速率大小的方法。 教学过程: 明确教学要求。 引入:放视频资料(北京奥运会200米决赛),从学生熟悉的速率概念进行引入,再类比到化学反应中的化学反应速率,并联系一个简单直观的实验——碳酸钠、碳酸氢钠与酸反应速率的比较。 一、知识预备 1、化学反应速率如何测定、比较? 对视频和实验中不同概念的速率进行类比学习,讨论分析总结得出实验比较法的注意事项,进一步总结得出中学化学中定性实验中进行实验设计时应掌握的原则。 另外,还可通过对公式v=s/t v=Δc/Δt这两个公式对比,掌握定量计算化学反应速率的一般方法。 2、如何定性比较硫代硫酸钠与酸不同条件下反应速率的大小?请设计方案。 3、化学反应速率的影响因素有哪些? 4、对于下面反应,哪些因素便于实验探究:S2O32-+2H+ = SO2↑+ S↓+ H2O 知识预备的重点应该是让学生掌握简单的初步设计实验方案进行实验探究的方法,了解并认识浓度、温度等因素对反应速率的影响及某些规律。 二、课题方案设计 1、合作完成分组实验,并记录实验数据。 简单介绍实验中所用到的仪器和试剂。 仪器:锥形瓶,温度计,量筒,试管,烧杯,秒表 试剂:蒸馏水、热水、0.1mol﹒L-1Na2S2O3溶液、 0.1mol﹒L-1H2SO4溶液 学生分组实验之前,应明确实验设计的目的,了解实验操作流程,以及实验操作应如何团结协作。

硫代硫酸钠标准溶液配制及注意事项

硫代硫酸钠标准溶液配 制及注意事项 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

配制和标定硫代硫酸钠标准溶液注意事项 一、硫代硫酸钠溶液不稳定的原因 ⑴与溶解在水中的CO2反应:Na2S2O3 CO2 H2O =NaHCO3 NaHSO3 S↓ ⑵与空气中的O2反应:Na2S2O3 O2 =2Na2SO4 2S↓ ⑶与水中的微生物反应:Na2S2O3 = Na2SO3 S↓ ⑷此外水中微量元素等也能促进硫代硫酸钠溶液分解。 二、 Na2S2O3 溶液的配制注意事项 根据上述原因Na2S2O3 溶液的配制应采取下列措施: ①应将配制溶液所用的水煮沸一段时间,以除去CO2和杀灭微生物。 ②配制时,为防止其酸性分解和除去水中含有的铜离子,加入少量Na2CO3 使溶液呈弱碱性(在此条件下微生物活动力低),使溶液的浓度稳定。 ③将配制溶液置于棕色瓶中放置14天,再用基准物标定,若发现溶液浑浊需重新配制。 ④配制工作中的各步操作均应非常细致,所用仪器必须洁净。 三、标定 标定硫代硫酸钠标准溶液的基准物有KIO3、KBrO3 和K2Cr2O7 等。国家标准规定用K2Cr2O7基准物标定硫代硫酸钠标准溶液,其方法为: 称取1g碘化钾置于碘量瓶中,加入100mL蒸馏水,加10ML0.025mol/l的重铬酸钾浓溶液,再加入 5mL(1 1)硫酸溶液,摇匀,盖好盖。于暗处放置5min后,用配制好的硫代硫酸钠标准溶液滴定,近终点(淡黄色)时加1.5mL淀粉指示液(10g/L),继续滴定至溶液蓝色完全退去。 滴定至终点后,经过5分钟以上,溶液又出现蓝色,这是由于空气氧化I- 所引起的,不影响分析,但如果到终点后溶液又迅速变蓝,表示Cr2O72- 与I- 的反应不完全。 发生反应时溶液的温度不能高,一般在室温下进行。需注意事项: 1、滴定时不要剧烈摇动溶液。 2、析出I2 后不能让溶液放置过久。 3、滴定速度宜适当地快些。 4、淀粉指示液应在滴定近终点时加入,如果过早地加入,淀粉会吸附较多的I2,使滴定结果产生误差。 5、所用KI溶液中不应含有KIO3 或I2,如果KI溶液显黄色或将溶液酸化后加入淀粉指示液显蓝色,测应重新配制碱性碘化钾。 四、贮存和使用 1、硫代硫酸钠标准溶液应保存在棕色玻璃瓶中,配得和标定后的溶液均应保存在温度接近68℉并没有阳光直射的地方,并且不应受到不良气体的影响。 2、贮存溶液的瓶子瓶口要严密。 3、每次取用时应尽量减少开盖的时间和次数。 4、存放过程中,若发现溶液浑浊或表面有悬浮物,需过滤重新标定后使用,必要时重新制备。

