2015届高考物理大二轮专题复习训练:专题八 第1课时 热 学

2015届高考物理大二轮专题复习训练:专题八  第1课时 热 学
2015届高考物理大二轮专题复习训练:专题八  第1课时 热 学

专题定位本专题用三课时分别解决选修3-3、3-4、3-5中高频考查问题,高考对本部分内容考查的重点和热点有:

选修3-3:①分子大小的估算;②对分子动理论内容的理解;③物态变化中的能量问题;④气体实验定律的理解和简单计算;⑤固、液、气三态的微观解释和理解;⑥热力学定律的理解和简单计算;⑦用油膜法估测分子大小等内容.

选修3-4:①波的图象;②波长、波速和频率及其相互关系;③光的折射及全反射;④光的干涉、衍射及双缝干涉实验;⑤简谐运动的规律及振动图象;⑥电磁波的有关性质.

选修3-5:①动量守恒定律及其应用;②原子的能级跃迁;③原子核的衰变规律;④核反应方程的书写;⑤质量亏损和核能的计算;⑥原子物理部分的物理学史和α、β、γ三种射线的特点及应用等.

应考策略选修3-3内容琐碎、考查点多,复习中应以四块知识(分子动理论、从微观角度分析固体、液体、气体的性质、气体实验定律、热力学定律)为主干,梳理出知识点,进行理解性记忆.

选修3-4内容复习时,应加强对基本概念和规律的理解,抓住波的传播和图象、光的折射定律这两条主线,强化训练、提高对典型问题的分析能力.

选修3-5涉及的知识点多,而且多是科技前沿的知识,题目新颖,但难度不大,因此应加强对基本概念和规律的理解,抓住动量守恒定律和核反应两条主线,强化典型题目的训练,提高分析综合题目的能力.

第1课时热学

1.分子动理论

(1)分子大小

①阿伏加德罗常数:N A =6.02×1023 mol -

1. ②分子体积:V 0=V mol N A

(占有空间的体积). ③分子质量:m 0=M mol N A

. ④油膜法估测分子的直径:d =V S

. (2)分子热运动的实验基础:扩散现象和布朗运动.

①扩散现象特点:温度越高,扩散越快. ②布朗运动特点:液体内固体小颗粒永不停息、无规则的运动,颗粒越小、温度越高,运动越剧烈.

(3)分子间的相互作用力和分子势能 ①分子力:分子间引力与斥力的合力.分子间距离增大,引力和斥力均减小;分子间距离减小,引力和斥力均增大,但斥力总比引力变化得快. ②分子势能:分子力做正功,分子势能减小;分子力做负功,分子势能增大;当分子间距为r 0(分子间的距离为r 0时,分子间作用的合力为0)时,分子势能最小.

2.固体和液体

(1)晶体和非晶体的分子结构不同,表现出的物理性质不同.晶体具有确定的熔点.单晶体表现出各向异性,多晶体和非晶体表现出各向同性.晶体和非晶体在适当的条件下可以相互转化.

(2)液晶是一种特殊的物质状态,所处的状态介于固态和液态之间.液晶具有流动性,在光学、电学物理性质上表现出各向异性.

(3)液体的表面张力使液体表面具有收缩到最小的趋势,表面张力的方向跟液面相切.

3.气体实验定律

(1)等温变化:pV =C 或p 1V 1=p 2V 2;

(2)等容变化:p T =C 或p 1T 1=p 2T 2

; (3)等压变化:V T =C 或V 1T 1=V 2T 2

; (4)理想气体状态方程:pV T =C 或p 1V 1T 1=p 2V 2T 2

. 4.热力学定律

(1)物体内能变化的判定:温度变化引起分子平均动能的变化;体积变化,分子间的分子力做功,引起分子势能的变化.

(2)热力学第一定律

①公式:ΔU =W +Q ;

②符号规定:外界对系统做功,W >0;系统对外界做功,W <0.系统从外界吸收热量,Q >0;系

统向外界放出热量,Q<0.系统内能增加,ΔU>0;系统内能减少,ΔU<0.

(3)热力学第二定律

热力学第二定律的表述:①热量不能自发地从低温物体传到高温物体(按热传递的方向性表述).②不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响(按机械能和内能转化的方向性表述).③第二类永动机是不可能制成的.

两种微观模型

(1)球体模型(适用于固体、液体):一个分子的体积V0=4

3

π(

d

2)

3=1

6

πd3,d为分子的直径.

(2)立方体模型(适用于气体):一个分子占据的平均空间V0=d3,d为分子间的距离.

考向1热学基本规律与微观量计算的组合

例1(2014·江苏·12A)一种海浪发电机的气室如图1所示.工作时,活塞随海浪上升或下降,改变气室中空气的压强,从而驱动进气阀门和出气阀门打开或关闭.气室先后经历吸入、压缩和排出空气的过程,推动出气口处的装置发电.气室中的空气可视为理想气体.

图1

(1)下列对理想气体的理解,正确的有________.

A.理想气体实际上并不存在,只是一种理想模型

B.只要气体压强不是很高就可视为理想气体

C.一定质量的某种理想气体的内能与温度、体积都有关

D.在任何温度、任何压强下,理想气体都遵循气体实验定律

(2)压缩过程中,两个阀门均关闭.若此过程中,气室中的气体与外界无热量交换,内能增加了3.4×104J,则该气体的分子平均动能________(选填“增大”、“减小”或“不变”),活塞对该气体所做的功________(选填“大于”、“小于”或“等于”)3.4×104J.

(3)上述过程中,气体刚被压缩时的温度为27℃,体积为0.224 m3,压强为1个标准大气压.已知1 mol气体在1个标准大气压、0℃时的体积为22.4 L,阿伏加德罗常数N A=6.02×1023mol -1.计算此时气室中气体的分子数.(计算结果保留一位有效数字)

解析(1)理想气体是一种理想化模型,温度不太低、压强不太大的实际气体可视为理想气体;

只有理想气体才遵循气体的实验定律,选项A 、D 正确,选项B 错误.一定质量的理想气体的内能完全由温度决定,与体积无关,选项C 错误.

(2)因为理想气体的内能完全由温度决定,当气体的内能增加时,气体的温度升高,温度是分子平均动能的标志,则气体分子的平均动能增大.

根据热力学第一定律,ΔU =Q +W ,由于Q =0,所以W =ΔU =3.4×104J.

(3)设气体在标准状态时的体积为V 1,等压过程为:

V T =V 1T 1

气体物质的量为:n =V 1V 0

,且分子数为:N =nN A 解得N =VT 1V 0T

N A 代入数据得N ≈5×1024个

答案 (1)AD (2)增大 等于 (3)5×1024 以题说法 解答微观量计算问题时应注意:

(1)固体、液体分子可认为紧靠在一起,可看成球体或立方体;气体分子只能按立方体模型计算所占的空间.

(2)阿伏加德罗常数是联系宏观与微观的桥梁,计算时要注意抓住与其相关的三个量:摩尔质量、摩尔体积和物质的量.

(1)1 mol 任何气体在标准状况下的体积都是22.4 L .试估算温度为0℃,压强为

2个标准大气压时单位体积内气体分子数目为____________(结果保留两位有效数字).

(2)下列说法正确的是( )

A .液晶具有流动性,光学性质各向异性

B .气体的压强是由气体分子间斥力产生的

C .液体表面层分子间距离大于液体内部分子间距离,所以液体表面存在表面张力

D .气球等温膨胀,球内气体一定向外放热

答案 (1)5.4×1025 (2)AC

解析 (1)设0 ℃,p 1=2 atm ,气体的体积V 1=1 m 3,在标准状态下,压强p 2=1 atm ,气体的体积为V 2

由p 1V 1=p 2V 2得:V 2=p 1V 1p 2=2×11

m 3=2 m 3 设气体的分子个数为N ,则N =V 222.4×10

-3N A =5.4×1025个. (2)气体压强是由大量气体分子频繁撞击器壁而产生的,B 错误;气体等温膨胀说明:W <0,ΔU =0,由ΔU =W +Q 可知,Q >0,球内气体吸热,D 错误.

考向2 热学基本规律与气体实验定律的组合

例2 (2014·新课标Ⅱ·33)(1)下列说法正确的是________.(填正确答案标号)

A .悬浮在水中的花粉的布朗运动反映了花粉分子的热运动

B .空中的小雨滴呈球形是水的表面张力作用的结果

C .彩色液晶显示器利用了液晶的光学性质具有各向异性的特点

D .高原地区水的沸点较低,这是高原地区温度较低的缘故

E .干湿泡湿度计的湿泡显示的温度低于干泡显示的温度,这是湿泡外纱布中的水蒸发吸热的结果

(2)如图2所示,两气缸A 、B 粗细均匀,等高且内壁光滑,其下部由体积可忽略的细管连通;A 的直径是B 的2倍,A 上端封闭,B 上端与大气连通;两气缸除A 顶部导热外,其余部分均绝热,两气缸中各有一厚度可忽略的绝热轻活塞a 、b ,活塞下方充有氮气,活塞a 上方充有氧气.当大气压为p 0、外界和气缸内气体温度均为7℃且平衡时,活塞a 离气缸顶的距离是气

缸高度的14

,活塞b 在气缸正中间.

图2

(ⅰ)现通过电阻丝缓慢加热氮气,当活塞b 恰好升至顶部时,求氮气的温度;

(ⅱ)继续缓慢加热,使活塞a 上升,当活塞a 上升的距离是气缸高度的116

时,求氧气的压强. 解析 (1)悬浮在水中的花粉的布朗运动反映了水分子的无规则热运动,选项A 错误;空中的小雨滴呈球形是水的表面张力作用的结果,选项B 正确;彩色液晶显示器利用了液晶的光学性质具有各向异性的特点,选项C 正确;高原地区水的沸点较低,是由于高原地区气压低,故水的沸点也较低,选项D 错误;干湿泡湿度计的湿泡显示的温度低于干泡显示的温度,是由于湿泡外纱布中的水蒸发吸收热量,从而温度会降低的缘故,选项E 正确.

