火力发电基础应用及火力发电原理

火力发电基础应用及火力发电原理
火力发电基础应用及火力发电原理

火力发电基础应用及火力发电原理

热电厂为火力发电厂,采用煤炭作为一次能源,利用皮带传送技术,向锅炉输送经处理过的煤粉,煤粉燃烧加热锅炉使锅炉中的水变为水蒸汽,经一次加热之后,水蒸汽进入高压缸。为了提高热效率,应对水蒸汽进行二次加热,水蒸汽进入中压缸。通过利用中压缸的蒸汽去推动汽轮发电机发电。从中压缸引出进入对称的低压缸。已经作过功的蒸汽一部分从中间段抽出供给炼油、化肥等兄弟企业,其余部分流经凝汽器水冷,成为40度左右的饱和水作为再利用水。40度左右的饱和水经过凝结水泵,经过低压加热器到除氧器中,此时为160度左右的饱和水,经过除氧器除氧,利用给水泵送入高压加热器中,其中高压加热器利用再加热蒸汽作为加热燃料,最后流入锅炉进行再次利用。以上就是一次生产流程。

核心提示:火力发电一般是指利用石油、煤炭和天然气等燃料燃烧时产生的热能来加热水,使水变成高温、高压水蒸气,然后再由水蒸气推动发电机来发电的方式的总称。以煤、石油或天然气作为燃料的发电厂统称为火电厂。火力发电站的主要设备系统包括:燃料供给系统、给水系统、蒸汽系

火力发电一般是指利用石油、煤炭和天然气等燃料燃烧时产生的热能来加热水,使水变成高温、高压水蒸气,然后再由水蒸气推动发电机来发电的方式的总称。以煤、石油或天然气作为燃料的发电厂统称为火电厂。

火力发电站的主要设备系统包括:燃料供给系统、给水系统、蒸汽系统、冷却系统、电气系统及其他一些辅助处理设备。

火力发电系统主要由燃烧系统(以锅炉为核心)、汽水系统(主要由各类泵、给水加热器、凝汽器、管道、水冷壁等组成)、电气系统(以汽轮发电机、主变压器等为主)、控制系统等组成。前二者产生高温高压蒸汽;电气系统实现由热能、机械能到电能的转变;控制系统保证各系统安全、合理、经济运行。

火力发电的重要问题是提高热效率,办法是提高锅炉的参数(蒸汽的压强和温度)。90年代,世界最好的火电厂能把40%左右的热能转换为电能;大型供热电厂的热能利用率也只能达到60%~70%。此外,火力发电大量燃煤、燃油,造成环境污染,也成为日益引人关注的问题。

热电厂为火力发电厂,采用煤炭作为一次能源,利用皮带传送技术,向锅炉输送经处理过的煤粉,煤粉燃烧加热锅炉使锅炉中的水变为水蒸汽,经一次加热之后,水蒸汽进入高压缸。为了提高热效率,应对水蒸汽进行二次加热,水蒸汽进入中压缸。通过利用中压缸的蒸汽去推动汽轮发电机发电。从中压缸引出进入对称的低压缸。已经作过功的蒸汽一部分从中间段抽出

供给炼油、化肥等兄弟企业,其余部分流经凝汽器水冷,成为40度左右的饱和水作为再利用水。40度左右的饱和水经过凝结水泵,经过低压加热器到除氧器中,此时为160度左右的饱和水,经过除氧器除氧,利用给水泵送入高压加热器中,其中高压加热器利用再加热蒸汽作为加热燃料,最后流入锅炉进行再次利用。以上就是一次生产流程。

火力发电厂的基本生产过程

火力发电厂的主要生产系统包括汽水系统、燃烧系统和电气系统,现分述如下:

(一)汽水系统:

火力发电厂的汽水系统是由锅炉、汽轮机、凝汽器、高低压加热器、凝结水泵和给水泵等组成,他包括汽水循环、化学水处理和冷却系统等。

水在锅炉中被加热成蒸汽,经过热器进一步加热后变成过热的蒸汽,再通过主蒸汽管道进入汽轮机。由于蒸汽不断膨胀,高速流动的蒸汽推动汽轮机的叶片转动从而带动发电机。

为了进一步提高其热效率,一般都从汽轮机的某些中间级后抽出作过功的部分蒸汽,用以加热给水。在现代大型汽轮机组中都采用这种给水回热循环。此外,在超高压机组中还采用再热循环,既把作过一段功的蒸汽从汽轮机的高压缸的出口将作过功的蒸汽全部抽出,送到锅炉的再热汽中加热后再引入气轮机的中压缸继续膨胀作功,从中压缸送出的蒸汽,再送入低压缸继续作功。在蒸汽不断作功的过程中,蒸汽压力和温度不断降低,最后排入凝汽器并被冷却水冷却,凝结成水。凝结水集中在凝汽器下部由凝结水泵打至低压加热再经过除氧气除氧,给水泵将预加热除氧后的水送至高压加热器,经过加热后的热水打入锅炉,再过热器中把水已经加热到过热的蒸汽,送至汽轮机作功,这样周而复始不断的作功。

在汽水系统中的蒸汽和凝结水,由于疏通管道很多并且还要经过许多的阀门设备,这样就难免产生跑、冒、滴、漏等现象,这些现象都会或多或少地造成水的损失,因此我们必须不断的向系统中补充经过化学处理过的软化水,这些补给水一般都补入除氧器中。

(二)燃烧系统

燃烧系统是由输煤、磨煤、粗细分离、排粉、给粉、锅炉、除尘、脱流等组成。是由皮带输送机从煤场,通过电磁铁、碎煤机然后送到煤仓间的煤斗内,再经过给煤机进入磨煤机进行磨粉,磨好的煤粉通过空气预热器来的热风,将煤粉打至粗细分离器,粗细分离器将合格的煤粉(不合格的煤粉送回磨煤机),经过排粉机送至粉仓,给粉机将煤粉打入喷燃器送到锅炉进行燃烧。而烟气经过电除尘脱出粉尘再将烟气送至脱硫装置,通过石浆喷淋脱出流的气体经过吸风机送到烟筒排人天空。

(三)发电系统

发电系统是由副励磁机、励磁盘、主励磁机(备用励磁机)、发电机、变压器、高压断路器、

升压站、配电装置等组成。发电是由副励磁机(永磁机)发出高频电流,副励磁机发出的电流经过励磁盘整流,再送到主励磁机,主励磁机发出电后经过调压器以及灭磁开关经过碳刷送到发电机转子,当发电机转子通过旋转其定子线圈便感应出电流,强大的电流通过发电机出线分两路,一路送至厂用电变压器,另一路则送到SF6高压断路器,由SF6高压断路器送至电网。

火力发电厂的基本生产过程

这里介绍的是汽轮机发电的基本生产过程。

火力发电厂的燃料主要有煤、石油(主要是重油、天然气)。我国的火电厂以燃煤为主,过去曾建过一批燃油电厂,目前的政策是尽量压缩烧油电厂,新建电厂全部烧煤。

火力发电厂由三大主要设备——锅炉、汽轮机、发电机及相应辅助设备组成,它们通过管道或线路相连构成生产主系统,即燃烧系统、汽水系统和电气系统。其生产过程简介如下。

1.燃烧系统

燃烧系统如图1-l所示,包括锅炉的燃烧部分和输煤、除灰和烟气排放系统等。

煤由皮带输送到锅炉车间的煤斗,进入磨煤机磨成煤粉,然后与经过预热器预热的空气一起喷入炉内燃烧,将煤的化学能转换成热能,烟气经除尘器清除灰分后,由引风机抽出,经高大的烟囱排入大气。炉渣和除尘器下部的细灰由灰渣泵排至灰场。

2.汽水系统

汽水系统流程如图1-2所示,包括锅炉、汽轮机、凝汽器及给水泵等组成的汽水循环和水处理系统、冷却水系统等。

水在锅炉中加热后蒸发成蒸汽,经过热器进一步加热,成为具有规定压力和温度的过热蒸汽,然后经过管道送入汽轮机。

在汽轮机中,蒸汽不断膨胀,高速流动,冲击汽轮机的转子,以额定转速(3000r/min)旋转,将热能转换成机械能,带动与汽轮机同轴的发电机发电。

在膨胀过程中,蒸汽的压力和温度不断降低。蒸汽做功后从汽轮机下部排出。排出的蒸汽称为乏汽,它排入凝汽器。在凝汽器中,汽轮机的乏汽被冷却水冷却,凝结成水。

凝汽器下部所凝结的水由凝结水泵升压后进入低压加热器和除氧器,提高水温并除去水中的氧(以防止腐蚀炉管等),再由给水泵进一步升压,然后进入高压加热器,回到锅炉,完成水—蒸汽—水的循环。给水泵以后的凝结水称为给水。

汽水系统中的蒸汽和凝结水在循环过程中总有一些损失,因此,必须不断向给水系统补充经过化学处理的水。补给水进入除氧器,同凝结水一块由给水泵打入锅炉。

3.电气系统

电气系统如图1-3所示,包括发电机、励磁系统、厂用电系统和升压变电站等。

发电机的机端电压和电流随其容量不同而变化,其电压一般在10~20kV之间,电流可达数千安至20kA。因此,发电机发出的电,一般由主变压器升高电压后,经变电站高压电气设备和输电线送往电网。极少部分电,通过厂用变压器降低电压后,经厂用电配电装置和电缆供厂内风机、水泵等各种辅机设备和照明等用电。

