Mercury in waste in the European Unionsources, disposal methods and risks

Mercury in waste in the European Unionsources, disposal methods and risks
Mercury in waste in the European Unionsources, disposal methods and risks

Resources,Conservation and Recycling42(2004)155–182

Mercury in waste in the European Union:

sources,disposal methods and risks Arun B.Mukherjee a,?,Ron Zevenhoven b,Jens Brodersen c,

Lars D.Hylander d,Prosun Bhattacharya e

a Department of Environmental Protection Sciences,University of Helsinki,

P.O.Box27,00014Helsinki,Finland

b Energy Engineering and Environmental Protection,Helsinki University of Technology,

P.O.Box4400,FIN-02105Hut,Finland

c European Topic Centre on Waste,Overgaden Oven Vandet48E,DK-1415Copenhagen K,Denmark

d Department of Limnology,Evolutionary Biology Centre,Uppsala University,SE-75236Uppsala,Sweden

e Department o

f Land and Water Resources Engineering,Royal Institute of Technology,

SE-10044Stockholm,Sweden

Received15April2003;received in revised form23January2004;accepted12February2004

Abstract

Over the recent decades,there has been widespread concern regarding the toxic impact of mercury (Hg)in the ecosystem due to its mobility,volatility and potential for bioaccumulation.Hg in?sh and the aquatic environment is also a great problem in the Nordic region of the EU1(European Union). Hg is classi?ed as a dangerous chemical in the countries of the EU.Hg in the regulation of waste is regarded as a dangerous substance which,when contained in waste,is one of the properties,leading to a classi?cation of waste as hazardous.Estimation of the quantity of Hg in waste within the EU countries is an important task although still incomplete.

In this present study,Hg in waste in the EU has been estimated at around990metric tonnes(t) (including coal combustion products,land?lls,chlor-alkali waste and incinerator slag)for the year 1995,and it is suggested that if complete information was available for the15member states,the amount would be2–4times larger.During the1990s there were45Hg cell chlorine facilities in the EU and the amount of Hg in chlorine(Cl2)was calculated at95.2t based on14–17g Hg t?1 of Cl2capacity.The waste from coal-?red power plants in the EU member states contained about 16.5t of Hg,which was transferred to products for road construction,and other industrial uses or ?Corresponding author.Fax:+358-9-191-58462.

E-mail addresses:arun.mukherjee@helsinki.?(A.B.Mukherjee),ron.zevenhoven@hut.?(R.Zevenhoven), etcw-jb@mst.dk(J.Brodersen),lars.hylander@ebc.uu.se(L.D.Hylander),prosun@kth.se(P.Bhattacharya).

1EU means EU-15,i.e.the15member countries at the time of writing this paper(early2003).

0921-3449/$–see front matter?2004Elsevier B.V.All rights reserved.

doi:10.1016/j.resconrec.2004.02.009

156 A.B.Mukherjee et al./Resources,Conservation and Recycling42(2004)155–182

stored in land?lls.This Hg can then be exchanged between the atmospheric,aquatic and terrestrial compartments.Hg is occasionally recovered from waste,but this is often discouraged for economic reasons.Recovery units are found,for example,in Germany,France,Austria,and Sweden.The total amount of secondary Hg recovered from waste is not known.Metallic Hg and Hg-bearing waste are exported and imported from the EU member states,except for export from Sweden,which is banned by national legislation.

The use of Hg in lamps and batteries is declining,and the Nordic countries,Germany and Austria have stringent regulations on the use of amalgam and Hg thermometers.It is found that18%of municipal solid waste generated in the EU is burnt in incinerators,in order to decrease the volume. 88t of Hg enter into the land?lls of the EU through waste and residues from waste incineration. Prevention of the generation of hazardous waste containing Hg is one of the most challenging tasks for the EU,with regard to sustainable waste management.

?2004Elsevier B.V.All rights reserved.

Keywords:Hazardous waste;Mercury;Risk assessment;European Union

1.Introduction

1.1.Motivation

This article presents work done to give an overview on the pan European situation con-cerning mercury(Hg)spread to the environment.Hg is one of the heavy metals with well-known adverse effects on humans and the environment.Countries and international organisations have both done a lot to prevent the adverse effects either by setting up stan-dards for maximum content of Hg in food or by restrictions on the use of Hg.Surprisingly no overview of Hg in waste or Hg loss to the environment can be established easily,only sporadic information for a few countries exists or the information does not exist at all.