(2)(ⅰ)活塞b 升至顶部的过程中,活塞a 不动,活塞a 、b 下方的氮气经历等压变化,设气缸A 的容积为V 0,A 、B 两气缸内氮气初态的体积为V 1,温度为T 1,末态体积为V 2,温度为T 2,

按题意,气缸B 的容积为V 04,由题给数据及盖—吕萨克定律有:V 1=34V 0+12×V 04=78

V 0① V 2=34V 0+V 04

=V 0② V 1T 1=V 2T 2

③ 由①②③式及所给的数据可得:T 2=320 K ④

(ⅱ)活塞b 升至顶部后,由于继续缓慢加热,活塞a 开始向上移动,直至活塞上升的距离是气

缸高度的116

时,活塞a 上方的氧气经历等温变化,设氧气初态的体积为V 1′,压强为p 1′,末态体积为V 2′,压强为p 2′,由所给数据及玻意耳定律可得

V 1′=14V 0,p 1′=p 0,V 2′=316

V 0⑤ p 1′V 1′=p 2′V 2′⑥

由⑤⑥式可得:p 2′=43

p 0 答案 (1)BCE (2)(ⅰ)320 K (ⅱ)43

p 0 以题说法 应用气体实验定律的三个重点环节:

(1)正确选择研究对象:对于变质量问题要保证研究质量不变的部分;对于多部分气体问题,要各部分独立研究,各部分之间一般通过压强找联系.

(2)列出各状态的参量:气体在初、末状态,往往会有两个(或三个)参量发生变化,把这些状态参量罗列出来会比较准确、快速的找到规律.

(3)认清变化过程:准确分析变化过程以便正确选用气体实验定律.

(1)下列说法中正确的是________.

A .理想气体温度升高时,分子的平均动能一定增大

B .一定质量的理想气体,体积减小时,单位体积的分子数增多,气体的压强一定增大

C .压缩处于绝热容器中的一定质量的理想气体,其内能一定增加

D .当分子间的相互作用力为引力时,其分子间没有斥力

E .分子a 从远处靠近不动的分子b 的过程中,当它们相互作用力为零时,分子a 的动能一定最大

(2)如图3所示,U 形管两臂粗细不等,开口向上,右端封闭的粗管横截面积是开口的细管的三倍,管中装入水银,大气压为76 cmHg.左端开口管中水银面到管口距离为11 cm ,且水银面比封闭管内高4 cm ,封闭管内空气柱长为11 cm.现在开口端用小活塞封住,并缓慢推动活塞,使两管液面相平,推动过程中两管的气体温度始终不变,试求:

图3

①粗管中气体的最终压强;

②活塞推动的距离.

答案(1)ACE(2)①88 cmHg②4.5 cm

解析(1)一定质量的理想气体,体积减小时,由于温度变化不确定,则气体的压强不一定增大,故B错误;分子间同时存在引力和斥力,二力同时存在,故D错误.故选A、C、E. (2)①设左管横截面积为S,则右管横截面积为3S,以右管封闭气体为研究对象.

初状态p1=80 cmHg,V1=11×3S=33S,两管液面相平时,Sh1=3Sh2,h1+h2=4 cm,解得h2=1 cm,此时右端封闭管内空气柱长l=10 cm,V2=10×3S=30S

气体做等温变化有p1V1=p2V2

即80×33S=p2×30S

p2=88 cmHg.

②以左管被活塞封闭气体为研究对象

p1′=76 cmHg,V1′=11S,p2=p2′=88 cmHg

气体做等温变化有p1′V1′=p2′V2′

解得V2′=9.5S

活塞推动的距离为L=11 cm+3 cm-9.5 cm=4.5 cm

(1)下列说法中正确的是________.

A.当分子间的距离增大时,分子间的斥力减小,引力增大

B.一定质量的理想气体对外界做功时,它的内能有可能增加

C.有些单晶体沿不同方向的光学性质不同

D.从单一热源吸收热量,使之全部变成功而不产生其他影响是不可能的

图4

(2)有一导热气缸,气缸内用质量为m的活塞密封一定质量的理想气体,活塞的横截面积为S,大气压强为p0.如图4所示,气缸水平放置时,活塞距离气缸底部的距离为L,现将气缸竖立起来,活塞将缓慢下降,不计活塞与气缸间的摩擦,不计气缸周围环境温度的变化,求活塞静止时活塞到气缸底部的距离.

答案(1)BCD(2)p0S

p0S+mg

L

解析(2)缸内密闭的气体经历的是等温过程,设气缸竖直放置后,活塞静止时活塞到气缸底部的距离为h.

气缸水平放置时,对活塞有:

p1S-p0S=0

气缸竖直放置后活塞静止时,对活塞有:

p 2S -mg -p 0S =0

据玻意耳定律有:p 1LS =p 2hS

解得:h =p 0S p 0S +mg

L 考向3 气体实验定律与热力学定律的综合问题分析技巧

例3 如图5所示,一圆柱形绝热容器竖直放置,通过绝热活塞封闭着摄氏温度为t 1的理想气体,活塞的质量为m ,横截面积为S ,与容器底部相距h 1.现通过电热丝给气体加热一段时间,使其温度上升到t 2(摄氏温度),若这段时间内气体吸收的热量为Q ,已知大气压强为p 0,重力加速度为g ,求:

图5

(1)气体的压强;

(2)这段时间内活塞上升的距离是多少?

(3)这段时间内气体的内能如何变化,变化了多少?

解析 (1)对活塞受力分析,由平衡条件得p =p 0+mg S

(2)设温度为t 2时活塞与容器底部相距h 2.

由盖—吕萨克定律V 1T 1=V 2T 2

得: h 1S 273+t 1=h 2S 273+t 2

由此得:h 2=h 1(273+t 2)273+t 1

活塞上升的距离为Δh =h 2-h 1=h 1(t 2-t 1)273+t 1

. (3)气体对外做功为W =pS ·Δh =(p 0+mg S )·S ·h 1(t 2-t 1)273+t 1=(p 0S +mg )h 1(t 2-t 1)273+t 1

由热力学第一定律可知

ΔU =Q -W =Q -(p 0S +mg )h 1(t 2-t 1)273+t 1

. 答案 (1)p 0+mg S (2)h 1(t 2-t 1)273+t 1

(3)Q -(p 0S +mg )h 1(t 2-t 1)273+t 1

以题说法这类综合问题对热力学第一定律的考查有定性判断和定量计算两种方式:

(1)定性判断.利用题中的条件和符号法则对W、Q、ΔU中的其中两个量做出准确的符号判断,然后利用ΔU=W+Q对第三个量做出判断.

(2)定量计算.一般计算等压变化过程做的功,即W=p·ΔV,然后结合其他条件,利用ΔU=W +Q进行相关计算.

注意符号正负的规定.若研究对象为气体,对气体做功的正负由气体体积的变化决定.气体体积增大,气体对外界做功,W<0;气体的体积减小,外界对气体做功,W>0.若气体吸热,Q >0;若气体对外放热,Q<0.

(2014·山东·36)(1)如图6所示,内壁光滑、导热良好的气缸中用活塞封闭有一定质量的理想气体.当环境温度升高时,缸内气体________.(双选,填正确答案标号)

图6

a.内能增加

b.对外做功

c.压强增大

d.分子间的引力和斥力都增大

(2)一种水下重物打捞方法的工作原理如图7所示.将一质量M=3×103kg、体积V0=0.5 m3的重物捆绑在开口朝下的浮筒上.向浮筒内充入一定量的气体,开始时筒内液面到水面的距离h1=40 m,筒内气体体积V1=1 m3.在拉力作用下浮筒缓慢上升,当筒内液面到水面的距离为h2时,拉力减为零,此时筒内气体体积为V2,随后浮筒和重物自动上浮.求V2和h2.

(已知大气压强p0=1×105 Pa,水的密度ρ=1×103 kg/m3,重力加速度的大小g=10 m/s2.不计水温变化,筒内气体质量不变且可视为理想气体,浮筒质量和筒壁厚度可忽略.)

图7

答案(1)ab(2)2.5 m310 m

解析(2)当F=0时,由平衡条件得

Mg=ρg(V0+V2)①

代入数据得V2=2.5 m3②

设筒内气体初态、末态的压强分别为p1、p2,由题意得

p1=p0+ρgh1③

p2=p0+ρgh2④

在此过程中筒内气体温度和质量不变,由玻意耳定律得

p1V1=p2V2⑤

联立②③④⑤式,代入数据得h2=10 m

(限时:30分钟)

题组1热学基本规律与微观量计算的组合

1.常温水中用氧化钛晶体和铂作电极,在太阳光照射下分解水,可以从两电极上分别获得氢气和氧气.已知分解1 mol的水可得到1 mol氢气,1 mol氢气完全燃烧可以放出2.858×105 J 的能量,阿伏加德罗常数N A=6.02×1023 mol-1,水的摩尔质量为1.8×10-2 kg/mol.则2 g水分解后得到氢气分子总数为________个;2 g水分解后得到的氢气完全燃烧所放出的能量为________ J.(均保留两位有效数字)

答案 6.7×1022 3.2×104

解析由题意知,2 g氢气分子的物质的量为2

18mol,故氢分子的总数为

1

9

×6.02×1023≈6.7×1022个;2 g水分解后得到的氢气完全燃烧所放出的能量Q=1 9

×2.858×105 J≈3.2×104 J.

2.(1)下列说法正确的是________.

