改进DBSCAN算法中参数Eps值的确定

改进DBSCAN算法中参数Eps值的确定
改进DBSCAN算法中参数Eps值的确定

算法分析与设计复习题及参考答案

网络教育课程考试复习题及参考答案算法分析与设计一、名词解释:1.算法 2.程序 3.递归函数 4.子问题的重叠性质 5.队列式分支限界法 6.多机调度问题7.最小生成树二、简答题: 1.备忘录方法和动态规划算法相 比有何异同?简述之。 2.简述回溯法解题的主要步骤。 3.简述动态规划算法求解的基本要素。 4.简述回溯法的基本思想。 5.简要分析在递归算法中消除递归调用,将递归算法转化为非递归算法的方法。 6.简要分析分支限界法与回溯法的异同。7.简述算法复杂性的概念,算法复杂性度量主要指哪两个方面?8.贪心算法求解的问题主要具有哪些性质?简述之。9.分治法的基本思想是什么?合并排序的基本思想是什么?请分别简述之。10.简述分析贪心算法与动态规划 算法的异同。三、算法编写及算法应用分析题: 1.已知有3个物品: (w1,w2,w3)=(12,10,6),(p1,p2,p3)=(15,13,10),背包的容积M=20,根据0-1背包动态规划的递推式求出最优解。 2.按要求完成以下关于排序和查找的问题。①对数组A={15,29,135,18,32,1,27,25,5},用快速排序方法将其排成递减序。②请描述递减数组进行二分搜索的基本思想,并给出非递归算法。③给出上述算法的递归算法。④使用上述算法对①所得到的结果搜索如下元素,并给出搜索过程:18,31,135。已知,=1,2,3,4,5,6,=5,=10,=3,=12,=5,=50,=6,kijr*r1234567ii1求矩阵链积A×A×A×A×A×A的最佳求积顺序(要求给出计算步骤)。1234564.根据分枝限界算法基本过程,求解0-1背包问题。已知n=3,M=20,(w1,w2,w3)=(12,10,6),(p1,p2,p3)=(15,13,10)。 5.试用贪心算法求解汽车加油问题:已知一辆汽车加满油后可行驶n公里,而旅途中有若干个加油站。试设计一个有效算法,指出应在哪些加油站停靠加油,使加油次数最少,请写出该算法。6.试用动态规划算法实现下列问题:设A和B是两个字符串。我们要用最少的字符操作,将字符串A转换为字符串B,这里所说的字符操作包括:①删除一个字符。②插入一个字符。③将一个字符改为另一个字符。请写出该算法。7.对于下图使用Dijkstra算法求由顶点a到顶点h的最短路径。be2g212ad323182cf2h 8.试写出用分治法对数组A[n]实现快速排序的算法。9.有n个活动争用一个活动室。已知活动i占用的时间区域为[s,f ],活动i,j相容的条件是:sj≥f ii,问题的解表示为(x| x =1,2…,n,),x表示顺序为i的活动编号活动,求一个相容的活动子集,iiii且安排的活动数目最多。xxx10.设、、是一个三角形的三条边,而且x+x+x=14。请问有多少种不同的三角形?给出解答过程。12312311.

数值稳定性验证实验报告

实验课程:数值计算方法专业:数学与应用数学班级:08070141 学号:37 姓名:汪鹏飞 中北大学理学院

实验1 赛德尔迭代法 【实验目的】 熟悉用塞德尔迭代法解线性方程组 【实验内容】 1.了解MATLAB 语言的用法 2.用塞德尔迭代法解下列线性方程组 1234123412341234 54 1012581034 x x x x x x x x x x x x x x x x ---=-??-+--=?? --+-=??---+=? 【实验所使用的仪器设备与软件平台】 计算机,MATLAB7.0 【实验方法与步骤】 1.先找出系数矩阵A ,将前面没有算过的x j 分别和矩阵的(,)A i j 相乘,然后将累加的和赋值给sum ,即(),j s u m s u m A i j x =+?.算 出()/(,) i i x b sum A i i =-,依次循环,算出所有的i x 。 2.若i x 前后两次之差的绝对值小于所给的误差限ε,则输出i x .否则重复以上过程,直到满足误差条件为止. 【实验结果】 (A 是系数矩阵,b 是右边向量,x 是迭代初值,ep 是误差限) function y=seidel(A,b,x,ep) n=length(b); er=1; k=0; while er>=ep

k=k+1; for i=[1:1:n] q=x(i); sum=0; for j=[1:1:n] if j~=i sum=sum+A(i,j)*x(j); end end x(i)=(b(i)-sum)/A(i,i); er=abs(q-x(i)); end end fprintf('迭代次数k=%d\n',k) disp(x') 【结果分析与讨论】 >> A=[5 -1 -1 -1;-1 10 -1 -1;-1 -1 5 -1;-1 -1 -1 10]; b=[-4 12 8 34]; seidel(A,b,[0 0 0 0],1e-3) 迭代次数k=6 0.99897849430002 1.99958456867649 2.99953139743435 3.99980944604109

