测量大功率LDMOS晶体管特性的TRL校准方法研究2

测量大功率LDMOS晶体管特性的TRL校准方法研究2
测量大功率LDMOS晶体管特性的TRL校准方法研究2

工程测量的发展

我国工程测量技术发展现状与成就 一、前言 工程测量学科是一门应用学科,它是直接为国民经济建设和国防建设服务,紧密与生产实践相结合的学科,是测绘学中最活跃的一个分支学科。工程测量有着悠久的历史,近20年来,随着测绘科技的飞速发展,工程测量的技术面貌发生了深刻的变化,并取得很大的成就。主要原因有:一是科学技术的新成就,电子计算机技术、微电子技术、激光技术、空间技术等新技术的发展与应用,以及测绘科技本身的进步,为工程测量技术进步提供新的方法和手段;二是改革开放以来,城市建设不断扩大,各种大型建筑物和构筑物的建设工程、特种精密建设工程等不断增多,对工程测量不断提出新的任务、新课题和新要求,使工程测量的服务领域不断拓宽,有力地推动和促进工程测量事业的进步与发展。随着传统测绘技术向数字化测绘技术转化,面向21世纪的我国工程测量技术的发展趋势和方向是:测量数据采集和处理的自动化、实时化、数字化;测量数据管理的科学化、标准化、规格化;测量数据传播与应用的网络化、多样化、社会化。GPS技术、RS技术、GIS技术、数字化测绘技术以及先进地面测量仪器等将广泛应用于工程测量中,并发挥其主导作用。 二、先进的地面测量仪器在工程测量中的应用 80年代以来出现许多先进的地面测量仪器,为工程测量提供了先进的技术工具和手段,如:光电测距仪、精密测距仪、电子经纬仪、全站仪、电子水准仪、数字水准仪、激光准直仪、激光扫平仪等,为工程测量向现代化、自动化、数字化方向发展创造了有利的条件,改变了传统的工程控制网布网、地形测量、道路测量和施工测量等的作业方法。三角网已被三边网、边角网、测距导线网所替代;光电测距三角高程测量代替三、四等水准测量;具有自动跟踪和连续显示功能的测距仪用于施工放样测量;无需棱镜的测距仪解决了难以攀登和无法到达的测量点的测距工作;电子速测仪为细部测量提供了理想的仪器;精密测距仪的应用代替了传统的基线丈量。 电子经纬仪和全站仪的应用,是地面测量技术进步的重要标志之一。电子经纬仪具有自动记录、自动改正仪器轴系统差、自动归化计算、角度测量自动扫描、消除度盘分划误差和偏心差等优点。全站仪测量可以利用电子手簿把野外测量数据自动记录下来,通过接口设备传输到计算机,利用“人机交互”方式进行测量数据的自动数据处理和图形编辑,还可以把由微机控制的跟踪设备加到全站仪上,能对一系列目标自动测量,即所谓“测地机器人”或“电子平板”野外直接图形编辑,为测图和工程放样向数字化发展开辟了道路。激光水准仪、全自动数字水准仪、记录式精密补偿水准仪等仪器的出现,实现了在几何水准测量中自动安平、自动读数和记录、自动检核测量数据等功能,使几何水准测量向自动化、数字化方向迈进。激光准直仪和激光扫描仪在高层建筑施工和大面积混凝土施工中是必不可少的仪器。国产JDA系列多功能自动激光准直仪,具有6种自动保持精度的基准,可用于高层和高耸建筑的轴线测控;滑模测偏、测扭、水平测控;构筑物与设备安装放线控测;各类工程测平,结构变形观测等。陀螺经纬仪是用于矿山、隧道等工程测量的另一类主要的地面测量仪器,新一代的陀螺经纬仪是由微机控制,仪器自动、连续地观测陀螺的摇动并能补偿外部的干扰,观测时间短、精度高,如Cromad陀螺经纬仪在7min左右的观测时间能获取3″的精度,比传统陀螺经纬仪精度提高近7倍,作业效率提高近10倍,标志着陀螺经纬仪向自动化方向迈进。 三、3维工业测量技术的兴起和应用

威廉斯创造力倾向测量表及评分方法

威廉斯创造力倾向测量 表及评分方法 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

威廉斯创造力倾向测量表及评分方法 威廉斯创造力倾向测量表通过测验个人的一些性格特点包括冒险性、好奇性、想象力和挑战性,来测量个人的创造性倾向。它可以用来发现那些有创造性的个体。高创造力的个体在进行创造性工作时更容易成功,低创造力的个体则循规蹈矩,更适合进行常规型的工作。趋于冒险,好奇心强,想象力丰富,勇于挑战未知的人就是创造性倾向强的人。 创造性的个体被认为具有以下认知和情感特质:想象流畅灵活,不循规蹈矩,有社会性敏感,较少有心理防御,愿意承认错误,与父母关系密切等。 题目 (1)在学校里,我喜欢试着对事情或问题作猜测,即使不一定都猜对也无无所谓。 (2)我喜欢仔细观察我没有看过的东西,以了解详细的情形。 (3)我喜欢听变化多端和富有想像力的故事。 (4)画图时我喜欢临摹别人的作品。 (5)我喜欢利用旧报纸,旧日历以及旧罐头等废物来做成各种好玩的东西。 (6)我喜欢幻想一些我想知道或想做的事。 (7)如果事情不能一次完成,我会继续完成尝试,直到成功为止。 (8)做功课时我喜欢参考各种不同的资料,以便得到多方面的了解。 (9)我喜欢用相同的方法做事情,不喜欢去找其他的新的方法。 (10)我喜欢探究事情的真假。 (11)我不喜欢做许多新鲜的事。 (12)我不喜欢交新朋友。 (13)我喜欢一些不会在我身上发生的事情。