A.气体扩散现象表明气体分子间存在斥力

B.对于同一理想气体,温度越高,分子平均动能越大

C.热量总是自发的从分子平均动能大的物体传递到分子平均动能小的物体

D.用活塞压缩气缸内的理想气体,对气体做了3.0×105 J的功,同时气体向外界放出1.5×105 J的热量,则气体内能增加了1.5×105 J

E.在阳光照射下,可以观察到教室空气中飞舞的灰尘做无规则运动,灰尘的运动属于布朗运动

(2)已知在标准状况下水蒸气的摩尔体积为V,密度为ρ,每个水分子的质量为m,体积为V1,请写出阿伏加德罗常数的表达式N A=________(用题中的字母表示).已知阿伏加德罗常数N A =6.0×1023 mol-1,标准状况下水蒸气摩尔体积V=22.4 L,现有标准状况下10 L水蒸气,所含的分子数为____________.

答案 (1)BCD (2)ρV m

2.7×1023 题组2 热学基本规律与气体实验定律的组合

3.(1)如图1所示,气缸和活塞与外界均无热交换,中间有一个固定的导热性良好的隔板,封闭着两部分气体A 和B ,活塞处于静止平衡状态.现通过电热丝对气体A 加热一段时间,后来活塞达到新的平衡,不计气体分子势能,不计活塞与气缸壁间的摩擦,大气压强保持不变,则下列判断正确的是________.

图1

A .气体A 吸热,内能增加

B .气体B 吸热,对外做功,内能不变

C .气体A 分子的平均动能增大

D .气体A 和气体B 内每个分子的动能都增大

E .气体B 分子单位时间内对器壁单位面积碰撞总次数减少

图2

(2)如图2所示,在左端封闭右端开口的U 形管中用水银柱封一段空气柱L ,当空气柱的温度为14℃时,左臂水银柱的长度h 1=10 cm ,右臂水银柱长度h 2=7 cm ,空气柱长度L =15 cm ;将U 形管左臂放入100℃水中且状态稳定时,左臂水银柱的长度变为7 cm.求出当时的大气压强(单位用cmHg).

答案 (1)ACE (2)75.25 cmHg

解析 (2)对于封闭的空气柱(设大气压强为p 0)

初态:p 1=p 0+h 2-h 1=(p 0-3) cmHg

V 1=LS =15S (cm 3)

T 1=287 K

末态:h 1′=7 cm ,h 2′=10 cm ,

故压强p 2=p 0+h 2′-h 1′=(p 0+3) cmHg

V 2=(L +3)S =18S (cm 3)

T 2=373 K

由理想气体状态方程得p 1V 1T 1=p 2V 2T 2

解得大气压强为p 0≈75.25 cmHg.

4.(1)关于一定量的理想气体,下列说法正确的是( )

A .气体分子的体积是指每个气体分子平均所占有的空间体积

B .只要能增加气体分子热运动的剧烈程度,气体的温度就可以升高

C .在完全失重的情况下,气体对容器壁的压强为零

D .气体从外界吸收热量,其内能不一定增加

E .气体在等压膨胀过程中温度一定升高

图3

(2)“拔火罐”是一种中医疗法,为了探究“火罐”的“吸力”,某人设计了如图3所示的实验.圆柱状气缸(横截面积为S )被固定在铁架台上,轻质活塞通过细线与重物m 相连,将一团燃烧的轻质酒精棉球从缸底的开关K 处扔到气缸内,酒精棉球熄灭时(设此时缸内温度为t ℃)关闭开关K ,此时活塞下的细线刚好拉直且拉力为零,而这时活塞距缸底为L .由于气缸传热

良好,重物被吸起,最后重物稳定在距地面L 10处.已知环境温度为27℃不变,mg S 与16

大气压强相当,气缸内的气体可看作理想气体,求t 值.

答案 (1)BDE (2)127 ℃

解析 (2)当气缸内温度为t ℃时,气缸内封闭气体Ⅰ状态:

p 1=p 0

V 1=LS

T 1=(273+t ) K

当气缸内温度为27 ℃时,气缸内封闭气体Ⅱ状态:

p 2=p 0-mg S =56

p 0 V 2=910

LS T 2=300 K

由理想气体状态方程:p 1V 1T 1=p 2V 2T 2

T 1=400 K

故t =127 ℃

5.(1)下列判断正确的有________.

A .液晶既具有液体的流动性,又像某些晶体那样具有光学各向异性

B .气体经等压升温后,内能增大,外界需要对气体做功

C .当分子力表现为斥力时,分子力和分子势能总随分子间距离的减小而减小

D .小昆虫能在水面上跑动,是因为水的表面张力的缘故

E .第二类永动机不能实现,并不是因为违背了能量守恒定律

(2)如图4所示,一个密闭的导热气缸里用质量为M 、横截面积为S 的活塞封闭了A 、B 两部分气体,此时上下气体体积相等,当把气缸倒置稳定后A 、B 两部分气体体积比为1∶2,重力加速度为g ,求后来B 气体的压强.

图4

答案 (1)ADE (2)5Mg 2S

解析 (2)由初始平衡状态:p A S +Mg =p B S

由最终平衡状态:p A ′S -Mg =p B ′S

设气缸总容积为V ,因为气缸导热,气体做等温变化,有:

p A ·V 2=p A ′·V 3 p B ·V 2=p B ′·2V 3

联立上面的方程,得p B ′=5Mg 2S

6.(1)下列说法中正确的是________.

A .凡是具有规则几何形状的物体一定是单晶体,单晶体和多晶体都具有各向异性

B .液体表面层内分子分布比液体内部稀疏,所以分子间作用力表现为引力

C .布朗运动是悬浮在液体中的固体分子的运动,它间接说明分子永不停息地做无规则运动

D .满足能量守恒定律的客观过程并不都是可以自发地进行的

E .一定量的气体,在压强不变时,分子每秒对器壁单位面积平均碰撞次数随着温度降低而增加

(2)如图5是粗细均匀一端封闭一端开口的U 形玻璃管,大气压强p 0=76 cmHg ,当两管水银面相平时,左管被封闭气柱长L 1=20 cm 、温度t 1=31 ℃,求:

图5

①当气柱温度t 2等于多少℃时,左管中气柱长为21 cm?

②保持t 1温度不变,为使左管气柱变为19 cm ,应在右管加入多长的水银柱?

答案 (1)BDE (2)①54.6 ℃ ②6 cm

解析 (2)①当左管气柱变为21 cm 时,右管水银面将比左管水银面高2 cm ,

此时左管气柱压强:p 2=(76+2) cmHg =78 cmHg

研究左管气柱由一定质量理想气体状态方程:

p 1V 1T 1=p 2V 2T 2

其中p 1=p 0=76 cmHg ,V 1=20S ,T 1=(273+31) K =304 K ,V 2=21S ,T 2=(273 +t 2)K 代入数据解得:t 2=54.6 ℃

②设左管气柱变为19 cm 时压强为p 3,由题意可知左管气柱做等温变化,根据玻意耳定律:p 1V 1=p 3V 3

得76 cmHg ×20S =p 3×19S

解得:p 3=80 cmHg

右管加入的水银柱长:h =80 cm -76 cm +(20-19)×2 cm =6 cm

题组3 气体实验定律与热力学定律的综合问题分析技巧

7.(2014·重庆·10)(1)重庆出租车常以天然气作为燃料,加气站储气罐中天然气的温度随气温升高的过程中,若储气罐内气体体积及质量均不变,则罐内气体(可视为理想气体)( )

A .压强增大,内能减小

B .吸收热量,内能增大

C .压强减小,分子平均动能增大

D .对外做功,分子平均动能减小

(2)图6为一种减震垫,上面布满了圆柱状薄膜气泡,每个气泡内充满体积为V 0、压强为p 0的气体.当平板状物品平放在气泡上时,气泡被压缩.若气泡内气体可视为理想气体,其温度保持不变.当体积压缩到V 时气泡与物品接触面的面积为S .求此时每个气泡内气体对接触面处薄膜的压力.

图6

答案 (1)B (2)p 0V 0V

S 解析 (1)储气罐内气体体积及质量均不变,温度升高,气体从外界吸收热量,分子平均动能

增大,内能增大,压强变大.因气体体积不变,故外界对气体不做功,只有B 正确.

(2)取气泡内的气体研究,设压缩后气泡内气体压强为p ,由玻意耳定律得p 0V 0=pV ,则p =p 0V 0V

,故气体对接触面处薄膜的压力F =pS =p 0V 0V

S . 8.如图7所示,一个绝热的气缸竖直放置,内有一个绝热且光滑的活塞,中间有一个固定的导热性良好的隔板,隔板将气缸分成两部分,分别密封着两部分理想气体A 和B .活塞的质量为m ,横截面积为S ,与隔板相距h .现通过电热丝缓慢加热气体,当A 气体吸收热量Q 时,活塞上升了h ,此时气体的温度为T 1.已知大气压强为p 0,重力加速度为g .

图7

(1)加热过程中,若A 气体内能增加了ΔE 1,求B 气体内能增加量ΔE 2.

(2)现停止对气体加热,同时在活塞上缓慢添加砂粒,当活塞恰好回到原来的位置时A 气体的温度为T 2.求此时添加砂粒的总质量Δm .

答案 (1)Q -(mg +p 0S )h -ΔE 1

(2)(2T 2T 1-1)(Sp 0g

+m ) 解析 (1)B 气体对外做功

W =pSh =(p 0S +mg )h

由热力学第一定律得ΔE 1+ΔE 2=Q -W

解得ΔE 2=Q -(mg +p 0S )h -ΔE 1

(2)B 气体的初状态

p 1=p 0+mg S

V 1=2hS T 1 B 气体末状态

p 2=p 0+(m +Δm )g S

V 2=hS T 2 由气态方程p 1V 1T 1=p 2V 2T 2

解得Δm =(2T 2T 1-1)(Sp 0g

+m ) 9.(2014·河北保定二模)(1)下列说法正确的是________.