1.2.Materials?ow

Materials that are extracted,produced,transported,utilised,and recycled have signi?cant in?uence on the productivity,impact,and quality of our environment.Hence,it is important for present society to study?ows of metals and materials from the beginning of mining, smelting,processing and creation of target products as well as their uses and reuses,disposal, and recycling.During the last decade,such studies have been made in the United States on arsenic,vanadium,mercury and many other metals(Hilliard,1994;Loebenstein,1994; Sznopek and Goonan,2000),but very little focus has been put on material?ows in Europe up to the Sixth Environment Action Programme(European Communities,2001a;EU2), although metal and material production and their uses play an important role in the economy of Europe and the world.In our study,Hg?ows in the waste of the EU-15countries have been examined,and this?ow pattern is shown in Fig.1.The necessity to track the?ow of 2EU commission submitted a communication to the council and the European Parliament:“Towards a Thematic Strategy on the Sustainable use of Natural Resources”COM(2003)572?nal.This includes a strategy to avoid further contamination of the European Environment with Hg and other heavy metals.

A.B.Mukherjee et al./Resources,Conservation and Recycling42(2004)155–182157

Fig.1.Model of mercury?ows in waste in the European Union.

Hg in the environment and its effects on human health arises as a result of its highly toxic properties.

1.3.Mercury in waste

Human activities are responsible for the dispersion of metals and other elements which have been concentrated over the geological time scale.It is increasing in a linear scale since the industrial revolution(Bergb?ck and Lohm,1997;Renberg et al.,1994)and the anthropogenic pollution of Hg,Cd,Pb,and As are of great concern.Hg in waste can be a signi?cant source of Hg releases to the environment.Consequently,inventories of Hg in waste are important in our society.Any waste production whether hazardous or non-hazardous is governed by the yield and consumption of goods and their recycling in society.The materials and energy often locked in waste resources can be recovered, recycled,or reused,but due to cost structure,wastes are sometimes dumped in land?lls. Different compounds of waste contain both useful and harmful metals,and organic and inorganic compounds which in the long run may be converted into hazardous compounds in the environment.

Europe is one of the major chemical-producing regions of the world(EEA/UNEP,1998; EEA,1999a),resulting in Hg-bearing waste.The effect of Hg on human health and the environment depends mainly on the toxicokinetics of its chemical forms,e.g.elemental

158 A.B.Mukherjee et al./Resources,Conservation and Recycling42(2004)155–182

Fig.2.Material?ow and speci?c environmental impact:qualitative and quantitative aspects of waste(redrawn from EEA,1999a).

Hg(Hg0),inorganic Hg(HgCl2)and organic Hg(methyl-Hg most common in nature). Due to its low boiling point(357?C at1atm),this metal evaporates and after entering into the aquatic environment,inorganic Hg is transformed into methyl-Hg compounds through microbial activities and bioaccumulates in aquatic food chains(Berlin,1986;Guim?raes et al.,2000;Horvat et al.,1993;Watras and Huckabee,1994).Once methyl-Hg enters into humans,it causes nervous disorders,cancer,brain damage,dif?culty in vision,hearing, walking,tremors,coma and even death(Barregard et al.,1999;Harada,1995;IPCS/WHO, 1990,1991;Ishihara and Urushiyana,1994).The history and effects of the release of toxic compounds among the?shing community in Minamata Bay,south of Japan attracted global attention(D’Itri and D’Itri,1977;D’Itri,1994;Ellis,1989;Harada,1982;Mishima,1992). Fig.2indicates quantitative and qualitative aspect of waste.For a selective type of waste, minor volume of waste is more toxic to the environment,and is dif?cult to collect and separate from big quantities of waste(Steurer,1996).Hence,sources and material?ow for Hg in waste from one medium to another should be clari?ed and policies be directed toward minimising environmental impacts of Hg in waste by adjusting some aspect of particular material?ow at production(Sznopek and Goonan,2000).

There is no separate information in which one can identify the?ow of Hg in waste in the EU-15countries in the European Environment Agency documents on waste and hazardous waste for the EU(EEA,1999b,2001a).Member states in the Mediterranean

A.B.Mukherjee et al./Resources,Conservation and Recycling42(2004)155–182159 region supplied inadequate information on Hg in waste.Hence,it is necessary to identify the generation sources,stockpile,recycling,and?ow of diversity of Hg in waste in the EU region as top priority has been focused on this metal to protect air,water and soil ecosystems as dictated in Art7.2of the Framework Directive(Council Directive,1996)(European Communities,2001b).Life cycles analysis of Hg uses will provide more information on its releases from mining and smelting,transport,Hg in waste disposal and recovery,and product manufacturing.

