中考专题1解答(由动点形生成的特殊三角形问题)

中考专题1解答(由动点形生成的特殊三角形问题)
中考专题1解答(由动点形生成的特殊三角形问题)

由动点形生成的特殊三角形问题

例题1【2010重庆綦江县答案】

解:(1)方法一:∵抛物线过点C (0,-6) ∴c =-6,即y =ax 2

+bx -6

由2,21441260

b

a a

b ?-

=???+-=?

解得:116a =,14b =-

∴该抛物线的解析式为2

116

16

4

y x x =

-

-

方法二:∵A 、B 关于x =2对称

∴A (-8,0) 设(8)(12)y a x x =+-

C 在抛物线上,∴-6=a 383(12)-,即a =

116

∴该抛物线解析式为:2

116

164

y x x =

-

-

(2)存在,设直线CD 垂直平分PQ , 在Rt △AOC 中,AC

=10=AD ∴点D 在抛物线的对称轴上,连结DQ ,如图:

显然∠PDC =∠QDC , 由已知∠PDC =∠ACD ∴∠QDC =∠ACD ,∴DQ ∥AC

DB =AB -AD =20-10=10 ∴DQ 为△ABC 的中位线

∴DQ =

12

AC =5

AP =AD -PD =AD -DQ =10-5=5

∴t =5÷1=5(秒)

∴存在t =5(秒)时,线段PQ 被直线CD 垂直平分

在Rt △BOC 中,BC

= ∴CQ

∴点Q

(3)存在.如图,

过点Q作QH⊥x轴于H,则QH=3,PH=9

在Rt△PQH中,PQ

①当MP=MQ,即M为顶点,

设直线CD的直线方程为y=kx+b(k≠0),则:

6 02b

k b

-=

?

?

=+?,解得:

3

6

k

b

=

?

?

=-

?

∴y=3x-6

当x=1时,y=-3 ∴M1(1,-3)

②当PQ为等腰△MPQ的腰时,且P为顶点,

设直线x=1上存在点M(1,y),由勾股定理得:

42+y2=90,即y∴M2(1,;M3(1

③当PQ为等腰△MPQ的腰时,且Q为顶点.

过点Q作QE⊥y轴于E,交直线x=1于F,则F(1,-3)

设直线x=1存在点M(1,y)由勾股定理得:

22

(3)590

y++=,即y=-3

∴M4(1,-3;M5(1,-3

综上所述,存在这样的五个点:M1(1,-3);M2(1;M3(1;M4(1,-3

;M5(1,-3-

例题2【2010四川 巴中答案】

(1)∵∠ACB =90°,CO ⊥AB ,△ACO ∽△CBO ,∴CO

AO OB

CO =

,CO=2,

则C (0,2);

(2)抛物线2y ax bx c =++过△ABC 的三个顶点,则??

?

??==++=+-204160c c b a c b a ,∴

2,2

3,21==

-

=c b a ,抛物线的解析式为22

3212

++

-

=x x y ;

(3)点D ( 1,m )在抛物线上,3=m ,∴D (1,3),把直线y=-x -1与抛物线

223

21

2

++-=x x y 联立成方程组??

?

??++-=--=2

23

211

2x x y x y ∴???-==???=-=65,012211y x y x , ∴E (5,-6),过点D 作DH 垂直于x 轴,过点E 作EG 垂直于x 轴,DH=BH=3,∴∠DBH=45°, BD=23,AG=EG=6, ∴∠EAG=45°,AE=26,

当P 在B 的右侧时,∠DBP=135°≠∠ABE,两个三角形不相似,所以P 点不存在; 当P 在B 的左侧时 ⅰ) △DPB ∽△EBA 时,

26235,=

=BP AE DB BA BP ,2

5=

BP ,∴P 的坐标为(

2

3,0),

ⅱ) △DPB ∽△BEA 时,

5

2326,==PB BA

DB EA

PB ,5

36=

BP ,∴P 的坐标为(5

16-

,0),

所以点P 的坐标为(2

3,0)或(5

16-,0)。

【例题3(2010湖北荆门)答案】

解:(1)∵ 由题意知:当x=0时,y=1, ∴B (0,1),当y=0时,x=-2, ∴A (-2,0)

∴?????=++=0211c b c 解得??

?

??-

==231

b c ,所以123212+-=x x y

(2)当y=0时,

012

32

12

=+-

x x ,解得x 1=1,x 2=2,

∴D(1,0) E(2,0) ∴AO =3,AE =4. S =S △CAE -S △ABD ,S =

OB AD AE ?-

?2

132

1,S=4.5,

(3)存在点P (a,0),当P 为直角顶点时,如图,过C 作CF ⊥x 轴于F , ∵Rt △BOP ∽Rt △

PFC ,

由题意得,AD =6,OD =1,易知,AD ∥BE , ∴

CF

OP PF

BO =.即

3

41a a

=

-,整理得:a 2-4a -3=0,解得a =1或a =3,所以所求P 点坐标为

(1,0)或(3,0).综上所述,满足条件的点P 有两个. 例题4(2010年厦门湖里模拟)答案:

解:(1)解方程x 2-10x +16=0得x 1=2,x 2=8

∵点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,且OB <OC ∴点B 的坐标为(2,0),点C 的坐标为(0,8) 又∵抛物线y =ax 2+bx +c 的对称轴是直线x =-2 ∴由抛物线的对称性可得点A 的坐标为(-6,0) (2)∵点C (0,8)在抛物线y =ax 2+bx +c 的图象上

∴c =8,将A (-6,0)、B (2,0)代入表达式,得

????

?

0=36a -6b +80=4a +2b +8

解得 ?

????

a =-23

b =-8

3

∴所求抛物线的表达式为y =-23x 2-8

3x +8

(3)依题意,AE =m ,则BE =8-m ,

∵OA =6,OC =8,∴AC =10 ∵EF ∥AC ∴△BEF ∽△BAC ∴

EF AC =BE AB 即EF 10=8-m 8

∴EF =

40-5m

4

过点F 作FG ⊥AB ,垂足为G ,则sin ∠FEG =sin∠CAB =4

5

FG EF =45 ∴FG =45240-5m 4

=8-m ∴S =S △BCE -S △BFE =128-m )38-1

2(8-m )(8-m )

=12(8-m )(8-8+m )=12(8-m )m =-1

2m 2+4m 自变量m 的取值范围是0<m <8 (4)存在.

