(线性代数)矩阵秩的8大性质、重要定理以及关系

(线性代数)矩阵秩的8大性质、重要定理以及关系
(线性代数)矩阵秩的8大性质、重要定理以及关系

矩阵秩的8大性质:

线性方程组的解:

向量组的线性相关性:

对比:①

线性代数第五章 相似矩阵

第五章 相似矩阵 §1 特征值与特征向量 特征值是方阵的一个重要特征量,矩阵理论的很多结果都与特征值有关,在工程技术及其理论研究方面都有很重要的应用。 定义1:设A 为n 阶方阵,如果存在数λ和n 维非0列向量X ,满足: (1)AX X λ=。 则称λ是方阵A 的特征值(也称为特征根),X 是方阵A 的属于特征值λ的特征向量。 例如矩阵1000A ??= ? ??,取11= 0X ?? ???,20=1X ?? ???,则有 11=1AX X ?,22=0AX X ?,所以1,0是A 的特征值,12,X X 是分别属于特征值1和0的特征 向量。 (1)式又可以写成 ()0 (2)E A X λ-=。 即特征向量是齐次线性方程组(2)的非零解,从而有 ||0 (3)E A λ-=。 (3)称为方阵A 的特征方程,求解方程(3)即得矩阵A 的特征值。||E A λ-称为方阵A 的特征多项式。 对求出的特征值0λ,代入方程组(2)求解即得属于0λ的特征向量。 例1:已知方阵A 满足 2A E =,证明:A 的特征值只能为1或1-。 证明:设λ是A 的任一特征值,则有非零向量X ,使得 AX X λ=。 两边左乘以A ,有22()()A X A A AX X λλλ===。又 2A E =,所以 2(1)0X λ-=。由于0X ≠,从而 21λ=,即 1λ=±。 例2:求矩阵110430102A -?? ?=- ? ??? 的特征值与特征向量。 解:因 21 10||430(2)(1)1 02 E A λλλλλλ+--= -=----。 所以矩阵A 的特征值2λ= 或 1λ=。

关于某矩阵秩地证明

关于矩阵秩的证明 -----09数应鄢丽萍 中文摘要 在高等代数中,矩阵的秩是一个重要的概念。它是矩阵的一个数量特征,而且在初等变换下保持不变。关于矩阵秩的问题,通常转化为矩阵是否可逆,线性方程组的解的情况等来解决。 所谓矩阵的行秩就是指矩阵的行向量组的秩,矩阵的列秩就是矩阵的列向量组的秩,由于矩阵的行秩与列秩相等,故统称为矩阵的秩。向量组的秩就是向量组中极大线性无关组所含向量的个数。 关键词:初等变换向量组的秩极大线性无关组

约定用E 表示单位向量,A T 表示矩阵A 的转置,r(A)表示矩阵A 的秩。在涉及矩阵的秩时,以下几个简单的性质: (1) r(A)=r(A T ); (2) r(kA)=? ??=≠0 00 )(k k A r (3) 设A,B 分别为n ×m 与m ×s 矩阵,则 r(AB)≤min{r(A),r(B),n,m,s} (4) r(A)=n,当且仅当A ≠0 (5) r ???? ??B O O A =r(A)+r(B)≤r ??? ? ??B O C A (6) r(A-B)≤r(A)+r(B) 矩阵可以进行加法,数乘,乘法等运算,运算后的新矩阵的秩与原矩阵的秩有一定关系。

定理1:设A,B 为n ×n 阶矩阵,则r(A+B)≤r(A)+r(B) 证: 由初等变换可得 ???? ??B O O A →???? ??B A O A →???? ??+B B A O A 即???? ??E E O E ???? ??B O O A ???? ??E E O E =??? ? ??+B B A O A 由性质5可得 r ???? ??B O O A =r ??? ? ??+B B A O A 则有r(A)+r(B)≥r(A+B) 定理2(sylverster 公式)设A 为s ×n 阶矩阵,B 为n × m 阶矩阵,则有r(A)+r(B)-n ≤r(AB) 证:由初等变换可得 ???? ??O A B E n →???? ??-AB O B E n →???? ??-AB O O E n 即? ??? ??-s n E A O E ??? ? ??O A B E n ? ??? ? ?-m n E O B E =???? ??-AB O O E n 则r ???? ??O A B E n =r ??? ? ??-AB O O E n 即r(A)+r(B)-n ≤r(AB)