(14)我喜欢想像有一天能成为艺术家、音乐家或诗人。 (15)我会因为一些令人兴奋的念头而忘记了其他的事。 (16)我宁愿生活在太空站,也不喜欢在地球上。 (17)我认为所有的问题都有固定的答案。 (18)我喜欢与众不同的事情。 (19)我常想知道别人正做什么。 (20)我喜欢故事或电视节日所描写的事。 (21)我喜欢和朋友一起,和他们分享我的想法。 (22)如果一本故事书的最后一页被撕掉了,我就自己编造一个故事把结局补上去。(23)我长大后,想做一些别人长大从来没想过的事情。 (24)尝试新的游戏和活动,是一件有趣的事。 (25)我不喜欢太多的规则限制。 (26)我喜欢解决问题,即使没有正确的答案也没关系。 (27)有许多事情我都很想亲自去尝试。 (28)我喜欢没有人知道的新歌。 (29)我喜欢在班上同学面前发表意见。 (30)当我读小说或看电视时,我喜欢把自己想像成故事里的人物。 (31)我喜欢幻想200年前人类生活的情形。 (32)我常想自己编一首新歌。

常见大中功率管三极管参数(精)

常见大中功率管三极管参数 晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型2SD1402 1500V 5A 120W * * NPN 2SD1399 1500V 6A 60W * * NPN 2SD1344 1500V 6A 50W * * NPN 2SD1343 1500V 6A 50W * * NPN 2SD1342 1500V 5A 50W * * NPN 2SD1941 1500V 6A 50W * * NPN 2SD1911 1500V 5A 50W * * NPN 2SD1341 1500V 5A 50W * * NPN 2SD1219 1500V 3A 65W * * NPN 2SD1290 1500V 3A 50W * * NPN 2SD1175 1500V 5A 100W * * NPN 2SD1174 1500V 5A 85W * * NPN 2SD1173 1500V 5A 70W * * NPN 2SD1172 1500V 5A 65W * * NPN 2SD1143 1500V 5A 65W * * NPN 晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型2SD1142 1500V 3.5A 50W * * NPN 2SD1016 1500V 7A 50W * * NPN 2SD995 2500V 3A 50W * * NPN 2SD994 1500V 8A 50W * * NPN 2SD957A 1500V 6A 50W * * NPN 2SD954 1500V 5A 95W * * NPN 2SD952 1500V 3A 70W * * NPN 2SD904 1500V 7A 60W * * NPN 2SD903 1500V 7A 50W * * NPN 2SD871 1500V 6A 50W * * NPN 2SD870 1500V 5A 50W * * NPN 2SD869 1500V 3.5A 50W * * NPN 2SD838 2500V 3A 50W * * NPN 2SD822 1500V 7A 50W * * NPN 2SD821 1500V 6A 50W * * NPN 晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型2SD348 1500V 7A 50W * * NPN 2SC4303A 1500V 6A 80W * * NPN 2SC4292 1500V 6A 100W * * NPN 2SC4291 1500V 5A 100W * * NPN 2SC4199A 1500V 10A 100W * * NPN 2SC3883 1500V 5A 50W * * NPN 2SC3729 1500V 5A 50W * * NPN 2SC3688 1500V 10A 150W * * NPN

晶体管的特性曲线

晶体管的特性曲线 晶体管特性曲线即管子各电极电压与电流的关系曲线,是管子内部载流子运动的外部表现,反映了晶体管的性能,是分析放大电路的依据。为什么要研究特性曲线: (1) 直观地分析管子的工作状态 (2) 合理地选择偏置电路的参数,设计性能良好的电路重点讨论应用最广泛的共发射极接法的特性曲线 1.测量晶体管特性的实验线路 图1 共发射极电路 共发射极电路:发射极是输入回路、输出回路的公共端。如图1所示。 2.输入特性曲线 输入特性曲线是指当集-射极电压U CE为常数时,输入电路( 基极电路)中基极电流I B与基-射极电压U BE之间的关系曲线I B = f (U BE),如图2所示。 图2 3DG100晶体管的输入特性曲线 U CE=0V时,B、E间加正向电压,这时发射结和集电结均为正偏,相当于两个二极管正向并联的特性。 U CE≥1V时,这时集电结反偏,从发射区注入基区的电子绝大部分都漂移到

集电极,只有小部分与空穴复合形成I B。U CE>1V以后,I C增加很少,因此I B 的变化量也很少,可以忽略U CE对I B的影响,即输入特性曲线都重合。 由输入特性曲线可知,和二极管的伏安特性一样,晶体管的输入特性也有一段死区。只有在发射结外接电压大于死区电压时,晶体管才会导通,有电流I B。 晶体管死区电压:硅管0.5V,锗管0.1V。晶体管正常工作时发射结电压:NPN型硅管U BE0.6 ~ 0.7) V PNP型锗管U BE0.2 ~ 0.3) V 3.输出特性曲线 输出特性曲线是指当基极电流I B为常数时,输出电路(集电极电路)中集电极电流I C与集-射极电压U CE之间的关系曲线I C = f (U CE),如图3所示。 变化曲线,所以晶体管的输出特性曲在不同的I B下,可得出不同的I C随U CE 线是一族曲线。下面结合图4共发射极电路来进行分析。 图3 3DG100晶体管的输出特性曲线图4 共发射极电路 晶体管有三种工作状态,因而输出特性曲线分为三个工作区 (1) 放大区 在放大区I C=βI B,也称为线性区,具有恒流特性。在放大区,发射结处于正向偏置、集电结处于反向偏置,晶体管工作于放大状态。 对NPN 型管而言, 应使U BE> 0, U BC< 0,此时,U CE> U BE。 (2) 截止区I B = 0 的曲线以下的区域称为截止区。 I B = 0 时, I C = I CEO(很小)。(I CEO<0.001mA)。对NPN型硅管,当U BE<0.5V 时, 即已开始截止, 为使晶体管可靠截止, 常使U BE≤0。截止时, 集电结也处于反向偏置(U BC≤ 0),此时, I C≈0, U CE≈U CC。 (3) 饱和区当U CE< U BE时,集电结处于正向偏置(U BC> 0),晶体管工作于饱和状态。