理由:∵S =-12m 2+4m =-12(m -4)2

+8 且-12<0,

∴当m =4时,S 有最大值,S 最大值=8 ∵m =4,∴点E 的坐标为(-2,0) ∴△BCE 为等腰三角形. 【练习1(2010重庆市潼南县)答案】 解:(1)∵二次函数c bx x y ++=

2

2

1的图像经过点A (2,0)C(0,-1)

∴??

?-==++1

022c c b

解得: b =-

2

1 c =-1-------------------2分

∴二次函数的解析式为12

1212

--

=

x x y --------3分

(2)设点D 的坐标为(m ,0) (0<m <2) ∴ OD=m ∴AD=2-m

由△ADE ∽△AOC 得,OC

DE AO

AD =

--------------4分

1

22DE m =-

∴DE=

22m

------------------------------------5分

∴△CDE 的面积=

2

13

2

2m -3m

=2

4

2

m m +

-=4

1)1(4

12

+--

m

当m =1时,△CDE 的面积最大

∴点D 的坐标为(1,0)--------------------------8分 (3)存在 由(1)知:二次函数的解析式为12

12

12

--

=

x x y

设y=0则12

12102

--

=

x x 解得:x 1=2 x 2=-1

∴点B 的坐标为(-1,0) C (0,-1) 设直线BC 的解析式为:y =kx +b

∴ ?

??-==+-10b b k 解得:k =-1 b =-1

∴直线BC 的解析式为: y =-x -1 在Rt △AOC 中,∠AOC=900 OA=2 OC=1

由勾股定理得:AC=5 ∵点B(-1,0) 点C (0,-1) ∴OB=OC ∠BCO=450

①当以点C 为顶点且PC=AC=5时, 设P(k, -k -1) 过点P 作PH⊥y 轴于H ∴∠HCP=∠BCO=450

CH=PH=∣k ∣ 在Rt △PCH 中

k 2+k 2=

()2

5 解得k 1

=

2

10, k 2=-

210

∴P 1(

2

10,-

12

10-) P 2(-

2

10,

12

10-)---10分

②以A 为顶点,即AC=AP=5 设P(k , -k -1) 过点P 作PG ⊥x 轴于G AG=∣2-k ∣ GP=∣-k -1∣ 在Rt △APG 中 AG 2+PG 2=AP 2 (2-k )2+(-k -1)2=5 解得:k 1=1,k 2=0(舍)

∴P 3(1, -2) ----------------------------------11分 ③以P 为顶点,PC=AP 设P(k , -k -1) 过点P 作PQ ⊥y 轴于点Q PL ⊥x 轴于点L ∴L(k ,0)

∴△QPC 为等腰直角三角形 PQ=CQ=k 由勾股定理知 CP=PA=2k

∴AL=∣k -2∣, PL=|-k -1| 在Rt △PLA 中

(2k)2=(k -2)2+(k +1)2 解得:k =

2

5∴P 4(

2

5,-

2

7) ------------------------12分

综上所述: 存在四个点:P 1(

2

10,-

12

10-)

P 2(-

2

10,

12

10-) P 3(1, -2) P 4(

2

5,-

2

7)

【练习2(2010湖南郴州)答案】

(1)将x =0,代入抛物线解析式,得点A 的坐标为(0,-4)

(2)当b =0时,直线为y x =,由2

4y x y x x =??=+-?

解得1122x y =??=?,222

2x y =-??=-? 所以B 、C 的坐标分别为(-2,-2),(2,2)

14242

A B E S =

??= ,14242

A C E S =

??=

所以ABE AC E S S =

当4b >-时,仍有ABE AC E S S = 成立. 理由如下

由2

4y x b y x x =+??=+-?,解得11x y b ?=

??=

+??,22x y ?=??=??所以B 、C +b 作BF y ⊥轴,CG y ⊥轴,垂足分别为F 、G ,则而ABE 和A C E 是同底的两个三角形,

所以ABE AC E S S = . (3)存在这样的b .

因为90BF CG ,BEF CEG ,BFE CGE =∠=∠∠=∠=? 所以B E F C E G ?

所以B E C E =,即E 为BC 的中点

所以当OE =CE 时,O B C 为直角三角形

因为G E b b G C =-==

所以

C E =

OE b =

b =,解得124,

2b b ==-,

所以当b =4或-2时,ΔOBC 为直角三角形.

【练习3(2010湖北襄樊)答案】 解:(1)∵四边形ABCD 是平行四边形, ∴OC=AB =4.

∴A (4,2),B (0,2),C (-4,0). ∵抛物线y =a x 2

+b x +c 过点B ,∴c=2.

由题意,有16420,1642 2.a b a b -+=??++=? 解得1,16

1.

4

a b ?

=-????=??

∴所求抛物线的解析式为2

11216

4y x x =-

+

+.

(2)将抛物线的解析式配方,得()

2

1

122

16

4

y x =--+.

∴抛物线的对称轴为x =2.

∴D (8,0),E (2,2),F (2,0).

欲使四边形POQE 为等腰梯形,则有OP =QE .即BP=FQ . ∴t =6-3t ,即t =

32

(3)欲使以P 、B 、O 为顶点的三角形与以点Q 、B 、O 为顶点的三角形相似,

∵∠PBO =∠BOQ =90°,∴有B P O Q O B

B O

=

BP BO O B

O Q

=

即PB=OQ 或OB 2=PB 2QO .

①若P 、Q 在y 轴的同侧.当PB=OQ 时,t=8-3t ,∴t =2. 当OB 2

=PB 2QO 时,t (8-3t )=4,即3t 2

-8t+4=0. 解得12223

t t ==

,.

②若P 、Q 在y 轴的异侧.当PB=OQ 时,3t -8=t ,∴t =4.

当OB 2=PB 2QO 时,t (3t -8)=4,即3t 2-8t -4=0.解得3

t =

∵t =

3.故舍去,∴t 3

∴当t =2或t =23

或t =4或3

秒时,以P 、B 、O 为顶点的三角形与以点Q 、B 、O

为顶点的三角形相似.