行(列)满秩矩阵的性质及其应用

摘要 本文将行(列)满秩矩阵的性质与可逆矩阵(即满秩矩阵)的相关性质进行比较,归纳出行(列)满秩矩阵在解线性方程组、矩阵秩的证明及矩阵分解等方面的若干应用,使其不受方阵的正方性限制,而应用起来又与可逆矩阵相差无几。 关键词:可逆矩阵;行(列)满秩矩阵;矩阵的秩;线性方程组

Abstract This article will row (column) the nature of the full rank matrix and invertible matrix (i.e. full rank matrix) properties of comparison, induction travel (column) full rank matrix in solving linear equations, the proof of matrix rank and some applications of matrix decomposition, etc.to make it without being limited by a phalanx of tetragonality, and used up and reversible. Key words: Invertible matrix; Row (column) full rank matrix; Matrix rank; The System of linear equations.

目录 1 引言 (1) 2 预备知识 (2) 3 可逆矩阵的性质及其应用 (3) 4 行(列)满秩矩阵的性质 (5) 5 行(列)满秩矩阵的若干应用 (11) 5.1 在矩阵秩的证明中的应用 (11) 5.2 在齐次线性方程组中的应用 (12) 5.3 在非齐次线性方程组中的应用 (15) 5.4 在几类特殊矩阵分解方面的应用 (17) 参考文献 (20)

《矩阵的秩的等式及不等式的证明》

摘要 矩阵的秩是矩阵的一个重要特征,它具有许多的重要性质.本文总结归纳出了有关矩阵的秩的等式和不等式命题,以及证明这些命题常用的证明方法,即从向量组、线性方程组、线性空间同构、矩阵分块、矩阵初等变换等角度给出多种证明方法.本文主要解决以下几个问题:用矩阵已知的秩的理论证明矩阵秩的等式和不等式问题;用线性空间的方法证明矩阵秩的等式和不等式问题;用向量组秩的理论证明矩阵秩的等式和不等式问题;用矩阵分块法证明秩的等式和不等式问题.

目录 第一章绪论 (1) 第二章预备知识 (2) 第三章用矩阵的秩的理论证明秩的等式和不等式 (3) 第四章用线性空间的理论证明秩的等式和不等式 (6) 第五章用向量组秩的理论证明秩的等式和不等式 (10) 第六章用矩阵分块法证明秩的等式和不等式 (15) 第七章小结 (23) 参考文献 (24) 致谢 (25)

第一章绪论 矩阵的秩是矩阵的一个重要特征,是矩阵理论中研究的一个重要内容,它具有许多的重要性质.研究矩阵的秩对于解决矩阵的很多问题具有重要意义.矩阵的秩的等式及不等式的证明对于学习矩阵也是重点和难点,初学者在做这方面的题目往往不知如何下手.笔者归纳了矩阵的秩的常见等式和不等式以及与之相关的一些结论,并从向量组、线性方程组、矩阵分块、矩阵初等变换等角度探索了多种证明方法,它有助于学习者加深对秩的理解和知识的运用,也方便教师教学. 目前对矩阵秩的研究已经比较成熟了,但是由于秩是矩阵论里的一个基本而重要的概念,它仍然有着重要的研究价值,有关它的论文时见报端.很多国内外的有关数学书籍杂志对矩阵的秩都有讲述,如苏育才、姜翠波、张跃辉在《矩阵论》(科学出版社、2006年5月出版)中较完整地给出了矩阵秩的理论.北京大学数学系前代数小组编写的《高等代数》(高等教育出版社,2003年7月出版)也介绍了秩的一些性质.但是对秩的等式及不等式的介绍都比较分散,不全面也没有系统化,不方便初学者全面掌握秩的性质.因此有必要对矩阵的秩的等式和不等式进行一个归总,便于学习和掌握. 本文通过查阅文献资料,总结归纳出有关矩阵的秩的等式和不等式命题,以及证明这些命题常用的证明方法,从向量组、线性方程组、线性空间同构、矩阵分块、矩阵初等变换等角度给出多种证明方法.主要内容有:(1)用矩阵已知的秩的理论证明矩阵秩的等式和不等式问题;(2)用线性空间的方法证明矩阵秩的等式和不等式问题;(3)用向量组秩的理论证明矩阵秩的等式和不等式问题;(4)用矩阵分块法证明秩的等式和不等式问题.