创造力倾向测量表

创造力倾向测量表 一、完整测量表 这是一份帮助你了解自己创造力的练习。在下列句子中,如果你发现某些句子所描述的情形很适合你,则请在题后的表格里“完全符合”的选项内打钩;若有些句子只是在部分时候适合你,则在“部分适合”的选项内打钩;如果有些句子对你来说,根本是不可能的,则在“完全不符”的选项内打钩。 注意: 1.每一题都要做,不要花太多时间去想。 2.所有题目都没有“正确答案”,凭你读完每一句的第一印象作答。 3.虽然没有时间限制,但尽可能地争取以较快的速度完成,愈快愈好。 4.切记:凭你自己的真实感受作答,在最符合自己的选项内打钩。 5.每一题只能打一个钩。 1.在学校里,我喜欢试着对事情或问题作猜测,即使不一定猜对也无所谓。 2.我喜欢仔细观察我没有见过的东西,以了解详细的情形。 3.我喜欢变化多端和富有想象力的故事。 4.画图时我喜欢临摹别人的作品。 5.我喜欢利用旧报纸、旧日历及旧罐头盒等废物来做成各种好玩的东西。 6.我喜欢幻想一些我想知道或想做的事。 7.如果事情不能一次完成,我会继续尝试,直到完成为止。 8.做功课时我喜欢参考各种不同的资料,以便得到多方面的了解。 9.我喜欢用相同的方法做事情,不喜欢去找其他新的方法。 10.我喜欢探究事情的真相。 11.我喜欢做许多新鲜的事。 12.我不喜欢交新朋友。 13.我喜欢想一些不会在我身上发生的事。 14.我喜欢想象有一天能成为艺术家、音乐家或诗人。 15.我会因为一些令人兴奋的念头而忘了其他的事。 16.我宁愿生活在太空站,也不愿生活在地球上。 17.我认为所有问题都有固定答案。 18.我喜欢与众不同的事情。 19.我常想要知道别人正在想什么。 20.我喜欢故事或电视节目所描写的事。 21.我喜欢和朋友在一起,和他们分享我的想法。 22.如果一本故事书的最后一页被撕掉了,我就自己编造一个故事,把结果补上去。 23.我长大后,想做一些别人从没想过的事。 24.尝试新的游戏和活动,是一件有趣的事。 25.我不喜欢受太多规则限制。 26.我喜欢解决问题,即使没有正确答案也没关系。 27.有许多事情我都很想亲自去尝试。

半导体管特性图示仪的使用和晶体管参数测量

半导体管特性图示仪的使用和晶体管参数测量 一、实验目的 1、了解半导体特性图示仪的基本原理 2、学习使用半导体特性图示仪测量晶体管的特性曲线和参数。 二、预习要求 1、阅读本实验的实验原理,了解半导体图示仪的工作原理以及XJ4810 型半导体管图示仪的各旋钮作用。 2、复习晶体二极管、三极管主要参数的定义。 三、实验原理 (一)半导体特性图示仪的基本工作原理 任何一个半导体器件,使用前均应了解其性能,对于晶体三极管,只要知道其输入、输出特性曲线,就不难由曲线求出它的一系列参数,如输入、输出电阻、电流放大倍、漏电流、饱和电压、反向击穿电压等。但如何得到这两组曲线呢?最早是利用图4-1 的伏安法对晶体管进行逐点测试,而后描出曲线,逐点测试法不仅既费时又费力,而而且所得数据不能全面反映被测管的特性,在实际中,广泛采用半导体特性图示仪测量的晶体管输入、输出特性曲线。 图4-1 逐点法测试共射特性曲线的原理线路用半导体特性图示仪测量晶体管的特性曲线和各种直流参量的基本原理是用图4-2(a)中幅度随时间周期性连续变化的扫描电压UCS代替逐点法中的可调电压EC,用图4-2(b)所示的和扫描电压UCS的周期想对应的阶梯电流iB来代替逐点法中可以逐点改变基极电流的可变电压EB,将晶体管的特性曲线直接显示在示波管的荧光屏上,这样一来,荧光屏上光点位置的坐标便代替了逐点法中电压表和电流表的读数。

1、共射输出特性曲线的显示原理 当显示如图4-3 所示的NPN 型晶体管共发射极输出特性曲线时,图示仪内部和被测晶体管之间的连接方式如图4-4 所示. T是被测晶体管,基极接的是阶梯波信号源,由它产生基极阶梯电流ib 集电极扫描电压UCS直接加到示波器(图示仪中相当于示波器的部分,以下同)的X轴输入端,,经X轴放大器放大到示波管水平偏转板上集电极电流ic经取样电阻R得到与ic成正比的电压,UR=ic,R加到示波器的Y轴输入端,经Y轴放大器放大加到垂直偏转板上.子束的偏转角与偏转板上所加电压的大小成正比,所以荧光屏光点水平方向移动距离代表ic的大小,也就是说,荧光屏平面被模拟成了uce-ic 平面. 图4-4 输出特性曲线显示电路输出特性曲线的显示过程如图4-5 所示 当t=0 时, iB =0 ic=0 UCE =0 两对偏转板上的电压均为零,设此时荧光屏上光点的位置为坐标原点。在0-t1,这段时间内,集电极扫描电压UCS 处于第一个正弦半波周期。