【练习4、(2009河南)答案】

23.(1)点A 的坐标为(4,8) …………………1分 将A (4,8)、C (8,0)两点坐标分别代入y=ax 2+bx

8=16a +4b

0=64a +8b

解 得a =-12

,b =4

∴抛物线的解析式为:y =-12

x 2+4x …………………3分

(2)①在Rt △APE 和Rt △ABC 中,tan ∠PAE =P E A P

=

B C A B

,即

P E A P

=

48

∴PE =

12

AP =

12

t .PB=8-t .

∴点E的坐标为(4+

12

t ,8-t ).

∴点G 的纵坐标为:-12

(4+

12

t )2+4(4+

12

t )=-

18

t 2+8. …………………5分

∴EG=-18t 2+8-(8-t ) =-18

t 2+t .

∵-18<0,∴当t =4时,线段EG 最长为2. …………………7分

②共有三个时刻. …………………8分

t 1=

163

, t 2=

4013

,t 3=

. …………………11分

中考专题1(由动点形生成的特殊三角形问题)

由动点形生成的特殊三角形问题 抛物线与直线形的结合表形式之一是,以抛物线为载体,探讨是否存在一些点,使其能构成某些特殊三角形,有以下常风的基本形式 (1)抛物线上的点能否构成等腰三角形(2)抛物线上的点能否构成直角三角形 (2)抛物线上的点能否构成相似三角形 解决这类问题的基本思路是:假设存在,数形结合,分类讨论,逐一考查 例题1:(2010重庆綦江县)已知抛物线y=ax2+bx+c(a>0)经过点B(12,0)和C(0,-6),对称轴为x=2. (1)求该抛物线的解析式. (2)点D在线段AB上且AD=AC,若动点P从A出发沿线段AB以每秒1个单位长度 的速度匀速运动,同时另一个动点Q以某一速度从C出发沿线段CB匀速运动,问是否存在某一时刻,使线段PQ被直线CD垂直平分?若存在,请求出此时的时间t(秒)和点Q的运动速度;若存在,请说明理由. (3)在(2)的结论下,直线x=1上是否存在点M,使△MPQ为等腰三角形?若存在, 请求出所有点M的坐标;若存在,请说明理由.

例题2(2010四川巴中)如图12已知△ABC中,∠ACB=90°以AB 所在直线为x 轴,过c 点的直线为y 轴建立平面直角坐标系.此时,A 点坐标为(一1 , 0), B 点坐标为(4,0 ) (1)试求点C 的坐标 (2)若抛物线2 =++过△ABC的三个顶点,求抛物线的解析式. y ax bx c (3)点D( 1,m )在抛物线上,过点A 的直线y=-x-1 交(2)中的抛物线于点E,那么在x轴上点B 的左侧是否存在点P,使以P、B、D为顶点的三角形与△ABE 相似?若存在,求出P点坐标;若不存在,说明理由。 D H G

二次函数综合(动点与三角形)问题方法与解析

二次函数综合(动点与三角形)问题 一、知识准备: 抛物线与直线形的结合表现形式之一是,以抛物线为载体,探讨是否存在一些点,使其能构成某些特殊三角形,有以下常见的基本形式。 (1)抛物线上的点能否构成等腰三角形; (2)抛物线上的点能否构成直角三角形; (3)抛物线上的点能否构成相似三角形; 解决这类问题的基本思路:假设存在,数形结合,分类归纳,逐一考察。 二、例题精析 ㈠【抛物线上的点能否构成等腰三角形】 例一.(2013?地区)如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c 经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合). (1)求抛物线的解析式; (2)求△ABC的面积; (3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标. 分析:(1)根据直线解析式求出点A及点B的坐标,然后将点A及点B的坐标代入抛物线解析式,可得出b、c的值,求出抛物线解析式; (2)由(1)求得的抛物线解析式,可求出点C的坐标,继而求出AC的长度,代入三角形的面积公式即可计算; (3)根据点M在抛物线对称轴上,可设点M的坐标为(﹣1,m),分三种情况讨论, ①MA=BA,②MB=BA,③MB=MA,求出m的值后即可得出答案. 解:(1)∵直线y=3x﹣3分别交x轴、y轴于A、B两点, ∴可得A(1,0),B(0,﹣3), 把A、B两点的坐标分别代入y=x2+bx+c得:,

解得:. ∴抛物线解析式为:y=x2+2x﹣3. (2)令y=0得:0=x2+2x﹣3, 解得:x1=1,x2=﹣3, 则C点坐标为:(﹣3,0),AC=4, 故可得S△ABC=AC×OB=×4×3=6. (3)抛物线的对称轴为:x=﹣1,假设存在M(﹣1,m)满足题意: 讨论: ①当MA=AB时,, 解得:, ∴M1(﹣1,),M2(﹣1,﹣); ②当MB=BA时,, 解得:M3=0,M4=﹣6, ∴M3(﹣1,0),M4(﹣1,﹣6), ③当MB=MA时,, 解得:m=﹣1, ∴M5(﹣1,﹣1), 答:共存在五个点M1(﹣1,),M2(﹣1,﹣),M3(﹣1,0),M4(﹣1,﹣6),M5(﹣1,﹣1)使△ABM为等腰三角形. 点评:本题考查了二次函数的综合题,涉及了待定系数法求二次函数解析式、等腰三角形的性质及三角形的面积,难点在第三问,注意分类讨论,不要漏解. ㈡【抛物线上的点能否构成直角三角形】 例二.(2013)如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数y=ax2+bx+c 的图象交于y轴上的一点B,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.

中考专题复习《动点问题》教学设计

中考专题复习《动点问题》教学设计【学情分析】 动点一般在中考都是压轴题,步骤不重要,重要的是思路。动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论 【教学目标】 知识与技能: 1、利用特殊三角形的性质和定理解决动点问题; 2、分析题目,了解有几个动点,动点的路程,速度(动点怎么动); 3、结合图形和题目,得出已知或能间接求出的数据。 过程与方法: 1、利用分类讨论的方法分析并解决问题; 2、数形结合、方程思想的运用。

情感态度价值观:通过动手操作、合作交流,探索证明等活动,培养学生的团队合作精神,激发学生学习数学的兴趣。 【教学重点】 根据动点中的移动距离,找出等量列方程。 【教学难点】 1、两点同时运动时的距离变化; 2、运动题型中的分类讨论 【教学方法】教师引导、自主思考 【教学过程】 一、动点问题的近况: 1、动态几何 图形中的点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力. 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析