A .温度是分子平均动能的标志,物体温度越高,则物体的分子平均动能越大

B .布朗运动是指在显微镜下观察到的组成悬浮颗粒的固体分子的无规则运动

C .一定质量的理想气体,若气体的压强和体积都不变,其内能也一定不变

D .气体的温度每升高1 K 所吸收的热量与气体经历的过程有关

E .当分子间的距离大于平衡位置的间距r 0时,分子间的距离越大,分子势能越小

(2)如图8所示,一竖直放置的气缸用一质量为m 的活塞封闭一定质量的理想气体,活塞横截

面积为S ,气体最初的体积为V 0,最初的压强为p 02

,气缸内壁光滑且缸壁导热性能良好.开始活塞被固定在A 处,打开固定螺栓K ,活塞下落,经过足够长时间后,活塞停在B 处,设周围环境温度保持不变,已知大气压强为p 0,重力加速度为g ,若一定质量理想气体的内能仅由温度决定.求:

图8

①活塞停在B 点时缸内封闭气体的体积V ;

②整个过程中通过缸壁传递的热量Q .

答案 (1)ACD (2)①p 0V 0S 2(p 0S +mg )

②(p 02+mg S )V 0 解析 (2)①设活塞在B 处时封闭气体的压强为p ,活塞处于平衡状态:

p 0S +mg =pS

解得:p =p 0+mg S

由玻意耳定律:p 0V 02

=pV 解得:V =p 0V 0S 2(p 0S +mg )

②从活塞下落至活塞重新平衡的过程,设活塞下降的高度为h :h =V 0-V S

则外界对气体做功W :W =(p 0S +mg )h

气体温度相同,内能不变,由热力学第一定律可知:Q =W

联立解得:Q =(p 02+mg S

)V 0 10.(1)下列说法正确的是________.

A .单晶体和多晶体在物理性质上均表现为各向异性

B .墨水滴入水中出现扩散现象,这是分子无规则运动的结果

C .不可能从单一热源吸收热量全部用来做功

D .缝衣针漂浮在水面上是表面张力作用的结果

(2)如图9所示,有一光滑的导热性能良好的活塞C 将容器分成A 、B 两室,A 室体积为V 0,B 室的体积是A 室的两倍,A 、B 两室分别有一定质量的理想气体.A 室上连有一U 形管(U 形管内气体的体积忽略不计),当两边水银柱高度差为19 cm 时,两室气体的温度均为T 1=300 K .若气体的温度缓慢变化,当U 形管两边水银柱等高时,求:(外界大气压等于76 cm 汞柱)

图9

①此时气体的温度为多少?

②在这个过程中B 气体的内能如何变化?做功情况如何?从外界吸热还是放热?(不需说明理由)

答案 (1)BD

(2)①240 K ②在这个过程中B 气体的内能减少;外界对气体不做功,气体对外界放热 解析 (2)①由题意知,气体的状态参量为:

初状态

对A 气体:

V A =V 0,T A =T 1=300 K ,p A =p 0+h =95 cmHg

对B 气体:

V B =2V 0,T B =T 1=300 K ,p B =p 0+h =95 cmHg

末状态

对A 气体:

V A ′=V ,p A ′=p 0=76 cmHg

对B 气体:

V B ′=3V 0-V ,p B ′=p 0=76 cmHg

由理想气体状态方程得:

对A 气体:(p 0+h )V 0T 1=p 0V T

对B 气体:2(p 0+h )V 0T 1=p 0(3V 0-V )T

代入数据解得:T =240 K ,V =V 0

②气体B 末状态的体积:V B ′=3V 0-V =2V 0=V B ,

由于整个过程中气体B 初末状态体积不变,外界对气体不做功,温度降低,内能减小,由热力学第一定律可知,气体对外放出热量.

高考物理真题热学

高考物理真题——选修3-3 热学 2016年 (全国新课标I 卷,33)(15分) (1)(5分)关于热力学定律,下列说确的是__________。(填正确答案标号。选对1个得2分,选对2个得4分,选对3个得5分,每选错1个扣3分,最低得分为0分) A .气体吸热后温度一定升高 B .对气体做功可以改变其能 C .理想气体等压膨胀过程一定放热 D .热量不可能自发地从低温物体传到高温物体 E .如果两个系统分别与状态确定的第三个系统达到热平衡,那么这两个系统彼此之间也必定达到热平衡 (2)(10分)在水下气泡空气的压强大于气泡表面外侧水的压强,两压强差p ?与气泡半径r 之间的关系为2p r σ?=,其中0.070N/m σ=。现让水下10m 处一半径为0.50cm 的气泡缓慢上升。已知大气压强50 1.010Pa p =?,水的密度 331.010kg /m ρ=?,重力加速度大小210m/s g =。 (i)求在水下10m 处气泡外的压强差; (ii)忽略水温随水深的变化,在气泡上升到十分接近水面时,求气泡的半径与其原来半径之比的近似值。 (全国新课标II 卷,33)(15分) ⑴(5分)一定量的理想气体从状态a 开始,经历等温或 等压过程ab 、bc 、cd 、da 回到原状态,其p -T 图像如图 所示.其中对角线ac 的延长线过原点O .下列判断正确 的是 . A .气体在a 、c 两状态的体积相等 B .气体在状态a 时的能大于它在状态c 时的能 C .在过程cd 中气体向外界放出的热量大于外界对气体做的功 D .在过程da 中气体从外界吸收的热量小于气体对外界做的功 E .在过程bc 中外界对气体做的功等于在过程da 中气体对外界做的功 ⑵(10分)一氧气瓶的容积为30.08m ,开始时瓶中氧气的压强为20个大气压.某实验室每天消耗1个大气压的氧气30.36m .当氧气瓶中的压强降低到2个大气压时,需重新充气.若氧气的温度保持不变,求这瓶氧气重新充气前可供该实

高三物理二轮复习专题一

专题定位 本专题解决的是受力分析和共点力平衡问题.高考对本专题内容的考查主要有:①对各种性质力特点的理解;②共点力作用下平衡条件的应用.考查的主要物理思想和方法有:①整体法和隔离法;②假设法;③合成法;④正交分解法;⑤矢量三角形法;⑥相似三角形法;⑦等效思想;⑧分解思想. 应考策略 深刻理解各种性质力的特点.熟练掌握分析共点力平衡问题的各种方法. 1. 弹力 (1)大小:弹簧在弹性限度内,弹力的大小可由胡克定律F =kx 计算;一般情况下物体间相互作用的弹力可由平衡条件或牛顿运动定律来求解. (2)方向:一般垂直于接触面(或切面)指向形变恢复的方向;绳的拉力沿绳指向绳收缩的方向. 2. 摩擦力 (1)大小:滑动摩擦力F f =μF N ,与接触面的面积无关;静摩擦力0

(1)大小:F洛=q v B,此式只适用于B⊥v的情况.当B∥v时F洛=0. (2)方向:用左手定则判断,洛伦兹力垂直于B、v决定的平面,洛伦兹力总不做功.6.共点力的平衡 (1)平衡状态:静止或匀速直线运动. (2)平衡条件:F合=0或F x=0,F y=0. (3)常用推论:①若物体受n个作用力而处于平衡状态,则其中任意一个力与其余(n-1) 个力的合力大小相等、方向相反.②若三个共点力的合力为零,则表示这三个力的有向线段首尾相接组成一个封闭三角形. 1.处理平衡问题的基本思路:确定平衡状态(加速度为零)→巧选研究对象(整体法或隔离法)→受力分析→建立平衡方程→求解或作讨论. 2.常用的方法 (1)在判断弹力或摩擦力是否存在以及确定方向时常用假设法. (2)求解平衡问题时常用二力平衡法、矢量三角形法、正交分解法、相似三角形法、图解 法等. 3.带电体的平衡问题仍然满足平衡条件,只是要注意准确分析场力——电场力、安培力或洛伦兹力. 4.如果带电粒子在重力场、电场和磁场三者组成的复合场中做直线运动,则一定是匀速直线运动,因为F洛⊥v. 题型1整体法和隔离法在受力分析中的应用 例1如图1所示,固定在水平地面上的物体P,左侧是光滑圆弧面,一根轻绳跨过物体P 顶点上的小滑轮,一端系有质量为m=4 kg的小球,小球与圆心连线跟水平方向的夹角θ=60°,绳的另一端水平连接物块3,三个物块重均为50 N,作用在物块2的水平力F=20 N,整个系统平衡,g=10 m/s2,则以下正确的是() 图1 A.1和2之间的摩擦力是20 N B.2和3之间的摩擦力是20 N

(完整word版)初中物理热学专题训练试题(完整版)