2020高中数学---特殊值法解决二项式展开系数问题

第83炼 特殊值法解决二项式展开系数问题 一、基础知识: 1、含变量的恒等式:是指无论变量在已知范围内取何值,均可使等式成立。所以通常可对变量赋予特殊值得到一些特殊的等式或性质 2、二项式展开式与原二项式呈恒等关系,所以可通过对变量赋特殊值得到有关系数(或二项式系数)的等式 3、常用赋值举例: (1)设()011 222 n n n n r n r r n n n n n n n a b C a C a b C a b C a b C b ---+=+++ +++, ①令1a b ==,可得:01 2n n n n n C C C =++ + ②令1,1a b ==-,可得: ()0123 01n n n n n n n C C C C C =-+-+-,即: 0213 1 n n n n n n n n C C C C C C -+++=+++(假设n 为偶数),再结合①可得: 0213112n n n n n n n n n C C C C C C --++ +=++ += (2)设()()2 01221n n n f x x a a x a x a x =+=+++ + ① 令1x =,则有:()()0122111n n a a a a f +++ +=?+=,即展开式系数和 ② 令0x =,则有:()()02010n a f =?+=,即常数项 ③ 令1x =-,设n 为偶数,则有:()()01231211n n a a a a a f -+-++=-?+=- ()()()021311n n a a a a a a f -?+++-+++=-, 即偶次项系数和与奇次项系数和的差 由①③即可求出()02n a a a +++和()131n a a a -+++的值 二、典型例题: 例1:已知()8 2 8012831x a a x a x a x -=+++ +,则1357a a a a +++的值为________ 思路:观察发现展开式中奇数项对应的x 指数幂为奇数,所以考虑令1,1x x ==-,则偶数项相同,奇数项相反,两式相减即可得到1357a a a a +++的值 解:令1x =可得:8 0182a a a =++ + ①

正则化全参数地确定方法.doc

实用标准文案 1.拟最优准则 Tikhonov 指出当数据误差水平和未知时,可根据下面的拟最优准则: min dx opt (1-1 ) 0 d 来确定正则参数。其基本思想是:让正则参数以及正则解对该参数的变化率同时稳定在尽可能小的水平上。 2. 广义交叉验证 令 ( I A( 2 / m )) y V ( ) A( ))]2 (2-1 ) [tr ( I / m 其中, A( ) A h (A *h A h I) 1 A *h,tr (I m A( )) k 1 (1 kk ( )), kk ( )为 A( ) 的 对角元素。这样可以取* 满足 V( *) min V ( ) (2-2 ) 此法源于统计估计理论中选择最佳模型的PRESS 准则,但比它更稳健。 3. L_曲线法 L 曲线准则是指以log-log尺度来描述与的曲线对比,进而根据该对比结果来确定正则 参数的方法。其名称由来是基于上述尺度作图时将出现一个明显的L 曲线。 运用L 曲线准则的关键是给出L 曲线偶角的数学定义,进而应用该准则选取参数。Hanke 等[64]建议定义L 曲线的偶角为L 曲线在log-log尺度下的最大曲率。令log b Ax,log x,则该曲率作为参数的函数定义为 ' '''' ' c( )3(3-1) ((')2( ')2)2 其中“ '”表示关于的微分。 H.W.Engl在文献[40]中指出:在相当多的情况下,L 曲线准则可通过极小化泛函 精彩文档

( ) x b Ax 来实现。即,选取* 使得 * arg inf ( ) (3-2 ) 这一准则更便于在数值计算上加以实施。 但到目前为止 ,还没有相关文献获得过关于L 曲线准则的收敛性结果。另一方面,有文献己举反例指出了L 曲线准则的不收敛性。虽然如此,数值计算的结果表明,L 曲线准则与 GCV 一样 ,具有很强的适应性。 4.偏差原理 : 定理 4-1:(Morozov 偏差原理 )[135] 如果( ) 是单值函数,则当U ( A z0, u) 时存在这样的( ),使得: U ( A z ( ) , u) (4-1 ) , 式中z0 z | [ z] inf F1 [ ] 。 事实上,令( ) ( ) 2 ,由( ) 的单调性和半连续性,可知( ) 也是单调和半连续的,并且 lim ( ) 0 , 同时,由 z0的定义以及( ) 的半连续性,对于给定的,可以找到这样的0 0( ),使得: (0()) (0()) U ( A z 0 ( ), u) , 由 ( ) 的单值性可导出( ) 的单值性,从而必定存在( ) [0, 0 ] 满足方程(4-1 )。 根据上述定理,若方程 Az u,u F ,u U (4-2 ) 的准确右端项u R(A) , 的近似 u s U 且满足条件: U (u ,u ) ; (0, u ) ,而 u 精彩文档