桩基础工程测量方法及发展研究

桩基础工程测量方法及发展研究 发表时间:2019-07-23T14:30:00.773Z 来源:《科技研究》2019年5期作者:段坚 [导读] 本文主要针对桩基工程的测量方法与发展进行综述分析,望能够为相关专家及学者对这一课题的深入研究提供有价值的参考或者依据。 (东莞市颐和园林建设工程有限公司广东东莞 523000) 摘要:本文主要阐明了工程测量基本概念、测量任务及技术标准,深入研究并探讨了桩基工程的测量方法与发展,以便于广大工程测量技术员能够深刻认识到桩基工程专项测量工作严谨性、重要性,科学合理地运用桩基工程专项测量工作实施方法,保证桩基工程专项测量工作得以高效进展,并进一步推动着工程测量相关技术的发展。 关键词:桩基础;工程;测量方法;发展 前言: 伴随着城市总体规划建设发展,各类建筑项目在规模上得以扩大。在这一背景下,桩基项目工程数量也逐渐增多。在桩基项目工程建设期间,工程测量专项工作往往至关重要,直接影响着桩基工程总体建设效果。鉴于此,本文主要针对桩基工程的测量方法与发展进行综述分析,望能够为相关专家及学者对这一课题的深入研究提供有价值的参考或者依据。 1.概述工程测量 1.1 工程测量基本概念 工程测量,主要指桩基工程项目设计、施工建设、管理等各环节中各种测量工作基础理论、技术、方法的统称,属于服务于现代工程建设的一门学科。工程测量,主要分为两类,一类主要是依据工程项目建设时间而划分的,另外一类是依据服务类型而划分的。 1.2 测量任务 1.2.1 为现场施工提供标志 所有桩基工程项目现场施工首要步骤,便是开展实地测量技术操作,结合施工设计图及实际工况,依据施工建设各方面要求及各项标准,把建筑物基础的桩位精准地设于拟建区域内。该项工作做好之后,便可确保后续桩基工程建设顺利进展。 1.2.2 检测桩基后续工程 把桩位放好,便于为工程现场施工建设提供依据,为后期施工监测工作提供重要指标。 1.2.3 建设竣工后验收指标 桩基施工结束后,应严格测量桩基础,细致检查其可与所设计的桩位之间有偏差情况出现,经检查确认合乎标准之后,才可进入到下个测量及施工步骤。 1.3 技术标准 桩基工程项目施工建设期间,设计方与施工方并依据建筑尺寸精度与偏差来要求,通常是以实际长度与所设计长度之间比例加以衡量,简单来讲,即为桩基桩位轴线及其主轴线之间差异,亦或者是桩基轮廊的主轴线及其周边建筑物的位置之间差异加以衡量。 2.测量方法 2.1 建筑物的定位测量 在桩基工程项目测量工作中,建筑物定位主要是结合设计图中所设定调节,把建筑物的四周外廊部分主轴线交点均测设于地面,以作为建筑物测设桩位轴线参考,即为建筑物的定位测量。 2.1.1 编制好桩位测量的放线图与相关说明书 为便于开展桩基工程项目测量工作,需以熟悉工程资料为基础,施工操作前期将桩位测量的放线图与相关说明书编制好。①确定好定位轴线。在为便于开展施测放线操作,这都能平面呈矩形,且外形较为整齐建筑物,需以其外廊墙体的中心线为该建筑物具体定位操作的主轴线;针对平面呈弧形,且外形处于不规则状态复杂的建筑物,应当以圆心轴线与十字轴线为定位的主轴线。以桩位的轴心线为承台桩定位的轴线;②依据桩位的平面图当中所标定尺寸,确立好与该建筑物具体定位的主轴线之间平行施工的坐标系,以工程建筑定位相应矩形的控制网所在西南角控制点,当成坐标系起始点,坐标需加设为整数;③为防止测设桩点期间有混乱情况出现,需结合桩位总体平面的布置图,统一编号各个桩点。桩点的变化需从建筑物西南角入手,以自左向右该顺序地进行编号处理;④依据设计资料合理计算分析建筑物具体定位的矩形网、承台桩的位测、桩位轴线及主轴线等测设的数据信息,把所有数据信息均标注于桩位测量的放线图中。 2.1.2 建筑物定位 依据桩基工程项目总体设计当中所设定定位条件差异性,建筑物实际定位形式主要包括:依据原有建筑物进行定位;依据道路的中心线进行定位;依据城市总体规划建设的红线进行定位;依据建筑物具体施工建设的方格网进行定位;依据导线点或三角点进行定位。 2.2 测设桩位轴线与承台桩 2.2.1 测设桩位轴线 桩基工程项目中建筑桩位的轴线测设,应在定位建筑物矩形网的测设后开展,以定位建筑物矩形网作为基础,通过内分手段,在经纬仪相应定线的精密量距操作方法测设桩位轴线的引桩。针对复杂性建筑物内圆心点测设通常借助极坐标方法实现测设。针对测设桩位轴线引桩,应打入相应小木桩,在木桩顶端应钉入小铁钉,以作为该桩位轴线的引桩中心点位。为方便保存及应用,桩顶部必须与地面处于齐平状态,引桩周边应撒好白灰。完成桩位轴线的测设湖,虚席及时测量桩位轴线与桩位轴线之间长度,实量的距离与总体设计长度差异,对于单排桩位不可超出±1cm范围,群桩应控制在±2cm范围。桩位轴线的测量修满足于总体设计标准之后才可测设承台的桩位。 2.2.2 测设建筑物的承台桩位 桩基工程项目中建筑物的承台桩位测设,应当以桩位的轴线引桩作为基础开展测设操作,桩基础的设计依据地上的建筑物实际需求主要包含着单排桩与分群桩。群桩为3-20规定下一组根桩;单排桩则是1-2根组成一组。群桩平面的几何图主要包含着椭圆形、多边形、圆