钠激光雷达在临近空间探测方面的最新进展

第37卷,增刊 红外与激光工程 2008年9月 V ol.37 Supplement Infrared and Laser Engineering Sep. 2008 收稿日期:2008-07-04 作者简介:程永强(1981-),男,陕西渭南人,助理研究员,主要从事激光雷达及中高层大气方面研究。Email:chengyq@https://www.360docs.net/doc/0c1147022.html, 钠激光雷达在临近空间探测方面的最新进展 程永强,胡 雄,徐 丽,闫召爱,郭商勇 (中国科学院空间科学与应用研究中心,北京 100190) 摘要:介绍了Na 激光雷达的研究背景,详细阐述了Na 激光雷达的国内外发展动态和Na 层测风测温激光雷达的基本探测原理,最后简要描述了发展Na 层测风测温激光雷达的重要意义。 关键词:激光雷达; Na 层测风测温; 临近空间 中图分类号:P4 文献标识码:A 文章编号:1007-2276(2008)增(激光探测)-0028-04 Advances of Na Lidar in near space detection CHENG Yong-qiang, HU Xiong ,XU Li, YAN Zhao-ai, GUO Shang-yong (Center for Space Science and Applied Research, Chinese Academy of Science, Beijing 100190, China) Abstract :The research background of Na lidar is introduced, then the latest advances and the detecting theory of Na wind/temperature lidar is described in detail, at last the important significance of developing Na wind / temperature lidar is explained. Key words :Lidar; Na wind / temperature lidar; Near Space 0 引 言 10 km 以上的地球大气称之为“中高层大气”[1] , 它是日地系统的一个重要中间环节,包括对流层的上部、平流层、中间层和热层。目前国际上临近空间(20~100 km )飞行器技术快速发展,临近空间因其飞行环境的特殊性和广阔的应用前景而受到高度关注。因此,中高层大气探测与研究在大气科学和空间物理中具有举足轻重的地位,在航天等高新科技领域也有重要的意义,也是优化人类的生存环境、保障人类社会可持续发展的需求。 光在大气中传播时,会被大气分子和气溶胶散射或吸收,这种大气分子对光的散射和吸收是使用激光对大气组成和特性进行探测的物理基础。目前,激光雷达(Lidar)是对中高层大气探测与研究的主要手段 之一[2]。根据激光束于大气物质相互作用机制,可设计不同的激光雷达[3],包括气溶胶激光雷达、拉曼激光雷达、共振荧光激光雷达、瑞利散射激光雷达等。 共振荧光激光雷达利用共振荧光过程,将激发光的频率调至散射物质的吸收线,通过散射回波信号来探测大气特性。由于波源或观察者的运动而出现观测频率与波源频率不同的现象,称之为多普勒效应。利用这种多普勒效应进行测风的激光雷达称为测风激光雷达。多普勒频移的大小和方向由分子运动速度方向与激光束方向的夹角决定。因此,通过测量散射光的多普勒谱线频移量就可获得大气风速;通过测量散射光的多普勒谱线展宽就可获得大气温度。Na 层测风测温激光雷达[4]利用中层顶区域内的钠原子作为示踪物,由接收到的共振荧光散射回波光子数反演大气温度、风场及Na 原子数密度廓线。其仅有20多

硫代硫酸钠组题.doc

硫代硫酸钠组题 硫代硫酸钠俗称“海波”,又名“大苏打”,溶液具有弱碱性和较强的还原性,是棉织物漂白后的脱氯剂,定量分析中的还原剂。 硫代硫酸钠(Na2S2O3)可由亚硫酸钠和硫粉通过化合反应制得,装置如图(a)所示。 已知:Na2S2O3在酸性溶液中不能稳定存在,有关物质的溶解度曲线如图(b)所示,(1)Na2S2O3·5H2O的制备: 步骤2:加入药品,打开K1、关闭K2,加热。装置B、D中的药品可选用下列 A. NaOH溶液 B.浓H2SO4 C.酸性KMnO4溶液 D.饱和NaHCO3溶液 步骤3:C中混合液被气流搅动,反应一段时间后,硫粉的量逐渐减少。当C中 (2)Na2 S2O3性质的检验: 向足量的新制氯水中滴加少量Na2S2O3溶液,氯水颜色变浅,检查反应后溶液 (3)常用Na2S2O3溶液测定废水中Ba2+浓度,步骤如下:取废水25.00 mL,

控制适当的酸度加入足量K2Cr2O7溶液,得BaCrO4沉淀;过滤、洗涤后,用适量稀盐酸溶解.此时CrO2-4全部转化为Cr2O2-7;再加过量KI溶液,充分反应后,加入淀粉溶液作指示剂,用0.010 mol·L-1的Na2S2O3溶液进行滴定,反应完全时,消耗Na2S2O3溶液18. 00 mL。部分反应的离子方程式为: 则该废水中Ba2+的物质的量浓度为。 硫代硫酸钠(Na2S2O3·5H2O)俗名“大苏打”,又称为“海波”,可用于照相业作定影剂,也可用于纸浆漂白作脱氯剂等。它易溶于水,难溶于乙醇,加热、遇酸均易分解。工业上常用亚硫酸钠法、硫化碱法等制备。某实验室模拟工业硫化碱法制取硫代硫酸钠,其反应装置及所需试剂如下图: 实验具体操作步骤为: ①开启分液漏斗,使硫酸慢慢滴下,适当调节分液的滴速,使反应产生的SO2气体较均匀地 通入Na2S和Na2CO3的混合溶液中,同时开启电动搅拌器搅动,水浴加热,微沸。 ②直至析出的浑浊不再消失,并控制溶液的pH接近7时,停止通入SO2气体。