巧用特殊值法

巧用特殊值法 资料分析是公考路上非常重要的一个模块,辽宁省公务员考试中资料分析共有四篇材料,每篇材料5道题,共20题。资料分析题目本身并不难,主要难于考生如何在短时间内快速计算从而选出一个正确选项。要想学好资料分析,一方面需要了解常用的统计术语,如现期量、基期量、增长量、增长率、比重、年均增长量、混合增长率等。另一方面,要掌握一些速算技巧。以两道例题来讲解一下特殊值法在公务员考试资料分析中的应用。 常用特殊值表 分数1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 小数0.5 0.333 0.25 0.2 0.167 0.143 0.125 0.111 0.1 0.091 百分数50% 33.3% 25% 20% 16.7% 14.3% 12.5% 11.1% 10% 9.1% 2011年,我国规模以上电子信息制造业主营业务成本占主营业务收入的比重达到88.7%,比2010年提高0.6个百分点。行业中亏损企业2497个,同比增长36.7%,企业亏损面达16.6%;亏损企业亏损额同比增长52.9%。 【例1】(山东2014-108)2011年,我国规模以上电子信息制造企业数量约为多少万家?() A. 1 B. 1.5 C. 2 D. 2.5 本题是特殊值法在比重题型中的应用,材料中指出“行业中亏损企业2497个,企业亏损面达16.6%”,所以我国规模以上电子信息制造企业数量=0.2497÷16.6%≈0.2497×6≈6÷4=1.5。所以,正确答案为B项。 2010年一季度,我国水产品贸易进出口总量158.7万吨,进出口总额40.9亿美元,同比分别增长14.2%和29.0%。其中,出口量67.1万吨,出口额26.5亿美元,同比分别增

算法设计与分析复习题目及答案

一。选择题 1、二分搜索算法是利用( A )实现的算法。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 2、下列不是动态规划算法基本步骤的是( B )。 A、找出最优解的性质 B、构造最优解 C、算出最优解 D、定义最优解 3、最大效益优先是( A )的一搜索方式。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法 4、在下列算法中有时找不到问题解的是( B )。 A、蒙特卡罗算法 B、拉斯维加斯算法 C、舍伍德算法 D、数值概率算法 5. 回溯法解旅行售货员问题时的解空间树是( B )。 A、子集树 B、排列树 C、深度优先生成树 D、广度优先生成树6.下列算法中通常以自底向上的方式求解最优解的是( B )。 A、备忘录法 B、动态规划法 C、贪心法 D、回溯法 7、衡量一个算法好坏的标准是(C )。 A 运行速度快 B 占用空间少 C 时间复杂度低 D 代码短 8、以下不可以使用分治法求解的是(D )。 A 棋盘覆盖问题 B 选择问题 C 归并排序 D 0/1背包问题 9. 实现循环赛日程表利用的算法是( A )。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 10、下列随机算法中运行时有时候成功有时候失败的是(C ) A 数值概率算法 B 舍伍德算法 C 拉斯维加斯算法 D 蒙特卡罗算法 11.下面不是分支界限法搜索方式的是( D )。 A、广度优先 B、最小耗费优先 C、最大效益优先 D、深度优先12.下列算法中通常以深度优先方式系统搜索问题解的是( D )。 A、备忘录法 B、动态规划法 C、贪心法 D、回溯法 13.备忘录方法是那种算法的变形。( B )

数值分析—龙贝格算法

数值分析 实 验 报 告 专业:信息与计算科学 班级: 10***班 学号: 1008060**** 姓名: ******

实验目的: 用龙贝格积分算法进行积分计算。 算法要求: 龙贝格积分利用外推方法,提高了计算精度,加快了收敛速度。 1--4R R R R 1-j 1-j 1-k 1-j k 1-j k j k ,,,,+= ,k=2,3,… 对每一个k ,j 从2做到k ,一直做到|R R 1-k 1-k k k -,,| 小于给定控制精 度时停止计算。 其中: T R h k 1k =,(复化梯形求积公式),2h 1-k k a -b = 程序代码: #include #include #define M 10 static float a, b, T[M], S[M], C[M], R[M]; float f(float x) { float y; if(0.0 == x) { x = 0.0000001f; } y = (float)1/sqrt(1-x*x); return y; } int p(int n) { int i=0,t=1;

while(t!=n) { t*=2; ++i; } return i; } float t(int n) { float g,h,q=0; if(1==n) { h = (float)fabs(b-a); q = (f(a)+f(b))*h/2; } else { float x = a; g = 0; h = (float)fabs(b-a)*2/n; x = x+h/2; while(x