过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)它通常分为三种类型:动点问题、动线问题、动形问题。在解这类问题时,要充分发挥空间想象的能力,不要被“动”所迷惑,而是要在“动”中求“静”,化“动”为“静”,抓住它运动中的某一瞬间,寻找确定的关系式,就能找到解决问题的途径。本节课重点来探究动态几何中的第一种类型----动点问题。所谓动点问题:是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放新题目。 2、三年中考概况; 近年来运动问题是以三角形或四边形为背景,用运动的观点来探究几何图形变化规律的问题.这类题的特点是:图形中的某些元素(如点、线段、角等)或整个图形按某种规律运动,图形的各个元素在运动变化过程中相互依存,相互制约. 3、解题策略和方法: “动点型问题”题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。解决动点问题的关键是“动中求静”.动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、

最新数学中考专题复习——《动点问题》教案

中考专题复习——动点问题 【学情分析】 动点一般在中考都是压轴题,步骤不重要,重要的是思路。动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论 【教学目标】 知识与技能: 1、利用特殊三角形的性质和定理解决动点问题; 2、分析题目,了解有几个动点,动点的路程,速度(动点怎么动); 3、结合图形和题目,得出已知或能间接求出的数据。 过程与方法: 1、利用分类讨论的方法分析并解决问题; 2、数形结合、方程思想的运用。 情感态度价值观:通过动手操作、合作交流,探索证明等活动,培养学生的团队合作精神,激发学生学习数学的兴趣。 【教学重点】 根据动点中的移动距离,找出等量列方程。 【教学难点】 1、两点同时运动时的距离变化; 2、运动题型中的分类讨论 【教学方法】教师引导、自主思考 【教学过程】 一、动点问题的近况: 1、动态几何 图形中的点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力. 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)它通常分为三种类型:动点问题、动线问题、动形问题。在解这类问题时,要充分发挥空间想象的能力,不要被“动”所迷惑,而是要在“动”中求“静”,化“动”为“静”,抓住它运动中的某一瞬间,寻找确定的关系式,就能找到解决问题的途径。本节课重点来探究动态几何中的第一种类型----动点问题。所谓动点问题:是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放新题目。

浙教版八年级上册特殊三角形常见的题目模型

八年级上册第二章 特殊三角形 一、将军饮马 例1 如图,在正方形ABCD 中,AB=9,点E 在CD 边上,且DE=2CE ,点P 是对角线AC 上的一个动点,则PE+PD 的最小值是( ) A 、3 B 、10 C 、9 D 、9 【变式训练】 1、如图,在矩形ABCD 中,AD=4,∠DAC=30°,点P 、E 分别在AC 、AD 上,则PE+PD 的最小值是( ) A 、2 B 、2 C 、4 D 、 2、如图,∠AOB=30°,P 是∠AOB 内一定点,PO=10,C ,D 分别是OA ,OB 上的动点,则△PCD 周长的最小值为 3、如图,∠AOB=30°,C ,D 分别在OA ,OB 上,且OC=2,OD=6,点C ,D 分别是AO ,BO 上的动点,则CM+MN+DN 最小值为 4、如图,C 为线段BD 上一动点,分别过点B ,D 作AB ⊥BD ,DE ⊥BD ,连结AC ,CE . (1)已知AB=3,DE=2,BD=12,设CD=x .用含x 的代数式表示AC+CE 的长; (2)请问点C 满足什么条件时,AC+CE 的值最小?并求出它的最小值; (3)根据(2)中的规律和结论,请构图求出代数式 的最小值 E B C A D P 第2题 B O A P C D 第1题 B O A C N 第3题 E C

二、等腰三角形中的分类讨论 例2(1)已知等腰三角形的两边长分别为8cm和10cm,则它的周长为 (2)已知等腰三角形的两边长分别为8cm和10cm,则它的腰长为 (3)已知等腰三角形的周长为28cm和8cm,则它的底边为 【变式训练】 1、已知等腰三角形的两边长分别为3cm和7cm,则周长为 2、已知等腰三角形的一个角是另一个角的4倍,则它的各个内角的度数为 3、已知等腰三角形的一个外角等于150°,则它的各个内角的度数为 4、已知等腰三角形一腰上的高与另一边的夹角为25°,则它的各个内角的度数 5、已知等腰三角形底边为5cm,一腰上的中线把其周长分为两部分的差为3cm,则腰长为 6、在三角形ABC中,AB=AC,AB边上的垂直平分线与AC所在的直线相交所得的锐角为40°,则底角∠B的度数为 7、如图,A、B是4×5的网格中的格点,网格中每个小正方形的边长都是单位1,请在图中清晰地标出使以A、B、C为顶点的三角形是等腰三角形的所有格点C的位置 三、两圆一线定等腰 例3在平面直角坐标系xOy中,已知点A(2,3),在坐标轴上找一点P, 使得△AOP是等腰三角形,则这样的点P共有个 B

特殊三角形与动点问题

特殊三角形与动点问题 1、如图,在Rt△ABC中,∠ABC=90°,AB=8,BC=6,点D为AC边上的动点,点D从点C出发,沿边CA往A运动,当运动到点A时停止,若设点D运动的时间为t秒,点D 运动的速度为每秒1个单位长度 (1)当t=2时,CD= ,AD= ;(请直接写出答案) (2)求当t为何值时,△CBD是直角三角形?并说明理由. (3)求当t为何值时,△CBD是等腰三角形?并说明理由. 2、已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题: (1)当t为何值时,△PBQ是直角三角形? (2)当t为何值时,△PBQ是等腰三角形? (3)设四边形APQC的面积为y(cm2),求y与t的关系式。

3、已知:如图所示,等边三角形ABC的边长为2,点P和Q分别从A和C两点同时出发,做匀速运动,且它们的速度相同.点P沿射线AB运动,点Q沿边BC的延长线运动,设PQ与直线AC相交于点D,作PE⊥AC于E,当P和Q运动时,线段DE的长是否改变?证明你的结论. 4、如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s, (1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数; (2)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.