威廉斯创造力倾向测量表

威廉斯创造力倾向测量表 一、完整测量表 这是一份帮助你了解自己创造力的练习。在下列句子中,如果你发现某些句子所描述的情形很适合你,则请在题后的表格里“完全符合”的选项内打钩;若有些句子只是在部分时候适合你,则在“部分适合”的选项内打钩;如果有些句子对你来说,根本是不可能的,则在“完全不符”的选项内打钩。 注意:[下载自******管理资源吧] 1.每一题都要做,不要花太多时间去想。 2.所有题目都没有“正确答案”,凭你读完每一句的第一印象作答。 3.虽然没有时间限制,但尽可能地争取以较快的速度完成,愈快愈好。 4.切记:凭你自己的真实感受作答,在最符合自己的选项内打钩。 5.每一题只能打一个钩。 1.在学校里,我喜欢试着对事情或问题作猜测,即使不一定猜对也无所谓。 2.我喜欢仔细观察我没有见过的东西,以了解详细的情形。 3.我喜欢变化多端和富有想象力的故事。 4.画图时我喜欢临摹别人的作品。 5.我喜欢利用旧报纸、旧日历及旧罐头盒等废物来做成各种好玩的东西。 6.我喜欢幻想一些我想知道或想做的事。 7.如果事情不能一次完成,我会继续尝试,直到完成为止。 8.做功课时我喜欢参考各种不同的资料,以便得到多方面的了解。 9.我喜欢用相同的方法做事情,不喜欢去找其他新的方法。 10.我喜欢探究事情的真相。 11.我喜欢做许多新鲜的事。 12.我不喜欢交新朋友。 13.我喜欢想一些不会在我身上发生的事。 14.我喜欢想象有一天能成为艺术家、音乐家或诗人。 15.我会因为一些令人兴奋的念头而忘了其他的事。 16.我宁愿生活在太空站,也不愿生活在地球上。 17.我认为所有问题都有固定答案。 18.我喜欢与众不同的事情。 19.我常想要知道别人正在想什么。 20.我喜欢故事或电视节目所描写的事。 21.我喜欢和朋友在一起,和他们分享我的想法。 22.如果一本故事书的最后一页被撕掉了,我就自己编造一个故事,把结果补上去。 23.我长大后,想做一些别人从没想过的事。 24.尝试新的游戏和活动,是一件有趣的事。 25.我不喜欢受太多规则限制。

创造力的测量

创造力的测量 (一)创造力的测量性质 创造力的测量性质创造力测量是能力测量的一种。创造力测量与智力测量的显著区别是:创造力测量着重测量未知的、新颖独特的答案与解决问题的方式;智力测量则着重测量唯一的、确定的答案与解决问题的方式。 (二)创造力的测量方法 1.实验法。创造力测量的实验法,就是通过在实验室中,给被试设置特定的问题情境,并控制和改变一些条件,要求被试作出反应,根据反应结果来测量其创造力的一种研究方法。下面就是用实验法来研究功能固着对人创造性地解决问题的影响。 梅尔(N. R. F. Mairer, 1933)设计了一个“两绳相接问题”,即由于两条系在天花板上的绳子相距太远,不能直接相接起来,除非在一个绳子下端系上一个重物,将此绳子与重物当作钟摆,这样就能把两条绳子连接起来。 图5.3 梅尔的两根绳子问题 后来,伯彻和罗兵维茨(Birch & Rabinowitz, 1951)采用梅尔的问题,实验者在墙角上放置有电开关和接电器两种物体,这两种物体可以作为重物来用。实验条件共分三种;条件一,要求被试事先使用电开关;条件二,要求被试事先使用接电器;条件三(控制组),要求被试事先不使用电开关和接电器。实验结果如表5.3所示。

表5.3 功能的固着与灵活性实验 从上表可以看出,在条件一下,即事先用过电开关的被试,在实际解决问题时,只有22%的人用电开关,78%的人用接电器。在条件二下,即事先用过接电器的被试在实际解决问题时,无一人使用接电器。而控制组的被试在解决问题时,使用两种物体的机会是相等的,即都是50%。这表明物体的通常用途,阻碍了人们想到其新的用途。 2.评定法。评定法就是由专家按照一定的标准对学生的创造力作出评价的一种方法。根据评价的结果,可以测量出学生创造力的高低。 使用评定法来测量创造力,一般包括如下过程:首先是形成一个评定专家小组;其次是每个专家对学生的创造力进行评价;最后综合每个专家的评价形成一个总的评定。 在运用评定法来测量学生的创造力时,只有注意如下几点才能保证该方法的质量。第一,专家小组成员的确立应有针对性,也就是说,如果是评定学生美术方法的创造力,专家小组成员应由美术方面的专家组成;如果是评定学生音乐方面的创造力,专家小组成员应由音乐方面的专家组成。第二,每个专家独立评定,各个专家之间不能相互讨论。第三,在评定之前确立评定的标准,即确定从哪几个维度来进行评定。 有人(艾曼贝尔,1987)在测量儿童的艺术创造力时就应用了这一方法。评定小组成员由7名具有五年以上艺术工作经验的人员组成,被试是22名7-11岁的女孩子。实验中,实验者首先提供给每个儿童相同的材料,即不同形状和颜色的薄纸、胶水和一张白纸板。要求儿童用这些材料在白纸上创造出一个新奇图案。在所有的孩子完成后,将这些作品给7 名专家,让他们作出评定。结果表明不同专家对同一作品的评价一致性非常高。 3.测验法。测验法就是通过心理测验的方式对学生的创造力进行测量的一种方法。这种方法一般是采用标准化的题目,按规定的程序对学生进行测量,然后将测量结果与常模比较,最后根据比较结果对学生的创造力发展水平作出评价。 著名的创造力测验有如下几种。 (1)南加利福尼亚大学创造力测验 该测验主要是根据吉尔福德(1959)的智力三维结构模型中的发散思维部分编制的,所以又称吉尔福德创造力测验,公布于 1960年。该测验适合于初中水平的学生使用。 南加利福尼亚大学创造力测验共由14个分测验组成,它们是语词流畅性、观念流畅性、联系流畅性、表达流畅性、非常用途、解释比喻、用途测验,故事命名、事件后果的估计,