This report is based on information supplied by the European Commission,Ministry of Environment of EU-15countries,and other organisations in https://www.360docs.net/doc/0d2418616.html,rmation from the US.Environmental Protection Agency and the US Geological Survey is included,since data on Hg in waste for the EU countries were incomplete.

1.4.Classi?cation of hazardous waste

It is important that the classi?cation of hazardous waste in different countries is based on a common classi?cation in waste statistics regulation(European Communities,2002).Clas-si?cation of sources for waste is to be NACE(general industrial classi?cation of economic activities within the European Communities).These will provide constructive information on sources and process orientation so that decision makers can take action on transboundary movements of hazardous waste,waste minimisation and cost effective cleaning technology for the particular process.In Table1,different classi?cation of hazardous waste has been applied.The Basel Convention for the Control of Transboundary Movement of Hazardous Waste and their Disposal entered into force on5May1992.The main objectives of the Table1

Total generation of hazardous waste in the European Union(EEA,1999b)

Country Year Total generation(t)Classi?cation

Austria1995577,000National

Belgium1994776,000Basel

Denmark1995250,000National

Finland1992359,000National

Finland1997485,000a National

France19907,000,000National

Germany19939,100,000National

Greece1992450,000National

Ireland1995248,000National

Ireland1996327,862b National

Italy19952,708,000HWL(hazardous waste list) Luxembourg1995180,000National

The Netherlands19931,520,000National

Portugal19941,356,000Basel

Spain19943,394,000Basel

Sweden1985500,000Basel

United Kingdom1992/19932,299,000

United Kingdom1993/19941,844,000Basel

a Finnish Environment Institute(https://www.360docs.net/doc/0d2418616.html,m.,2001).

b EPA/Ireland(1999).

160 A.B.Mukherjee et al./Resources,Conservation and Recycling42(2004)155–182

Basel Convention are(ERM,2000):

?to reduce the transboundary movements of hazardous waste to a minimum;

?to dispose of hazardous waste near their sources of generation;

?to minimise the quantity and magnitude of hazardous waste generated.

A substance oriented classi?cation as in waste statistics(European Communities,2002) will furnish on overall amounts,treatment methods and so on.Detailed classi?cations of hazardous waste in EU countries can be read from the publication of the European Environment Agency(EEA,1999b,2001b).

However,in this study Hg in waste estimation,national clari?cation(https://www.360docs.net/doc/0d2418616.html,rmation are provided by the individual state,companies,and organisations)has been adopted.It is clear that volume of hazardous or Hg in waste depend on the industrial set up in a country or region.Hg in waste originate generally from the following(Huse et al.,1999):?mining waste;

?metal production;

?chlorine plants;

?used products(batteries,thermometers,light sources,instruments,and electronic equip-ment);

?laboratory waste;

?sewage sludge;

?residues and ashes from incineration;

?paints;

?pesticides,anti fouling agents,polluted sites and soils;

?land?lls;

?cement production;

?paper and pulp industry;

?phosphate production;and

?cremations.

2.Production and uses of mercury in the European Union

2.1.Production

The Hg mines in the EU are situated in Italy and Spain,together having estimated de-posits of159kt of cinnabar(HgS)(USGS,1999).In Italy,the T.Amiata mines situated in the Tuscany region,were closed already by the Romans to protect the workers and the environment.They were reopened for the production of Hg in1868.However,these mining and smelting activities stopped completely in1980(Ferrara,1999),whereas the mines in Almadén,Spain,are still active.The production capacity of Hg is reported to be3.5kt per year,but actual production has been cited by Hylander and Meili(2003)as237t for2000. In Finland,Outokumpu Zinc Ltd.on the west coast of Finland recovers virgin Hg during roasting of zinc concentrate and the amount varied from98to76t between the years1993 and2000.Thus,total production of primary Hg in the EU dropped from740t in1993to 313t in2000,whereas world primary Hg production was reported to be1800t for2000

A.B.Mukherjee et al./Resources,Conservation and Recycling42(2004)155–182161

Table2

World primary mercury production(t)(Scoullos et al.,2000)

Country19931994199519961997199819992000a Algeria459414292368447224200240 China529470780510830230200200 Finland b9883908890808076 Kyrgyzstan1000379380584610620620600 Mexico1212151515151525 Russia60505050505050–Slovakia50500002000 Slovenia06055500 Spain6433931497862863675600237c Tajikistan8055504540353540 Ukraine505040302520––United States40040040040040040040015 Other countries a–d223200––830380448 Total3381258537902960338032002580 Estimated by Hylander

30002000330028002500200021001800 and Meili(2003)

a Cited by UNEP(2002).

b Finnish Hg production between1993and2000was reported by Outokumpu Zin

c Ltd.,Kokkola,Finland.

c Reporte

d by th

e Spanish mercury mines.

d Not available.