中考数学压轴题专题 动点问题

2012年全国中考数学(续61套)压轴题分类解析汇编 专题01:动点问题 25. (2012吉林长春10分)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到 点B停止.点P在AD的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作 PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s). (1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示).(2)当点N落在AB边上时,求t的值. (3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式. (4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s 的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P 在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围. 【答案】解:(1)t-2。 (2)当点N落在AB边上时,有两种情况: ①如图(2)a,当点N与点D重合时,此时点P在DE上,DP=2=EC,即t-2=2,t=4。 ②如图(2)b,此时点P位于线段EB上. ∵DE=1 2 AC=4,∴点P在DE段的运动时间为4s, ∴PE=t-6,∴PB=BE-PE=8-t,PC=PE+CE=t-4。 ∵PN∥AC,∴△BNP∽△BAC。∴PN:AC = PB:BC=2,∴PN=2PB=16-2t。 由PN=PC,得16-2t=t-4,解得t=20 3 。 综上所述,当点N落在AB边上时,t=4或t=20 3 。 (3)当正方形PQMN与△ABC重叠部分图形为五边形时,有两种情况:

特殊三角形常见的题目型.docx

八年级上册第二章特殊三角形 一、将军饮马 例1如图,在正方形 ABCD 中,AB=9,点E 在CD 边上,且 DE=2CE 点P 是对角 线AC 上的一个动点,则 PE+PD 的最小值是( ) A 3 — B 、10 一 C 、9 D 、9 — 【变式训练】 1、如图,在矩形 ABCD 中,AD=4,∠ DAC=30 ,点 P 、E 分别在 AC AD 上,则 PE+PD 的最小值是( ) 2、 如图,∠ AOB=30,P 是∠ AOB 内一定点,P0=1Q G D 分别是 OA OB 上的动点,则△ PCD 周长的最小 值为 ______________ 3、 如图,∠ AOB=30,C, D 分别在 OA OB 上,且0C=2 0D=6点C, D 分别是 AO BO 上的动点,贝U CM+MN+DN 最小值为 4、如图,C 为线段BD 上一动点,分别过点 B , D 作AB 丄BD, DEl BD 连结 AC, CE (1) 已知AB=3, DE=Z BD=12设CD=X 用含X 的代数式表示 AC+CE 的长; (2) 请问点C 满足什么条件时,AC+CE 的值最小?并求出它的最小值; (3) 根据(2)中的规律和结论,请构图求出代数式 的 最 小值 二、等腰三角形中的分类讨论 例2 (1)已知等腰三角形的两边长分别为 8cm 和10cm,则它的周长为 ________________ (2) 已知等腰三角形的两边长分别为 ____________ 8cm 和10cm,则它的腰长 为 (3) 已知等腰三角形的周长为 _________________ 28cm 和8cm,则它的底边为 【变式训练】 1、 已知等腰三角形的两边长分别为 3cm 和7cm,则周长为 __________________ 2、 已知等腰三角形的一个角是另一个角的 4倍,则它的各个内角的度数为 _________________ 3、 已知等腰三角形的一个外角等于 150°,则它的各个内角的度数为 _______________________ 4、 已知等腰三角形一腰上的高与另一边的夹角为 25°,则它的各个内角的度数 __________________ 第1题 D 、4 M D B

动点问题最值

1文档来源为:从网络收集整理.word 版本可编辑. G F D A E A C B D F E B A C D F B A C D 动点问题最值 最值问题有四种情形:定点到动点的最值,动点在圆上或直线上,就是点到圆的最近距离,和点到直线的最近距离;三角形两边之和大于第三边的问题,当两边成一直线最大;几条线段之和构成一条线段最小;还有就是对称点最小问题。 一、定点到动点所在圆的最大或最小值,动点在一个定圆上运动,其实质是圆外一点到圆的最大或最小距离,就是定点与圆心所在直线与圆的交点的两个距离。 方法:证明动点在圆上或者去找不变的特殊三角形,证明两个三角形相似,求出某些边的值。 1.如图,△ABC 、△EFG 均是边长为2的等边三角形,点D 是边BC 、EF 的中点,直线AG 、FC 相交于点M .当△EFG 绕点D 旋转时,线段BM 长的最小值是( ) A .32- B .13+ C .2 D .13- 提示:点M 在以AC 为直径的圆上 2.(2015?咸宁)如图,已知正方形ABCD 的边长为2,E 是边BC 上的动点,BF ⊥AE 交CD 于点F ,垂足为G ,连结CG .下列说法:①AG >GE ;②AE =BF ;③点G 运动的路径长为π;④CG 的最小值为﹣1.其中正确的说法是 ②③ .(把你认为正确的说法的序 号都填上) 提示:G 在以AB 为直径的圆上:正确答案是:②④ 3、如图,正方形ABCD 的边长为4cm,正方形AEFG 的边长为1cm ,如果正方形AEFG 绕点A 旋转,那么C 、F 两点之间的最小距离为 4、如图,在边长为2的菱形ABCD 中,∠A=60°,M 是AD 边的中点,N 是AB 边上一动点,将 △AMN 沿MN 所在直线翻折得到△A ′MN ,连接A ′C ,则A ′C 长度的最小值是 5、如图,等腰直角△ACB ,AC=BC=5,等腰直角△CDP ,且PB=2,将△CDP 绕C 点旋转. (1)求证:AD=PB (2)若∠CPB=135°,求BD ; (3)∠PBC= 时,BD 有最大值,并画图说明; ∠PBC= 时,BD 有最小值,并画图说明. 分析:在△ABD 中有:BD ≤AB+AD ,当BD=AB+AD 时BD 最大,此时AB 与AD 在一条直线上,且AD 在BA 的延长线上,又△ACB 是等腰直角三角形,∠CAB=45°,由(1)知∠PBC=∠CAD=180°-45°=135° BD ≥AB-AD ,当BD=AB-AD 时BD 最小,此时,AB 与AD 在一条直线上,且AD 此时∠CAD=45°,所以∠PBC=∠CAD=45° 6、如图,△ABC 和△ADE 都是等腰直角三角形,∠ACB=∠ADE=90°,∠BAE=135°,AD=1, 2,F 为BE 中点. (1)求CF 的长 (2)将△ADE 绕A 旋转一周,求点F 运动的路径长; (3)△ADE 绕点A 旋转一周,求线段CF 的范围.