全自动生化分析仪的校准

全自动生化分析仪的校准 一、校准的重要性和必要性 首先必须明确生化分析仪不论如何先进,它还是一个比较器,它测试出来的标本结果是随着标准限的设置不同而变化的。所以,在卫生部临床检验中心拟定的“临床实验室(定量测定)室内质控工作指南”中明确指出“对测定标本的仪器一定要求进行校准,校准时要选择合适的(配套的)标准品/校准品;如有可能,校准品应能溯源到参考方法或/和参考物质;对不同的分析项目要根据其特性确立各自的校准频率。”这说明校准仪器是室内质控的重要部分,强调了校准工作的必要性和重要性,同时指出了校准的方法和要求。 二、确立测定系统的概念 对于一个临床检测项目,如果所用方法的测定原理、试剂、仪器、校准品中任何一个不同,都可能得到不同的测定结果。因此,测定系统包括测定原理、试剂、仪器、校准品四要素。如果我们想要得到准确可靠的测定结果,而该结果又具有与国际、国内其他实验室的可比性,应该自己建立一个标准测定系统。在全自动生化分析仪上使用配套的试剂和标准品,即日立7170使用宝灵曼的试剂和校准品(c.f.a.s),在贝克曼CX-7生化分析仪上使用贝克曼的试剂和校准品等。各仪器厂家均有自己的标准测定系统。对于校准品不能乱用,如绝对不能用贝克曼的校准品校准日立生化仪,同样也不能用宝灵曼的校准品去校准贝克曼生化仪。 三、校准品和质控品 校准品(Calibration materials)含有已知量的欲测物,用以校准该测定方法的数值,它与该方法及试剂、仪器是相关联的。校准品的作用是为了减少或消除仪器、试剂等造成的系统误差。因此最好为人血清基质,以减少基质效应造成的误差。 质控品(Control materials)只用于和待测标本同时测定的,为了控制标本的测定误差,因此要求保存时间十分稳定。前者是校准其值而后者是控制误差用的。 四、校准前准备 1 .了解灯泡已使用多久?检查飘移是否合乎要求; 2.检查比色杯的清洁及磨损情况?必要时进行更换; 3.用清洁剂泡洗管道 4.测定仪器的精密度及线性是否达到仪器性能要求? 五、定值质控血清是否可以校准仪器? 我们在相同条件下,同时用五个进口产品,每家两种不同浓度的定值如TP、ALB、UREA、UA、ALP、GGT、CK、HBDH、LD、AMY 等,在日立7170A上进行测定(用常规试剂),详见质控

创造力测试完整版(带评分标准)(尤金

创造力测试 美国普林斯顿创造才能研究公司总经理、心理学家尤金?劳德塞,根据几年来对善于思考、富有创造力的男女科学家、工程师和企业经理的个性和品质的研究,设计了下面这套简单的试题,试验者只要10分钟的时间,就可知道自己是否具有创造才能。当然,如果你需要慎重考虑一下,适当延长试验时间也不会影响测试效果。 试验时,只要在每一句话后面,用一个字母表示你同意或不同意: (1)同意的用A,不同意的用C,吃不准或不知道的用B; (2)回答必须准确、忠实,不要猜测。 实验试题: 1.我不做盲目的事,也就是我总是有的放矢,用正确的步骤来解决每一个具体问题。 A B C 2.我认为,只提出问题而不想获得答案,无疑是浪费时间。 A B C 3.无论什么事情,要我发生兴趣,总比别人困难。 A B C 4.我认为,合乎逻辑的、循序渐进的方法,是解决问题的最好方法。 A B C 5.有时,我在小组里发表的意见,似乎使一些人感到厌烦。 A B C 6.我花费大量时间来考虑别人是怎样看待我的。 A B C 7.做自认为是正确的事情,比力求博得别人的赞同要重要得多。 A B C 8.我不尊重那些做事似乎没有把握的人。 A B C 9.我需要的刺激和兴趣比别人多。 A B C 10.我知道如何在考验面前,保持自己的内心镇静。 A B C

11.我能坚持很长一段时间解决难题。 A B C 12.有时我对事情过于热心。 A B C 13.在无事可做时,我倒常常想出好主意。 A B C 14.在解决问题时,我常常单凭直觉来判断“正确”或“错误”。 A B C 15.在解决问题时,我分析问题较快,而综合所收集的资料较慢。 A B C 16.有时我打破常规去做我原来并未想到要做的事。 A B C 17.我有收藏癖。 A B C 18.幻想促进了我许多重要计划的提出。 A B C 19.我喜欢客观而又理性的人。 A B C 20.如果要我在本职工作之外的两种职业中选择一种,我宁愿当一个实际工作者,而不当探索者。 A B C 21.我能与自己的同事或同行们很好地相处。 A B C 22.我有较高的审美感。 A B C 23.在我的一生中,我一直在追求着名利和地位。 A B C 24.我喜欢坚信自己的结论的人。 A B C 25.灵感与获得成功无关。 A B C 。