极限法(特殊值法)在物理高考中的应用Word版

极限法(特殊值法)在物理高考中的应用 “极限法”是一种特殊的方法,它的特点是运用题中的隐含条件,或已有的概念,性质,对选项中的干扰项进行逐个排除,最终达到选出正确答案的目的。 极限法在物理解题中有比较广泛的应用,将貌似复杂的问题推到极端状态或极限值条件下进行分析,问题往往变得十分简单。利用极限法可以将倾角变化的斜面转化成平面或竖直面。可将复杂电路变成简单电路,可将运动物体视为静止物体,可将变量转化成特殊的恒定值,可将非理想物理模型转化成理想物理模型,从而避免了不必要的详尽的物理过程分析和繁琐的数学推导运算,使问题的隐含条件暴露,陌生结果变得熟悉,难以判断的结论变得一目了然。 1.(12安徽)如图1所示,半径为R 均匀带电圆形平板,单位面积带电量为σ,其轴线上任意一点P (坐标为x )的电场强度可以由库仑定律和电场强度的叠加原理求出: E =2πκσ()????????+-21221x r x ,方向沿x 轴。现考虑单位面积带电量为0σ的无限大均匀带电平板,从其中间挖去一半径为r 的圆板,如图2所示。则圆孔轴线上任意一点Q (坐标为x )的电场强度为 ( ) A. 2πκ0σ()2122x r x + B. 2πκ0σ()2122x r r + C. 2πκ0 σr x D. 2πκ0σx r 【解析】当→∝R 时,22x R x +=0,则0k 2E δπ=,当挖去半径为r 的圆孔时,应在E 中减掉该圆孔对应的场强)(220r x r x - 12E +=πκδ,即21220x r x 2E )(+='πκδ。选项A 正确。 2.(11福建)如图,一不可伸长的轻质细绳跨过滑轮后,两端分别悬挂质 量为m 1和m 2的物体A 和B 。若滑轮有一定大小,质量为m 且分布均匀,滑 轮转动时与绳之间无相对滑动,不计滑轮与轴之间的磨擦。设细绳对A 和B 的拉力大小分别为T 1和T 2,已知下列四个关于T 1的表达式中有一个是正确 的,请你根据所学的物理知识,通过一定的分析判断正确的表达式是( ) O R ● x P 图1 O r ● x Q 图2

特殊值法巧解数列题示例

特殊值法巧解数列题示例 特殊值法在解决选择题与填空题中是比较常用的一种方法,在解题中能否灵活运用,体现了解题者的数学素养与能力.下面举例说明特殊值法(特殊数列、特殊数值)在解一些数列题中的应用. 【例1】已知}{n a 是等比数列,且252,0645342=++>a a a a a a a n ,那么53a a +的值等于( ) (A)5 (B)10 (C)15 (D)20 【分析】取}{n a 为常数数列0>=a a n ,则由252645342=++a a a a a a 得2 54252=?= a a ,故5253==+a a a ,所以选A. 【例2】在等差数列}{n a 中,若45076543=++++a a a a a ,则=+82a a ( ) (A)45 (B)75 (C)180 (D)300 【分析】取}{n a 为常数数列a a n =,则由45076543=++++a a a a a 得904505=?=a a ,所以180282==+a a a ,所以选C. 【例3】在各项均为正数的等比数列}{n a 中,若965=a a ,则=+++1032313log log log a a a ( ) (A)12 (B)10 (C)8 (D)2+5log 3 【分析】取}{n a 为常数数列0>=a a n ,则由965=a a 得392=?=a a ,所以 103log 10log log log 31032313==+++a a a ,所以选B. 如果解题者心中有数(具备特殊化思想),那么直接观察利用心算立即可得结果,可大大地提高解题速度,避免不必要的计算。留心观察细事物,沙子也会变金银!

数值分析龙贝格实验报告

实验三 龙贝格方法 【实验类型】 验证性 【实验学时】 2学时 【实验内容】 1.理解龙贝格方法的基本思路 2.用龙贝格方法设计算法,编程求解一个数值积分的问题。 【实验前的预备知识】 1.计算机基础知识2.熟悉编程基本思想3.熟悉常见数学函数; 【实验方法或步骤】 龙贝格方法的基本思路龙贝格方法是在积分区间逐次二分的过程中,通过 对梯形之值进行加速处理,从而获得高精度的积分值。 1. 龙贝格方法的算法 步骤1 准备初值()f a 和()f b ,用梯形计算公式计算出积分近似值 ()()12b a T f a f b -=+??? ? 步骤2 按区间逐次分半计算梯形公式的积分近似值令 2i b a h -=,0,1,2,...i =计算12102122n n n i i h T T f x -+=??=+ ??? ∑,2i n = 步骤3 按下面的公式积分梯形公式:()223n n n n T T S T -=+ 辛普生公式:()2215n n n n S S C S -=+ 龙贝格公式:()2263n n n n C C R C -=+ 步骤4 精度控制 当2n n R R ε-<,(ε为精度)时,终止计算,并取2n R 为近似值否则将步长折 半,转步骤2。

[实验程序] #include #include # define Precision 0.00001//积分精度要求 # define e 2.71828183 #define MAXRepeat 10 //最大允许重复 double function(double x)//被积函数 { double s; s=2*pow(e,-x)/sqrt(3.1415926); return s; } double Romberg(double a,double b,double f(double x)) { int m,n,k; double y[MAXRepeat],h,ep,p,xk,s,q; h=b-a; y[0]=h*(f(a)+f(b))/2.0;//计算T`1`(h)=1/2(b-a)(f(a)+f(b)); m=1; n=1; ep=Precision+1; while((ep>=Precision)&&(m