(名师整理)最新数学中考专题冲刺《二次函数动点成特殊三角形问题》压轴真题训练(含答案)

冲刺中考《二次函数动点成特殊三角形问题》压轴专题 1.如图,在平面直角坐标系中,二次函数y =- 1 3 x2+bx+c的图象与坐标轴交于A,B, C三点,其中点A的坐标为(-3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ. (1)填空:b=________,c=________; (2)在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由; (3)在x轴下方的二次函数的图象上是否存在点M,使△PQM是以点P为直角顶点的等腰直角三角形?若存在,请求出运动时间t;若不存在,请说明理由. 第1题图 解:(1)1 3 ,4; 【解法提示】∵二次函数y=-1 3 x2+bx+c与x轴交于A(-3,0),B(4,0), ∴ b c= b c= --+ ? ? ? -++ ?? 330 16 40 3 ,解得 b= c= ? ? ? ?? 1 3 4 , 1

(2)可能是,理由如下: ∵点P在AC上以每秒1个单位的速度运动, ∴AP=t, ∵点Q在OB上以每秒1个单位的速度运动,∴OQ=t, ∴AQ=t+3, ∵∠PAQ<90°,∠PQA<90°, ∴若要使△APQ是直角三角形,则∠APQ=90°, 在Rt△AOC中,OA=3,OC=4, ∴AC=5, 如解图①,设PQ与y轴交于点D, 第1题解图① ∵∠ODQ=∠CDP,∠DOQ=∠DPC=90°, 2

一次函数中(特殊三角形)的存在性问题优秀教学设计

《一次函数中特殊三角形的存在性问题》教学设计 【教学目标】 1、知识与技能 (1)使学生体会定点与动点之间的关系,做到以静制动。 (2)通过数形结合,利用几何法和代数法求一次函数中特殊三角形的存在性问题。 2、过程与方法 (1)借助几何画板探究一次函数中特殊三角形的存在性问题,使学生初步形成正确、科学的分析解决问题的方法。 (2)学生与其他人交流的过程中,能合理清晰地表达自己的思维过程。 (3)在自己动手画图的过程中,培养学生的动手实践能力及丰富的想象力,积累数学活动经验,增强学生的创新意识。 3、情感态度与价值观 (1)通过新媒体手段和个性化的学习方式,培养学生交流合作的意识,激发学生学习数学的兴趣,树立学生学好数学的信心,培养学生良好的学习习惯。 (2)以小组活动形式对本节内容进行综合探索,在与他人的合作过程中,培养学生敢于面对挑战和勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,培养学生的合作意识和团队精神。 【教学重、难点】 教学重点:(1)一次函数中的动点问题; (2)两圆一中垂线求等腰三角形;外K全等求等腰指教三角形。 教学难点:(1)分类讨论思想的运用; (2)学会以静制动 【学情分析】 学生已经初步掌握了用待定系数法求解一次函数的解析式,联立方程组求解两个一次函数图像的交点,求解三个顶点为定点的三角形的面积以及用铅锤法表示有顶点是动点的三角形的面积,但是对一次函数中特殊三角形的存在问题还存在一定的困难。 【教学活动策略及教法设计】 1.活动策略 课堂组织策略:创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流中,主动发现特殊三角形中动点坐标的规律。 学生学习策略:明确学习目标,了解所需掌握的知识,在教师的组织、引导、点拨下主动地从事观察、实验、猜测、验证与交流等教学活动,从而真正有效地理解和掌握知识。 辅助策略:借助几何画板,使学生直观形象地观察、操作。 2、教法 演示法:通过几何画板演示两圆一中垂线和外K全等,使学生直观、形象的感知因动点的移动,在何时会出现等腰三角形和等腰直角三角形,思考在没有几何画板的时候,我们自己该如何作图,快速确定动点的位置。 实验法:让学生自己动手、在探究过程中,自己发现动点的规律 讨论法:在学生进行了自主探索之后,进行小组讨论,让他们进行合作交流,使之互

中考数学相似三角形动点问题专题复习

中考数学相似三角形动点问题专题复习一、几何动点问题 例题:如图,在△ABC 中,AB=8cm,BC=16cm,点P 从点A 出发沿AB 边向点B 以2cm/s 的速度移动,点Q 从点B 出发沿BC 边向点C 以4cm/s 的速度移动(有一点到达端点后即停止移动),如果P,Q 同时出发,经过几秒后△PBQ 和△ABC 相似? 1、如图,Rt△ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm,D 为BC 的中点,若动点E 以1cm/s的速度从A 点出发,沿着A→B→A 的方向运动,设E 点的运动时间为t 秒(0≤t<6),连DE,当△BDE 是直角三角形时,t 的值为 2、如图,Rt△ABC 中,∠C=90°,AC=8,BC=6,点D 是BC 边的中点,动点P 从点C 出发,沿C→A→B 的方向在AC、AB 边上以每秒2 个单位的速度向点B 移动,运动至点B 即停止。连接PD,当点P 运动时间t 为何值时,线段PD 截

Rt△ABC 为两部分,所得的三角形与Rt△ABC 相似. 3、如图,在直角梯形ABCD 中, D 900 ,AB=10cm,BC=6cm,AB ∥CD , AC BC , F点以2cm / s 的速度在线段AB 上由A 向B 匀速运动,E 点同时以1cm / s 的速度在线段BC上由B 向C 匀速运动,设运动的时间为t (0<t <5). (1)求证:△ ACD ∽△BAC ; (2)求DC 的长 (3)当t 为何值时,△ FEB 为直角三角形? 4、已知,在矩形ABCD 中,AB=a,BC=b,动点M 从点A 出发沿边AD 向点D 运动. (1)如图1,当b=2a,点M 运动到边AD 的中点时,请证明∠BMC=90°;

动点问题最值

G F D A B C E 动点问题最值 最值问题有四种情形:定点到动点的最值,动点在圆上或直线上,就是点到圆的最近距离,和点到直线的最近距离;三角形两边之和大于第三边的问题,当两边成一直线最大;几条线段之和构成一条线段最小;还有就是对称点最小问题。 一、定点到动点所在圆的最大或最小值,动点在一个定圆上运动,其实质是圆外一点到圆的最大或最小距离,就是定点与圆心所在直线与圆的交点的两个距离。 方法:证明动点在圆上或者去找不变的特殊三角形,证明两个三角形相似,求出某些边的值。 1.如图,△ABC 、△EFG 均是边长为2的等边三角形,点D 是边BC 、EF 的中点,直线AG 、 FC 相交于点M .当△EFG 绕点D 旋转时,线段BM 长的最小值是( ) A .32- B .13+ C .2 D .13- 提示:点M 在以AC 为直径的圆上 2.(2015?咸宁)如图,已知正方形ABCD 的边长为2,E 是边BC 上的动点,BF ⊥AE 交CD 于点F ,垂足为G ,连结CG .下列说法:①AG >GE ;②AE =BF ;③点G 运动的路径长为π;④CG 的最小值为 ﹣1.其中正确的说法是 ②③ .(把你认为正确的说法的序号都填上) 提示:G 在以AB 为直径的圆上:正确答案是:②④ 3、如图,正方形ABCD 的边长为4cm,正方形AEFG 的边长为1cm ,如果正方形AEFG 绕点A 旋转,那么C 、F 两点之间的最小距离为 4、如图,在边长为2的菱形ABCD 中,∠A=60°,M 是AD 边的中点,N 是AB 边上一动点,将△AMN 沿MN 所在直线翻折得到△A ′MN ,连接A ′C ,则A ′C 长度的最小值是