(整理)常用晶体管参数表

常用晶体管参数表 索引晶体管型号反压Vbeo 电流Icm 功率Pcm 放大系数特征频率管子类型9011 50V 0.03A 0.4W * 150MHZ NPN 9012 50V 0.5A 0.6W * * PNP 9013 50V 0.5A 0.6W * * NPN 9014 50V 0.1A 0.4W * 150MHZ NPN 9015 50V 0.1A 0.4W * 150MHZ PNP 9018 30V 0.05A 0.4W * 1GHZ NPN 2N2222 60V 0.8A 0.5W 45 * NPN 2N2369 40V 0.5A 0.3W * 800MHZ NPN 2N2907 60V 0.6A 0.4W 200 * NPN 2N3055 100V 15A 115W * * NPN2N 2N3440 450V 1A 1W * * NPN 2N3773 160V 16A 150W * * NPN 2N5401 160V 0.6A 0.6W * 100MHZ PNP 2N5551 160V 0.6A 0.6W * 100MHZ NPN 2N5685 60V 50A 300W * * NPN 2N6277 180V 50A 300W * * NPN 2N6678 650V 15A 175W * * NPN 2SA 2SA1009 350V 2A 15W ** PNP 2SA1012Y 60V 5A 25W ** PNP 2SA1013R 160V 1A 0.9W * * PNP 2SA1015R 50V 0.15A 0.4W * * PNP 2SA1018 150V 0.07A 0.75W * * PNP 2SA1020 50V 2A 0.9W * * PNP 2SA1123 150V 0.05A 0.75W * * PNP 2SA1162 50V 0.15A 0.15W * * PNP 2SA1175H 50V 0.1A 0.3W * * PNP 2SA1216 180V 17A 200W * * PNP 2SA1265 140V 10A 30W ** PNP 2SA1266Y 50V 0.15A 0.4W * * PNP 2SA1295 230V 17A 200W * * PNP 2SA1299 50V 0.5A 0.3W * * PNP 2SA1300 20V 2A 0.7W * * PNP 2SA1301 200V 10A 100W * * PNP 2SA1302 200V 15A 150W * * PNP 2SA1304 150V 1.5A 25W ** PNP 2SA1309A 25V 0.1A 0.3W * * PNP 2SA1358 120V 1A 10W *120MHZ PNP 2SA1390 35V 0.5A 0.3W * * PNP 2SA1444 100V 1.5A 2W * 80MHZ PNP 2SA1494 200V 17A 200W * 20MHZ PNP 2SA1516 180V 12A 130W * 25MHZ PNP

常用自动生化分析方法种类及临床应用和校准

常用自动生化分析方法种类及临床应用和校准 (一)分析方法的种类 1.一点法又称为终点法。指加入标本和试剂后,当反应达到一定阶段时(或终点)测定吸光度值计算待测物质浓度的方法。主要用于总蛋白,白蛋白,血糖,甘油三酯和胆固醇等项目测定。 2.二点法在反应过程中测定两个时间点的吸光度(A1、A2),利用二者差值(A1—A2)计算待测物质浓度的方法。二点法又称为二点终点法,使用双试剂进行分析时多彩二点法,加入标本和第一试剂测定一次吸光度,加入第二试剂(启动试剂)待反应完成时测定另一次吸光度,两者的差值可消除标本内源性物质的干扰。主要用于总胆红素、直接胆红素、甘油三酯和胆固醇等项目的测定。 3.二点速率法在反应过程中选择适当两点测定其吸光度,计算出单位时间(常为分钟)内吸光度的变化量,通过吸光度的变化量计算待测物质浓度的方法。二点速率分析法主要用于Jaffe法测定肌酐。 4.速率A法根据酶促反应的特点,当底物浓度足够大,当酶促反应达到最大时,单位时间内底物的消耗量和产物的生成量维持不变,即单位时间内吸光度变化值不变,在酶促反应的零级反应区内选取两个时间点,计算出每分钟吸光度变化,吸光度变化值同酶活性大小成正比。速率A法常应用于酶活性的测定。 5.其它不常用的分析方法有三波长法和速率B法,主要用于在一个反应杯中进行两个物质测定。 以上各种分析可同时选用双波长法。双波长法指在测定时选择主波长和副波长,主波长用于待测物质的测定,而副波长用于消除可能产生的干扰。副波长选择原则为干扰物质在主波长和副波长的光吸收相等,而等测物质有最小的吸光度,两波长不能相隔太近,一般副波长大开主波长。 (二)自动分析仪的校准方法 1.K因素法又称为标准化法或线性法,当物质的浓度和吸光度成比例变化时选用该法。原理是用校准品进行反应,测定吸光度的大小或变化量,根据朗伯—比尔定理(浓度=因素*吸光度)计算出因素(K)的大小,测定待测物质吸光

工程测量学的研究与发展

工程测量学的研究与发展 一、学科地位和研究应用领域 1. 学科定义 工程测量学是研究地球空间(地面、地下、水下、空中)中具体几何实体的测量描绘和抽象几何实体的测设实现的理论方法和技术的一门应用性学科。它主要以建筑工程、机器和设备为研究服务对象。 2. 学科地位 测绘科学和技术(或称测绘学)是一门具有悠久历史和现代发展的一级学科。该学科无论怎样发展,服务领域无论怎样拓宽,与其他学科的交叉无论怎样增多或加强,学科无论出现怎样的综合和细分,学科名称无论怎样改变,学科的本质和特点都不会改变。总的来说,整个学科的二级学科仍应作如下划分:①大地测量学(包括天文、几何、物理、卫星和海洋大地测量); ②工程测量学(含近景摄影测量和矿山测量);③航空摄影测量与遥感学;④地图制图学;⑤不动产地籍与土地整理。 3. 研究应用领域 目前国内把工程建设有关的工程测量按勘测设计、施工建设和运行管理三个阶段划分;也有按行业划分成:线路(铁路、公路等)工程测量、水利工程测量、桥隧工程测量、建筑工程测量、矿山测量、海洋工程测量、军事工程测量、三维工业测量等,几乎每一行业和工程测量都有相应的著书或教材。由Hennecke,Mueller,Werner 3个德国人所编著的工程测量学,主要按下述内容进行划分和编写:①测量仪器和方法; ②线路、铁路、公路建设测量;③高层建筑测量;④地下建筑测量;⑤安全监测;⑥机器和设备测量。 由于工程测量的研究应用领域非常广泛,发展变化也很快,因此写书十分困难。目前国内外没有一本全面涉及工程测量学理论、技术、方法和实际应用的现代专著或教材。国际测量师联合会(FIG)的第六委员会称作工程测量委员会,过去它下设4个工作组:测量方法和限差;土石方计算;变形测量;地下工程测量。此外还设了一个特别组:变形分析与解释。现在,下设了6个工作组和2个专题组。6个工作组是:大型