多普勒测风激光雷达系统.pdf

49 多普勒测风激光雷达系统 1.研究背景 大气风场信息是一项重要的资源,精确可靠的大气风场测量设备可提高风电可再生能源领域的利用率,改进气候气象学模型建立的准 确性,增强飞行器运行的安全性,因此在风电、航空航 天、气候气象、军事等领域都有着重要的意义。 风场信息测量的手段主要分为被动式和主动式两大类。传统的被动式测量装置有风速计、风向标和探空仪,主动式测量装置有微波雷达、声雷达等。风速计和风向标只能实现单点测量,借助测风塔后实现对应高度层的风场信息检测,这类传统装置易受冰冻天气影响,测风塔的搭建和维护也需要花费大量的人力物力,还存在移动困难和前期征地手续复杂等问题;微波雷达以电磁波作为探测介质,由于微波雷达常用波长主要为厘米波,与大气中的大尺寸粒子(如云、雨、冰等)相互作用产生回波,无法与大气中的分子或气溶胶颗粒产生作用,而晴空时大气中大尺寸粒子较少,因此微波雷达在晴空天气条件下将出现探测盲区。另外,微波雷达还具备庞大的收发系统也导致其移动困难;声雷达与微波雷达测量原理相似,不同的是将探测介质由微波改为了声波。声雷达的探测方式使得在夜间和高海拔地区易出现信噪比降低的情况甚至无法测量。因此,迫切需要补充新型的风场测量手段替代传统测风装置实现大气风场信息的测量。2. 测风激光雷达系统 2015年,南京牧镭激光科技有限公司成功研制出国产化测风激光雷达产品Molas B300,该产品基于多普勒原理可实现40~300 m 风场信息测 ■ 黄晨,朱海龙,周军 南京牧镭激光科技有限公司 第一作者 黄晨 量,风速测量精度可达0.1 m/s ,风向测量精度可达1°,数据更新率为1 Hz ,风速测量范围可达0~60 m/s 。测风激光雷达定位为外场应用装备,对环境适应性有较高要求,Molas B300可在外界温度范围为-40℃~50℃,相对湿度为0%~100%的环境条件下正常工作。除此以外,Molas B300体积小质量轻(约50 kg )方便运输安装便捷,可显著降低项目前期施工时间。测风激光雷达采用激光作为探测介质,可与空气中微小颗粒发生相互作用,具有时空分辨率高、自动化程度高、安装简单易维护、移动便携性好等优势,可有效提高项目实施效率, 因此成为了最具前景的风场信息测量手段。 表1 各类风场探测技术的优缺点 探测技术优势 劣势风速计、风向标较高的水平分辨率, 成本低单点测量微波雷达三维风场探测,测量距离 可达100 km 晴空条件下不能使用,体积庞大声雷达三维风场探测探测距离较近,易受大气环境影响 测风激光雷达 三维风场探测,晴空下仍 能测量,移动便携性好 图1 测风激光雷达Molas B300

硫代硫酸钠标准溶液的配制与标定

硫代硫酸钠标准溶液的配制和标定 一、实验目的 1、掌握硫代硫酸钠标准滴定溶液的配制、标定和保存方法。 2、掌握以碘酸钾为基准物间接碘量法标定硫代硫酸钠的基本原理、反应条件、操作方法和计算。 二、实验原理 NaS2Q?5H2 0容易风化、潮解,且易受空气和微生物的作用而分解,因此不能直接配制成准确浓度的溶液。但其在微碱性的溶液中较稳定。当标准溶液配制后亦要妥善保存。 标定N Q SO溶液通常是选用KI03、KBrO或&Cr2O等氧化剂作为基准物,定量地将I —氧化为丨2,再用NaSO溶液滴定,其反应如下; 10; + 5 r + 6 H* == 3lj + 3 HjO + 6 V + S H+=> 3 I a+ 3 HQ + Br" S片 + 6 I"4-14 H* = 2 3+ + 3 I a+ 7 H a0 + 2 Na a S2O s= NajS4O4+ 2 Nal 上述几种基准物中一般使用KIQ和KBrO较多,因为不会污染环境。 三、试剂 1、基准试剂?CeO; 2、KI试剂; 3、3 mol/LHbSQ溶液; 4、5g/L淀粉溶液:0.5g可溶性淀粉放入小烧杯中,加水10mL使成糊状,在 搅拌下倒入90 mL沸水中,继续微沸2min,冷却后转移至试剂瓶中。 四、实验步骤 1、0」mol/L Na 2S2Q标准溶液的配制 称取13克N Q SQ - 5H2O置于400 mL烧怀中,加入200 mL新煮沸的冷却的蒸馏水,待完全溶解后,加入0.1g N Q CO,然后用新煮沸经冷却的蒸馏水稀释至500 mL,保存于棕色瓶中,在暗处放置7 —14天后标定; 2、NaSQ标准溶液的标定

直接探测多普勒测风激光雷达

直接探测多普勒测风激光雷达 引言 风是研究大气动力学和气候变化的一个重要参量,利用风的数据,可以获得大气的变化,并预见其改变,促进人类对能量、水、气溶胶、化学和其它空气物质圈的了解,提高气象分析和预测全球气候变化的能力。目前的风场数据主要来源于无线电探空测风仪、地面站、海洋浮标、观测船、飞行器以及卫星,它们在覆盖范围和观测频率上都存在很大限制。对全球进行直接三维风场测量已经提到日程上来,世界气象组织提出了全球范围的高分辨率大气风场数据的迫切需要,迄今为止,多普勒测风激光雷达是唯一能够获得直接三维风场廓线的工具,具有提供全球所需数据的发展潜力[1]。 激光雷达是探测大气的有力工具,随着激光技术、光学机械加工技术、信号探测、数据采集以及控制技术的发展,激光雷达技术的发展也日新月异。多普勒测风激光雷达具有实用性、高分辨率和三维观测等优点,是其它探测手段难以比拟的[2, 3, 4]。 新研制的1064 nm直接探测多普勒测风激光雷达,利用双边缘技术对对流层三维风场进行探测[5]。本文介绍了该激光雷达 的总体结构及其各部分的功能,并对其探测对流层风场的初步结果进行了分析和讨论。 1 总体结构和技术参数 1064 nm直接探测多普勒测风激光雷达从整体上由激光发射单元、二维扫描单元,回波信号接收单元、信号探测和数据采集单元及控制单元五部分组成,其结构示意图和外观照片分别见图1和图2,主要的技术参数见表1。