初中物理热学专题训练试题 1:炒菜时,碘盐不宜与油同时加热.这是因为碘在高温下很容易() A.凝华 B.汽化 C.升华D.熔化 2:我国幅员辽阔,相同纬度上内陆地区的昼夜温差比沿海地区大,其主要原因是()A.地势的高低不同 B.水和陆地的比热容不同 C.日照的时间不同D.离太阳的远近不同 3:下列现象属于液化的是() A、夏天,从冰箱中取出的鸡蛋会“冒汗” B、寒冷的冬天,室外冰冻的衣服也会干 C、盘子里的水,过一段时间会变少 D、杯子中的冰块,过一段时间也会变成水4:下列说法中正确的是() A、萝卜放在泡菜坛里会变咸,这个现象说明分子是运动的 B两块表面干净铅块压紧后会结合在一起,说明分子间存在斥力 C锯木头时锯条会发热是通过热传递使锯条的内能发生了改变 D、太阳能热水器是通过做功把光能转化为内能的 5:一箱汽油用掉一半后,关于它的说法下列正确的是() A、它的密度变为原来的一半 B、它的比热容变为原来的一半 C、它的热值变为原来的一半 D、它的质量变为原来的一半 6:关于温度、热量和内能,下列说法正确的是() A、物体的温度越高,所含热量越多 B、温度高的物体,内能一定大 C、0℃的冰块,内能一定为零 D、温度相同的两物体间不会发生热传递 7(简答)有些宾馆、饭店的洗手间里装有感应式热风干手器,洗手后把手放在它的下方,热烘烘的气体就会吹出来,一会儿手就被烘干了.它能很快把手烘干的理由是: 8:在下列过程中,利用热传递改变物体内能的是() A. 钻木取火 B. 用锯锯木板,锯条发热 C. 用热水袋取暖 D. 两手互相搓搓,觉得暖和 9:下列物态变化过程中,属于吸热过程的是() A. 春天来到,积雪熔化 B. 夏天的清晨,草地上出现露珠 C. 秋天的早晨,出现大雾 D. 初冬的清晨,地面上出现白霜 10:下列措施中,能使蒸发变快的是() A. 给盛有水的杯子加盖 B. 把新鲜的蔬菜装入塑料袋中 C. 把湿衣服放在通风的地方 D把蔬菜用保鲜膜包好后放入冰箱 11::物态变化现象在一年四季中随处可见,下列关于这些现象说法正确的是 A.春天的早晨经常出现大雾,这是汽化现象,要吸收热量 B.夏天用干冰给运输中的食品降温,这是应用干冰熔化吸热 C.秋天的早晨花草上出现的小露珠这是液化现象要吸收热量 D.初冬的早晨地面上会出现白白的一层霜,这是凝华现象 12: 关于四冲程汽油机的工作过程有以下几种说法中正确的是 ①在做功冲程中,是机械能转化为内能②在做功冲程中,是内能转化为机械能 ③只有做功冲程是燃气对外做功④汽油机和柴油机的点火方式相同 A.只有②③ B.只有①③ C.只有②④ D.只有 ②③④ 13: 木炭的热值是,完全燃烧500g木炭,能放出____________J的热量。做饭时,厨 房里弥漫着饭菜的香味,这是____________现象。 14.汽车急刹车时轮胎与地面摩擦常有冒烟现象,在此过程中_____能转化成___能。 15.甲乙两物体他们升高的温度之比是2:1,吸收的热量之比是4:1,若它们是用同 种材料制成,则甲乙两物体的质量之比是________。 16.把手放进冰水混合物中,手接触到冰时总感觉到比水凉,是因为______________。 17.对于某些高烧的病人,有时医生要在病人身上涂擦酒精,这是利用酒精___________ 时,要向人体_______的道理。 18.吸烟有害健康,在空气不流动的房间里,只要有一个人吸烟,整个房间都弥漫着 烟味,这是由于__________________的现象。所以为了保护环境,为了你和他人的健 康,请不要吸烟。 19.在我国实施的“西气东输”工程中,西部的优质天然气被输送到缺乏能源的东部 地区,天然气与煤相比,从热学的角度分析它的突出优点是______________;从环保 角度分析它突出的优点是__________________________________。 20.写出下列物态变化的名称: (1)深秋,夜间下霜:_______; (2)潮湿的天气,自来水管“出汗”________; (3)出炉的钢水变成钢锭:_________; (4)日光灯管用久两端变黑______________。 21.木炭的热值是3.4×107J/kg,6kg木炭完全燃烧可放出____________的热量。若 炉中的木炭只剩下0.1kg,它的热值是_______________。 22.一杯水将其到掉一半,则他的比热容__________________。 23.据报载,阿根廷科技人员发明了一项果蔬脱水新方法──升华脱水法。其原理很 简单:先将水果蔬菜冷冻后,放进低压的环境中,使冰直接从固态变为_______态。 24.火药在子弹壳里燃烧生成的高温。高压的燃气推出弹头后温度______,这是用 ________方法使燃气内能_________,将燃气的一部分内能转化为弹头的_____能。 24.设计一个简单实验,“验证蒸发的快慢与液体的表面积有关”,写出实验过程和观 察到的现象。 25.某校师生在学习了能量的转化与守恒以后,组织兴趣小组调查学校几种炉灶的能 量利用效率。他们发现学校的一个老式锅炉烧水时,经常冒出大量的黑烟,且烧水时 锅炉周围的温度很高,锅炉的效率很低。 (1)请你根据调查中发现的现象分析此锅炉效率低的原因,并提出相应的改进措施。 (2)要减少烟气带走的热量,可以采用什么办法? 26.物理兴趣小组设计一个实验:用500克20度的水放入烧杯中,用煤油炉给烧杯中 的水加热,并用温度计测量温度,当水温升至80度时,消耗10克煤油。 (1)计算水吸收了多少热量? (2)能用水吸收的热量来计算煤油的热值吗?说明理由。 28.有两位同学制作了一台简易太阳能热水器。在夏天,这台热水器可将60kg水的温 度由20°C升高至70°C,如果由电热水器产生这些热量,则要消耗多少kW。h的电 能? 29.用煤气灶既方便又环保。一般的煤气灶正常工作时,15分钟可使4千克、23℃ 的水沸腾,该城市水的沸点为93℃。求: (1)水吸收的热量; (2)若煤气灶放出的热量65%被水吸收,煤气灶实际放出的热量。

高考物理二轮复习重点及策略

2019高考物理二轮复习重点及策略 一、考点网络化、系统化 通过知识网络结构理解知识内部的联系。因为高考试题近年来突出对物理思想本质、物理模型及知识内部逻辑关系的考察。 例如学习电场这章知识,必须要建立知识网络图,从电场力和电场能这两个角度去理解并掌握。 二、重视错题 错题和不会做的题,往往是考生知识的盲区、物理思想方法的盲区、解题思路的盲区。所以考生要认真应对高三复习以来的错题,问问自己为什么错了,错在哪儿,今后怎么避免这些错误。分析错题可以帮助考生提高复习效率、巩固复习成果,反思失败教训,及时在高考前发现和修补知识与技能方面的漏洞。充分重视通过考试考生出现的知识漏洞和对过程和方法分析的重要性。很多学生不够重视错题本的建立,都是在最后关头才想起要去做这件事情,北京新东方一对一的老师都是非常重视同时也要求学生一定要建立错题本,在大考对错题本进行复习,这样的效果和收获是很多同学所意想不到的。 三、跳出题海,突出高频考点 例如电磁感应、牛二定律、电学实验、交流电等,每年会考到,这些考点就要深层次的去挖掘并掌握。不要盲区的去大

量做题,通过典型例题来掌握解题思路和答题技巧;重视“物理过程与方法”;重视数学思想方法在物理学中的应用;通过一题多问,一题多变,一题多解,多题归一,全面提升分析问题和解决问题的能力;通过定量规范、有序的训练来提高应试能力。 四、提升解题能力 1、强化选择题的训练 注重对基础知识和基本概念的考查,在选择题上的失手将使部分考生在高考中输在起跑线上,因为选择题共48分。所以北京新东方中小学一对一盛海清老师老师建议同学们一定要做到会的题目都拿到分数,不错过。 2、加强对过程与方法的训练,提高解决综合问题的应试能力 2019年北京高考命题将加大落实考查“知识与技能”、“过程与方法”的力度,更加注重通过对解题过程和物理思维方法的考查来甄别考生的综合能力。分析是综合的基础,分析物理运动过程、条件、特征,要有分析的方法,主要有:定性分析、定量分析、因果分析、条件分析、结构功能分析等。在处理复杂物理问题是一般要定性分析可能情景、再定量分析确定物理情景、运动条件、运动特征。 如物体的平衡问题在力学部分出现,学生往往不会感到困难,在电场中出现就增加了难度,更容易出现问题的是在电

高考物理热学问题创新题

热学问题 1.下列说法中正确的是: A.水和酒精混合后总体积减小主要说明分子间有空隙 B.温度升高,布朗运动及扩散现象将加剧 C.由水的摩尔体积和每个水分子的体积可估算出阿伏伽德罗常数 D.物体的体积越大,物体内分子势能就越大 2.关于分子力,下列说法中正确的是: A.碎玻璃不能拼合在一起,说明分子间斥力起作用 B.将两块铅压紧以后能连成一块,说明分子间存在引力 C.水和酒精混合后的体积小于原来体积之和,说明分子间存在引力 D.固体很难被拉伸,也很难被压缩,说明分子间既有引力又有斥力 3.如图所示是医院给病人输液的部分装置的示意图.在输液的 过程中: A.A瓶中的药液先用完 B.B瓶中的药液先用完 C.随着液面下降,A瓶内C处气体压强逐渐增大 D.随着液面下降.A瓶内C处气体压强保持不变 4.一定质量的理想气体经历如图所示的四个过程,下面说 法正确的是: A.a→b过程中气体密度和分子平均动能都增大 B.b→c过程.压强增大,气体温度升高 C.c→d过程,压强减小,温度升高 D.d→a过程,压强减小,温度降低 5.在标准状态下,水蒸气分子间的距离大约是水分子直径的: A.1.1×104倍 B.1.1×103倍 C.1.1 ×102倍 D.11倍 6.如图所示.气缸内充满压强为P0、密度为ρ0的空气,缸 底有一空心小球,其质量为m,半径为r.气缸内活塞面 积为S,质量为M,活塞在气缸内可无摩擦地上下自由移 动,为了使小球离开缸底。在活塞上至少需加的外力大小 为(不计温度变化). 7.如图所示,喷洒农药用的某种喷雾器,其药液桶的总 容积为15L,装入药液后,封闭在药液上方的空气体 积为1.5 L,打气简活塞每次可以打进1 atm、250cm3 的空气,若要使气体压强增大到6atm,应打气多少次? 如果压强达到6 atm时停止打气,并开始向外喷药,那 么当喷雾器不能再向外喷药时,筒内剩下的药液还有