一、火电厂的分类

1、按燃料分类

燃煤发电厂:以煤为燃料的发电厂;

燃油发电厂:以石油(实际是提取汽油、煤油、柴油后的油渣)

为燃料的发电厂;

燃气发电厂:以天然气、煤气等可燃气体为燃料的发电厂;

余热发电厂:用工业企业的各种余热进行发电的发电厂;

此外,还有利用垃圾及工业废料作为燃料的发电厂。

2、按原动机分类

凝汽式气轮机发电厂

燃汽轮机发电厂

内燃机发电厂

蒸汽——燃汽轮机发电厂

3、按供出能源分类

凝汽式发电厂:只向外供应电能的电厂

热电厂:同时向外供应电能和热能的电厂

4、按发电装机容量的多少分类

小容量发电厂:装机总容量在100MW以下的发电厂;

中容量发电厂:装机总容量在100—250MW范围内的发电厂;

大中容量发电厂:装机总容量在250—600MW范围内的发电厂;

大容量发电厂:装机总容量在600—1000MW范围内的发电厂;

特大容量发电厂:装机总容量在1000MW以上的发电厂。

5、按蒸汽压力和温度分类

中低压发电厂:蒸汽压力一般为3.92MPa(40kgf/cm2)、温度为

450℃的发电厂,单机功率小于25MW;

高压发电厂:蒸汽压力一般为9.9MPa(101kgf/cm2)、温度为

540℃的发电厂,单机功率小于100MW;

超高压发电厂:蒸汽压力一般为13.83MPa(141kgf/cm2)、温度

为540/540℃的发电厂,单机功率小于20MW;

亚临界压力发电厂:蒸汽压力一般为16.77MPa(171kgf/cm2)、

温度为540/540℃的发电厂,单机功率为

300MW直至1000MW不等;

超临界压力发电厂:蒸汽压力大于22.11MPa(225.6kgf/cm2)、

温度为550/550℃的发电厂,机组功率为

600MW及以上。

6、按供电范围分类

区域性发电厂:在电网内运行,承担一定区域性供电的大中型发电厂;

孤立发电厂:不并入电网内,单独运行的发电厂;

自备发电厂:由大型企业自己建造,主要供本单位用电的发电厂(一般也与电网连)。

二、火电厂的生产流程

火电厂种类虽然很多,但从能量转换的观点分析,其生产过程是基本相同的,都是将燃料燃烧的热能通过锅炉产生高温高压水蒸气,推动汽轮机做功产生机械能,经发电机转变为电能,最后通过变压器将电能送入电力系统。

三、火电厂特点

与水电厂和其他类型电厂相比,火电厂有如下特点:

1、布局灵活,装机容量的大小可按需要决定。

2、建造工期短,一般为水电厂的一半甚至更短。一次性建造投资少,仅为水电厂的一半左右。

3、煤耗量大,目前发电用煤约占全国煤炭总产量的25%左右,加上运煤费用和大量用水,其生产成本比水力发电要高出3—4倍。

4、动力设备繁多,发电机组控制操作复杂,厂用电量和运行人员都多于水电厂,运行费用高。

5、汽轮机开、停机过程时间长,耗资大,不宜作为调峰电源用。

6、对空气和环境的污染大。

火力发电用煤品种及过程分析

电力是国民经济发展的重要能源,火力发电是我国和世界上许多国家生产电能的主要方法。煤炭在锅炉内燃烧放出的热量,将水加热成具有一定压力和温度的蒸汽,然后蒸汽沿管道进入汽轮机膨胀做功,带动发电机一起高速旋转,从而发出电来。在汽轮机中做完功的蒸汽排入冷汽器中并凝结成水,然后被凝结水泵送入除氧器。水在除氧器中被来自抽气管的汽轮机抽汽加热并除去所含气体,最后又被给水泵送回锅炉中重复参加上述循环过程。显然,在这种火力发电厂中存在着三种型式的能量转换过程:在锅炉中煤的化学能转变为热能;在汽轮机中热能转变为机械能;在发电机中机械能转换成电能。进行能量转换的主要设备——锅炉、汽轮机和发电机,被称为火力发电厂的三大主机,而锅炉则是三大主机中最基本的能量转换设备。

1.电站锅炉。发电用锅炉称为电站锅炉。目前,在我国大型电厂多用煤粉炉和沸腾炉。电站锅炉与其它工厂用的工业锅炉相比有如下明显特点:①电站锅炉容量大;②电站锅炉的蒸汽参数高;③电站锅炉自动化程度高,其各项操作基本实现了机械化和自动化,适应负荷变化的能力很强,工业锅炉目前仅处于半机械化向全机械化发展的过程中;④电站锅炉的热效率高,多达90%以上,工业锅炉的热效率多在60~80%之间。

2.电站用煤的分类。火力发电厂燃用的煤通常称为动力煤,其分类方法主要是依据煤的干燥无灰基挥发分进行分类。

3.煤粉的制备。煤粉炉燃烧用的煤粉是由磨煤机将煤炭磨成的不规则的细小煤炭颗粒,其颗粒平均在0.05~0.01mm,其中20~50μm(微米)以下的颗粒占绝大多数。由于煤粉颗粒很小,表面很大,故能吸附大量的空气,且具有一般固体所未有的性质——流动性。煤粉的粒度越小,含湿量越小,其流动性也越好,但煤粉的颗粒过于细小或过于干燥,则会产生煤粉自流现象,使给煤机工作特性不稳,给锅炉运行的调整操作造成困难。另外煤粉与O2接触而氧化,在一定条件下可能发生煤粉自然。在制粉系统中,煤粉是由气体来输送的,气体和煤粉的混合物一遇到火花就会使火源扩大而产生较大压力,从而造成煤粉的爆炸。

锅炉燃用的煤粉细度应由以下条件确定:燃烧方面希望煤粉磨得细些,这样可以适当减少送风量,使q2 、q4损失降低;从制粉系统方面希望煤粉磨得粗些,从而降低磨煤电耗和金属消耗。所以在选择煤粉细度时,应使上述各项损失之和最小。总损失蝉联小的煤粉细度称为“经济细度”。由此可见,对挥发分较高且易燃的煤种,或对于磨制煤粉颗粒比较均匀的制粉设备,以及某些强化燃烧的锅炉,煤粉细度可适当大些,以节省磨煤能耗。由于各种煤的软硬程度不

同,其抗磨能力也不同,因此每种煤的经济细度也不同。

4.煤粉的燃烧。由煤粉制备系统制成的煤粉经煤粉燃烧器进入炉内。燃烧器是煤粉炉的主要燃烧设备。燃烧器的作用有三:一是保证煤粉气流喷入炉膛后迅速着火;二是使一、二次风能够强烈混合以保证煤粉充分燃烧;三是让火焰充满炉膛而减少死滞区。煤粉气流经燃烧器进入炉膛后,便开始了煤的燃烧过程。燃烧过程的三个阶段与其它炉型大体相同。所不同的是,这种炉型燃烧前的准备阶段和燃烧阶段时间很短,而燃尽阶段时间相对很长。

5.发电用煤的质量要求。电厂煤粉炉对煤种的适用范围较广,它既可以设计成燃用高挥发分的褐煤,也可设计成燃用低挥发分的无烟煤。但对一台已安装使用的锅炉来讲,不可能燃用各种挥发分的煤炭,因为它受到喷燃器型式和炉膛结构的限制。发电用煤质量指标有:

①挥发分。是判明煤炭着火特性的首要指标。挥发分含量越高,着火越容易。根据锅炉设计要求,供煤挥发分的值变化不宜太大,否则会影响锅炉的正常运行。如原设计燃用低挥发分的煤而改烧高挥发分的煤后,因火焰中心逼近喷燃器出口,可能因烧坏喷燃器而停炉;若原设计燃用高挥发分的煤种而改烧低挥发分的煤,则会因着火过迟使燃烧不完全,甚至造成熄火事故。因此供煤时要尽量按原设计的挥发分煤种或相近的煤种供应。②灰分。灰分含量会使火焰传播速度下降,着火时间推迟,燃烧不稳定,炉温下降。③水分。水分是燃烧过程中的有害物质之一,它在燃烧过程中吸收大量的热,对燃烧的影响比灰分大得多。④发热量。为的发热量是锅炉设计的一个重要依据。由于电厂煤粉对煤种适应性较强,因此只要煤的发热量与锅炉设计要求大体相符即可。⑤灰熔点。由于煤粉炉炉膛火焰中心温度多在1500℃以上,在这样高温下,煤灰大多呈软化或流体状态。⑥煤的硫分。硫是煤中有害杂质,虽对燃烧本身没有影响,但它的含量太高,对设备的腐蚀和环境的污染都相当严重。因此,电厂燃用煤的硫分不能太高,一般要求最高不能超过2.5%。

火力发电

现状描述

1990年火电站能源消费为21998.6万t标煤,占全国能源总消费的22.29%。发电消费煤炭27204万t,占煤炭总消费量的25.78%,其中直接燃用原煤26320万t,占原煤总消费量的25.6%。1994年,发电消费煤炭40053.1万t,占煤炭总消费量的31.1%。表5.9给出近年火电发电能源消费量。