高中数学主要题型与方法归纳

高中数学重点题型与思维方法归纳 一、集合、逻辑、函数、导数、定积分 1.集合的运算——①图示法P1 9;②验证法P111;③空集分类法P2 14;④转化法P14 2.子集(元素)个数——①列举法;②2n法P1 6;③转化法P125 8 3.充分必要条件——①大小法(小充分,大必要)P3 1;②推导法(推出充分被推必要互推充要)P3 3 4.命题的否定——①结论否定法;②全特互化法)P3 4 5.求定义域——①有意义法(具体函数或实际问题)P6 12;②整体不变法(抽象函数)P5 5 6.求值域——①图象法;②单调性法P5 8、P7 8;③反函数法;④分离常数法P12 13(1); ⑤配方法P10 13;⑥最值法 7.求最值——①函数值域法P7 8、P21 8、P86 13;②均值不等式法P11 4;③线性规划法; ④导数法P103 6;⑤转化法(立体与平面、同侧与异侧P67 5、P73 7、相离与相切P101 11) 8.求解析式——①换元法;②待定系数法P10 13(1);③构造方程法P6 13;④化归法P22 13 9.画图——①特殊点法P15 9;②变换图象法P15 8、P27 7;③假设验证法P15 6; ④奇偶分析法P15 9;⑤导数法(原增导在上,原减导在下)P103 3 10.零点或交点——①图象法P9 8;②零点交点转化法P18 11;③韦达定理法P17 8; ④解方程法P17 1、P17 10;⑤估算法P17 5;⑥导数法 11.一元二次方程根的分布——①图象法P67 9;②判别韦达法P9 9 12.单调性问题——①图象法P7 9;②复合法(同增异减)P9 11;③定义法; ④导数法P12 13、P101 10、P103 5、P103 9;⑤性质法 13.奇偶性问题——①特殊值法P7 6;②定义法P16 14(1);③化半法P8 13;④图象法P21 12 14.周期性问题——①图象法;②定义法P7 7;③三角公式法 15.对数计算——①逆运算转化法P13 3、P21 9;②化同法P13 5;③换底法 16.函数的应用——①列式法P19 4;②建模法P20 14、P64 14;图表法 17.求导数——①定义法P103 1;②公式法P101 2 18.求切线方程——①△=0法;②导数法P102 13、P104 11;③距离法(适用于圆) 19.求极值——①图象法P103 2;②导数法(左正右负极大值,左负右正极小值)P104 10、P104 13 20.求定积分或曲线围成面积——①图象法P105 11;②积分公式法P105 5;③概率法 二、三角函数、平面向量 1.三角函数符号(或角的象限)——①单位圆法P23 7;②πk2法P23 5 Rt法P25 2;②同角公式法 2.三角函数知一求余——①? 3.三角化简求值——①化切法P25 9;②化弦法;③1的代换P24 13;④和积互化P25 4; ⑤公式法P29 10;⑥换角法P30 13;⑦转化法(化同角、化同名、化同次)P25 8、P28 14 4.对称问题——①图象P21 12;②整体不变法;③公式法;④验证法P28 12 5.解三角形——①正弦定理P33 8;②余弦定理P33 9;③化边法P34 13;④化角法 6.平面向量的运算——①图解法P35 10、P97 9;②公式法P41 3;③坐标法P37 1、P41 10 7.向量平行(共线)问题——①成比例法P37 2;②公式法P35 2、P73 11、P99 7、12 8.向量垂直问题——①几何法P39 10;②公式法P39 7、P96 14 9.求夹角——①几何法P37 5;②公式法P41 11 10.求长度(模)——①平方法P37 9;②解三角形法P41 2

特殊值法解数学题

臧老师辅导课堂之 特殊值法专项训练 特殊值法是用满足条件的特殊值(式)代入题目去验证、计算,从而得到正确结论的一种方法.特殊值法在解题中有下列应用. 1.解选择题: 若a>b>c>0,m>n>0.(m、n为数),则下列各式中成立的是[ ] A.a m b n>b n c m>c n a m B.a m b n>c n a m>b n c m C.c n a m>a m b n>b n c m D.b n c m>c n a m>a m b n 2.确定多项式的系数 已知当x是任何实数时,x2-2x+5=a(x+1)2+b(x+1)+c都成立,求a、b、c的值. 3.判断命题的真假 判断命题“式子a2+(a+1)2+a2(a+1)2=(a2+a-1)2是恒等式”的真假. 4.解证定值问题 若a、b为定值,且无论k取何值时,关于x的一次方程 专项练习 1 已知a、b、c都是实数,且a>b>c,那么下列式子中正确的是 [ ] 2.命题“式子x3+9=(x+2)3-6(x+2)2+12(x+2)是恒等式”是真命题,对吗? 值,求a、b应满足的关系式.并求出这个定值. 4.已知a+b+c≠0,求证:不论a、b、c取何实数时,三 5、设a、b、c是不全相等的任意实数,若x=a2-bc,y=b2-ca,z=c2-ab,则x、y、z[] A.都不小于0B.都不大于0 C.至少有一个小于0D.至少有一个大于0 6、如果a、b均为有理数,且b<0,则a、a-b,a+b的大小关系是

[ ] A.a<a+b<a-b B.a<a-b<a+b C.a+b<a<a-b D.a-b<a+b<a 巧取特殊值解选择题 山东省茌平县傅平镇中学初三·一班鲁傅 我在解某些选择题时,采用了取特殊值法,使问题简捷,迅速地获得解决,如下面几例. 例1 已知a、b、c都是实数,且a>b>c,那么下列式子中正确的是 [ ] (98年全国初中数学联赛)解:∵a>b>c, ∴可取a=1,b=0,c=-1代入各选择支,只有a+b=1>b+c=-1成立.故选(B). 例2 设a、b、c是不全相等的任意实数,若x=a2-bc,y=b2-ca,z=c2-ab,则x、y、z[ ] A.都不小于0B.都不大于0 C.至少有一个小于0D.至少有一个大于0 (94年全国初中数学联赛题)解:若令a=0,b=1,c=-1,则x=y=z=1,故可排除(B)、(C); 再令a=0,b=c=1,则x=-1,y=z=1,又可排除(A).故选(D). (94年全国初中数学联赛题) 则[ ] A.M<Q<P<N B.M<P<Q<N

Romberg龙贝格算法实验报告.