激光发射单元、回波信号接收单元、信号探测和数据采集单元放置在光学平台上,保证其光学稳定性。Nd:YAG激光器的中心波长是1064 nm,工作在此波长,可以有较大的激光输出功率,并且气溶胶的后向散射截面比较大。脉冲重复频率为50 Hz,可以节省探测的时间,能捕捉短时间内风速的变化,有利于提高风速探测的准确度。同时,激光器内部注入种子激光可以保证激光器的频率稳定。 二维扫描单元安置在实验房的房顶,接收望远镜的上方。由两个镀有1064 nm 波长全反的介质膜的平面反射镜、水平旋转机构和垂直旋转机构组成的大口径光学潜望式结构。通过软件控制或者手动调节能够全方位扫描,水平方向可以旋转0o至360o,垂直方向可以旋转0o至180o。进行常规探测时采用四波束法,水平方位依次按照0o、90o、180o和270o四个方位探测,即东、南、西和北四个方位,工作仰角为45o。 接收望远镜在二维扫描单元的正下方,有效通光口径为300 mm,如图1所示。主镜镀有1064 nm波长全反的介质膜,反射率高达99%。望远镜接收的大气后向散射回波信号耦合至光纤,由光纤导入到准直镜后成为平行光,经过压制背景光的窄带滤光片后,由20%反射、80%透射的分束片分成两部分。20%的反射信号作为能量探测,由直角反射棱镜分成两束,分别由光子计数探测器接收;80%的透射信号作为信号探测,经过双Fabry-Perot标准具的两个通道后,由于透过率的不一样,得到强度不等的两束光信号,由直角反射棱镜分为两束,由相应的光子计数探测器接收。四个光子计数探测器分别将光信号转换为电信号后,输入光子计数卡内,最后由工控机中的主程序对采集的数据进行储存和处理,并实时显示测量的信号强度廓线、风速和风向。

高三化学 硫代硫酸钠的工业制法

化工生产过程中的基本问题: 1.确定化工生产的最佳过程 确定化工生产反应原理与过程的一般方法:对于某一具体的化工产品,研究生产过程要从产品的化学组成和性质考虑,来确定原料和生产路线。 ①分析产品的化学组成,据此确定生产产品的主要原料; ②分析产品与生产原料之间关键元素的性质,确定主要生产步骤; ③分析生产原料的性质.确定反应原理。 2.选择化工生产的最佳原料 选择原料首先要考虑化学反应原理,此外还要考虑厂址选择、原料供应、能源供应、工业用水供应、产品存储、产品运输、产品预处理成本、环境保护等。 3.控制最佳化学反应条件 控制反应条件是取得化工生产最佳综合效益的重要环节之一。控制反应条件要应用化学反应速率理论和化学平衡原理,结合具体化学反应的特点以及生产技术和设备条件、能源消耗等,控制最佳化学反应速率和反应物的平衡转化率。 4.科学治理工业“三废” “三废”主要是指废气、废液和废渣。治理“三废”首先要从设计生产工艺与选择原料做起,即从源头上解决问题;其次是把好排

放关,对排出的“三废”的处理,要尽最大努力使其资源化,最低要求是无害化。 5.充分利用“废热” 通过热交换或其他方式利用化学反应所放出的热量。 硫代硫酸钠的工业制法: (1)亚硫酸钠 将纯碱溶解后,与(硫磺燃烧生成的)二氧化硫作用生成亚硫酸钠,再加入硫磺沸腾反应,经过滤、浓缩、结晶,制得硫代硫酸钠。 Na2CO3+SO2==Na2SO3+CO2Na2SO3+S+5H2O==Na2S2O3·5H2O (2)硫化碱法 利用硫化碱蒸发残渣、硫化钡废水中的碳酸钠和硫化钠与硫磺废气中的二氧化硫反应,经吸硫、蒸发、结晶,制得硫代硫酸钠。 2Na2S+Na2CO3+4SO2==3Na2S2O3+CO2 (3)氧化、亚硫酸钠和重结晶法 由含硫化钠、亚硫酸钠和烧碱的液体经加硫、氧化;亚硫酸氢钠经加硫及粗制硫代硫酸钠重结晶三者所得硫代硫酸钠混合、浓缩、结晶,制得硫代硫酸钠。 2Na2S+2S+3O2==2Na2S2O3Na2SO3+S==Na2S2O3 (4)重结晶法 将粗制硫代硫酸钠晶体溶解(或用粗制硫代硫酸钠溶液),经除杂,浓缩、结晶,制得硫代硫酸钠。

实验八 硫代硫酸钠标准溶液的配制与标定

硫代硫酸钠标准溶液的配制与标定 一、试验目的 1)掌握硫代硫酸钠标准溶液的配制与标定方法; 2)掌握碘量法的原理及测定条件。 二、原理 硫代硫酸钠(Na2S2O3·5H2O)一般都有含有少量杂质,如S、Na2SO3、Na2SO4、Na2CO3及NaCl等,同时还容易风化和潮解,因此不能直接配制准区浓度的溶液。 Na2S2O3溶液易受空气及水中CO2、微生物等的作用而分解,为了减少溶液在水中的CO2和杀死水中的微生物,应用新煮沸后冷却的蒸馏水配制溶液并加入少量Na2CO3(浓度为0.02%),以防止Na2S2O3分解。 日光能促进Na2S2O3溶液分解,所以Na2S2O3溶液应贮存在棕色瓶中,放置暗处,经8~14天在标定。长期使用的溶液,应定期标定。通常用K2Cr2O7作基准物进行标定Na2S2O3溶液的浓度。K2Cr2O7先与KI反应析出I2: K2Cr2O7+6KI+14HCl=2CrCl3+8KCl+3I2+7H2O 析出的I2再用Na2S2O3标准溶液滴定: I2+2Na2S2O3=2NaI+ Na2S4O6 这个测定方法是间接碘法的应用。 三、试剂 Na2S2O3·5H2O(固体)?