1994年全国单机600kW及以上发电机组总容量为172440.45MW,占总装机容量的86%。汽轮机组中高温高压及以上参数机组共901台,109003.9 MW,占汽轮机组总容量的67%。

1990年、1994年火电机组平均发电煤耗指标见表5.10 。

表5.9近年火电发电能源消费

年份煤炭/Mt 石油/Mt 天然气/106m3

1980 109.71 16.26 2076.73

1985 156.62 13.45 3606.81

1990 265.15 12.21 5034.92

1991 294.55 11.85 5417.57

1992 327.20 11.89 6409.14

1993 362.04 12.03 8181.00

1994 392.91 11.64 8532.00

表5.10火电机组供电煤耗统计机组容量

机组容量/MW 设计煤耗/g(标煤)/(kw?h) 实际运行煤耗/g(标煤)/(kw?h)

1990年平均值 1994年

最低值最高值平均值

600 321 358 319 342 337

300 338-344 362 315 342 352

200 345-360 394 353 418 378

125 355-358 392 363 465 370

100 388-390 418 390 435 406

6-50 450

减排技术描述

1. 电厂节能

2000年前中国电力部门的减排对策是着重强调节能技术改造。目前中国火力发电中,燃煤电厂的热效率为30%左右,与国外相比差距较大。主要原因是:机组构成中,20万kW以上的大容量高参数机组偏低,不到40%,2.5万kW以下中温中压、小火电机组占1/4,而且国产20万kW机组的热效率又比国外同类型的低。火电厂近期主要节能技改措施见表5.11。

表5.11火电厂的主要节能技改措施

序号项目投资/亿元估计节能量

1 多功能节能燃烧器 0.295 28.6万t标煤

2 锅炉热管预热器技术 1.77 38.6万t标煤

3 轴向粗粉分离器 1.16 2.47亿kw?h

4 节能渣泵 0.81 5.4亿kw?h

5 水泵改造

近期火电节能措施还包括:

(1) 淘汰10万kW以下煤耗高的中、小火电机组,实行以大替小或改为供热机组。

(2) 对现有10万kW以上高压机组要有针对性的进行改造。在推广节能技改措施的同时,特别注意解决机组设备原有的各种缺陷。

(3) 发展高参数、大容量机组。新建机组以30、60万kW为主,其供电煤耗不得超过330g(标煤)/(kW?h)。到2000年,10万kW以上火电机组容量增加到近2亿kW,年平均增长1000万kW。

(4) 对已有的引进型30,60万kW机组进行改进提高,将其供电煤耗降至330g(标

煤)/(kW?h)以下。对占装机容量约20%的20万kW机组,改造1050万kW。

(5) 大力发展热电联供机组,到2000年,热电机组净增1000万kW以上,热电机组的供电煤耗不超过280g(标煤)/(kW?h)。在高硫煤产区及有低热值燃料的地区发展流化床热电联产机组。

(6) 积极开展电网的经济调度,采取措施,统筹兼顾,努力提高大机组的发电比重。

(7) 沿海经济发达地区,要建一批燃气蒸汽联合循环机组,以满足沿海经济发展加快对电力的急需和峰谷日益增大的需要。

2. 采用先进的火电发电技术

2000年后,火力发电厂还要进一步采取节能降耗措施,使常规火电厂供电煤耗从2000年的367g(标煤)/(kW?h),降低到2010年的347g(标煤)/(kW?h),在条件合适的地区大力推广热电联产。作为减排温室气体的重要对策,2000年以后将逐步采用先进的发电方式或技术,包括:

(1) 发展更高蒸汽参数的超临界及超高临界的1000MW容量等级的汽轮发电机组。

(2) 开发并推广大容量循环流化床锅炉。

(3) 开发大容量增压流化床联合循环发电技术。

(4) 开发研究整体煤气化联合循环发电技术。

减排技术经济评价

常规30万kW和60万kW燃煤机组将是中国目前和今后一段时期内火电发展的主要机组,因此将其作为减排评价的参考技术(baseline)。现将各种可能采用的技术与其比较,燃料价格和各种发电技术的技术经济参数列在表5.12和表5.13上。

表5.12 燃料价格(1994年)

燃料价格折算标煤价格备注

煤* 350元/t 490元/t 热值20.92MJ

油** 1200元/t 826元/t 热值42.55MJ

LPG** 1000元/t(120美元/t) 620元/t 热值47.28MJ

* 根据东南沿海地区煤价;

** 根据东南沿海地区进口价格。

表5.13 火力发电技术的技术经济参数(1994年)

发电技术电厂投资/元/kw 固定运行费用(占投资的百分数)燃料类型发电净效率负荷因子经济寿命/a 建造周期/a

常规煤电 5300* 3% 煤 33% 65% 20 2

常规脱硫煤电 6300*** 3% 煤 33% 65% 20 2

燃气联合循环 7000** 2% LPG 45% 65% 20 1

燃油联合循环 7000** 2% 油 45% 65% 20 1

AFBC(常压循环硫化床) 10000**-6300*** 3% 煤 33% 65% 20 2

PFBC(加压循环硫化床) 10000** 3% 煤 40% 65% 20 2

IGCC(整体煤气化联合循环) 10000**-8000*** 3% 煤 42% 65% 20 2

* 根据1994年统计数据;

** 根据实际和规划项目数据

*** 推测及估计该技术国产化以后的数据。

各发电技术的经济成本和减排成本计算结果分别见图5.2、图5.3。

常规脱硫燃煤电站和常压流化床燃煤电站对于减少SO2排放具有较好的效果,但与常规燃煤电站相比,发电能源效率和CO2排放并没有得到改善,所以不能作为温室气体减排技术。PFBC 和IGCC发电能源效率有很大改善,但是由于仍然以煤炭为燃料,单位发电量的减排量相对较少,减排增量成本比较高。

由于中国能源资源中,煤炭资源占有最重要的地位,燃煤火电也将长期在中国占主要地位,因此PFBC和IGCC等高效燃煤发电技术对中国温室气体减排的作用是不能低估的。

应用前景

中国发电以燃煤火电为主的局面在相当长的时间里仍难以改变。2000年以后,先进的火电发电方式或技术将在中国具有很大的市场和减排潜力,但2010年前,先进的火电发电方式或技术在中国将处于示范项目建设阶段,还不能在减排方面发挥明显的作用。2010年前,低碳化石燃料发电在整个火力发电中占有的比例不会有明显的提高,火电减排将主要靠提高常规火电的效率。考虑到如能落实上述各种提高能源转换效率的措施,期望到2010年火电供电煤耗可降低到320g(标煤)/(kW?h),与1990年的供电煤耗水平相比,可减少发电用煤近1.5亿t,减少CO2排放约1亿t。

表5.14 2000年、2010年火电减排量预测

方案

年份实际规划方案强化减排方案

1990 2000 2010 2000 2010

火电装机容量/万kW 10184 22650 47340 22650 47340

火电发电量/亿kW?h 4949 10958 22480 10866 21300

火电发电煤耗/g(标煤)/(kW?h) 392 350 320 350 320

火电降煤耗节煤量/亿t(标煤)* 0 0.46 1.62 0.456 1.53

可减少CO2排放量/亿t(碳)* 0 0.33 1.17 0.33 1.11

* 与1990年发电煤耗水平相比较。

减排的障碍分析和政策建议

(1) 火电制造技术的限制

过去几十年中,中国已经形成了若干个电力设备制造集团和每年生产1000多万千瓦的成套发电设备生产能力,能够以比较低廉的制造成本和价格向国内供应发电设备。与发达国家的相比,中国生产的电力设备,特别是常规燃煤火电机组,无论从质量上和能源效率上都有一定的差距。

80年代以后,中国陆续引进了国外大机组制造技术的许可证和专利,对提高国产机组的质量和效率起了推动的作用。但目前引进技术生产的机组仍没有完全达到设计水平或大批量生产的能力,还不能完全满足国内装机需求。

(2) 高效发电新技术应用方面的限制

在中国具有广泛应用前景,国际上近期已经商业化,或即将商业化应用的发电新技术包括大容量高温燃气轮机组、IGCC、第二代PFBC发电等。国内在这些发电技术的开发方面也进行了一系列的工作,但与国外的进展水平相比差距很大。由于国内技术水平的限制,发电新技术国产化和商业化还需要一定的时间,短期内造价和成本很难迅速降下来,必然限制新技术的近期应用。

近期限制这些发电新技术应用的因素还有以下几个:

首先,发电新技术的投资高于常规火电厂的投资,在电力投资资金短缺的情况下,特别是在缺电问题没有得到根本解决的时候,电力企业将首先考虑用有限的资金解决缺电问题。建设常规火电厂比采用新的发电技术投资风险小,需要的投资额较少,资金筹集也较容易,建设方案也更容易落实和实施。电力企业的这种投资取向将影响这些技术的应用。