(Hylander and Meili,2003)(Table2).The demand of global Hg consumption is decreasing, but Hg mine production is dominated by a few countries such as Kyrgyzstan,Spain,China, and Algeria(Hylander and Meili,2003;UNEP,2002).

In addition to primary production,Hg is also recovered from waste such as batteries, medical thermometers,instruments,lamps,and also from the gas streams of the non-ferrous metallurgical industry.Recycled Hg has played an important role in the EU countries in recent decades.Hg recovery technologies are available in most EU countries,but is not always practised for economical reasons.The number of Hg recovery companies is not clear in the EU countries.In this study,it has been noted that if a recycling company is identi?ed,it is still impossible to get Hg recovery data except for a few companies in Germany and The Netherlands.An available information for recovery,export and import of Hg in waste for selected of countries(through environmental agency of the individual country)is given in Table3.It is observed that substantial amounts of Hg in waste are imported and exported by Belgium;Rotterdam is also a gateway from where Hg is exported and imported.Between1990and1994,The Netherlands exported120t of Hg to Brazil and a large part of Spanish Hg production is exported to the developing and other countries via the free port of Rotterdam(Hylander,2001a;Soares and Mello,1994).Fig.3indicates the Hg trade from western Europe,north America,Africa,and Russia to other regions of the world.

https://www.360docs.net/doc/0d2418616.html,es

Hg use in the society has decreased because of its toxicity(Hylander and Meili,2003), but still it is used in chlorine production,domestic and industrial batteries,thermometers,

162 A.B.Mukherjee et al./Resources,Conservation and Recycling42(2004)155–182

Table3

Mercury waste generated,processed,exported,and imported in selected EU countries based on the information received from individual states

Country Waste generated/Hg

recovered/stored(t a?1)Waste/or Hg

exported(t a?1)

Waste/or Hg

imported(t a?1)

Year

Austria 6.0(Hg)1120+solid residue a 5.81999 Belgium01388(waste)312(waste)1999 Denmark0 6.5(Hg) 2.5(Hg)+100Hg

contained soil

1990

Finland0151(Hg)0.51990 France08701993 Germany143(Hg)87(Hg)01993 Ireland180(Hg-waste)180(Hg-waste)01996 The Netherlands13011(waste)/110(Hg)110(Hg)?1999 Sweden610(stored)04–5(Hg in amalgam)1990

a Residue from?ue gas puri?cation at waste incinerators containing500–1000mg Hg kg?1.

instruments,electric switches,gauges,manometers,barometers,?uorescent lamps,and dental amalgam.In Sweden,the sale of clinical thermometers containing Hg is forbidden since1992,whereas the sale of Hg containing switches,apparatuses,instruments,and other equipment was banned from1993(SFS,1991;Svensk f?rfattningssamling,1991).In re-cent years,amalgam use for tooth?lling has been discouraged in European society and has been replaced by improved carbonations of metal oxide and silica nanoparticles in poly-meric materials(organic composite materials)(improved polymeric composite materials

Fig.3.World export and import of mercury wastes in the1990/1996(t a?1).Grey blocks indicated exporters of mercury and the strip blocks indicated importers of mercury.Data suggests that mercury export and import has been reduced by33%between1990and1996(Sznopek and Goonan,2000).

A.B.Mukherjee et al./Resources,Conservation and Recycling42(2004)155–182163 for dental?llings:https://www.360docs.net/doc/0d2418616.html,/Briefs/May01/MSC22842.html).In Denmark, for example the consumption of Hg in dental?lling has been reduced from3.1t in1983to 0.9t in2000/2001(Heron,2001;Maag et al.,1996).Many countries of the EU,still use Hg in pesticides,latex paints,pigments and tanning,catalytic Hg compounds and use of Hg for etching steel and for toys(UNEP,2002).