线性代数知识点归纳

线性代数复习要点 第一部分 行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 1.行列式的计算: ① (定义法)1212121112121222() 1212()n n n n n j j j n j j nj j j j n n nn a a a a a a D a a a a a a τ= = -∑ L L L L L M M M L 1 ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零. ③ (化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④ 若A B 与都是方阵(不必同阶),则 ==()mn A O A A O A B O B O B B O A A A B B O B O *==* *=-1 ⑤ 关 于 副 对角线: (1)2 1121 21 1211 1 () n n n n n n n n n n n a O a a a a a a a O a O ---* ==-K N N 1

⑥ 范德蒙德行列式:()1 22 22 12111112 n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏L L L M M M L 111 ⑦ a b -型公式:1 [(1)]()n a b b b b a b b a n b a b b b a b b b b a -=+--L L L M M M O M L ⑧ (升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨ (递推公式法) 对n 阶行列式n D 找出n D 与1n D -或1n D -,2n D -之间的一种关系——称为递推公式,其中 n D ,1n D -,2n D -等结构相同,再由递推公式求出n D 的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和, 使问题简化以例计算. ⑩ (数学归纳法) 2. 对于n 阶行列式A ,恒有:1 (1)n n k n k k k E A S λλ λ-=-=+-∑,其中k S 为k 阶主子式; 3. 证明 0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值. 4. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 第二部分 矩阵 1.矩阵的运算性质 2.矩阵求逆

线性代数知识点总结

大学线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??== 、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D等于零 特殊行列式: ①转置行列式:33 23 13 3222123121113332 31 232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式

矩阵秩的一些著名结论

引言 矩阵的秩是高等代数中一个应用及其广泛的理论,有关矩阵的秩的等式或不 等式的证明,常常和向量组的秩,线性方程组的解等密切相关,推证有难度也有技巧。熟练掌握关于矩阵秩的一些结论及其证明技巧,对有关理论的学习会有很大的裨益。矩阵A 中的最大阶不为零的子式的阶数就称为矩阵A 的秩,记为r(A).一些平凡的理论及概念读者可参阅一些权威教材,这里只对一些经典的理论做一讨论. 1. 证明: 设B A ,为两个同阶矩阵,则有r(A ﹢B)≤r(A)﹢r(B) 证 设A =(α1,α 2 ,…, αn ), B =() ββ βn ,...,,2 1 则 A +B =( α1 +β1 ,α2 +β 2 ,…, αn +βn ) 不妨设A 列向量的极大线性无关组为 α1 ,α 2 ,…, α r . (1≤r ≤n); B 列向量的极大线性无关组为β1,β2,…βs . (1≤s ≤n). 则k i i 1 =αα1 +α 2 2 k i +…+ α r ir k ; βi =β1 1 l i +β 2 2 l i +…+ β s is l ; 则 αi +β i = k i 1 α1 +α 2 2 k i +…+αr ir k +β1 1 l i +β 2 2 l i +…+ β s is l ; 即A +B 的列向量可由 α1 ,α 2 ,…, α r , β 1 , β 2 ,… β s 线性表出, 故)()()(B +A =+≤B +A r r s r r . 2. 若AB =O ,则)()(B r A r +n ≤. 证 记 ),...,,(2 1 ββ βn B =,由AB =O ,知B 的每一列都是O =AX 解, 即O =A β i ,i =1,2,…,n 又因O =AX 的基础解系所含向量个数为)(A r n -, 换言之, O =AX 的所有解所构成的向量组的秩为)(A r n -.故≤)(B r )(A r n -, 即)()(B r A r +n ≤.

线性代数第五章 相似矩阵

第五章 相似矩阵 §1 特征值和特征向量 特征值是方阵的一个重要特征量,矩阵理论的很多结果都和特征值有关,在 工程技术及其理论研究方面都有很重要的使用。 定义1:设A 为n 阶方阵,如果存在数λ和n 维非0列向量X ,满足: (1)AX X λ=。 则称λ是方阵A 的特征值(也称为特征根),X 是方阵A 的属于特征值λ的特征向量。 例如矩阵1000A ??= ? ??,取11= 0X ?? ???,20=1X ?? ???,则有 11=1AX X ?,22=0AX X ?,所以1,0是A 的特征值,12,X X 是分别属于特征值1和0的特征 向量。 (1)式又可以写成 ()0 (2)E A X λ-=。 即特征向量是齐次线性方程组(2)的非零解,从而有 ||0 (3)E A λ-=。 (3)称为方阵A 的特征方程,求解方程(3)即得矩阵A 的特征值。||E A λ-称为方阵A 的特征多项式。 对求出的特征值0λ,代入方程组(2)求解即得属于0λ的特征向量。 例1:已知方阵A 满足 2A E =,证明:A 的特征值只能为1或1-。 证明:设λ是A 的任一特征值,则有非零向量X ,使得 AX X λ=。 两边左乘以A ,有22()()A X A A AX X λλλ===。又 2A E =,所以 2(1)0X λ-=。由于0X ≠,从而 21λ=,即 1λ=±。 例2:求矩阵110430102A -?? ?=- ? ??? 的特征值和特征向量。 解:因 21 10||430(2)(1)1 02 E A λλλλλλ+--= -=----。 所以矩阵A 的特征值2λ= 或 1λ=。 当2λ=时,