另外,发电新技术不仅初投资较大,发电成本一般也比较高,经济竞争能力较差。如

而采用这些新技术。

火力发电工作原理及主要设备介绍

火力发电工作原理及主 要设备介绍 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

火力发电工作原理及主要设备介绍 火力发电一般是指利用石油、煤炭和天然气等燃料燃烧时产生的热能来加热水,使水变成高温、高压水蒸气,然后再由水蒸气推动发电机来发电的方式的总称。以煤、石油或天然气作为燃料的发电厂统称为火电厂。 火力发电站的主要设备系统包括:燃料供给系统、给水系统、蒸汽系统、冷却系统、电气系统及其他一些辅助处理设备。 火力发电系统主要由燃烧系统(以锅炉为核心)、汽水系统(主要由各类泵、给水加热器、凝汽器、管道、水冷壁等组成)、电气系统(以汽轮发电机、主变压器等为主)、控制系统等组成。前二者产生高温高压蒸汽;电气系统实现由热能、机械能到电能的转变;控制系统保证各系统安全、合理、经济运行。 火力发电的重要问题是提高热效率,办法是提高锅炉的参数(蒸汽的压强和温度)。90年代,世界最好的火电厂能把40%左右的热能转换为电能;大型供热电厂的热能利用率也只能达到60%~70%。此外,火力发电大量燃煤、燃油,造成环境污染,也成为日益引人关注的问题。 热电厂为火力发电厂,采用煤炭作为一次能源,利用皮带传送技术,向锅炉输送经处理过的煤粉,煤粉燃烧加热锅炉使锅炉中的水变为水蒸汽,经一次加热之后,水蒸汽进入高压缸。为了提高热效率,应对水蒸汽进行二次加热,水蒸汽进入中压缸。通过利用中压缸的蒸汽去推动汽轮发电机发电。从中压缸引出进入对称的低压缸。已经作过功的蒸汽一部分从中间段抽出供给炼油、化肥等兄弟企业,其余部分流经凝汽器水冷,成为40度左右的饱和水作为再利用水。40度左右的饱和水经过凝结水泵,经过低压加热器到除氧器中,此时为160度左右的饱和水,经过除氧器除氧,利用给水泵送入高压加热器中,其中高压加热器利用再加热蒸汽作为加热燃料,最后流入锅炉进行再次利用。以上就是一次生产流程。 火力发电厂的基本生产过程 火力发电厂的主要生产系统包括汽水系统、燃烧系统和电气系统,现分述如下: (一)汽水系统: 火力发电厂的汽水系统是由锅炉、汽轮机、凝汽器、高低压加热器、凝结水泵和给水泵等组成,他包括汽水循环、化学水处理和冷却系统等。水在锅炉中被加热成蒸汽,经过热器进一步加热后变成过热的蒸汽,再通过主蒸汽管道进入汽轮机。由于蒸汽不断膨胀,高速流动的蒸汽推动汽轮机的叶片转动从而带动发电机。 为了进一步提高其热效率,一般都从汽轮机的某些中间级后抽出作过功的部分蒸汽,用以加热给水。在现代大型汽轮机组中都采用这种给水回热循环。此外,在超高压机组中还采用再热循环,既把作过一段功的蒸汽从汽轮机的高压缸的出口将作过功的蒸汽全部抽出,送到锅炉的再热汽中加热后再引入气轮机的中压缸继续膨胀作功,从中压缸送出的蒸汽,再送入低压缸继续作功。在蒸汽不断作功的过程中,蒸汽压力和温度不断降低,最后排入凝汽器并被冷却水冷却,凝结成水。凝结水集中在凝汽器下部由凝结水泵打至低压加热再经过除氧气除氧,给水泵将预加热除氧后的水送至高压加热器,经过加热后的热水

常见发电方式的基本原理及特点

常见发电方式的基本原理及特点 常见的发电方式主要有火力发电、风力发电、水力发电、太阳能发电和核能发电。其中火力发电是现阶段最普及、技术最成熟的发电方式,缺点是污染严重、利用率不高;风力发电属于新能源发电,洁净、无污染,缺点就是装机容量太小、受地域限制;水力发电装机容量大、洁净无污染,缺点是前期投资太大、建设周期长;太阳能是干净的可再生的新能源,缺点是不能连续发电、受天气影响大;核能发电,容量大、技术含量高、燃料运输方便,但有巨大的安全隐患。 火力发电火力发电是指利用煤炭、石油、天然气等固体、液体、气体燃料燃烧时产生的热能,通过热能来加热水,使水变成高温产生高压水蒸气,然后再由水蒸气推动发电机继而发电的一种发电方式。其本质是将化石燃料中的化学能转化为热能,再将热能转化为带动发电机转动的机械能,发电机内部再通过磁通量的改变来产生感应电流。其特点是不可再生,发电效率低,会造成烟气污染与粉尘污染。 而作为清洁的发电方式风能发电是让风轮在风力的作用下 AHA12GAGGAGAGGAFFFFAFAF

旋转,把风的动能转变为风轮轴的机械能。发电机在风轮轴的带动下旋转发电。风轮是集风装置,它的作用是把流动空气具有的动能转变为风轮旋转的机械能。风能是一种可再生的能源,环境效益好、基建周期短、装机规模灵活。但风能也有它的缺点,比如噪声大,成本高,不稳定,不可控等。和火力发电一样,水力发电也具有悠长的历史,水力发电在某种意义上讲是水的位能转变成机械能,再转变成电能的过程。水能是一种取之不尽、用之不竭、可再生的清洁能源。水电工程投资大、建设周期长,但力发电效率高,发电成本低,机组启动快,调节容易。由于利用自然水流,受自然条件的影响较大。水力发电往往是综合利用水资源的一个重要组成部分,与航运、养殖、灌溉、防洪和旅游组成水资源综合利用体系。 太阳能发电是人类对于能源最直接的利用,从本质上讲,无论是化石能还是水能风能都是太阳能的一种存在形式。常见的发电方式有两种和太阳能电池的直接转化和太阳能热电站,其中太阳能热电站的工作原理则是利用汇聚的太阳光, AHA12GAGGAGAGGAFFFFAFAF

火力发电厂设计各阶段及其主要内容

火力发电厂设计各阶段 及其主要内容 摘要:发电厂设计是一项庞大而繁杂的工程,从最初建设项目的提出到电力勘测选址,从可行性研究到初步设计,从施工图的设计到施工建设,层层环节都要贯彻国家的基本建设方针,体现国家的经济政策和技术政策,符合相应的法律法规和标准要求,保证发电厂的安全可靠、经济适用,符合国情和满足可持续发展要求,以合理的投资获得最佳的经济效益和社会效益。 关键词:发电厂;设计;可行性分析;施工图 引言: 发电厂设计是电力工程建设项目流程中的重要环节,也是一项庞大而繁杂的工程,本文将对发电厂设计的原则与要求、发电厂的设计流程,各设计阶段的工作内容进行阐述,使我们能源与动力工程专业的同学对发电厂设计方面的知识有一个比较全面、系统的了解。 1发电厂设计的原则与基本要求 1.1设计原则 (1).设计的基本原则是执行DL5000-2000《火力发电厂设计技术规程》的规定,此外还应符合其他一些现行的有关国家标准和行业标准的规定,如设计中要采取切实有效的措施,减轻发电厂排放的废气、废水、灰渣、噪声和排水等对环境造成的影响;使各项有害物的排放符合环境保护的要求以及劳动安全与工业卫生的有关规定。 (2).发电厂的规划和设计应树立全局观念,满足市场需求,依靠技术进步,认真勘测,精心设计。设计中积极慎重地推广国内外先进技术,因地制宜地采用成熟的新材料、新设备、新工艺、新布置、新结构,努力提高机械化、自动化水平。同时还应考虑未来全国电力系统联网,全国范围内的资源优化配置和厂网分开、竞价上网的电力市场要求。 (3).发电厂的设计必须按国家规定的基本建设程序进行,设计文件应按规定的内容和深度完成批准手续。 (4).在发电厂设计中,应积极采用最新的参考设计、典型设计,以及先进的设计方法和手段,以提高设计质量、缩短工期和控制工程造价,并结合工程特点不断有所创新。 (5).发电厂的厂址选择、容量规划、建设规模和建设期限、选用的机组容量、联网方式、燃料来源和品种、投资控制指标等,均应以经过批准的可行性研究报告书作为依据。在设计过程中,当因具体条件发生变化,必须改变原有规定时,应及时报请原审批单位重新审定。

(完整版)2X300MW火力发电厂厂电气一次设计说明书毕业设计论文

内蒙古科技大学 本科生毕业设计说明书(毕业论 文) 题目:2×350MW火力发电厂

厂用电设计 学生姓名: 学号: 专业:电气工程及其自动化班级:电气07-1班 指导教师:

摘要 本文将针对某火力发电厂的设计,主要是对电气方面进行研究。本次设计的电厂在电网占有重要位置,一旦发生事故将引起主网的解裂,所以对电厂主接线形式进行了详细的分析比较,以确定一种安全经济成熟的主接线形式。 首先对火力发电的有关内容做以阐述,并对电力主接线中的设备做以描述。依据所给出的原始数据和接线的基本原则进行了主接线形式的设计,选择了低压侧用双母线三分段,而高压侧用双母线的接线形式。简单的介绍了厂用电,对主变压器进行了选择。在三相短路实用计算基本假设的前提下,对三相短路电流进行了计算。根据负荷计算和短路电流计算的结果对断路器等电气设备进行了选择和校验。根据基本原则结合具体要求,绘制完成电气主接线图的一次部分。 本毕业设计只对电气主接线一次部分做了较为详细的理论设计。通过对本次的设计设计,掌握了一些基本的设计方法,在设计过程中更加稳固了理论知识。

关键词:火力发电电气主接线主要设备 Electrical Design for the primary said of the coal-fired power plant-2*300MW Abstract electrical studies. The design of the power plant to power grid play an important role, once accident will cause the solution of the crack. So to wiring form of the power plant carrys on the detailed analysis comparison, to determine a safe and economic mature Lord connection form. First of all the relevant contents of the power to do this,and to the electric wiring the equipment to do argued that description. According to the original data and the basic principles of the wiring design the wring.Choose the low voltage side with a bus, and three segmentation service, and choose the main transformer. on the premise of the three-phase short-circuit basic assumptions carry out the three-phase short-circuit current calculation. According to the results of load calculation and short-circuit current calculation,circuit breaker electrical equipment were chosen and calibration.According to the basic principle with specific requirements,paint the main electrical wiring .