Na2CO3(固体); K2Cr2O7(G.R或A.R); 0%KI溶液; 6mol·L-1HCl溶液; 0.2%淀粉指示?。 四、实验步骤 1)Na2S2O3溶液的配制 将12.5g a2S2O3·5H2O与0.1gNa2CO3放入小烧杯中,加入?煮沸并已冷却的蒸馏水使溶解,稀释至500mL,贮于棕色瓶中,在?处放置8~14天后在标定。 2)标定 Cr2O7,放入250mL碘量精确称取适量在130~10℃烘干的(G.R)K 2 瓶中,加?25mL使溶解。加入6mol·L-1HCl溶液5mL及20%KI溶液5mL,轻轻摇匀,将瓶盖好,放在暗处反应5in。然后加入100mL水稀释,立即用Na2S2O3标准溶液滴?到溶液呈草黄色,加入0.2%淀粉指示剂5mL,继续滴定至溶液由肁色变为绿色,即位终点。 五、注意事项 1)K2Cr2O7与KI?应不是立刻完成的,在稀溶液中反应更慢,因此等反应完成后再加稀释自上述条件下,大约经5min反应即可完成。2)因生成的Cr3 浓度较大时为暗绿色,妨碍终点观察,故应稀释后再滴定。开始滴定时?溶液中碘浓度较大,不要摇动太厉害,以免 I2挥发。

高中化学.硫代硫酸钠与酸反应速率的影响素材选修讲义

硫代硫酸钠与酸反应速率的影响因素 课题2是催化剂对过氧化氢分解速率影响的因素,教材中的实验是如图所示(投影),此装置加液时会把空气排出,影响实验数据。所以我们把分液漏斗该成恒压分液漏斗。(投影)实验时,先在50ml量筒中盛满水,并倒置于水槽中,再通过分液漏斗把5ml6%的H2O2溶液加入到具支试管中,然后进行有关实验。按教材中的表格要求记录各时间段收集到的O2体积。(投影实验数据的表格),另外采用CuO、Fe2O3、FeCl3、KI、活性炭作催化剂作了比较,CuO、Fe2O3加入H2O2后充分振荡,无明显现象。FeCl3、KI产生比较慢,活性炭中加入H2O2后充分振荡,有气泡产生,但难收集。 拓展课题4-2:探究酶的催化作用,采用新鲜的猪肝,催化效果很明显。但当对溶液进行酸化或碱化时催化程度降低。取两支试管,分别加入5ml6%H2O2溶液,将一支试管 放在50℃水浴中加热片刻后取出,分别放入大小相同的 新鲜猪肝,观察两者放出O2 的速度差异不明显 拓展课题4-3蔗糖的燃烧,此实验使用烟灰比砻糠灰效果要好,抽的烟灰比燃烧后的烟灰效果要好。用量只要一到两根烟就可以。白砂糖与小苏打的混合物一定要研细,并要堆成尖,否则出来的物质会堆成一团。(观看实验录象) 课题3 反应条件对化学平衡的影响 (1)氯化钴溶液颜色的变化 此实验主要根据平衡移动原理,增加Cl-的浓度和减少Cl-的浓度使平衡移动后溶液的颜色发生变化。书本中建议用3ml。(投影采用3ml后所做实验)假如开始用3ml,那加浓盐酸后使最终溶液的体积大于试管的二分之一,不规范。事实上只要1ml现象就比较明显,(投影图片)所以改用1ml。采用起始1ml,滴加15滴就可变紫红色,25滴蓝紫色,40滴蓝色。分一半后加水25滴变浅红色。(投影图片) 另外此平衡移动可以改用减少水的量和增加水的量来促进平衡的移动,课本采用的是CoCl2的乙醇溶液加热和加热后加水这种方式,事实上采用在0.5mol/L的CoCl2溶液中滴加浓硫酸或加CaO固体也可以使溶液变蓝。 (2)探究影响乙酸乙酯水解程度的因素 取三支试管,分别编号1、2、3。再分别注入4ml蒸馏水、4ml2mol/L硫酸、4ml4mol/LNaOH 溶液。并在1、2号试管中加甲基橙,3号试管加石蕊试液,使三支试管的溶液分别呈橙色、红色、和蓝色。再在三支试管中加2ml的乙酸乙酯,振荡再静止后,用条状标签纸对液相界面做好标记,(由于在加试剂的过程中总存在着一定的体积偏差,且反应后体积变化不大,肉眼观察也会有偏差,所以我采用标签纸对液相界面做标记,最终只要观察最后上升的液面的多少就好。将三支试管同时放在60-65℃的水浴中加热约5分钟后,取出试管观察液相界面情况。试管1液相变化不大,试管2液相界面略有上升,试管3液相界面明显上升(投影图片)。加指示剂是为了区别三个试管分别加了水、酸或碱。假如不用指示剂,而用不同颜色的蜡笔对有机层润色效果也一样。现象比较明显。 3、拓展实验:淀粉与碘显色现象的探究: 我们采用了三个方面来研究 1、不同温度下对淀粉与碘显色灵敏度的研究:在试管中加入3ml的淀粉溶液,加入1滴碘水, 观察现象,现蓝色。再将试管在热水浴中加热,再观察现象,蓝色慢慢褪去。 2、不同浓度的淀粉与碘显色灵敏性的影响:在试管1中加3ml的淀粉,试管2中加3ml的水 再滴加3滴淀粉,再分别加一滴碘水,观察现象。试管1为深蓝色,试管2为淡蓝色。3、酸碱度对淀粉与碘显色灵敏性的影响:取三支试管,分别编号1、2、3。再分别注入2ml 蒸馏水、2m1mol/L盐酸、2m1mol/LNaOH溶液,再各加三滴淀粉,再滴一滴碘水。观察