最新考研数学矩阵8大秩及其证明

考研数学矩阵的8大秩及其证明2009 ()1 证明:根据矩阵秩的定义直接得出。 ()2 证明:对矩阵A 任意添加列后变成矩阵(), A B ,则秩显然不小于()R A ,即: ()(), R A B R A ≥ 同理: ()(), R A B R B ≥ 因而:()(){}(), , Max R A R B R A B ≤成立。 又设 ()(), R A r R B t ==,把, A B 分别做列变换化成列阶梯形~ ~ , A B 1110 3 810 1100 1000?? ? ? ? ? ??? 如:就是列阶梯形 用~ ~~ ~ 1 1 , r r a a b b 分别表示非全零列,则有: ()~ ~~ ()1~~ ~ ~~ ()1 , 00, , , 0 0表示列变换表示列变换c r c c r A A a a A B A B B B b b ????????→= ????? ?? ???→? ????? ??????→= ???? ? 由于初等变换后互为等价矩阵,故()~~, , R A B R A B ?? = ??? 而矩阵~~, A B ?? ???只含有r t +个非全零列,所以:()()~~~~, , R A B r t R A B R A R B ???? ≤+?≤+ ? ????? 。 综合上述得:()(){}()()(), , Max R A R B R A B R A R B ≤≤+

●特别地:如B b =为列向量,则()1R b ≡()()() , 1R A R A B R A ?≤≤+。 ●如B E =,设()(), , m n m R A B R A E ?=, 则 ()()() , , m n m m m n m m R A E R E m R A E m ??≥≥=?= ()3 证明: ()()()()()()()()()()()() 2 , , , , , , A B B A B R A B B R A B R A R B R A B R A B B R A B R A B R A R B +→?+=????→+≥=+≥+?+≤+由公式知 ()4 证明:()1 设()()() ,AB C B AX C R A R A C R C =?=?=≥是的解 ()()()() () ()()()()()(){},min , T R B R B T T T T T T T B A C R B R B C R C R B R C R C R AB R A R B n ==?=≥???? ?→≥?=≤≤又, ()2 设()(), m n n s R A r R B t ??== 则A 的标准型为000r m n E ??? ???,B 的标准型为000t n s E ??? ??? 存在可逆矩阵, , , m s n n P Q P Q 使:

线性代数总结

线性代数总结 [转贴 2008-05-04 13:04:49] 字号:大中小 线性代数总结 一、课程特点 特点一:知识点比较细碎。 如矩阵部分涉及到了各种类型的性质和关系,记忆量大而且容易混淆的地方较多。 特点二:知识点间的联系性很强。 这种联系不仅仅是指在后面几章中用到前两章行列式和矩阵的相关知识,更重要的是在于不同章节中各种性质、定理、判定法则之间有着相互推导和前后印证的关系。 复习线代时,要做到“融会贯通”。 “融会”——设法找到不同知识点之间的内在相通之处; “贯通”——掌握前后知识点之间的顺承关系。 二、行列式与矩阵 第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。

行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算,其中具体行列式的计算又有低阶和阶两种类型;主要方法是应用行列式的性质及按行\列展开定理化为上下三角行列式求解。 对于抽象行列式的求值,考点不在求行列式,而在于、、等的相关性质,及性质(其中为矩阵的特征值)。 矩阵部分出题很灵活,频繁出现的知识点包括矩阵运算的运算规律、、、的性质、矩阵可逆的判定及求逆、矩阵的秩的性质、初等矩阵的性质等。 三、向量与线性方程组 向量与线性方程组是整个线性代数部分的核心内容。相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节;后两章特征值、特征向量、二次型的内容则相对独立,可以看作是对核心内容的扩展。 向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。 解线性方程组可以看作是出发点和目标。线性方程组(一般式) 还具有两种形式: (Ⅰ)矩阵形式,其中 ,, (Ⅱ)向量形式,其中 ,