Romberg龙贝格算法实验报告 2017-08-09 课程实验报告 课程名称: 专业班级: CS1306班学号: U201314967 姓名:段沛云指导教师:报 告日期: 计算机科学与技术学院 目录 1 实验目的 (1) 2 实验原理 (1) 3 算法设计与流程框图 (2) 4 源程序 (4) 5 程序运行 (7) 6 结果分析 (7) 7 实验体会 (7) 1 实验目的 掌握Romberg公式的用法,适用范围及精度,熟悉Romberg算法的流程,并能够设计算法计算积分 31 得到结果并输出。 1x 2 实验原理 2.1 取k=0,h=b-a,求T0= 数)。 2.2 求梯形值T0( b-a

),即按递推公式(4.1)计算T0。 k 2 h [f(a)+f(b)],令1→k,(k记区间[a,b]的二分次2 2.3 求加速值,按公式(4.12)逐个求出T表的第k行其余各元素Tj(k-j) (j=1,2,….k)。 2.4 若|Tk+1-Tk| n-1 11T2n=[Tn+hn∑f(xi+)] 22i=0 1 Sn=T2n+(T2n-Tn) 31 Cn=S2n+(S2n-Sn) 151 Rn=C2n+(C2n-Cn) 63 3 算法设计与流程框图 算法设计:(先假定所求积分二分最大次数次数为20) 3.1 先求T[k][0] 3.2 再由公式T (k)m 4m(k+1)1)=mTm-1-mTm(k-1(k=1,2,) 求T[i][j] 4-14-1 3.3 在求出的同时比较T[k][k]与T[k-1][k-1]的大小,如果二者之差的绝对 值小于1e-5,就停止求T[k][k];此时的k就是所求的二分次数,而此时的T[k][k]就是最终的结果 3.4 打印出所有的T[i][j];程序流程图

大地测量中不适定问题的正则化解法研究

大地测量中不适定问题的正则化解法研究 摘要:为了解决大地测量中的不适定问题,人们提出了正则化解法,并期望通 过对正则解法的不断研究从而彻底解决大地测量中的不适定问题。论文对大地测 量中不适定问题的正则化解法研究进行详细论述,给相关人士提供参考。 关键词:大地测量;?不适定问题;?正则化解法;?系统误差; 大地测量是一项对地球的相关数据进行测量的活动。大地测量活动的开展不 但可以有效提升地形测图以及工程测量的精准度,同时还可以促进国家空间科学 以及国防建设的发展。此外,随着大地测量的不断深入,人们可以对地壳运动以 及地震等地质活动进行预测,从而降低地震等自然灾害对于人类的危害。然而在 大地测量中,时常会遇到一些不适定问题。例如,测量中所存在的控制网平差、GPS无法快速定位等。这些大地测量中的不适定问题虽然表现形式不同,但却有 着一些相同点。首先,这些不适定问题一般解均不唯一。再者,这些不适定问题 有时还会出现无解的状况。此外,这些不适定问题常常还会出现解不稳定的现象。这些不适定问题的出现严重影响了大地测量的进行与发展,因此,为了解决大地 测量中的不适定问题,对其解决方法进行了深入的研究,并将其逐步演变为正则 化解法。通过正则化解法,可以有效地解决大地测量中的不适定问题,并针对病 态性的算法进行改进,从而促进大地测量的快速发展。 1 推导了大地测量不适定问题解的统一表达 为对大地测量中不适定问题开展正则化解法研究,最初研究推导了大地测量 中不适定问题解的同意表达。旨在分析大地测量中不适定问题常用的一些数学模型,研究表明在该阶段常见的数学模型主要有拟合推估模型、自由网平差模型、 病态模型和半参数模型等。经计算显示,这些数学模型的解可以用某个数学关系 式统一表达,而令研究者所震惊的是这些数学模型都能够在TIKHONOV正则化原 理下推导出。实际推导过程中,为保证计算结果的准确度,研究者要把握好这些 数学模型之间的共性问题,尽可能地分析出他们的个性,求解时既要考虑数学模 型的基本计算理论,又要寻求合适的优化求解方案,以此来深化研究。 2 克服病态性的改进算法研究 在克服病态性的改进算法研究中,从以下3步展开论述:首先,针对一些难 以确定的岭参数,系统会主动选择研究确定的岭参数L曲线。为使L曲线的效果 能够更加清晰地展现出来,该算法研究采用对比法,将L曲线法同传统的岭迹法 相比较,以此来得出全新的结论。其次,研究还提出了克服病态性的两步解法, 需重点研究了两步解法的计算原理和相关数据性质以及相应的计算适应条件等。 同常规的克服病态性改进算法研究方案相比,该方案更为优异。最后,研究提出 了一种新的奇异值修正方案,该方案的核心是将奇异值分为2个部分进行分别修 正处理。实践证明这种方案是很有研究效果的,同其他克服病态性的改进算法相 比该方案的结算结果更为精准。 3 单频GPS快速定位中减弱病态性的新方法研究 本次研究,主要论述了单频GPS快速定位中减弱病态性的新方法,能够在较 短的时间内实现快速GPS定位。为此,首先分析了关于GPS快速定位的矩阵的结 构特性。在正则化原理的前提下,有针对性地提出了以下2种正则化矩阵的构造 方法。利用这2种新的方案,可以在很大程度上减弱传统法矩阵的病态性,利用 较短的时间就可以得出较为准确的结论。为此,对这2种新型的减弱矩阵病态性