3.Mercury containing waste in the European Union

3.1.Overview

The quantity of waste from all sources generated in the EU is apparently increasing, and in1995the estimated amount was3500kg per capita in EU.In2003the estimated waste generation from west Europeans is expected to be3800kg per capita according to EEA(2003)corresponding to1425Mt(assuming375million habitants).The estimated waste generation was totally about1300Mt for1995(Christiansen and Munck-Kampmann, 2000),whereas27–36Mt of hazardous waste were generated per year of which1.4Mt were exported to other countries(EUROSTAT,1999;OECD,1997).Total volume of hazardous waste is increasing in most member states,but in some countries such as the UK it is decreasing(Table1).Increasing or decreasing volume of hazardous waste is partly a result of changed de?nitions and legislation for hazardous waste,and also unharmonised national and international classi?cations of hazardous waste(van Beusekom,1999;OECD,1997;EEAb). The large increase for Austria,Denmark,Finland,Ireland,Luxembourg and Catalonia (Spain)is due to the introduction of new hazardous waste lists in the European Waste Catalogue.The amount of per capita hazardous waste in EU countries varies between18and 481kg per annum.Intensive waste treatment activities in Belgium(Flanders)have caused an increase in hazardous waste production(276kg per habitant).Luxembourg,is highest at 481kg hazardous waste generated per habitant,which was due to large site rehabilitation and decontamination activities up through the1990s(van Beusekom,1999).

Table4indicates the Hg in waste in11of the EU countries,Luxembourg,Greece,Italy, and Portugal,being excluded as no information is available from these four countries.None of the countries submitted information on the total Hg in amalgam.In this case,Hg has been estimated considering45–50%of Hg in amalgam.In Table4,information for Hg in waste is often missing for incineration processes,chlorine production,power plants,mining activities,and laboratory waste.Most countries(except Belgium and Spain)have kept good records for items such as batteries,lamps and amalgam waste.Estimated Hg in waste from selected sources for11EU countries at the end of second millennium was745t(Table4). In our study,estimated Hg in waste for Denmark was8.84t,whereas Maag et al.(1996) estimated7.98t for1992/1993.This difference is due to presence of Hg in instruments and electronic switches.

3.2.Batteries

Consumption of the different kinds of batteries has increased,but the Hg content has decreased.Nowadays,in general,alkaline-manganese batteries contain0.025wt.%Hg,

A.B.Mukherjee et al./Resources,Conservation and Recycling42(2004)155–182165 Table5

Detailed study of mercury?ow through batteries in France,1996(Genie Urbain-Genie Rural,1999)

Type Batteries used(t)Hg(%)?g Hg g?1Hg(t) Cylindrical

Acidic123400.05500 2.5 Alkaline96000.1010009.6 Button cell

MnO2–Zn100.50.05

Air–Zn16 1.00.16

Ag2O–Zn160.50.08

HgO–Zn1830.0 5.4

Total220000.08117.79

Note:t,metric tonnes.

while manganese oxide batteries do not contain any added Hg(TemaNord,1999).Hg-oxide batteries have been replaced by zinc–air,lithium and other low-Hg batteries in many EU countries.But the use pattern of low and high Hg content batteries is not clear from one country to another.Table5indicates the detailed?ow of Hg in the battery sector in France.In this study,the difference from total Hg in batteries for France(Tables4and5)is explained by the fact that total quantity of batteries and their Hg concentration were not available from the administrative section of the country during the course of the study,which resulted different results.In our study,the total amount of Hg in batteries used in11EU countries has been estimated71.34t a?1.In the past,Maxson et al.(1991)estimated for EC countries to40t in1991,and79t in1989.

In recent years,legislation in the form of the Mercury Containing and Rechargeable Management Act was established in the OECD(Organization for Economic Co-operation and Development)countries(Morrow,1997).Hg and other heavy metals containing battery collection schemes,recovery technologies and information campaigns were developed.Generally,recovery of Hg is more expensive than dumping the Hg-containing waste at land?ll sites.Due to lack of a suitable facility,especially when the volume of battery waste is small,this waste is exported to another country for metal recovery.

https://www.360docs.net/doc/0d2418616.html,mps

The use of Hg lamps in society is increasing,but Hg amount in individual lamps has decreased.Energy costs and saving campaigns motivate people to use energy saving types of lamps.It is reported that the consumption of Hg for lighting purposes in Nordic countries remained the same for the last ten years(Rasmussen,1992).Estimated Hg uses(in g) per person stemmed from lamps in Denmark,Finland,the UK and Sweden were0.02, 0.02,0.07,and0.11,respectively.In the US,Hg use in lamps,electrical equipment and instruments has increased from204t in1989to272t in1992,an increase of30%(Sass et al., 1994).