火力发电过程总结完美版

目录 简介 一锅炉设备 1.1 锅炉本体 1.2 输煤系统 1.3 制粉系统 1.4 烟风及燃烧系统 1.5 除尘排渣系统 二汽轮机设备 2.1 汽轮机基本工作原理 2.2 汽轮机构造 2.3 汽轮机调节 2.4 汽轮机保护 2.5 汽轮机供油系统 三热力系统及辅助设备 3.1主蒸汽及汽轮机旁路系统 3.2凝气系统 3.3低压加热器系统 3.4给水除氧系统 3.5 高压加热器系统 3.6 补充及冷却水系统 四电气设备 4.1 发电机与电力变压器 4.2 开关设备 4.3 电力互感器 4.4 电气主接线及配电装置 4.5 电气二次设备 结束语

简介 火力发电厂简称火电厂,是利用煤、石油、天然气作为燃料生产电能的工厂。 我国目前已煤做主要燃料。用火车或轮船运入发电厂储煤场的煤,经过碎煤设备破碎后,由皮带运输机送入锅炉房内的原煤仓。煤从原煤仓落入给煤机,在其中研制成煤粉,同时送入热空气来干燥和输送煤粉。通过燃烧煤粉加热锅炉。锅炉产生的新蒸汽进入汽轮机,蒸汽推动了叶轮连同整个转子旋转,汽流的动能被转换成汽轮机轴上的机械能。汽轮机带动发电机,利用切割磁力线感应原理,将原动机的机械能变为电能输出。

一锅炉设备 锅炉是火力发电厂中主要设备之一。它的作用是使燃料在炉膛中燃烧放热,并将热量传给工质,以产生一定压力和温度的蒸汽,供汽轮发电机组发电。有容量大、参数高、结构复杂、自动化程度高等特点。 1.1锅炉本体 锅炉本体包括炉膛、烟道、省煤器、汽包、下降管、水冷壁、过热器、再热器、燃烧器、空气预热器。其中水冷壁、过热器、再热器、省煤器、空气预热器称为锅炉的受热面,它们都是由许多金属管子组成的管束。 1.2输煤系统 电厂的输煤系统是从卸煤装置起直至把煤运到锅炉房原煤斗的整个生产工艺流程。一般包括燃料运输、卸煤系统、运煤系统、煤场设施、输煤系统、煤量计量装置和筛分破碎装置、集中控制和自动化以及其它辅助设备与附属建筑。 1.3制粉系统 炉前原煤由每套制粉系统的两只原煤斗经下部落煤挡板落入两台转速可调的电子称重式给煤机。两台给煤机根据磨煤机筒体内煤位分别送出一定数量的煤经过给煤机出口挡板进入位于给煤机下方的

火电厂集控运行毕业论文

火电厂集控运行毕业论文 安徽电气工程职业技术学院毕业论文0 安徽电气工程职业技术学院毕业论文、实习报告题目:生物能发电概述系部:动力工程系专业:火电厂集控运行姓名:张敏班级:07 集控(2)班学号:070302215 指导教师:王祥微教师单位:安徽电气工程职业技术学院题目类型:毕业论文实习报告2010 年5 月7 日√安徽电气工程职业技术学院毕业论文 1 生物能发电概述摘要:随着石油、煤炭等不可再生资源的不断减少,核能、风能、太阳能、生物能等新能源被提上日程,而最具费效比的则是生物能。将从生物能的起点、发展及未来的发展趋势进行探讨。关键字:起点发展未来机炉电目录绪论一、生物能的发展1、生物能发展的起点……………………………………….2 2、生物能在我国的发展……………………………………….2 二、国能浚县生物能发电厂机、炉、电1、汽轮机的基本参数……………………………………….3 2、锅炉参数及其辅助设备……………………………………….4 3、发电机的基本参数……………………………………….7 三、生物能的优缺点及发展趋势1、生物能的优缺点……………………………………….7 2、生物能的发展趋势……………………………………….8 四、结论1、生物能的巨大潜力……………………………………….9 2、实际与理论的差异……………………………………….9 安徽电气工程职业技术学院毕业论文 2 绪论生物能生物能是太阳能以化学能形式贮存在生物中的一种能量形式,一种以生物质为载体的能量,它直接或间接地来源于植物的光合作用,在各种可再生能源中,生物质是独特的,它是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态和气态燃料。生物质所含能量的多少与下列诸因素有密切的关系:品种、生长周期、繁殖与种值方法、收获方法、抗病抗灾性能、日照的时间与强度、环境的温度与湿度、雨量、土壤条件等,在太阳能直接转换的各种过程中,光合作用是效率最低的,光合作用的转化率约为0.5%-5%,据估计温带地区植物光合作用的转化率按全年平均计算约为太阳全部辐射能的0.5%-2.5%,整个生物圈的平均转化率可达3%-5%。生物质能潜力很大,世界上约有250000 种生物,在提供理想的环境与条件下,光合作用的最高效率可达8~15%,一般情况下平均效率为0.5%左右。以生物质为载体的能量.生物界一切有生命的可以生长的有机物质,包括动植物和微生物.所有生物质都有一定的能量,而作为能源利用的主要是农林业的副产品及其加工残 余物,也包括人畜分粪便和有机废弃物.生物质能为人类提供了基本燃料。一.生物能发展1、丹麦生物能的发展20 世纪70 年代第一次石油危机爆发后,一直依赖能源进口的丹麦,着手推行能源多样化政策,制定适合本国国情的能源发展战略,积极开发生物能以及风能、太阳能等清洁可再生能源。丹麦农作物主要有大麦、小麦和黑麦,这些秸秆过去除小部分还地或当饲料外,大部分在田野烧掉了。这既污染环境、影响交通,又造成生物能源的严重浪费。为建立清洁发展机制,减少温室气体排放,丹麦政府很早就加大了生物能和其他可再生能源的研发和利用力

火力发电厂建设程序流程

火力发电厂建设程序流程 目录 ㈠、初步可行性研究 (2) ㈡、项目建议书 (2) ㈢、可行性研究 (2) ㈣、可行性研究报告书 (2) ㈤、初步设计 (3) ㈥、施工图设计 (3) ㈦、建设准备 (4) ㈧、工程开工条件 (5) ㈨、施工准备 (6) ㈩、工程施工 (6) (十一)土建工程施工 (7) (十二)、安装工程施工 (8) (十三)、设备分部试运行 (8) (十四)、整套启动调试和试运行 (9) (十五)生产准备 (9) (十六)试生产 (9) (十七)工程验收 (10)

㈠、初步可行性研究 火电工程初步可行性研究的主要内容是:①、根据电力系统发展规划、市场分析和资源合理配置,论证建厂的必要性、建设规模和投产时间;②、收集有关资料,进行必要的勘测,研究燃料供应、交通运输、水源、灰场、地形、地质、地震和环境保护等基本建厂条件;③、选出几个可推荐的厂址;④、估算工程投资,提出资金(包括内资和外资)筹措的设想;⑤、测算上网电价,进行初步的财务评价和经济效益分析,提出是否可以立项的意见。 ㈡、项目建议书 其主要内容包括:①、建设的必要性;②、建设规模;③、建设地点与基本建设条件;④、投资框算及来源;⑤、经营管理方式初步设想。项目建议书需按国家规定报主管部门审批。经主管部门审批同意立项后,即可开展可行性研究工作。 ㈢、可行性研究 火电工程可行性研究工作的主要内容是:①、新建工程应对两个及以上的厂址进行全面技术经济比较,提出推荐意见;②、落实建厂外部条件,取得符合要求的主管部门出具的、能够满足设计、估算与效益分析要求的各类协议;③、对运煤、除灰、供水、交通运输、接入系统、环境保护以及地基处理等与厂址条件有关的内容,要有多方案比较,提出初步推荐意见,使估算能达到要求的准确度;对主厂房要有推荐采用那种类型的参考设计;④、对主机(汽轮机、锅炉和发电机)的主要技术条件进行论证,以便经审查后可以对主机进行招投标,确定中标厂商及合同价格,利用外资的工程应有对标书编写原则的论证;⑤、投资估算力求准确,以便经审查后可以成为限额设计的额度;⑥、在明确投融资来源的基础上,按有关文件要求和电力市场供需情况,进一步测算上网电价,做好项目的财务评价和经济效益分析。 可行性研究报告经主管部门审查同意,并进行主机招标准备工作及草签合资、贷款、上网协议后,即可编报可行性研究报告书。 ㈣、可行性研究报告书 可行性研究报告书是根据已经审批的可行性研究报告进行编制的,其主要内容是:①、建设的必要性;②、项目主要设备来源;③、推荐厂址和建设条件;