动点之两定点与一动点构成特殊三角形

两定点A ,B 与一定点P 构成特殊三角形时应考虑:AB=AP ,AB=BP ,AP=BP ,三种情况分类讨论,分别求出定点P 的位置和坐标。 1(上海市)在直角坐标平面内,O 为原点,点A 的坐标为(1,0),点C 的坐标为(0,4),直线CM ∥x 轴(如图所示).点B 与点A 关于原点对称,直线y =x +b (b 为常数)经过点B ,且与直线CM 相交于点D ,联结OD . (1)求b 的值和点D 的坐标; (2)设点P 在x 轴的正半轴上,若△POD 是等腰三角形,求点P 的坐标; (3)在(2)的条件下,如果以PD 为半径的圆P 与圆O 外切,求圆O 的半径. 2.(重庆市)已知:如图,在平面直角坐标系xO y 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3.过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E . (1)求过点E 、D 、C 的抛物线的解析式; (2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边 与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为56 ,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由; (3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与 AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由. 3.(江苏省)如图,已知射线DE 与x 轴和y 轴分别交于点D (3,0)和点E (0,4),动点C 从点M (5,0)出发,以1个单位长度/秒的速度沿x 轴向左作匀速运动,与此同时,

动点问题和压轴题训练

D P C N B M A E D F P C A B O F E D C B A 动点问题和压轴题训练 动态几何问题是近几年各地中考试题常见的压轴试题,它能考查学生的多种能力,有较强的选拔功能。解这类题目要“以静制动”,即把动态问题,变为静态问题来解。 动点题一般方法是针对这些点在运动变化的过程中相伴随着的数量关系(如等量关系、变量关系)、图形位置关系(如图形的特殊状态、图形间的特殊关系)等进行研究考察.抓住变化中的“不变量”,以不变应万变。 首先根据题意理清题目中两个变量X 、Y 的变化情况并找出相关常量。 第二,按照图形中的几何性质及相互关系,找出一个基本关系式,把相关的量用一个自变量的表达式表达出来,然后再根据题目的要求,依据几何、代数知识解出。 第三,确定自变量的取值范围,画出相应的图象。 解答综合、压轴题,要把握好以下各个环节: 1.审题:这是解题的开始,也是解题的基础.一定要全面审视题目的所有条件和答题要求,以求正确、全面理解题意,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计. 审题思考中,要把握“三性”,即明确目的性,提高准确性,注意隐含性.解题实践表明:条件暗示可知并启发解题手段,结论预告并诱导解题方向,只有细致地审题,才能从题目本身获得尽可能多的信息.这一步,不要怕慢,其实“慢”中有“快”,解题方向明确,解题手段合理得当,这是“快”的前提和保证.否则,欲速则不达. 2.寻求合理的解题思路和方法:破除模式化、力求创新是近几年中考数学试题的显著特点,解答题体现得尤为突出,因此,切忌套用机械的模式寻求解题思路和方法,而应从各个不同的侧面、不同的角度,识别题目的条件和结论,认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,谨慎地确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃. 动点问题练习题 1、如图,点P 是边为1的菱形ABCD 对角线AC 的一个动点,点M 、N 分别是AB 、BC 的中点,则MP+NP 的最小值是 ; 2、若点P 为边长为5的等边三角形内的一个动点,作PD⊥BC 于点D ,PE⊥AC 于点E ,PF⊥AB 于点F ,则PD+PE+PF= ;反之,若PD=6,PE=10,PF=8,则等边△ABC 的面积为 ; 3、如图,平行四边形ABCD 中,对角线AC 、BD 相交于点O ,若E 、F 是线段AC 上的两个动点,分别从A 、C 两点以相同的速度1㎝/s 向C 、A 运动,若BD=12㎝,AC=16㎝,当t 时,四边形DEBF 为平行四边形;当时间t= 时,四边形DEBF 为矩形。 4. 如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每 秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.(1) 求直线AB 的解析式;(2) 当t 为何值时,△APQ 与△AOB 相似? (3) 当t 为何值时,△APQ 的面积为5 24 个平方单位?

特殊三角形专题复习

导 学 过 程 设 计 一、看图说话 二、知识梳理 复习等腰、等边、直角三角形的性质与判定 三、我来闯关 探究一:等腰、直角三角形边、角计算 1.如果等腰三角形两边长分别为2和4,则这个等腰三角形的周长为___________. 2.如果等腰三角形的一个内角为50°,则其它的底角的度数是___________. 3.如果一个等腰三角形的一个内角为 100°,则它的顶角的度数是________. 4.已知直角三角形的两边长分别为3 和4,则第三边的长为 ________. 探究二:等腰、直角三角形的性质与判定 1.如图1,在△ABC 中,已知∠ABC 与∠ACB 的角分平线相交于点O ,过O 点作DE 平行于 BC 交AB 点D ,交AC 于点E ,已知DE =5,则BD+CE =________. 2.如图2,在△ABC ,BD 、CE 分别是AC 、AB 边上的高,O 是BC 边的中点,连接OD 、OE 、 DE ,猜想△ODE 是等腰三角形吗?请说明理由。 3.如图3,在五边形ABCDE 中,AB =AE ,BC =DE ,∠B =∠E ,F 是CD 的中点,求证: 恩江中学数学中考总复习课导学案 图3 图1