高中物理3-3《热学》计算题专项练习题(含答案)

高中物理3-3《热学》计算题专项练习题(含 答案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

热学计算题(二) 1.如图所示,一根长L=100cm、一端封闭的细玻璃管开口向上竖直放置,管内用h=25cm长的水银柱封闭了一段长L1=30cm的空气柱.已知大气压强为75cmHg,玻璃管周围环境温度为27℃.求: Ⅰ.若将玻璃管缓慢倒转至开口向下,玻璃管中气柱将变成多长? Ⅱ.若使玻璃管开口水平放置,缓慢升高管内气体温度,温度最高升高到多少摄氏度时,管内水银不能溢出. 2.如图所示,两端开口、粗细均匀的长直U形玻璃管内由两段水银柱封闭着长度为15cm的空气柱,气体温度为300K时,空气柱在U形管的左侧. (i)若保持气体的温度不变,从左侧开口处缓慢地注入25cm长的水银柱,管内的空气柱长为多少? (ii)为了使空气柱的长度恢复到15cm,且回到原位置,可以向U形管内再注入一些水银,并改变气体的温度,应从哪一侧注入长度为多少的水银柱气体的温度变为多少(大气压强P0=75cmHg,图中标注的长度单位均为cm) 3.如图所示,U形管两臂粗细不等,开口向上,右端封闭的粗管横截面积是开口的细管的三倍,管中装入水银,大气压为76cmHg。左端开口管中水银面到管口距离为11cm,且水银面比封闭管内高4cm,封闭管内空气柱长为11cm。现在开口端用小活塞封住,并缓慢推动活塞,使两管液面相平,推动过程中两管的气体温度始终不变,试求: ①粗管中气体的最终压强;②活塞推动的距离。

4.如图所示,内径粗细均匀的U形管竖直放置在温度为7℃的环境中,左侧管上端开口,并用轻质活塞封闭有长l1=14cm,的理想气体,右侧管上端封闭,管上部有长l2=24cm的理想气体,左右两管内水银面高度差h=6cm,若把该装置移至温度恒为27℃的房间中(依然竖直放置),大气压强恒为p0=76cmHg,不计活塞与管壁间的摩擦,分别求活塞再次平衡时左、右两侧管中气体的长度. 5.如图所示,开口向上竖直放置的内壁光滑气缸,其侧壁是绝热的,底部导热,内有两个质量均为m的密闭活塞,活塞A导热,活塞B绝热,将缸内理想气体分成Ⅰ、Ⅱ两部分.初状态整个装置静止不动且处于平衡状态,Ⅰ、Ⅱ两部分气体的高度均为l0,温度为T0.设外界大气压强为P0保持不变,活塞横截面积为S,且mg=P0S,环境温度保持不变.求:在活塞A上逐渐添加铁砂,当铁砂质量等于2m时,两活塞在某位置重新处于平衡,活塞B下降的高度. 6.如图,在固定的气缸A和B中分别用活塞封闭一定质量的理想气体,活塞面积之比为S A:S B=1:2,两活塞以穿过B的底部的刚性细杆相连,可沿水平方向无摩擦滑动.两个气缸都不漏气.初始时,A、B 中气体的体积皆为V0,温度皆为T0=300K.A中气体压强P A=1.5P0,P0是气缸外的大气压强.现对A加热,使其中气体的体积增大V0/4,,温度升到某一温度T.同时保持B中气体的温度不变.求此时A中气体压强(用P 0表示结果)和温度(用热力学温标表达)

高考物理二轮复习攻略

2019高考物理二轮复习攻略 物理在绝大多数的省份既是会考科目又是高考科目,在高中的学习中占有重要地位。以下是查字典物理网为大家整理的高考物理二轮复习攻略,希望可以解决您所遇到的相关问题,加油,查字典物理网一直陪伴您。 一、知识板块:以小综合为主,不求大而全 第一轮复习基本上都是以单元,章节为体系。侧重全面弄懂基本概念,透彻理解基本规律,熟练运用基本公式解答个体类物理问题。综合应用程度不太高。实际上知识与技能的综合是客观存在,所以,我们因势利导把知识进行适当综合。但要循序渐进,以小综合为主,不求一步到位的大而全。 所谓小综合,就是大家一眼就能审视出一个问题涉及那两个知识点,可能用到那几个物理公式的。譬如: 1.力和物体的运动综合问题(力的平衡、直线运动、牛顿定律、平抛运动、匀速圆周运动); 2.万有引力定律的应用问题; 3.机械振动和机械波; 4.动能定理与机械能守恒定律; 5.气体性质问题; 6.带电粒子在电场中的直线运动(匀速、匀加速、匀减速、往复运动),曲线运动(类平抛、圆周运动); 7.直流电路分析问题:①动态分析,②故障分析;

8.电磁感应中的综合问题:①导体棒切割磁感线(单根、双根、U形导轨、形导轨、O形导轨;导轨水平放置、竖直放置、倾斜放置等各种情景),②闭合线圈穿过有界磁场(线圈有正方形、矩形、三角形、圆形、梯形等),(有边界单个磁场,有分界衔接磁场)、(线圈有竖直方向穿过、水平方向穿过等各种情景); 9.物理实验专题复习:①应用性实验,②设计性实验,③探究性实验; 10.物理信息给予题(新概念、新规律、数据、表格、图像等) 11.联系实际新情景题(文字描述新情景、图字展现新情景、建物理模型,重物理过程分析); 12.常用的几种物理思维方法; 13.物理学习中常用的物理方法。 二、方法板块:以基本方法为主,不哗众取宠 分析研究和解答物理问题,离不开物理思想,这种思想直觉反应是思维方法。平时学习中大家已经接触和应用过多种方法,但仍是比较零乱的。因此,有必要适当地加于归纳总结,能知道一些方法的适用情况,区别普遍性与特殊性。其中要以基本方法为主。即必须掌握,熟练应用且平时用得最多的几种方法。 如受力分析法:从中判断研究对象受几个力,是恒力还是变力;过程分析法:能把较复杂的物理问题分析成若干简单的

高考物理二轮复习 专题十 高考物理模型

2013年高考二轮复习专题十 高考物理模型 方法概述 高考命题以《考试大纲》为依据,考查学生对高中物理知识的掌握情况,体现了“知识与技能、过程与方法并重”的高中物理学习思想.每年各地的高考题为了避免雷同而千变万化、多姿多彩,但又总有一些共性,这些共性可粗略地总结如下: (1)选择题中一般都包含3~4道关于振动与波、原子物理、光学、热学的试题. (2)实验题以考查电路、电学测量为主,两道实验小题中出一道较新颖的设计性实验题的可能性较大. (3)试卷中下列常见的物理模型出现的概率较大:斜面问题、叠加体模型(包含子弹射入)、带电粒子的加速与偏转、天体问题(圆周运动)、轻绳(轻杆)连接体模型、传送带问题、含弹簧的连接体模型. 高考中常出现的物理模型中,有些问题在高考中变化较大,或者在前面专题中已有较全面的论述,在这里就不再论述和例举.斜面问题、叠加体模型、含弹簧的连接体模型等在高考中的地位特别重要,本专题就这几类模型进行归纳总结和强化训练;传送带问题在高考中出现的概率也较大,而且解题思路独特,本专题也略加论述. 热点、重点、难点 一、斜面问题 在每年各地的高考卷中几乎都有关于斜面模型的试题.在前面的复习中,我们对这一模型的例举和训练也比较多,遇到这类问题时,以下结论可以帮助大家更好、更快地理清解题思路和选择解题方法. 1.自由释放的滑块能在斜面上(如图9-1 甲所示)匀速下滑时,m与M之间的动摩擦因数μ=g tan θ. 图9-1甲 2.自由释放的滑块在斜面上(如图9-1 甲所示): (1)静止或匀速下滑时,斜面M对水平地面的静摩擦力为零; (2)加速下滑时,斜面对水平地面的静摩擦力水平向右; (3)减速下滑时,斜面对水平地面的静摩擦力水平向左. 3.自由释放的滑块在斜面上(如图9-1乙所示)匀速下滑时,M对水平地面的静摩擦力为零,这一过程中再在m上加上任何方向的作用力,(在m停止前)M对水平地面的静摩擦力依然为零(见一轮书中的方法概述). 图9-1乙 4.悬挂有物体的小车在斜面上滑行(如图9-2所示): 图9-2

2020年高考物理复习练习:热力学定律与能量守恒定律

限时规范训练(单独成册) [基础巩固题组](20分钟,50分) 1.(多选)下列说法中正确的是() A.热量可以从低温物体传递到高温物体 B.科技的进步可以使内燃机成为单一热源的热机 C.能源危机指能量的过度消耗导致自然界的能量不断减少 D.功可以全部转化为热量,热量也可以全部转化为功 E.第一类永动机违背能量守恒定律,第二类永动机不违背能量守恒定律 解析:选ADE.空调可以使热量从低温物体向高温物体传递,A 对;由热力学第二定律知不可能有单一热源的热机,B错;能量是守恒的,C错;功可以全部转化为热量,根据热力学第二定律可知,在外界的影响下,热量也可以全部转化为功,D对;第一类永动机违背能量守恒定律,第二类永动机违背热力学第二定律,但不违背能量守恒定律,E对. 2.(多选)关于气体的内能,下列说法正确的是() A.质量和温度都相同的气体,内能一定相同 B.气体温度不变,整体运动速度越大,其内能越大 C.气体被压缩时,内能可能不变 D.一定量的某种理想气体的内能只与温度有关 E.一定量的某种理想气体在等压膨胀过程中,内能一定增加解析:选CDE.质量和温度都相同的气体,虽然分子平均动能相