火力发电工作原理及主要设备介绍

火力发电工作原理及主要设备介绍 火力发电一般是指利用石油、煤炭和天然气等燃料燃烧时产生的热能来加热水,使水变成高温、高压水蒸气,然后再由水蒸气推动发电机来发电的方式的总称。以煤、石油或天然气作为燃料的发电厂统称为火电厂。 火力发电站的主要设备系统包括:燃料供给系统、给水系统、蒸汽系统、冷却系统、电气系统及其他一些辅助处理设备。 火力发电系统主要由燃烧系统(以锅炉为核心)、汽水系统(主要由各类泵、给水加热器、凝汽器、管道、水冷壁等组成)、电气系统(以汽轮发电机、主变压器等为主)、控制系统等组成。前二者产生高温高压蒸汽;电气系统实现由热能、机械能到电能的转变;控制系统保证各系统安全、合理、经济运行。 火力发电的重要问题是提高热效率,办法是提高锅炉的参数(蒸汽的压强和温度)。90年代,世界最好的火电厂能把40%左右的热能转换为电能;大型供热电厂的热能利用率也只能达到60%~70%。此外,火力发电大量燃煤、燃油,造成环境污染,也成为日益引人关注的问题。 热电厂为火力发电厂,采用煤炭作为一次能源,利用皮带传送技术,向锅炉输送经处理过的煤粉,煤粉燃烧加热锅炉使锅炉中的水变为水蒸汽,经一次加热之后,水蒸汽进入高压缸。为了提高热效率,应对水蒸汽进行二次加热,水蒸汽进入中压缸。通过利用中压缸的蒸汽去推动汽轮发电机发电。从中压缸引出进入对称的低压缸。已经作过功的蒸汽一部分从中间段抽出供给炼油、化肥等兄弟企业,其余部分流经凝汽器水冷,成为40度左右的饱和水作为再利用水。40度左右的饱和水经过凝结水泵,经过低压加热器到除氧器中,此时为160度左右的饱和水,经过除氧器除氧,利用给水泵送入高压加热器中,其中高压加热器利用再加热蒸汽作为加热燃料,最后流入锅炉进行再次利用。以上就是一次生产流程。 火力发电厂的基本生产过程 火力发电厂的主要生产系统包括汽水系统、燃烧系统和电气系统,现分述如下: (一)汽水系统: 火力发电厂的汽水系统是由锅炉、汽轮机、凝汽器、高低压加热器、凝结水泵和给水泵等组成,他包括汽水循环、化学水处理和冷却系统等。水在锅炉中被加热成蒸汽,经过热器进一步加热后变成过热的蒸汽,再通过主蒸汽管道进入汽轮机。由于蒸汽不断膨胀,高速流动的蒸汽推动汽轮机的叶片转动从而带动发电机。 为了进一步提高其热效率,一般都从汽轮机的某些中间级后抽出作过功的部分蒸汽,用以加热给水。在现代大型汽轮机组中都采用这种给水回热循环。此外,在超高压机组中还采用再热循环,既把作过一段功的蒸汽从汽轮机的高压缸的出口将作过功的蒸汽全部抽出,送到锅炉的再热汽中加热后再引入气轮机的中压缸继续膨胀作功,从中压缸送出的蒸汽,再送入低压缸继续作功。在蒸汽不断作功的过程中,蒸汽压力和温度不断降低,最后排入凝汽器并被冷却水冷却,凝结成水。凝结水集中在凝汽器下部由凝结水泵打至低压加热再经过除氧气除氧,给水泵将预加热除氧后的水送至高压加热器,经过加热后的热水打入锅炉,再过热器中把水已经加热到过热的蒸汽,送至汽轮机作功,这样周而复始不断的作功。 在汽水系统中的蒸汽和凝结水,由于疏通管道很多并且还要经过许多的阀门设备,这样就难免产生跑、冒、滴、漏等现象,这些现象都会或多或少地造成水的损失,因此我们必须不断的向系统中补充经过化学处理过的软化水,这些补给水一般都补入除氧器中。 (二)燃烧系统 燃烧系统是由输煤、磨煤、粗细分离、排粉、给粉、锅炉、除尘、脱流等组成。是由皮带输送机从煤场,通过电磁铁、碎煤机然后送到煤仓间的煤斗内,再经过给煤机进入磨煤机进

发电原理

发电原理(1) 2012-1-18 14:51:55 水力发电 水力发电水力发电的基本原理是利用水位落差,配合水轮发电机产生电力,也就是利用水的位能转为水轮的机械能,再以机械能推动发电机,而得到电力。科学家们以此水位落差的天然条件,有效的利用流力工程及机械物理等,精心搭配以达到最高的发电量,供人们使用廉价又无污染的电力。 于1882年,首先记载应用水力发电的地方是美国威斯康辛州。到如今,水力发电的规模从第三世界乡间所用几十瓦的微小型,到大城市供电用几百万瓦的都有。 火力发电 火力发电一般是指利用石油、煤炭和天然气等燃料燃烧时产生的热能来加热水,使水变成高温、高压水蒸气,然后再由水蒸气推动发电机来发电的方式的总称。以煤、石油或天然气作为燃料的发电厂统称为火电厂。 火力发电站的主要设备系统包括:燃料供给系统、给水系统、蒸汽系统、冷却系统、电气系统及其他一些辅助处理设备。 火力发电火力发电系统主要由燃烧系统(以锅炉为核心)、汽水系统(主要由各类泵、给水加热器、凝汽器、管道、水冷壁等组成)、电气系统(以汽轮发电机、主变压器等为主)、

控制系统等组成。前二者产生高温高压蒸汽;电气系统实现由热能、机械能到电能的转变;控制系统保证各系统安全、合理、经济运行。 火力发电的重要问题是提高热效率,办法是提高锅炉的参数(蒸汽的压强和温度)。90 年代,世界最好的火电厂能把40%左右的热能转换为电能;大型供热电厂的热能利用率也只能达到60%~70%。此外,火力发电大量燃煤、燃油,造成环境污染,也成为日益引人关注的问题。 热电厂为火力发电厂,采用煤炭作为一次能源,利用皮带传送技术,向锅炉输送经处理过的煤粉,煤粉燃烧加热锅炉使锅炉中的水变为水蒸汽,经一次加热之后,水蒸汽进入高压缸。为了提高热效率,应对水蒸汽进行二次加热,水蒸汽进入中压缸。通过利用中压缸的蒸汽去推动汽轮发电机发电。从中压缸引出进入对称的低压缸。已经作过功的蒸汽一部分从中间段抽出供给炼油、化肥等兄弟企业,其余部分流经凝汽器水冷,成为40度左右的饱和水作为再利用水。40度左右的饱和水经过凝结水泵,经过低压加热器到除氧器中,此时为160度左右的饱和水,经过除氧器除氧,利用给水泵送入高压加热器中,其中高压加热器利用再加热蒸汽作为加热燃料,最后流入锅炉进行再次利用。以上就是一次生产流程。 核能发电 核能发电核能发电的核心装置是核反应堆。核反应堆按引起裂变的中子能量分为热中子反应堆和快中子反应堆。 快中子是指裂变反应释放的中子。热中子则是快中子慢化后的中子。目前,大量运行的是热中子反应堆,其中需要慢化剂,通过它的原子核与快中子弹性碰撞将快中子慢化成热中子.热中子堆使用的材料主要是天然铀(铀-235含量3%)和稍加浓缩铀(铀-236含量3%左右)。根据慢化剂、冷堆剂和燃料不同,热中子反应堆分为轻水堆(包括压水堆和沸水堆)、重水堆、石墨气冷堆和石墨水冷堆。目前已运行的核电站以轻水堆居多,中国已选定压水堆作为第一代核电站。 核反应堆的起动、停堆和功率控制依靠控制棒,它由强吸收中子能力的材料(如硼、镉)做成。为保证核反应堆安全,停堆用的安全棒也是由强吸收中子材料做成。 风力发电 把风能转变为电能是风能利用中最基本的一种方式。风力发电机一般有风轮、发电机(包括装置)、调向器(尾翼)、塔架、限速安全机构和储能装置等构件组成。风力发电机的工作原理比较简单,风轮在风力的作用下旋转,它把风的动能转变为风轮轴的机械能。发电机在风轮轴的带动下旋转发电。 风轮是集风装置,它的作用是把流动空气具有的动能转变为风轮旋转的机械能。一般风力发电机的风轮由2个或3个叶片构成。在风力发电机中,已采用的发电机有3种,即直流发电机、同步交流发电机和异步交流发电机。

[火力发电厂基本流程]火力发电厂建设流程

[火力发电厂基本流程]火力发电厂建设流程火力发电厂基本流程 一、概述 电力工业的能源主要是水能、燃料热能和原子能。利用燃料热能发电的工厂叫火力发电厂。图1-1-1是火力生产过程和主要设备示意图。 图1-1-1火力生产过程和主要设备示意 图发电厂的设备主要由锅炉、汽轮机、发电机、凝汽器、水泵等组成。主要生 产过程是,锅炉中的水吸收燃料燃烧时放出的热量,变成具有一定压力和温度的蒸汽送入汽轮机。在流经汽轮机时,通过喷嘴降低压力和温度,提高蒸汽流动速度。这种高速的蒸汽流冲动汽轮机转子上的叶片旋转,并带动同一轴上的发电机转子旋转而发出电来。做完功的蒸汽送入凝汽器中被凝结成水(或送至热用户),然后由给水泵提高压力后再送回锅炉继续加热,进行往复循环。