巧用特殊值法

巧用特殊值法,提高解题效率(一) 所谓特殊值法,就是对题目中出现的字母取具体的数值,代入有关代数式进行计算,快速求出代数式的值的一种方法。这种方法在解有关问题时,它有独到之处,对付一类选择、填空题有一定特效。 例1、(2009年衡阳市)已知33-=-y x ,则y x 35+-的值是( ) A .0 B .2 C .5 D .8 解法一: 33,535(3)5(3)8x y x y x y -=-∴-+=--=--=,∴选D 。 解法二: 33,33,535(33)38x y x y x y y y -=-∴=-∴-+=--+=,∴选D 。 解法三: 33,x y -=-设0,x =则得1y =,则5350318x y -+=-+?=,∴选D 。 比较上述三种解题方法,第一种方法用的是整体值思想,第二种方法用的是消元、转化的思想,解法三用的是特殊值方法,显然,第三种方法比较快速、准确。 本题已知条件是一个不定方程33-=-y x ,符合条件的实数对,x y 有无数个,对于x 、y 取符合条件的特殊数值,代入代数式计算,很快就能得出本题的答案。要注意这种方法主要用于字母的值可以变化但要求的代数式的值是定值选择题或填空题,不要求写出解题过程,只选择正确答案或直接写出结果的问题。特殊值的选取,一是要符合条件,二是要使计算简单。有时还要多取几个不同的数值进行计算、验证。 练习1:(2009年枣庄市)若m +n =3,则222426m mn n ++-的值为( ) A.12 B.6 C.3 D.0 (提示:对m 取特殊值) 练习2:(2008安徽芜湖)已知 113,x y -=则代数式21422x xy y x y y --=-- 。 (提示:对x 取特殊值) 例2、(2009年牡丹江)若01x <<则x ,1x ,2x 的大小关系是( ) A .21x x x << B .21x x x << C .21x x x << D .21x x x << 本题是确定代数式值大小的问题,用推理方法当然可以得出答案为C 。如果取特殊值12x =,则有2112,,4x x ==显然有11242<<,即21x x x <<,选C 。 用取特殊值的方法将复杂的问题(比较代数式的大小)转化成简单问题(比较具体数

算法设计与分析基础课后习题答案

Program算法设计与分析基础中文版答案 习题 5..证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数m,n都成立. Hint: 根据除法的定义不难证明: 如果d整除u和v, 那么d一定能整除u±v; 如果d整除u,那么d也能够整除u的任何整数倍ku. 对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和r=m mod n=m-qn;显然,若d能整除n和r,也一定能整除m=r+qn和n。 数对(m,n)和(n,r)具有相同的公约数的有限非空集,其中也包括了最大公约数。故gcd(m,n)=gcd(n,r) 6.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次? Hint: 对于任何形如0<=m

设sqrt(x)是求平方根的函数) 算法Quadratic(a,b,c) 描述将十进制整数表达为二进制整数的标准算法 a.用文字描述 b.用伪代码描述 解答: a.将十进制整数转换为二进制整数的算法 输入:一个正整数n 输出:正整数n相应的二进制数 第一步:用n除以2,余数赋给Ki(i=0,1,2...),商赋给n 第二步:如果n=0,则到第三步,否则重复第一步 第三步:将Ki按照i从高到低的顺序输出 b.伪代码 算法 DectoBin(n) .n]中 i=1 while n!=0 do { Bin[i]=n%2; n=(int)n/2; i++; } while i!=0 do{ print Bin[i]; i--; } 9.考虑下面这个算法,它求的是数组中大小相差最小的两个元素的差.(算法略)对这个算法做尽可能多的改进. 算法 MinDistance(A[0..n-1])