自制直接探测多普勒测风激光雷达的总体结构和技术参数介绍

自制直接探测多普勒测风激光雷达的总体结构和技术参数介绍引言风是研究大气动力学和气候变化的一个重要参量,利用风的数据,可以获得大气的变化,并预见其改变,促进人类对能量、水、气溶胶、化学和其它空气物质圈的了解,提高气象分析和预测全球气候变化的能力。目前的风场数据主要来源于无线电探空测风仪、地面站、海洋浮标、观测船、飞行器以及卫星,它们在覆盖范围和观测频率上都存在很大限制。对全球进行直接三维风场测量已经提到日程上来,世界气象组织提出了全球范围的高分辨率大气风场数据的迫切需要,迄今为止,多普勒测风激光雷达是唯一能够获得直接三维风场廓线的工具,具有提供全球所需数据的发展潜力[1]。 激光雷达是探测大气的有力工具,随着激光技术、光学机械加工技术、信号探测、数据采集以及控制技术的发展,激光雷达技术的发展也日新月异。多普勒测风激光雷达具有实用性、高分辨率和三维观测等优点,是其它探测手段难以比拟的[2,3,4]。 新研制的1064 nm直接探测多普勒测风激光雷达,利用双边缘技术对对流层三维风场进行探测[5]。本文介绍了该激光雷达的总体结构及其各部分的功能,并对其探测对流层风场的初步结果进行了分析和讨论。 1 总体结构和技术参数1064 nm直接探测多普勒测风激光雷达从整体上由激光发射单元、二维扫描单元,回波信号接收单元、信号探测和数据采集单元及控制单元五部分组成,其结构示意图和外观照片分别见图1和图2,主要的技术参数见表1。 激光发射单元、回波信号接收单元、信号探测和数据采集单元放置在光学平台上,保证其光学稳定性。Nd:YAG激光器的中心波长是1064 nm,工作在此波长,可以有较大的激光输出功率,并且气溶胶的后向散射截面比较大。脉冲重复频率为50 Hz,可以节省探测的时间,能捕捉短时间内风速的变化,有利于提高风速探测的准确度。同时,激光器内部注入种子激光可以保证激光器的频率稳定。 二维扫描单元安置在实验房的房顶,接收望远镜的上方。由两个镀有1064 nm波长全反的

0.1molL硫代硫酸钠的标定(整理后)

实验一0.1mol/L硫代硫酸钠的标定 一、实验目的 1.掌握Na2S2O3标准溶液的配制方法和注意事项; 2.学习使用碘瓶和正确判断淀粉指示剂指示的终点; 3.了解置换碘量法的过程、原理,并掌握用基准物K2Cr2O7标定Na2S2O3溶液浓度的方法; 4.练习固定重量称量法。 二、实验原理 硫代硫酸钠标准溶液通常用Na2S2O3·5H2O配制,由于Na2S2O3遇酸即迅速分解产生S,配制时若水中含CO2较多,则pH偏低,容易使配制的Na2S2O3变混浊。另外水中若有微生物也能够慢慢分解Na2S2O3。因此,配制Na2S2O3通常用新煮沸放冷的蒸馏水,并先在水中加入少量Na2CO3,然后再把Na2S2O3溶于其中。 标定Na2S2O3溶液的基准物质有KBrO3、KIO3、K2Cr2O7等,以K2Cr2O7最常用。标定时采用置换滴定法,使K2Cr2O7先与过量KI作用,再用欲标定浓度的Na2S2O3溶液滴定析出的I2。 第一步反应为: Cr2O72- + 14H++ 6I- + 2Cr3+ + 7H2O 2 在酸度较低时此反应完成较慢,若酸度太强又有使KI被空气氧化成I2的危险,因此必须注意酸度的控制并避光放置10分钟,此反应才能定量完成。 (2KI+O2=K2O+I2 K2O+CO2=K2CO3或与水与二氧化碳生成碳酸氢钾。但是由于反应过程中有碱性物质存在碘单质多少会有一些会消耗产生其他氧化数的物质。 4KI+2H2O+O2=2I2+4KOH 2KI+O2=K2O+I2 K2O+H2O=2KOH) C=O的键能比H-O的键能大,K2O与键能小的水先反应。 2KOH+CO2=K2CO3+H2O K2CO3+10H2O=K2CO3·10H2O 4KI+2H2O+O2=2I2+4KOH) 第二步反应为: 2S2O32- + I24O62- + 2I-