由此可见,电能的生产过程是一系列的能量转换过程。即在锅炉内把燃料的化学能转变成蒸汽的热能;在汽轮机内把蒸汽的热能转变成轴旋转的机械能;在发电机内把机械能转变成电能。参与上述能量转换过程的工质是水和蒸汽。 二、热交换 热交换就是由于温差而引起的两个物体或同一物体各部分之间的热量传递过程。在发电厂中,热交换的好坏直接影响着发电厂的经济性。热交换一般通过热传导、热对流和热辐射三种方式来完成。 1、热传导(导热)是指直接接触的物质各部分分子间进行热量传递过程。 2、热对流是指流体各部分发生相对位移而引起的热量交换。这种换热方式只能在液体和气体中进行。在发电厂中,无论是液体还是气体,在流动时均与固体壁面接触,且进行热量交换,我们把流体与壁面间的热交换过程称为对流换热。 3、热辐射

前面谈过的热传导和热对流都是在物体或物质中进行的热量交换。在实际生活中常遇到无需两物体接触就可进行换热的情况。如衣服湿可放在炉旁烤一会就干了,夏天在烈日下站一会儿就热的受不了等,产生这些情况的原因是有热射线的作用,热射线传播热能的过程叫做热辐射。实验证明,一切物质只要其温度高于绝对零度,总是随时随地的向其周围发射辐射能,物体的温度越高,辐射能越大。任何物体在向其周围发射辐射能的同时,也在不断的吸收其他物体来的辐射能,物体的吸收能力越强,其辐射能力也越强。 在发电厂中比较典型的辐射换热,如炉膛中,炽热的煤粉与水冷 壁之间的热交换,高温烟气与过热器外管壁之间的热交换等。 内容仅供参考

关于火力发电的热效率

关于提高火力发电的热效率 一、前言 、粉煤灰等污染物的处理外,提高火火力发电过程中的清洁生产,除了SO 2 力发电的热效率,减少能耗,也是清洁生产中必不可少的一部分,在生产相同电量的情况下,减少能源的使用量,相应的减少了污染物的产生,从源头削减了污染,达到清洁生产的目的。 二、正文 1 热效率现状 目前能源的很大一部分是用于发电,而且多采用矿物燃料加热燃烧,将贮藏的化学能转换为热能,热能通过发电装置又可转化为电能,即火力发电。火力发电的简单过程是:化石燃料通过在锅炉中燃烧大约将90%的化学能转换为热能,并将热能传递给锅炉水管中的水分,使其加热蒸发,水蒸气通过蒸汽管流向涡轮机并冲击叶片转动,涡轮机则把40%的热能转换成机械能,发电机把所能得到的机械能的99%转换成电能,然后通过输出系统将电能输送到用户。 由热能转换成电能的总效率等于锅炉效率×涡轮机效率×发电机效率。 若每个装置以目前最大效率运行,则 总效率=0.88×0.46×0.99×100%=40% 以上所述表明,一个火力发电站所消耗的热能只有40%转换成电能,其余60%热能以热的形式损失掉了。其中从锅炉燃烧过程烟气的排放带走一部分热量使大气增温,另外大部分是从汽轮机出来的热蒸汽经冷却器冷去后形成水,冷凝水用泵打回锅炉重复使用,而冷却器中的冷却水则增温外排,流入河流或其他水体,形成所谓的热污染。 2 提高热效率的方法 2.1 提高压温比 现行火力发电原理都是:煤炭化学能经燃烧转化为水蒸气动能,水蒸汽推动汽轮做功,在磁场中金属导体产生电能,这一过程中,导体输出的电能由汽轮机动能决定,而汽轮机动能又由水蒸气压强(P)决定,因而要想输出的电功率多,就得尽可能增大工质压强。同时,在这过程中,热能会有较大流失,也就是说有

火力发电厂的生产工艺流程分析介绍

一.火力发电厂的生产工艺流程分析介绍 1.1 火力发电过程中能量的转化过程 火力发电的过程涉及到五次能量的转换,每一次能量的转换都在不同的设备中完成。首先,火电厂中采用的原料〔煤),本身具备的是化学能,煤粉碎后被鼓风机吹入锅炉内进行烧烧,实现化学能向热能的转换。锅炉内煤燃烧产生的热能通过热传递被水吸收,水的温度升高并且汽化,在锅炉内产生温度和压力都非常高的水蒸汽,热能转变成水蒸汽的内能。高温、高压的水蒸汽在管道中被输送入汽轮机内,并在汽轮机的喷嘴中沿特定的方向膨胀,流动速度加快,压力降低,水蒸汽具有的内能转换为流动蒸汽动能。高速流动的水蒸汽在汽轮机内吹动动叶栅旋转,水蒸汽动能转变为汽轮机的旋转机械能。高速转动的汽轮机再次带动与其相连的发电机的转子旋转切割磁力线产生电能,电能经过变压器变压后被输送出去。经过上述五次能量形式的转换,将煤具有的化学能转化为电能输送出去。 1.2 火力发电厂的生产工艺流程 1.2.1 生产工艺流程简介:电厂以原煤、煤干石为原料,以水为工质,产生电能和热能。生产工艺流程主要包括输煤系统、破碎煤系统、锅炉系统、汽机系统、电气系统、热工系统、化学水处理系统、除灰渣系统等。燃煤(煤研石和原煤)运进储煤场存放,之后经两级破碎成循环流化层所需要的粒径后,贮藏在煤仓内。在锅炉负荷调整好后,将其与储存在石灰粉仓内的石灰石粉按一定的比例一起送入燃烧室。空气经送风机升压并在空气预热器内预热,一次风被送入风箱,二次风送入燃烧室。燃烧气体经过各热交换器吸热后进入旋风分离器,然后进入尾部烟道,经布袋除尘器除尘后,通过引风机烟囱排入大气。炉底的灰渣落入渣斗内和除尘器收集的细灰一起被送入灰场或运至综合利用场所。锅炉系统的供水经过预处理和化学处理之后,由回热系统经省煤器预热后进入汽包。水在燃烧室四周的水冷壁内吸热产生蒸汽,再经过加热器生成过热蒸汽。过热蒸汽进入汽轮机膨胀做功,带动发电机发出电能。同时,汽轮机泛汽经凝汽器凝结成水,进入回热系统循环利用,而发电机发出的电能经升压站升压后送入电网。 1.2.2 主要工艺系统简介 1.运煤系统 输煤系统是电力生产工艺中很重要的一部分,输煤系统包括以下几个子部分: 1) 受卸装置:受卸装置用来收受和卸空发到电厂的装煤铁路车皮,在某些情况下还用 来在其煤斗〔地槽)中短期贮存所卸下来的煤。

发电厂论文

发电厂 单位:苏州科技学院天平学院 院系:电子与信息工程系 专业:电气工程及其自动化 班级:1321 姓名:马凌风 本文主要通过对发电厂电气部分,包括能源与发电,发电、变电和输电的电气部分,用电接线,配电等以及水处理和水质量控制的介绍来向读者展示发电厂的构成及运作方式。 关键词:电气运行水处理电力 引言:随着时代的不断发展,电力已经入千家万户,我们无时无刻不在与电接触,生产、生活中用电极为频繁,然而,这些电又是从何而来,如何进入千家万户的,我们将通过对本文的学习了解发电厂的组成与运作。 正文:1能源 世界由物质构成,而能量是物质的属性,,是一切物质的动力;目前,人类所认识的能量有以下几种形式:(1)机械能(2)热能(3)化学能(4)辐射能(5)核能(6)电能。 1.1能源的定义:能源,顾名思义是能量的来源,即指人类获得能量的来源,包括已经开发可供直接使用的自然资源和经过加工或转换的能量来源,而尚未开发的自然资源称为自然资源。 1.2能源的分类 按获得方式不同分为一次能源和二次能源

(1)一次能源:指自然界中现成存在,可直接获取和利用而又不改变其基本形态的能源,例如,煤、石油、天然气、水能、风能等。 (2)二次能源:指由一次能源加工转换成的另一种形态的能源,例如,电力、蒸汽、煤气、焦炭、汽油等,它们使用方便,易于利用,是高品质的能源。 电能是由一次能源经加工转换成的能源,电能与其他形式的能源相比,其特点有 1)便于大规模生产和远距离输送 2)方便转换和易于控制 3)损耗小 4)效率高 5)无气体和噪声污染 2发电厂 将各种一次能源转变为电能的工厂,称为发电厂。按一次能源的不同,发电厂分为火力发电厂(以煤、石油和天然气为原料)、水力发电厂(一水的位能作动力)、核能发电场、地热能发电场、风能发电场等。目前,我国以火力发电厂为主。 2.1火力发电厂 火力发电厂简称火电厂,是利用煤、石油或天然气作为燃料生产电能的工厂,其能量转换过程是:燃料的化学能→热能→机械能→电能。 2.1.1火力发电厂的生产过程 我国火力发电厂所使用的能源主要是煤,且主力电厂是凝汽式发电厂。 火电厂的电能生产过程分为三个阶段:

火力发电厂的设备作用和各系统流程

火力发电厂的设备作用和各系统流程 一、燃烧系统生产流程 来自煤场的原煤经皮带机输送到位置较高的原煤仓中,原煤从原煤仓底部流出经给煤机均匀地送入磨煤机研磨成煤粉。自然界的大气经吸风口由送风机送到布置于锅炉垂直烟道中的空气预热器内,接受烟气的加热,回收烟气余热。从空气预热器出来约250左右的热风分成两路:一路直接引入锅炉的燃烧器,作为二次风进入炉膛助燃;另一路则引入磨煤机入口,用来干燥、输送煤粉,这部分热风称一次风。流动性极好的干燥煤粉与一次风组成的气粉混合物,经管路输送到粗粉分离器进行粗粉分离,分离出的粗粉再送回到磨煤机入口重新研磨,而合格的细粉和一次风混合物送入细粉分离器进行粉、气分离,分离出来的细粉送入煤粉仓储存起来,由给粉机根据锅炉热负荷的大小,控制煤粉仓底部放出的煤粉流量,同时从细粉分离器分离出来的一次风作为输送煤粉的动力,经过排粉机加压后与给粉机送出的细粉再次混合成气粉混合物,由燃烧器喷入炉膛燃烧。 二、汽水系统生产流程 储存在给水箱中的锅炉给水由给水泵强行打入锅炉的高压管路,并导入省煤器。锅炉给水在省煤器管内

吸收管外烟气和飞灰的热量,水温上升到300左右,但从省煤器出来的水温仍低于该压力下的饱和温度(约330),属高压未饱和水。水从省煤器出来后沿管路进入布置在锅炉外面顶部的汽泡。汽包下半部是水,上半部是蒸汽,下半部是水。高压未饱和水沿汽泡底部的下降管到达锅炉外面底部的下联箱,锅炉底部四周的下联箱上并联安装上了许多水管,这些水管内由下向上流动吸收炉膛中心火焰的辐射传热和高温烟气的对流传热,由于蒸汽的吸热能力远远小于水,所以规定水冷壁内的气化率不得大于40%,否则很容易因为工质来不及吸热发生水冷壁水管熔化爆管事故。 锅炉设备的流程 一、锅炉燃烧系统 1、作用:使燃料在炉内充分燃烧放热,并将热量尽可能多的传递给工质,并完成对省煤器和水冷壁水管内的水加热,对过热器和再热器管内的干蒸汽加热,对空气预热器管内的空气加热。 2、系统组成:燃烧器,炉膛,空气预热器组成。 二、锅炉的汽水系统 1、作用:对水进行预热、气化和蒸汽的过热,并尽可能多地吸收火焰和烟气的热量。

火力发电厂热电联产的探究

火力发电厂热电联产的探究X 张永平 (神华准能发电厂,内蒙古薛家湾 010300) 摘 要:根据我国经济发展对电力事业提出的要求,针对北方城市由于水利资源较南方少,火力发电是城市用电的主要来源的现状,火力发电与热力相连的问题,就我国热电联产目前存在的问题谈了自己的看法。 关键词:火力发电厂;热电联产;效率 中图分类号:T M621 文献标识码:A 文章编号:1006—7981(2012)04—0091—02 1 概述 国家大力提倡走节约型发展之路,作到珍惜资源、节约能源、保护环境、可持续发展。热力发电是我国主要的发电形式,在近几十年它不可能被任何形式取代,因此研究电厂热力系统是十分必要的,尤其电厂锅炉本身效率的提高,以达到按时保质保量的为机组提供燃煤的目的。发电厂既生产电能,又利用汽轮发电机作过功的蒸汽对用户供热的生产方式,是指同时生产电、热能的工艺过程,较之分别生产电、热能方式节约燃料。以热电联产方式运行的火电厂称为热电厂。对外供热的蒸汽源是抽汽式汽轮机的调整抽汽式汽轮机的排汽,压力通常分为0.78~1.28MPa和0.12~0.25MPa两等。前者供工业生产,后者供民用采暖。热电联产的蒸汽没有冷源损失,所以能将热效率提高到85%,比大型凝汽式机组(热效率达40%)还要高得多。 2 热电联产的现状 到2007年底为止,中国热电联产的情况是:年供热量259651万吉焦,比2006年增加14.13%。供热机组总容量达10091万千瓦占火电装机容量的18.15%,占全国发电机组总容量的14.05%。是核电装机的11.4倍。 现运行的热电厂,规模最大的是太原热电厂,装机容量138.6万千瓦,在北京、吉林、哈尔滨、石家庄、天津、大连和太原这些特大城市已有一批3万千瓦大型抽汽冷凝两用机组运行,星罗棋布的热电厂在中国的大江南北迅速发展,区域热电厂也从城市的工业区蔓延到了乡镇开发区。由于市场经济的发展,在中央“上大压小”政策影响下,将有更多的城市安装大型供热机组。随着工业自动化技术的飞速发展,电力系统的进一步深入改革,电厂对辅控系统自动化程度也不断的提高。在火力发电厂的辅机系统的设计中,一般是根据辅控设备的功能,按照“水”、“灰”、“煤”三个系统设立了独立的集中监控网。而为了保证设备优质高效的运行、提高劳动生产率、提高运行人员整体素质,满足减员增效的要求,也有取消一般的“煤”“水”“灰”三个独立的监控网,而构建电厂集中辅控网的思路。热力发电对于发电系统的重要组成部分其故障率的减少对于整个系统都有着重要的意义。 3 主要存在问题 3.1 国家方针政策落实不够 中央发改环资(2006)1457号:“关于印发“十一五”十大重点节能工程实施意见的通知”应该是热电联产发展的指导性文件。1989年原国家计委就公布了《关于鼓励发展小型热电联产和严格限制凝汽小火电建设的若干规划》的通知,明确了小火电与小热电一字之差,应执行不同的政策。另据中国电力企业联合会编制的“电力工业统计资料汇编”,2003年我国单机6000千瓦及以上的供热机组共2121台4 36万千瓦,其中单机5万千瓦以下的中小供热机组共5台,占65%。在世界各国纷纷制订优 91  2012年第4期 内蒙古石油化工 X收稿日期 09.18 18987. :2011-12-28

电厂毕业论文

酒泉职业技术学院 毕业设计(论文) 10 级电厂设备运行与维护专业 题目:火电厂烟气除尘的重要 性及发展趋势 毕业时间:二O一三年七月 学生姓名:刘生旺 指导教师:祁正荣 班级: 10电厂班 2012年 12月20日

目录 摘要: (4) 第1章火力发电厂概述 (4) 火电厂概念 (4) 发展历史 (5) 组成与流程 (5) 第2章火电厂烟气除尘的重要性 (7) 火电厂烟气分析 (7) 烟气中粉尘的存在形式 (7) 烟气中粉尘的危害 (8) 关于控制和治理烟气粉尘污染的重要性 (9) 第3章火电厂烟气除尘的发展趋势 (10) 火电厂除尘设备的分类 (10) 我国火电厂除尘设备的应用现状 (10) 电袋复合式除尘器的优越性 (11) 未来火电厂烟气除尘设备的发展趋势 (13) 第4章结束语 (16) 致谢 (16) 参考文献: (17)

摘要 火力发电厂是我国最主要的烟尘排放源,也是烟尘污染问题治理的重点。火电厂排放的污染物主要有废水、废气及废渣,这三大污染物排放量大,对环境危害和影响非常大;另外,火电厂生产性粉尘73%以上为呼吸性粉尘,对人体危害很大,防治不利就会导致人肺病和心血管病等疾病。当今,中国仍然是煤烟型污染国家,煤 、NOx等)、同时还伴烟污染问题也越来越严重,火电厂排放的有毒有害气体(SO 2 有大量的烟尘、粉尘等。这些气体和悬浮物不仅对大气有一定的污染,还会给周围的居民生活带来不便,给他们的健康也带来很大的危害,对于火电厂烟尘的治理已经刻不容缓。现阶段,我国燃煤电厂多采用电除尘技术、布袋除尘技术、电袋复合式除尘和水膜除尘等除尘技术。 关键词:火力发电厂;粉尘、烟尘;煤烟污染;烟气除尘 第1章火力发电厂概述 火电厂概念 火电厂(thermal power plant)一般指火力发电厂、热电厂等。 火力发电厂简称火电厂,是利用煤、石油、天然气作为燃料生产电能的工厂,它的基本生产过程是:燃料在锅炉中燃烧,将其热量释放出来,传给锅炉中的水,从而产生高温高压蒸汽;蒸汽通过汽轮机又将热能转化为旋转动力,以驱动发电机输出电能。到80年代为止,世界上最好的火电厂的效率达到40%,即把燃料中40%的热能转化为电能。 按燃料的类别可分为:燃煤火电厂、燃油火电厂、燃气火电厂、余热发电厂等。按原动机分为:凝气式汽轮机发电厂,燃气轮机发电厂,内燃机发电厂,蒸汽—燃气轮机发电厂等。按输出能源分为:凝汽式发电厂(只发电),热电厂(发电兼供热)。按蒸汽压力和温度分为:中低压发电厂(,450℃),高压发电厂(,540℃),超高压发电厂(,540℃),亚临界压力发电厂(,540℃),超临界压力发电厂(,550℃),超超临界压力发电厂,,600℃)。按发电厂装机容量分为:小容量发电厂(100MW以下),中容量发电厂(100—250MW),大中容量发电厂(250—1000MW),大容量发电厂(1000MW以上);火电厂是电能生产的重要组成部分。在全世界范围,火

相关文档
最新文档