龙贝格积分实验报告

二、Romberg 积分法 1.变步长Romberg 积分法的原理 复化求积方法对于提高精度是行之有效的方法,但复化公式的一个主要缺点在于要事先估计出部长。若步长过大,则精度难于保证;若步长过小,则计算量又不会太大。而用复化公式的截断误差来估计步长,其结果是步长往往过小,而且''()f x 和(4)()f x 在区间[,]a b 上的上界M 的估计是较为困难的。在实际计算中通常采用变步长的方法,即把步长逐次分半(也就是把步长二等分),直到达到某种精度为止,这种方法就是Romberg 积分法的思想。 在步长的逐步分半过程中,要解决两个问题: 1. 在计算出N T 后,如何计算2N T ,即导出2N T 和N T 之间的递推公式; 2. 在计算出N T 后,如何估计其误差,即算法的终止的准则是什么。 首先推导梯形值的递推公式,在计算N T 时,需要计算1N +个点处的函数值在计算出N T 后,在计算2N T 时,需将每个子区间再做二等分,共新增N 个节点。为了避免重复计算,计算2N T 时,将已计算的1N +个点的数值保留下来,只计算新增N 个节点处的值。为此,把2N T 表示成两部分之和,即 由此得到梯形值递推公式 因此 由复化梯形公式的截断误差有 若''()f x 变化不大时,即''''12()()f f ηη≈,则有 式(2)表明,用2N T 作为定积分I 的近似值,其误差大致为21 ()3 N N T T -, 因此其终止条件为 其中ε是预先给定的精度。 积分公式 将上述方法不断推广下去,可以得到一个求积分的序列,而且这个序列很快收敛到所求的定积分。记 (0)N N T T =,将区间N 等分的梯形值。(1)N N T S =,将区间N 等分的Simpson

再谈高中数学中的特殊值法解题

再谈高中数学中的特殊值法解题

————————————————————————————————作者:————————————————————————————————日期:

再谈高中数学中的特殊值法解题-中学数学论文 再谈高中数学中的特殊值法解题 胡春雷 (惠州实验中学,广东惠州516000) 摘要:高中数学问题的解决取决于思维、方法、习惯等诸多方面,解题方法需具有针对性,对于一个数学问题如果具有一般性结论,那么适当取特殊值也是成立的,这是特殊值法的理论根据。特殊值法是指选用特殊值解决数学问题的方法,常见的三种特殊值有三种,分别是特殊的数、式、形;本文结合实例来说明在使用特殊值法解题时取值的技巧、细节以及注意事项。 关键词:特殊数;特殊式;特殊形 中图分类号:G633文献标识码:A文章编号:1005-6351(2013)-03-0061-01 高中数学有很多常规而经典的解法,比如换元法、待定系数法、配方法等。也有一些非常规解法,比如特殊值法。有时在解决有些数学问题时特殊值法可以收到奇效。笔者认真阅读了许多同行关于特殊值法的论文,结合自己教学实践,在此也谈谈对特殊值的认识和体会,不妥之处,敬请同行指正。 一、选用特殊的数字解决问题 选用特殊数字来解决问题,一般喜欢选用±1、10、i、e等数字.

二、选用特殊的式解决问题 选用特殊数学表达式来解决问题,一般喜欢选用符合题目条件的的基本初等函数、典型方程、基本不等式等。 ①y=f(x)是周期函数②x=π是它的一条对称轴③(-π,0)是它图象的一个对称中心 ④当x=π时,它一定取最大值,其中描述正确的是() A.①② B.①③ C.②④ D.②③

正则化方法

3.2正则化方法的概念 从数学角度来分析,CT 中的有限角度重建问题相当于求解一个欠定的代数方程组,属于不适定问题研究范畴,解决这类问题通常需要引入正则化方法]27,26[。 3.2.1不适定的概念 设算子A 映X x ∈为P p ∈,X 与P 分别为某类赋范空间,记 P Ax = (3.9) 在经典意义下求解(3.9),就存在下述问题: (1)(3.9)式的解是否存在; (2)(3.9)式的解如果存在,是否唯一; (3)(3.9)式的解是否稳定或者说算子A 是否连续:对于右端的P 在某种意义下作微小的变动时,相应的解童是不是也只作微小的变动。 只要这些问题中有一个是否定的,就称(3.9)的解是不适定的。 3.2.2正则化方法概念的引入 设算子A 映X x ∈为P p ∈,X 与P 分别为某类赋范空间,二者满足(3.9)式。设A 的逆算子1-A 不连续,并假定当右端精确值为r p 时,得到经典意义下的解为r x ,即满足 r r P Ax = (3.10) 现在的问题是,如果右端受到扰动后变为δp ,且二者满足关系 δδ≤-r p p (3.11) 其中,?为某范数。则由于1-A 的不连续性,我们显然不能定义r p 对应的解为: δδp A x 1-= (3.12)

因此,必须修改该逆算子的定义。 定义:设算子),(αp R 映p 成x ,且依赖一个参数α,并具有如下性质: (1)存在正数01>δ,使得对于任意0>α,以及r p 的)(1δδδ≤邻域中的p ,即满足 10,δδδ≤<≤-p p r (3.13) 的p ,算子R 有定义。 (2)若对任意的0>ε,都存在),0(1δδ∈及依赖于δ的参数)(δαα=,使得算子),(αp R 映r p 的δ邻域到r x 的ε领域内,即 εδαδδ≤-=r x x x p R ,))(,( (3.14) 则称),(αp R 为方程(3.14)中A 的正则逆算子;δx 称为方程(3.14)的正则解,当0→δ时,正则解可以逼近我们所要求的精确解;α称为正则化参数。这样的求解方法就称为正则化方法。

相关文档
最新文档