矩阵秩的相关结论证明及举例

华北水利水电大学 矩阵秩的相关结论证明及举例 课程名称:线性代数 专业班级:能源与动力工程(热动)101班 成员组成:王威威 联系方式: 2014年12月30日

一:摘要 矩阵的秩是数学中一个极其重要并广泛应用的概念,是线性代数的一个重要研究对象,因此,矩阵的秩的结论作为线性代数的一个重要结论已经渗透到各章节之中,他把线性代数的内容紧紧联系在一起,矩阵的秩作为矩阵的一个重要本质属性则贯穿矩阵理论的始终,所以对矩阵秩的研究不仅能帮助我们更好地学习矩阵,而且也是我们学习好线性代数各章节的有力保证。 关键词:矩阵秩结论证明 英文题目 Abstract: Matrix rank is an extremely important and widely us ed in the mathematical concept, is an important res earch object of linear algebra, as a result, the c onclusion of the rank of matrix as an important co nclusion of linear algebra has penetrated into chapt er, associate the content of the positive linear al gebra and matrix of rank as an important essential attribute of the matrix, however, throughout the c ourse of the theory of matrix so that the study o f matrix rank can not only help us better learning matrix and chapter we learn good linear algebra Key words:matrix rank conclusion proof

矩阵的秩的性质

矩阵的秩的性质和 矩阵秩与矩阵运算之间的关系 要谈矩阵的秩,就得从向量组的秩说起,向量组的秩,简而言之就是其极大无关组里向量的个数。进而扩展到线性方程组,在线性方程组的概念中(课本P90)定理1说:“线性方程组有解的充要条件是,它的系数矩阵和增广矩阵有相同的秩。” 那么不妨把矩阵用向量组的方式来看,则有行秩和列秩,一个矩阵的行秩和列秩相同,而其初等变换又不会改变秩。自然而然,我们就得到了一个判断矩阵秩的方法,就是将它转化为阶梯形矩阵,非零行数目即其秩。矩阵进一步发展就是运算了,包括数乘、加减、乘积等,又涉及到单位矩阵、三角矩阵、可逆矩阵以及矩阵的分块等概念,综合所学,我们得到如下性质: 1、矩阵的初等变换不改变秩,任一矩阵的行秩等于列秩。 2、秩为r 的n 级矩阵(n r ≥),任意r+1阶行列式为0,并且至少有一个r 阶子式不为0. 3、)}(),(min{)(B rank A rank AB rank ≤ )'()(A r a n k A r a n k =,)()()(B rank A rank B A rank ±=± )()(A rank kA rank = 4、设A 是n s ?矩阵,B 为s n ?矩阵,则+)(A rank )}(),(min{)()(B rank A rank AB rank n B rank ≤≤- 5、设A 是n s ?矩阵,P,Q 分别是s,n 阶可逆矩阵,则 )()()(A rank AQ rank PA rank ==

6、设A 是n s ?矩阵,B 为s n ?矩阵,且AB=0,则 n B rank A rank ≤+)()( 7、设A 是n s ?矩阵,则)()'()'(A rank A A rank AA rank == 其中,也涉及到线性方程组解得问题: 8、对于齐次线性方程组,设其系数矩阵为A ,n A rank =)( 则方程组有惟一非零解,n A rank <)(则有无穷多解,换言之,即为克莱姆法则, 非齐次线性方程组有解时,n A rank =)(惟一解,n A rank <)( 有无穷多解。 还有满秩矩阵: 9、可逆?满秩 10、行(列)向量组线性无关,即n 级矩阵化为阶梯形矩阵后非零行数目为n 。 扩展到矩阵的分块后: 11、110(A )(A )0n n A rank rank rank A ?? ?=++ ? ??? 12、()()0A C rank rank A rank B B ??≥+ ???

线性代数-相似矩阵

第五章相似矩阵及二次型 §1 向量的内积、长度、正交性一、向量空间的内积、长度和夹角1.内积的定义: 内积的符号:括号或方括号

: : 证(3)

二、向量空间的单位正交基 1.正交向量组定义 2.定理1 正交向量组线性无关 P113 解设a3= (x1, x2, x3), 由正交的定义, a3应满足 (a1,a3)= 0, (a2, a3)= 0 即x1 +x2 +x3 = 0, x1-2x2 +x3=0

这是一个齐次线性方程组AX= 0, 即??? ? ??=???? ? ?????? ??-00121111321x x x , 由??? ? ?????? ??-???? ??-=010101~030111~121111A , 得???=-=0231x x x ,方程组的通解为??? ??==-=c x x c x 3210,即????? ??-=????? ??101321c x x x 取c = 1, 则a3=??? ? ? ??-101即为所求。 3.正交基、规范正交基(单位正交基) 正交基——由正交向量组构成的基称为正交基。 规范正交基(单位正交基)——正交基中的向量是单位向量。 4.向量正交化 施密特方法:将基改造为正交基(P114)