探究三:等腰、直角三角形在平面直角坐标系中的应用 1.如图1在平面直角坐标系中,OA=OB=13,点B 在x 轴上,OB =10则点A 的坐标是________. 2.如图2在平面直角坐标系中,OA=AB=2,点A 在x 轴上,∠OAB =150°则点B 的坐标是________. 3.如图3在平面直角坐标系中,OA=2,OA 与x 轴的夹角是30° ,点P 在坐标轴上运动,若 速度从A 向点B 运动,到达B 点停止, (1)求当点P 运动多少秒时,△ACP (2)求当点P 运动多少秒时,△ACP 四、当堂检测 1.如果一个等腰三角形的周长10,其中一边长为4,则它的腰长为_________. 2.如果一个等腰三角形的一个外角为50°,则其它的顶角的度数是__________. 3.在直角三角形中,已知两直角边分别为3和4,则斜边上的高为__________. 五、课堂小结 六、 课后作业 七、教学反思 B

特殊三角形知识点及例题

特殊三角形 一、知识结构 本章主要学习了等腰三角形的性质与判定、直角三角形的性质与判定以及勾股定理、HL 定理等知识,这些知识点之间的结构如下图所示: 等腰Rt 两直角三角形全等的判定 直角三角形的性质和判定等边三角形的性质和判定等腰三角形的性质和判定直角三角形等边三角形 等腰三角形特殊三角形 二、重点回顾 1.等腰三角形的性质: 等腰三角形两腰_______;等腰三角形两底角______(即在同一个三角形中,等边对_____);等腰三角形三线合一,这三线是指________________、________________、________________,也就是说这三线为同一条线段;等腰三角形是________图形,它的对称轴有_________条。 2.等腰三角形的判定: 有____边相等的三角形是等腰三角形;有_____相等的三角形是等腰三角形(即在同一个三角形中,等角对_____)。 3.等边三角形的性质: 等边三角形各条边______,各内角_______,且都等于_____;等边三角形是______图形,它有____条对称轴。 4.等边三角形的判定: 有____边相等的三角形是等边三角形;有三个角都是______的三角形是等边三角形;有两个角都是______的三角形是等边三角形;有一个角是______的______ 三角形是等边三角形。 5.直角三角形的性质: 直角三角形两锐角_______;直角三角形斜边上的中线等于_______;直角三角形两直角边的平方和等于________(即勾股定理)。 30°角所对的直角边等于斜边的________ 6.直角三角形的判定:

八年级下册数学重难点题型(人教版)专题 动点与特殊三角形存在性问题大视野(原卷版)

专题动点与特殊三角形存在性问题大视野 【例题精讲】 题型一、等腰三角形存在性问题 例1. 【2019·黄石期中】如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,AB=2cm,E、F分别是AB、AC 的中点,动点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时动点Q从点B出发,沿BF方向匀速运动,速度为2cm/s,连接PQ,设运动时间为ts(0<t<1),则当t=______时,△PQF为等腰三角形. 例2. 【2019·广州市番禺区期末】已知:如图,在Rt△ABC中,△C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒. (1)求BC边的长; (2)当△ABP为直角三角形时,求t的值; (3)当△ABP为等腰三角形时,求t的值.

例3. 【2019·乐亭县期末】如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P 是边AB或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为______. 题型二、直角三角形存在性问题 例1. 【2019·厦门六中月考】如图,在RtΔABC中,△B=90°,AC=60,△A=60°.点D从点C出发沿CA方向以每秒4个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒2个单位长的速度向点B匀速运动,设点D、E运动的时间是t秒(0

由动点生成的特殊三角形[1]

由动点生成的特殊三角形 1.如图,已知直线1l 的解析式为63+=x y ,直线1l 与x 轴、y 轴分别相交于A 、B 两点,直线2l 经过B 、C 两点,点C 的坐标为(8,0),又已知点P 在x 轴上从点A 向点C 移动,点Q 在直线2l 从点C 向点B 移动。点P 、Q 同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t 秒(101<

与特殊的平行四边形有关的动点问题

第13讲 与特殊的平行四边形有关的动点问题 小测试 总分10分 得分___________ 2.(6分)如图,矩形ABCD 中,AB =4,BC =8,将其折叠,使点A 与点C 重合,则折痕EF 的长为________.25 【教学目标】 能熟练运用特殊平行四边形的性质定理和判定定理解决动点问题. 【教学重难点】 根据已知几何图形间的位置关系和数量关系(如平行、全等),建立方程, 解决动点涉及到的特殊平行四边形的存在性等问题. 【考点1】菱形的存在性问题 【例1】如图,矩形ABCD 中,E 、F 分别是AD 、BC 上两点,且AE =CF . (1)求证:四边形BEDF 为平行四边形. (2)若AB =6,AD =9,则当AE 为何值时,四边形BFDE 为菱形. (2)AE =2.5 【例2】如图,平行四边形ABCD 中,AD =9cm ,CD =32cm ,∠B =45°,点M 、N 分别以A 、C 为起点,1cm /秒的速度沿AD 、CB 边运动,设点M 、N 运动的时间为t 秒(0≤t ≤6). (1)求BC 边上高AE 的长度; (2)连接AN 、CM ,当t 为何值时,四边形AMCN 为菱形.t =15/4 【考点2】矩形的存在性问题 【例3】如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,AC =20cm ,BD =12cm ,两动点E 、F A D E F B C A D E B C N M A D F B C E

同时分别以2cm /s 的速度从点A 、C 出发在线段AC 上运动. (1)求证:当E 、F 运动过程中不与点O 重合时,四边形BEDF 一定为平行四边形; (2)当E 、F 运动时间t 为何值时,四边形BEDF 为矩形?t =2s 或8s 【例4】如图,△ABD 和△CEF 都是斜边长为2cm 的全等直角三角形,其中∠ABD =∠FEC =60°,且B 、 D 、C 、 E 在同一直线上,DC =4. (1)求证:四边形ABFE 是平行四边形. (2)△ABD 沿着BE 的方向以每秒1cm 的速度运动,设△ABD 运动的时间为t s . ①当t 为何值时,□ABFE 是菱形?请说明理由;t =4s ②□ABFE 有可能是矩形吗?若可能,求出t 的值及此矩形的面积;若不可能,请说明理由. t =2s S 矩形ABFE =43cm 2 【家庭作业】 1.如图,△ABC 和△DEF 是两个边长都为1cm 的等边三角形,且B 、D 、C 、E 都在同一直线上,连接AD 及CF . (1)求证:四边形ADFC 是平行四边形; A B E D F C

相关文档
最新文档