创造力测试

常见的有《南加利福尼亚大学测验》、《芝加哥大学创造力测验》、《沃利奇-凯根测验》等。常见的创造力人格测量工具有《发现才能团体问卷》、《你属于哪一类人》、《探究兴趣问卷》。《发现才能团体问卷》是瑞姆(S.Rimm)和戴维斯(G.Davis)分别于1976年和1980年研究出来的一种测试方法。其使用 世界上最早的创造力测试 Posted by Ray | Posted in 创造力小故事| Posted on 18-10-2010 标签:创造力, 故事, 测试 X 您好!如果您是第一次光临意享博客, 您可能需要订阅本站的内容 以及更新. Power ed by WP Gr ee t B ox Word Pres s Pl ugin 美国心理学家吉尔福特先生被很多人奉为现代创造力之父,这主要是源自50年前的一次心理学会议。当时吉尔福特发表了一篇令人耳目一新的关于创造力的讲话,引发了人们对于创造力的极大兴趣,也让更多人开始思考这个话题。 其妙的是,在二战期间吉尔福特是一名心理学家,被指派设计一组性格测试,用来测试飞行员的性格,以便挑选出最适合作为轰炸机飞行员的人选。于是,吉尔福特从智力方面入手,设计了一套评分系统和面试规则,用来挑选飞行员。而另他难以接受的是,空军机构指派了一名没有任何心理学知识的人来帮助他筛选。尽管这个人是一名退役的飞行员,但吉尔福特并不信任这位帮手。

最终,吉尔福特与退役飞行员从候选人中选择了截然不同的人选。结果之后的统计评审结果显示,吉尔福特挑选的飞行员被击落毙命的人数,要比退役飞行员所挑选的飞行员多出很多。吉尔福特非常沮丧,认为自己将如此之多的飞行员送上绝路,甚至一度想要自杀。不过最终他再次振作起来,决心要找出退役飞行员挑选的人选比较出色的原因。 经过交流,吉尔福特得知,这位退役飞行员问了所有候选人这样一个问题:“在飞越德国领空时,你不幸遭遇德军的防空炮火攻击,这时你该怎么办?”随后,所有回答“我会上升飞到更高的高度”的候选人,都被退役飞行员淘汰,而那些违反飞行条例准则的人,例如回答“我可能我会俯冲”或“我会‘之’字形路线飞行”或“我会掉头避开火力”的人,却通过了面试。遵循飞行条例准则的飞行员,其行为是很容易被预测的,这就是吉尔福特失败的原因。德国人非常清楚,美国轰炸机遭遇炮火后会提升飞行高度,因此德国的战斗机早就等候在云端,将美国飞机轻松击落。这让吉尔福特发现,那些具有创造力的飞行员会违反飞行准则,但是他们比那些可能更聪明、但受制于规则的飞行员更有可能成为幸存者。 吉尔福特突然意识到,一个人具有独特思维和富有创造力,也是一种才华,于是他决定进一步去研究这种才华。他要找出那些能够灵机一动就想出绝妙办法、具有创造力的人,作为飞行员的合适人选。 随后,吉尔福特为美国空军设计了世界上第一套创造力测试方法。问题之一:就是让候选人尽可能多的说出砖的用途。问题虽然简单,但

常用场效应管和晶体管参数大全

常用场效应管和晶体管参数大全 常用场效应管和晶体管参数大全 IRFU020 50V 15A 42W * * NMOS场效应IRFPG42 1000V 4A 150W * * NMOS场效应IRFPF40 900V 4.7A 150W * * NMOS场效应IRFP9240 200V 12A 150W * * PMOS场效应IRFP9140 100V 19A 150W * * PMOS场效应IRFP460 500V 20A 250W * * NMOS场效应IRFP450 500V 14A 180W * * NMOS场效应IRFP440 500V 8A 150W * * NMOS场效应IRFP353 350V 14A 180W * * NMOS场效应IRFP350 400V 16A 180W * * NMOS场效应IRFP340 400V 10A 150W * * NMOS场效应IRFP250 200V 33A 180W * * NMOS场效应IRFP240 200V 19A 150W * * NMOS场效应IRFP150 100V 40A 180W * * NMOS场效应IRFP140 100V 30A 150W * * NMOS场效应IRFP054 60V 65A 180W * * NMOS场效应IRFI744 400V 4A 32W * * NMOS场效应IRFI730 400V 4A 32W * * NMOS场效应IRFD9120 100V 1A 1W * * NMOS场效应IRFD123 80V 1.1A 1W * * NMOS场效应IRFD120 100V 1.3A 1W * * NMOS场效应IRFD113 60V 0.8A 1W * * NMOS场效应IRFBE30 800V 2.8A 75W * * NMOS场效应IRFBC40 600V 6.2A 125W * * NMOS场效应IRFBC30 600V 3.6A 74W * * NMOS场效应IRFBC20 600V 2.5A 50W * * NMOS场效应IRFS9630 200V 6.5A 75W * * PMOS场效应IRF9630 200V 6.5A 75W * * PMOS场效应IRF9610 200V 1A 20W * * PMOS场效应IRF9541 60V 19A 125W * * PMOS场效应IRF9531 60V 12A 75W * * PMOS场效应IRF9530 100V 12A 75W * * PMOS场效应IRF840 500V 8A 125W * * NMOS场效应IRF830 500V 4.5A 75W * * NMOS场效应IRF740 400V 10A 125W * * NMOS场效应IRF730 400V 5.5A 75W * * NMOS场效应IRF720 400V 3.3A 50W * * NMOS场效应IRF640 200V 18A 125W * * NMOS场效应IRF630 200V 9A 75W * * NMOS场效应IRF610 200V 3.3A 43W * * NMOS场效应IRF541 80V 28A 150W * * NMOS场效应

相关文档
最新文档