例2 用施密特方法把基正交化(P114) 例3 已知 T a )1,1,1(1=,求一组非零向量32,a a ,使32,1,a a a 两两正交。 解 32,a a 应满足01 =x a T ,即 0321=++x x x 解这个齐次线性方程组得213 x x x --=,通解为 ?????--===2 13221 1c c x c x c x ,即? ?? ?? ??-+????? ??-=????? ??11010121321c c x x x ,基础解系为 ??? ? ? ??-=????? ??-=110,10121ξξ,把基础解系正交化 111212312) ,(),(,ξξξξξξξ-==a a ,于是得 ?? ???? ? ? ??--=??? ?? ??--????? ??-=????? ??-=2112110121110,101232a a 三、正交矩阵 1.定义4 因为 1A A E -= 所以 A 是正交矩阵←→1 T A A -= (充分必要) 2.正交矩阵的构造

矩阵,行列式, 秩, 相关计算

矩阵,行列式, 秩, 相关计算: 例 : 已知矩阵211121112A ?? ?= ? ??? ,且A 与矩阵X 满足112AXA XA I --=+,求X 。 例:已知3阶方阵 123023003A ?? ?= ? ??? ,计算行列式 6A I *+。 例:已知32212232,26223A B ?? -?? ? == ? ?-?? ? ?? ,求行列式 10 2A B - 例: 证明:若n 阶方阵A ,B ,C 满足:AB =AC ,B ≠C ,则A 不满秩。 例: 举例说明:由AB =AC ,A ≠0不能导出B =C 。 例 对于n 阶方阵A, 求证: r(A n )=r(A n+1) 例 A 和伴随阵的秩的关系。 方程组及其求解: 例: 对下列线性方程组 ??? ??=++=++=++2 321 3213211a ax x x a x ax x x x ax

试讨论:当a 取何值时,它有唯一解?无解?有无穷多解?并在有无穷多解时求其通解。(用导出组的基础解系表示通解) 例:已知线性方程组 123123123123121(1)2(1)3 ax x x x x ax x x x a x x a x -++=-?? ++=-?? ++=-??-+++=-? 问参数a 取何值时,上述方程组无解?有唯一解?有无穷多解 例: 已知A 是n m ?矩阵,m n >,m A =)(r ,B 是)(m n n -?矩阵, m n B -=)(r ,且 0=AB 。证明:B 的列向量组为线性方程组0=AX 的一 个基础解系。 例:设有齐次线性方程组 (I ) 12312300 ax x x x ax x ++=?? ++=? (II ) 1230x x ax ++= (III ) 1231231 23000 ax x x x ax x x x ax ++=?? ++=??++=? 已知方程组(I )的解都是方程组(II )的解, (1)证明:方程组(I )与方程组(III )的同解; (2)证明:方程组(III )有非零解; (3)求参数a 的值。 例:已知4阶方阵43214321,,,),,,,(αααααααα=A 均为4元列向量,其中432,,ααα线性无关,3212ααα-=。

利用分块矩阵证明有关矩阵的秩

第五章 利用分块矩阵证明有关矩阵的秩 定理1:设A 是数域P 上的n ×m 矩阵,B 是数域P 上的m ×s 矩阵,求证秩(AB )≤min {秩A ,秩B }。 证明:令B 1,B 2,…,B m 为B 的行向量,则有 由上可知,AB 的行向量是B 的行向量的线性组合,因此秩AB ≤秩B ; 同理,令A 1,A 2,…,A m 为A 的列向量,同样可得AB 的列向量是A 的列向量的线性组合,因此秩AB ≤秩A 。 综上所述,秩(AB )≤min {秩A ,秩B }。 命题1:证明秩(A+B )≤秩(A )+秩(B )。 证明:令A 1,A 2,…,A n 为A 的列向量,令B 1,B 2,…,B n 为B 的列向量,从而A+B=(A 1+B 1,A 2+B 2,…,A n +B n ),即其每个列向量均可由{A 1,A 2,…,A n ,B 1,B 2,…,B n }线性表出,不妨设{A 1,A 2,…,A r}{B 1,B 2,…B t}分别为{A 1,A 2,…,A n }{B 1,B 2,…,B n }的极大线性无关组。则A+B 的列向量均可由向量组{A 1,A 2,…,A r,B 1,B 2,…B t}线性表出。因此 秩(A +B )=秩{A 1+B 1,A 2+B 2,…,A n +B n }≤秩{A 1,A 2,…,A r,B 1,B 2,…B t}≤r+t ,即秩(A+B )≤秩(A )+秩(B )。 命题2:设A 为数域P 上的n 阶方阵,若A 2=E ,证明秩(A+E )+秩(A -E )=n 。 证明: 矩阵进行初等变换后秩不变,最后的矩阵秩为n 。由此可得 秩(A+E )+秩(A -E )=n 。 11111221m m 22112222m m m n11n22nm m B a B a B a B B a B a B a B B AB B a B a B a B +++???? ? ?+++ ? ?== ? ? ? ?+++???? L L M M L ,21 A+E A E 2 A E 0A E A E A E 2E 0A E 0A E 0A E 0-2E 02E 10A E (A E)(A E)A E 2=++-+-??????→→ ? ? ? ---?????? ??-?? ???????→???→ ? ?-+--???? 将二列的()倍加到一列 。