高中化学《原理》综合实验2 硫代硫酸钠与硫酸反应速率的影响因素

综合实验二硫代硫酸钠与硫酸反应速率的影响因素一.实验目的 1.学会通过实验探究温度、浓度、pH等因素对硫代硫酸钠与酸反应速率的影响。 2.了解并认识温度、浓度等因素对化学反应速率的影响程度及某些规律。 3.通过实验数据的处理,养成科学实验的严谨、求实的习惯和态度。 4.体验观察和分析实验现象在化学实验研究中的重要作用。 二.实验原理 硫代硫酸钠跟硫酸反应的离子化学方程式:S2O32-+2H+=H2O+S↓+SO2 生成物单质硫在溶液中可形成淡黄色浑浊(也可能是白色浑浊),当硫代硫酸钠溶液和硫酸溶液混合时,可根据溶液中变浑浊的快慢来比较反应速率的快慢。 为了探究温度对上述反应的反应速率的影响规律,可用一定物质的量浓度的硫代硫酸钠溶液、硫酸溶液分别在不同温度条件下进行试验。 同样,为了探究浓度对上述反应的反应速率的影响规律,可在相同温度下,用不同物质的量浓度的硫代硫酸钠溶液、硫酸溶液进行实验。 三.实验器材 1.器材:锥形瓶、烧杯、试管、温度计、白纸、计时器 2.试剂:0.1 mol?L-1Na2S2O3溶液、0.1 mol?L-1H2S2O3溶液、蒸馏水、热水 四.实验步骤、数据处理与结论 1.浓度对化学反应速率的影响 (1)先在一张白纸上用黑墨水水笔(选笔迹较粗一些的笔)在合适的位置画上粗细、深浅一致的“十”字,衬在锥形瓶(锥形瓶作反应器)底部。 (2)取两个锥形瓶,编号为1、2。向1号锥形瓶中加入10 mL 0.1mol?L-1Na2S2O3溶液,向2号锥形瓶中加入5 mL0.1 mol?L-1 Na2S2O3溶液和5 mL蒸馏水。 (3)另取两支试管,各加入10mL 0.1 mol?L-1 H2SO4溶液,然后同时将该溶液分别倒入1、2号锥形瓶中,记录反应所需的时间: 1号瓶中__________________、2号瓶中________________。(以倒入10mL 0.1 mol?L-1H2SO4溶液时为计时起点,以产生浑浊将锥形瓶底部的“田”字刚好完全遮盖为计时终点)观察到的现象:_______________________________________________________________

高考化学实验题明星硫代硫酸钠

2014年高考化学实验题明星——硫代硫酸钠(Na2S2O3) 2014年高考化学实验题明星非硫代硫酸钠(Na2S2O3)莫属,一共有4个省市(天津、四川、山东、海南)用它作实验题的素材。另外福建省实验题是用焦亚硫酸钠(Na2S2O5) 作实验题素材。 硫代硫酸钠,又名大苏打、海波、次亚硫酸钠。为单斜晶系白色结晶粉末,易溶于水,不溶于醇。用于分析试剂等,用途非常广泛。 一、化学性质 1、硫代硫酸钠在碱性或中性条件下稳定,遇酸分解立刻分解放出二氧化硫气体并产生硫的沉淀。 S2O2- 3 +2H+=S↓+SO2↑+H2O 2、在空气中加热被氧化分解成硫酸钠、二氧化硫。在隔绝空气下燃烧则生成硫酸钠、硫化碱和硫黄。 2Na2S2O3+3O2→2Na2SO4+ 2SO2 3、硫代硫酸钠具有很强的络合能力,能跟溴化银形成络合物。根据这一性质,它可以作定影剂。 4、硫代硫酸钠有一定的还原性,能将氯气等物质还原: S2O2- 3+4Cl2+5H2O=2SO2- 4 +8Clˉ+10H+ 二、制法: 1、工业普遍使用用亚硫酸钠与硫磺共煮得到硫代硫酸钠, 经重结晶精制:Na2SO3 + S + 5H2O = Na2S2O3·5H2O 2、亚硫酸钠法将纯碱溶解后,与(硫磺燃烧生成的)二氧化硫作用生成亚硫酸钠,再加入硫磺沸腾反应,经过滤、浓缩、结晶,制得硫代硫酸钠。 Na2CO3+SO2==Na2SO3+CO2 Na2SO3+S+5H2O== Na2S2O3·5H2O 3、硫化碱法利用硫化碱蒸发残渣、硫化钡废水中的碳酸钠和硫化钠与硫磺废气中的二氧化硫反应,经吸硫、蒸发、结晶,制得硫代硫酸钠。 2Na2S+Na2CO3+4SO2==3Na2S2O3+CO2 4、氧化、亚硫酸钠和重结晶法由含硫化钠、亚硫酸钠和烧碱的液体经加硫、氧化;亚硫酸氢钠经加硫及粗制硫代硫酸钠重结晶三者所得硫代硫酸钠混合、浓缩、结晶,制得硫代硫酸钠。2Na2S+2S+3O2==2Na2S2O3 Na2SO3+S==Na2S2O3重结晶将粗制硫代硫酸钠晶体溶解(或用粗制硫代硫酸钠溶液),经除杂,浓缩、结晶,制得硫代硫酸钠。 三、标准溶液的配制和标定 (一)原理 结晶Na2S2O3?5H2O一般都含有少量的杂质,如S、Na2SO3、Na2SO4、Na2CO3及NaCl等。同时还容易风化和潮解。因此,不能用直接法配制标准溶液。 Na2SO3溶液易受空气和微生物等的作用而分解,其分解原因是: 1.与溶解于溶液中的CO2的作用硫代硫酸钠在中性或碱性溶液中较稳定,当pH?时极不稳定,溶液中含有CO2时会促进Na2S2O3分解: Na2S2O3+ H2O + CO2→NaHCO3 + NaHSO3 此分解作用一般都在制成溶液后的最初10天内进行,分解后一分子的Na2S2O3变成了一分子的NaHSO3。一分子Na2S2O3只能和一个碘原子作用,而一分子的NaHSO3且能和2个碘原子作用。因而使溶液浓度(对碘的作用)有所增加,以后由于空气的氧化作用浓度又慢慢的减小。