同,但是不同的气体,其摩尔质量不同,即分子个数不同,所以分子总动能不一定相同,A 错误;宏观运动和微观运动没有关系,所以宏 观运动速度大,内能不一定大,B 错误;根据pV T =C 可知,如果等温 压缩,则内能不变;等压膨胀,温度增大,内能一定增大,C 、E 正确;理想气体的分子势能为零,所以一定量的某种理想气体的内能只与分子平均动能有关,而分子平均动能和温度有关,D 正确. 3.(多选)根据热力学定律,下列说法正确的是( ) A .第二类永动机违反能量守恒定律,因此不可能制成 B .效率为100%的热机是不可能制成的 C .电冰箱的工作过程表明,热量可以从低温物体向高温物体传递 D .从单一热源吸收热量,使之完全变为功是提高机械效率的常用手段 E .吸收了热量的物体,其内能也不一定增加 解析:选BCE.第二类永动机不可能制成,是因它违反了热力学第二定律,故A 错误;效率为100%的热机是不可能制成的,故B 正确;电冰箱的工作过程表明,热量可以从低温物体向高温物体传递,故C 正确;在外界影响下从单一热源吸收热量,使之完全变为功是可能的,但机械效率并不一定提高.故D 错误;改变内能的方式有做功和热传递,吸收了热量的物体,其内能也不一定增加,E 正确. 4.(多选)夏天,小明同学把自行车轮胎上的气门芯拔出的时候,

高考物理热力学综合题

1.根据热力学定律,下列说法正确的是() A.电冰箱的工作过程表明,热量可以从低温物体向高温物体传递 B.空调机在制冷过程中,从室内吸收的热量少于向室外放出的热量 C.科技的进步可以使内燃机成为单一的热源热机 D.对能源的过度消耗使自然界的能量不断减少,形成“能源危机” 【答案】AB 【考点】热力学第一定律、热力学第二定律 【解析】在外界帮助的情况下,热量可以从低温物体向高温物体传递,A 对;空调在制冷时,把室内的热量向室外释放,需要消耗电能,同时产生热量,所以向室外放出的热量大于从室内吸收的热量,B 对;根据热力学第二定律,可知内燃机不可能成为单一热源的热机,C 错;因为自然界的能量是守恒的,能源的消耗并不会使自然界的总能量减少,D 错。 2.液体与固体具有的相同特点是 (A)都具有确定的形状(B)体积都不易被压缩 (C)物质分子的位置都确定(D)物质分子都在固定位置附近振动 答案:B 解析:液体与固体具有的相同特点是体积都不易被压缩,选项B正确。 3.已知湖水深度为20m,湖底水温为4℃,水面温度为17℃,大气压强为1.0×105Pa。当一气泡从湖底缓慢升到水面时,其体积约为原来的(取g=10m/s2,ρ=1.0×103kg/m3) (A)12.8倍(B)8.5倍(C)3.1倍(D)2.1倍 答案:C 解析:湖底压强大约为3个大气压,由气体状态方程,当一气泡从湖底缓慢升到水面时,其体积约为原来的3.1倍,选项C正确。 4. 图6为某同学设计的喷水装置,内部装有2L水,上部密封1atm的空气0.5L,保持阀门关闭,再充入1atm的空气0.1L,设在所有过程中空可看作理想气体,且温度不变,下列说法正确的有 A.充气后,密封气体压强增加 B.充气后,密封气体的分子平均动能增加 C.打开阀门后,密封气体对外界做正功 D.打开阀门后,不再充气也能把水喷光 【答案】AB 【考点】热力学第一定律、热力学第二定律 【解析】在外界帮助的情况下,热量可以从低温物体向高温物体传递,A 对;空调在制冷时,把室内的热量向室外释放,需要消耗电能,同时产生热量,所以向室外放出的热量大于从室内吸收的热量,B 对;根据热力学第二定律,可知内燃机不可能成为单一热源的热机,C 错;因为自然界的能量是守恒的,能源的消耗并不会使自然界的总能量减少,D 错。 5.A.[选修3-3](12分)如图所示,一定质量的理想气体从状态A依次经过状态B、C和D后再回到状态A。其中,和为等温过程,和为绝热过程(气体与外界无热量交换)。这就是著名的“卡诺循环”。

高中物理之热学专题复习与练习

高中物理之热学专题复 习与练习 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第七章热学 一、主要内容 本章内容包括两部分,一是微观的分子动理论部分,一是宏观的气体状态变化规律。其中分子动理论部分包括分子动理论的基本观点、分子热运动的动能、分子间相互作用的势能和物体的内能等概念,及分子间相互作用力的变化规律、物体内能变化的规律、能量转化和守恒定律等基本规律;气体状态变化规律中包括热力学温度、理想气体和气体状态参量等有关的概念,以及理想气体的等温、等容、等压过程的特点及规律(包括公式和图象两种描述方法)。 二、基本方法 本章中所涉及到的基本方法是理想化的模型方法,其中在分子动理论中将微观分子的形状视为理想的球体,这是通过阿伏伽德罗常数对微观量进行估算的基础;在气体状态变化规律中,将实际中的气体视为分子没有实际体积且不存在相互作用力的理想气体,从而使气体状态变化的规律在误差允许的范围内得以大大的简化。 三、错解分析 在本章知识应用的过程中,初学者常犯的错误主要表现在:对较为抽象的分子热运动的动能、分子相互作用的势能及分子间相互作用力的变化规律理解不到位,导致这些微观量及规律与宏观的温度、物体的体积之间关系不能建立起正确的关系。对于宏观的气体状态的分析,学生的问题通常表现在对气体压强的分析与计算方面存在着困难,由此导致对气体状态规律应用出现错误;另外,本章中涉及到用图象法描述气体状态变化规律,对于p—V,p—T,V—T图的理解,一些学生只观注图象的形状,不能很好地理解图象上的点、线、斜率等的物理意义,因此造成从图象上分析气体温度变化(内能变化)、体积变化(做功情况)时出现错误,从而导致利用图像分析气体内能变化等问题时的困难。 例1 设一氢气球可以自由膨胀以保持球内外的压强相等,则随着气球的不断升高,因大气压强随高度而减小,气球将不断膨胀。如果氢气和大气皆可视为理想气体,大气的温度、平均摩尔质量以及重力和速度随高度变化皆可忽略,则氢所球在上升过程中所受的浮力将______(填“变大”“变小”“不变”) 【错解】错解一:因为气球上升时体积膨胀,所以浮力变大。 错解二:因为高空空气稀薄,所以浮力减小。

2020最新高考物理热学讲解与解析

选修3-3 第一章热学 第1讲分子支理论热力学定律与能量守恒 图1-1-4 1.(2020·广东,13) (1)远古时代,取火是一件困难的事,火一般产生于雷击或磷的自燃.随着人类文明的进步,出现了“钻木取火”等方法.“钻木取火” 是通过________方式改变物体的内能,把________转变成内能. (2)某同学做了一个小实验:先把空的烧瓶放入冰箱冷冻,一小时后取出烧瓶, 并迅速把一个气球紧密地套在瓶颈上,然后将烧瓶放进盛满热水的烧杯里,气球逐渐膨胀起来,如图1-1-4.这是因为烧瓶里的气体吸收了水的________,温度________,体积________. 解析:(1)热力学第一定律是对能量守恒定律的一种表述方式.热力学第一定律指出,热能可以从一个物体传递给另一个物体,也可以与机械能或其他能量相互转换,在传递和转换过程中,能量的总值不变.所以钻木取火是通过做功把机械能转化为内能. (2)内能可以从一个物体传递给另一个物体(高温到低温),使物体的温度升高; 一定质量的气体,当压强保持不变时,它的体积V随温度T线性地变化.所以从冰箱里拿出的烧瓶中的空气(低温)吸收水(高温)的热量温度升高,体积增大. 答案:(1)做功机械能(2)热量升高增大 2.(1)物质是由大量分子组成的,分子直径的数量级一般是________ m.能说明分子都在永不停息地做无规则运动的实验事实有________(举一例即可).在两分子间的距离由r0(此时分子间的引力和斥力相互平衡,分子作用力为零)逐渐增大的过程中,分子力的变化情况是________(填“逐渐增大”“逐渐减小”“先增大后减小”“先减小后增大”). (2)一定质量的理想气体,在保持温度不变的情况下,如果增大气体体积,气 体压强将如何变化?请你从分子动理论的观点加以解释.如果在此过程中气体对外界做了900 J的功,则此过程中气体是放出热量还是吸收热量?放出

2013年高考物理二轮专题复习 模型讲解 斜面模型

2013年高考二轮专题复习之模型讲解 斜面模型 [模型概述] 斜面模型是中学物理中最常见的模型之一,各级各类考题都会出现,设计的内容有力学、电学等。相关方法有整体与隔离法、极值法、极限法等,是属于考查学生分析、推理能力的模型之一。 [模型讲解] 一. 利用正交分解法处理斜面上的平衡问题 例1. 相距为20cm 的平行金属导轨倾斜放置(见图1),导轨所在平面与水平面的夹角为?=37θ,现在导轨上放一质量为330g 的金属棒ab ,它与导轨间动摩擦系数为50.0=μ,整个装置处于磁感应强度B=2T 的竖直向上的匀强磁场中,导轨所接电源电动势为15V ,内阻不计,滑动变阻器的阻值可按要求进行调节,其他部分电阻不计,取2/10s m g =,为保持金属棒ab 处于静止状态,求: (1)ab 中通入的最大电流强度为多少? (2)ab 中通入的最小电流强度为多少? 解析:导体棒ab 在重力、静摩擦力、弹力、安培力四力作用下平衡,由图2中所示电流方向,可知导体棒所受安培力水平向右。当导体棒所受安培力较大时,导体棒所受静摩擦力沿导轨向下,当导体棒所受安培力较小时,导体棒所受静摩擦力沿导轨向上。 (1)ab 中通入最大电流强度时受力分析如图2,此时最大静摩擦力N f F F μ=沿斜面向下,建立直角坐标系,由ab 平衡可知,x 方向:

)sin cos (sin cos max θθμθ θμ+=+=N N N F F F F y 方向:)sin (cos sin cos θμθθμθ-=-=N N N F F F mg 由以上各式联立解得: A BL F I L BI F N m g F 5.16,6.6sin cos sin cos max max max max max == ==-+=有θ μθθθμ (2)通入最小电流时,ab 受力分析如图3所示,此时静摩擦力N f F F '' μ=,方向沿斜面向上,建立直角坐标系,由平衡有: x 方向:)cos (sin 'cos 'sin 'min θμθθμθ-=-=N N N F F F F y 方向:)cos sin ('cos 'sin 'θθμθθμ+=+=N N N F F F mg 联立两式解得:N mg F 6.0cos sin cos sin min =+-=θ θμθμθ 由A BL F I L BI F 5.1,min min min min === 评点:此例题考查的知识点有:(1)受力分析——平衡条件的确定;(2)临界条件分析的能力;(3)直流电路知识的应用;(4)正交分解法。 说明:正交分解法是在平行四边形定则的基础上发展起来的,其目的是用代数运算来解决矢量运算。正交分解法在求解不在一条直线上的多个力的合力时显示出了较大的优越性。建立坐标系时,一般选共点力作用线的交点为坐标轴的原点,并尽可能使较多的力落在坐标轴上,这样可以减少需要分解的数目,简化运算过程。 二. 利用矢量三角形法处理斜面系统的变速运动 例2. 物体置于光滑的斜面上,当斜面固定时,物体沿斜面下滑的加速度为1a ,斜面对物

高三高考物理复习专题练习:热 学

热学 1.[多选]在“用油膜法估测分子大小”的实验中,下列做法正确的是() A.用注射器吸取配制好的油酸酒精溶液,把它一滴一滴地滴入小量筒中,若100滴溶液的体积是1 mL,则1滴溶液中含有油酸10-2 mL B.往浅盘里倒入适量的水,再将痱子粉或细石膏粉均匀地撒在水面上 C.用注射器往水面上滴1滴油酸酒精溶液,同时将玻璃板放在浅盘上,并立即在玻璃板上描下油酸膜的形状 D.将画有油酸膜轮廓的玻璃板放在坐标纸上,计算轮廓范围内正方形的个数,并求得油膜的面积 E.根据1滴油酸酒精溶液中油酸的体积V和油膜面积S就可以算出油膜厚度d=,即油酸分子的大小 2.[多选]运用分子动理论的相关知识,判断下列说法正确的是() A.分子间距离增大时,可能存在分子势能相等的两个位置 B.气体分子单位时间内与单位面积器壁碰撞的次数仅与单位体积内的分子数有关 C.某气体的摩尔体积为V,每个分子的体积为V0,则阿伏加德罗常数可表示为N A= D.阳光从缝隙射入教室,从阳光中看到的尘埃的运动不是布朗运动 E.生产半导体器件时需要在纯净的半导体材料中掺入其他元素,这可以在高温条件下利用分子的扩散来完成 3.[多选]下列说法正确的是() A.单晶体在不同方向上的导热性、导电性、机械强度等物理性质不一样 B.热量不可能从低温物体向高温物体传递 C.一定质量的理想气体,保持气体的压强不变,温度越高,体积越大 D.功可以完全转化为热量,而热量不能完全变为功,即不可能从单一热源吸热使之全部变为有用的功 E.若气体的温度不变,压强增大,说明每秒撞击单位面积器壁的分子数增多 4.[多选]如图所示,在一定质量的理想气体压强随体积变化的p-V图象中,气体先后经历了ab、bc、cd、da四个过程,其中ab垂直于cd,ab垂直于V轴且与p轴平行,bc、da是两条等温线.下列判断正确的是()

高中物理热学知识点归纳全面很好

选修3-3热学知识点归纳 一、分子运动论 1. 物质是由大量分子组成的 (1)分子体积 分子体积很小,它的直径数量级是 (2)分子质量 分子质量很小,一般分子质量的数量级是 (3)阿伏伽德罗常数(宏观世界与微观世界的桥梁) 1摩尔的任何物质含有的微粒数相同,这个数的测量值: 设微观量为:分子体积V 0、分子直径d 、分子质量m ; 宏观量为:物质体积V 、摩尔体积V 1、物质质量M 、摩尔质量μ、物质密度ρ. 分子质量: 分子体积: (对气体,V 0应为气体分子平均占据的空间大小) 分子直径: 球体模型: V d N =3A )2(34π 303 A 6=6=ππV N V d (固体、液体一般用此模型) 立方体模型:30=V d (气体一般用此模型)(对气体,d 理解为相邻分子间的平均距离) 分子的数量.A 1 A 1A A N V V N V M N V N M n ====ρμρμ 2. 分子永不停息地做无规则热运动 (1)分子永不停息做无规则热运动的实验事实:扩散现象和布郎运动。 (2)布朗运动 布朗运动是悬浮在液体(或气体)中的固体微粒的无规则运动。布朗运动不是分子本身的 运动,但它间接地反映了液体(气体)分子的无规则运动。 (3)实验中画出的布朗运动路线的折线,不是微粒运动的真实轨迹。 因为图中的每一段折线,是每隔30s 时间观察到的微粒位置的连线,就是在这短短的30s 内,小颗粒的运动也是极不规则的。 (4)布朗运动产生的原因 大量液体分子(或气体)永不停息地做无规则运动时,对悬浮在其中的微粒撞击作用的不平衡性是产生布朗运动的原因。简言之:液体(或气体)分子永不停息的无规则运动是产生布朗运动的原因。 (5)影响布朗运动激烈程度的因素

2020届高三高考物理二轮复习专题强化练习题卷:热学

热学 1.(2019·石家庄一模)(1)(多选)下列说法正确的是________________.(填正确答案标号) A.图甲为中间有隔板的绝热容器,隔板左侧装有温度为T的理想气体,右侧为真空.现抽掉隔板,气体的最终温度仍为T B.图乙为布朗运动示意图,悬浮在液体中的微粒越大,在某一瞬间跟它相撞的液体分子越多,撞击作用的不平衡性表现得越明显 C.图丙为同一气体在0 ℃和100 ℃两种不同情况下单位速率间隔的分子数占总分子数的百分比与分子速率间的关系图线,两图线与横轴所围图形的面积不相等D.图丁中,液体表面层中分子间的距离比液体内部分子间的距离大,液体表面层中分子间的作用力表现为引力 E.图戊中,由于液体浸润管壁,管中液体能上升到一定高度,利用此原理把地下的水分引上来,就用磙子压紧土壤 (2)如图所示,有一足够深的容器内装有密度ρ=1.0×103 kg/m3的液体,现将一端开口、另一端封闭,质量m=25 g、截面面积S=2.5 cm2的圆柱形玻璃细管倒插入液体中(细管本身玻璃的体积可忽略不计),稳定后用活塞将容器封闭,此时容器内液面上方的气体压强p0=1.01×105 Pa,玻璃细管内空气柱的长度l1=20 cm.已知所有装置导热良好,环境温度不变,重力加速度g取10 m/s2. ①求玻璃细管内空气柱的压强; ②若缓慢向下推动活塞,当玻璃细管底部与液面平齐时(活塞与细管不接触),求容器液

面上方的气体压强. 2.(2019·武汉市毕业生调研)(1)如图是人教版教材3-5封面的插图,它是通过扫描隧道显微镜拍下的照片: 48个铁原子在铜的表面排列成圆圈,构成了“量子围栏”.为了估算铁原子直径,查到以下数据:铁的密度ρ=7.8×103 kg/m3,摩尔质量M=5.6×10-2 kg/mol,阿伏加德罗常数N A =6.0×1023 mol-1.若将铁原子简化为球体模型,铁原子直径的表达式D=________________,铁原子直径约为________________m(结果保留一位有效数字). (2)如图所示,总容积为3V0、内壁光滑的气缸水平放置,一横截面积为S的轻质薄活塞将一定质量的理想气体封闭在气缸内,活塞左侧由跨过光滑定滑轮的细绳与一质量为m的重物相连,气缸右侧封闭且留有抽气孔.活塞右侧气体的压强为p0,活塞左侧气体的体积为V0,温度为T0.将活塞右侧抽成真空并密封,整个抽气过程中缸内气体温度始终保持不变.然后将密封的气体缓慢加热.已知重物的质量满足关系式mg=p0S,重力加速度为g.求: ①活塞刚碰到气缸右侧时气体的温度; ②当气体温度达到2T0时气体的压强. 3.(2019·全国卷Ⅰ)(1)某容器中的空气被光滑活塞封住,容器和活塞绝热性能良好,空气可视为理想气体.初始时容器中空气的温度与外界相同,压强大于外界压强.现使活塞缓慢移动,直至容器中的空气压强与外界相同.此时,容器中空气的温度________________(填“高于”“低于”或“等于”)外界温度,容器中空气的密度________________(填“大于”“小于”或“等于”)外界空气的密度. (2)热等静压设备广泛应用于材料加工中.该设备工作时,先在室温下把惰性气体用压缩机压入到一个预抽真空的炉腔中,然后炉腔升温,利用高温高压环境对放入炉腔中的材料加工处理,改善其性能.一台热等静压设备的炉腔中某次放入固体材料后剩余的容积为0.13 m3,炉腔抽真空后,在室温下用压缩机将10瓶氩气压入到炉腔中.已知每瓶氩气的容积为3.2×10-2 m3,使用前瓶中气体压强为1.5×107 Pa,使用后瓶中剩余气体压强为2.0×106 Pa;室温温度为27 ℃.氩气可视为理想气体. (ⅰ)求压入氩气后炉腔中气体在室温下的压强;

相关文档
最新文档