线性代数知识点总结

线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=) 1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??==、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式: ①转置行列式:33 23 13 322212 31211133 32 31 232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式 ⑤上(下)三角形行列式:

线性代数习题相似矩阵及二次型

5-1向量的内积与方阵的特征值 1.设λ为矩阵A 的特征值,且0≠λ,则 λ A 为 的特征值。 ;.; .; .; .1*1--A d A c A b A a λλ 2.设A 为n 阶实对称阵,21,x x 为A 的不同特征值对应的特征向量,则 。 1.21=x x a T 1.x b 与2x 线性相关; 1.x c 与2x 线性无关; 0.21=+x x d 3.设21,λλ都为n 阶矩阵A 的特征值)(21λλ≠,且21,x x 分别为对应于21,λλ的特征向量,则当 满足时,2211x k x k x +=必为A 的特征向量。 0.1=k a 且02=k ; 0.1=k b 且02≠k ; 0.1≠k c 且02≠k ; 0.21=?k k d 4.设n 阶方阵A 的特征值全不为零,则 。 n A r d n A r c n A r b n A r a <≤≠=)(.;)(.;)(.;)(. 5.设矩阵??? ? ? ??--=314020112A ,求A 的特征值及特征向量.

6.试用施密特法把向量组?? ??? ???? ???---=011 101110 11 1),,(321a a a 正交化。 7.设A 与B 都为n 阶正交阵,证明:AB 也是正交阵。 8.证明:正交阵的行列式必定等于1或—1。 9.设x 为n 维列向量且1=x x T ,而T xx E H 2-=,试证H 是对称的正交矩阵。

习题5-2 相似矩阵与对称矩阵的对角化 1.设A 与B 为n 阶方阵,则B A =是A 与B 相似的 。 .a 充分条件; .b 必要条件; .c 充要条件; .d 无关 条件 2.对实对称阵?? ? ???-=???? ??=10 01,10 01 B A ,有A 与B 。 .a 互为逆矩阵; .b 相似; .c 等价; .d 正交 3. n 阶矩阵A 与对角阵相似的充要条件是 。 a. 矩阵A 有n 个特征值; b. 矩阵A 有n 个线性无关的特 征向量; c. 矩阵A 的行列式0≠A ; d. 矩阵A 的特征多项式有重根 4. 设n 阶矩阵A 与B 相似,则 。 a.A 与B 正交; b. A 与B 有相同的特征向量; c. A 与B 等价; d. A 与B 相同的特征值。 5.若A 与B 是相似矩阵,证明T A 与T B 也相似。