直接测风激光雷达研究

直接测风激光雷达研究 直接测风激光雷达是探测晴空风场精细结构的遥感工具,对于天气预报、大气动力学研究、航空风切变安全预警和国防应用都有重要的意义和显著的应用前景。多普勒激光测风雷达从工作原理上可分为相干和非相干(直接探测)两种。 论文中采用了双通道Fabry-Perot(F-P)干涉仪直接探测系统,探测Mie散射回波信号。考虑到大气气溶胶和分子的运动对发散激光束的作用,在低空,发射激光用1064nm时,大气分子的Rayleigh散射回波信号几乎为零,气溶胶的Mie散射信号相对较强,这给信号的探测带来很大的方便。 鉴频系统是多普勒测风雷达的关键技术之一,能从探测光强度的变化分析出频移量,其鉴频能力会影响雷达测风的精度。本文分析了测风激光雷达的基本原理。 直接探测方法中,边缘技术将激光入射频率锁定在鉴频器陡峭边缘上,较小的频移将导致较大的信号强度变化。论文主要研究测风雷达的鉴频系统,分析了针对低空气溶胶散射信号的双边缘探测理论,然后仿真了F-P对激光束的透过率函数,根据不同F-P的参数对系统灵敏度的影响选择最适合的F-P参数,仿真鉴频系统的鉴频过程。 分析了激光线宽,标准具表面质量等对系统鉴频的影响,在现阶段,我们采用的F-P双通道是分开的独立通道,为了提高其稳定性能,进行改进,将两个标准具固定在一个基板上,在受到环境干扰时它们的中心频率漂移变化相同,于是可以保证标准具的频谱中心间隔不受干扰。为了确保出射激光频率在双F-P标准具的中心位置,采用了透过率反馈信号调制标准具腔长。 最后对仿真后的数据进行了分析,选取合适的参数,给出了风速误差随高度

变化模拟结果。

硫代硫酸钠标准溶液的配制和标定77103

实验九硫代硫酸钠标准溶液的配制和标定 一、目的 1.掌握Na2S2O3溶液的配制方法和保存条件 2.了解标定Na2S2O3溶液浓度的原理和方法 二、原理 结晶Na2S2O3?5H2O一般都含有少量的杂质,如S、Na2SO3、Na2SO4、Na2CO3及NaCl等。同时还容易风化和潮解。因此,不能用直接法配制标准溶液。 Na2SO3溶液易受空气和微生物等的作用而分解,其分解原因是: 1.与溶解于溶液中的CO2的作用硫代硫酸钠在中性或碱性溶液中较稳定,当 pH<4.6 时极不稳定,溶液中含有CO2时会促进Na2S2O3分解: Na2S2O3+ H2O + CO2→NaHCO3 + NaHSO3 此分解作用一般都在制成溶液后的最初10天内进行,分解后一分子的Na2S2O3变成了一分子的NaHSO3。一分子Na2S2O3只能和一个碘原子作用,而一分子的NaHSO3且能和2个碘原子作用。因而使溶液浓度(对碘的作用)有所增加,以后由于空气的氧化作用浓度又慢慢的减小。 在pH9~10间Na2S2O3溶液最为稳定,在Na2S2O3溶液中加入少量Na2CO3(使其在溶液中的浓度为0.02% )可防止Na2S2O3的分解。 2.空气氧化作用 2Na2S2O3+O2→2Na2SO4+ 2S↓ 3.微生物作用这是使Na2S2O3分解的主要原因。 Na2S2O3→Na2SO3 + S 为避免微生物的分解作用,可加入少量HgI2(10mg/L) 。 为减少溶解在水中的CO2和杀死水中微生物,应用新煮沸冷却后的蒸馏水配置溶液。 日光能促进Na2S2O3溶液的分解,所以Na2S2O3溶液应贮存于棕色试剂瓶中,放置于暗处。经8—14天后再进行标定,长期使用的溶液应定期标定。 标定Na2S2O3溶液的基准物有K2Cr2O7、KIO3、KBrO3和纯铜等,通常使用K2Cr2O7基准物标定溶液的浓度,K2Cr2O7先与KI反应析出I2: Cr2O72- + 6I- +14H+ = 2Cr2+ + 3I2 +7H2O 析出I2的再用Na2S2O3标准溶液滴定: I2 + 2S2O32- = S4O62- +2I- 这个标定方法是间接碘量法的应用实例。 三、试剂 1. Na2S2O3?5H2O(固) 2. Na2CO3(固) 3. KI(固) 4. K2Cr2O7(固)A ?R或G? R。 5. 2mol/LHCl 6. 0. 5%淀粉溶液 0.5g淀粉,加少量水调成糊状,倒入100ml煮沸的蒸馏水中,煮沸5分钟冷却。

相关文档
最新文档