解析线性代数-秩

Born to win 解析线性代数-秩 高杨——数学教研室 抽象是线性代数这门学科最大的特点,其中秩有是贯穿着整个学科最抽象的概念,是同学们最不好理解的地方,接下来我们就来分析一下这一部分的考点、知识点及解题思路。 首先这一部分主要围绕矩阵的秩、向量组的秩、矩阵的秩和向量组秩的关系、来考题。如果单独考题,那就是选择或填空。在具体题目中还结合向量相关无关,向量的线性表出,方程组解的情况及特征值和二次型来综合出题,小题大题都可能涉及。在做题前,我们先来掌握下秩的概念,公式及定理: 1. 矩阵的秩:非零子式的最高阶数, 向量组的秩:极大线性无关组中所含向量的个数 二者关系:矩阵的秩等于它的行向量组或列向量组的秩 2. 与秩相关的公式 1)()12,,...,s r s ααα≤,()()min ,mn r A m n ≤. 2)()() (),0T r A r A r kA k ==≠ 3)如果12,,...,s ααα可以由向量组12,,...,t βββ线性表出, 则()()1212,,...,,,...,s t r r αααβββ≤;{}()min (),()r AB r A r B ≤. 推论:ⅰ)()()()r A B r A r B ±≤+; ⅱ)当P 可逆时()()r AP r A =,()()r PB r B =; ⅲ)如果两向量组12,,...,s ααα与12,,...,t βββ等价, 则()()1212,,...,,,...,s t r r αααβββ= 4)如果AB O =,则()()r A r B n +≤ 推论:*,()()1,()10,()1n r A n r A r A n r A n =??==-??<-? 5)()()A O r r A r B O B ??=+ ??? 3. 与秩相关的定理 1)同型矩阵,A B 等价的充要条件:()()r A r B =;向量组与12,,...,s ααα与12,,...,t βββ等价的必要条件:()()1212,,...,,,...,s t r r αααβββ=.

(线性代数)矩阵秩的8大性质、重要定理以及关系

矩阵秩的8大性质: ①A,宀)冬mini加小I ; ③若A?叭则R(A) = K(B)j ④若可逆?则R(PAQ) = R(A), 下面再介绍几个常用的矩阵秩的性质: ⑤maxi R( A )>R(B)|^J R(A t B)^J R(A) + P (B), 特别地,当 B = b为非零列向量时,有 R(A)MR(A』)MR(A)+ 1. ⑦R(AB)^min{K(A)t K(B)|,(见下节定理7) ⑧若A…B“二0,则R(A) + R(B)Mm(见下章例13) 设AB= O■若A为列满秩矩阵,则B-0.

线性方程组的解: 定理3 H元线性方程组A x=& (i)无解的充分必要条件是K(A)CR(A』); (ii)有惟一解的充分必要条件是R(A) = R(A,b)=n; (iii)有无限多解的充分必要条件是R(A) = R(A』)Cr?? 定理4 n元齐次线性方程组Ax=OW零解的充分必要条件是R(A)Cm £35翹方聽AE鬧械酬髓件默⑷=R(A" 定理6解方gAX=£有解的充分必要条件是R(A) = R(A,B). 定理7 ?AB = C,则R(C)Wmin|R(A),R(B)h

向量组的线性相关性: 定鰹1向跖能由向量组严心线憐示的充分必要桑件是 j£^A=(a H fl J1?

矩阵的秩及其求法

第五节:矩阵的秩及其求法 一、矩阵秩的概念 1. k 阶子式 定义1 设 在A 中任取k 行k 列交叉处元素按原相对位置组成的 阶行列式,称为A 的一个k 阶子式。 例如 共有 个二阶子式,有 个三阶子式 矩阵A 的第一、三行,第二、四列相交处的元素所构成的二阶子式为 而 为 A 的一个三阶子式。显然, 矩阵 A 共有 个 k 阶子式。 2. 矩阵的秩 定义2 设 有r 阶子式不为0,任何r +1阶子式(如果存在的话)全为0 , 称r 为矩阵A 的秩,记作R (A )或秩(A )。 规定: 零矩阵的秩为 0 . 注意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式 所有 r + 1 阶子式为 0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是唯一的 . (2) 有行列式的性质, (3) R(A ) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } . (4) 如果 An ×n , 且 则 R ( A ) = n .反之,如 R ( A ) = n ,则 因此,方阵 A 可逆的充分必要条件是 R ( A ) = n . 二、矩阵秩的求法 1、子式判别法(定义)。 例1 设 为阶梯形矩阵,求R (B )。 解 由于 存在一个二阶子式不为0,而任何三阶子式全为0,则 R (B ) = 2. 结论:阶梯形矩阵的秩=台阶数。 例如 一般地,行阶梯形矩阵的秩等于其“台阶数”—— 非零行的行数。 () n m ij a A ?={}),min 1(n m k k ≤≤?? ?? ? ? ?----=11 145641321A 182423=C C 43334=C C 10122--=D 1 1564321 3-=D n m ?k n k m c c () n m ij a A ?=0,r D ≠()(). T R A R A =0,A ≠0. A ≠?? ? ?? ??=000007204321B 0 2021≠????? ??=010*********A ????? ??=001021B ????? ??=10 010011 C 1 250 3400 0D ?? ? = ? ?? ?2 123508153000720 0E ?? ? ?= ? ??? ()3=A R ()2=B R ()3=C R ()2 R D =()3 R E =

相关文档
最新文档