166 A.B.Mukherjee et al./Resources,Conservation and Recycling42(2004)155–182

3.4.Mining and smelting industry

The Mayasa mining and smelting company in Spain produces hundreds of metric tonnes of virgin Hg per year and very little is known about Hg in waste generation and waste handling at Mayasa.Recent studies indicate that the Mayasa facility produces2kt of waste per year containing11.2%of Hg and management has decided to build an incinerator to recover the Hg from the waste(Anon.,2000).An appeal has been made to the Environmental Commissioner of the EU to stop the mining and smelting activities of Hg ores(Hylander, 2001b).There is no detailed information on Hg in waste stemming from metallurgical industry,waste incinerators,and mining activities in Almadén and the EU countries except Sweden(Table3).

3.5.Mercury in coal combustion products

Worldwide coal shares37%of the total fuel used in the energy sector(USDoE,1998). Strict regulations have been applied to reduce Hg emission from European and other coun-tries,but coal-?red power plants are still responsible the largest amount of Hg emitted to the ecosystem.Coal combustion products(CCPs)from power plants are generally coal?y ash, bottom ash,boiler slag,?uidised bed combustion(FBC)residue and?ue gas desulphuri-sation(FGD)residue.Most of the ashes and other waste are used in the building sector,as construction material for civil engineering,and the restoration of open cast mines,quarries and pits.There is lack of information from individual states regarding Hg in?y and bottom ashes from burning of fossil fuels for heat and electricity production.

The production of CCPs in the EU-15countries decreased from57Mt in1993to55Mt in1999due to installation of better power plants and the market situation in the electricity industry(vom Berg et al.,2001)and based on model calculation mean Hg concentration in the CCPs has been estimated to be0.3?g Hg g?1(Meij et al.,2001).Considering the mentioned information,the distribution of Hg in CCPs is given in Table6.

3.6.Chlorine production in the European Union

After metal manufacturing and production,the chemical industry is the second largest industry in the world(according to the public information collected by ICI Chemicals and Polymers;cited by EEA/UNEP,1998;Lindley,1997).For over century,the Hg cell process Table6

Distribution of mercury in coal combustion products,1999(after vom Berg et al.,2001)

Source Amount of CCPs(Mt)Hg in CCPs(t) Construction industry and mining(55.6%)30.589.17 Restoration,mines and pits(33.1%)18.21 5.46 Disposal(9.2%) 5.06 1.52 Stockpiles(2.1%) 1.1550.35

Total5516.5

Hg concentration in CCPs:0.3?g Hg g?1(Meij et al.,2001).

A.B.Mukherjee et al./Resources,Conservation and Recycling42(2004)155–182167

Fig.4.Location of chlorine production plants in Europe(reproduced with permission;Euro Chlor,2001). has been the dominating process for the production of chlorine(Cl2)and caustic soda in Europe,but can be produced also by the membrane cell and diaphragm cell process.Chlorine and caustic soda are produced in a?xed ratio(1:1.1)by chlor-alkali plants.Over the last two decades,membrane cell and diaphragm cell processes have replaced Hg cell technology in Europe,the US and Japan.The EUs Hg cell capacity is still about64%of the total production capacity(Lindley,1997),and there were still45Hg cell plants in operation in the EU in2000(Fig.4and Table7).Between1991and2000,average yearly Cl2production based on these three processes was about9Mt in western Europe(Euro Chlor,1999,2001; Lindley,1997).

168 A.B.Mukherjee et al./Resources,Conservation and Recycling42(2004)155–182

Table7

Locations,company’s names and capacities of mercury cell chlor-alkali plants in the European Union(Euro Chlor, 2001)

Country Number on map Company Process Capacity(kt) Austria––––Belgium2Solvay Hg100 Finland8Akzo Nobel Hg48

France10Albemarle Hg72

13Elf Atochem Hg170

14Elf Atochem Hg,D326

15Atochem Hg184

17Prod Chim d’Harbonni`e res Hg23

18Solvay Hg,M363

19Tessenderlo Chemie Hg18 Germany20BASF Hg,D360

22Bayer Hg240

23Bayer Hg,M220

25Vinnolit Hg150

28ECI Hg120

30Degussa Hg140

31Ineos Chlor Hg130

32LII Europe Hg150

34Vestolit Hg180

35Vinnolit Hg72 Greece37Hellenic Petroleum Hg37

Italy40Altair Chimica Hg27

41Ausimont/Montedison Hg70

42Caffarro Hg69

44Enichem Hg200

45Enichem Hg90

46Enchem Hg190

47Eredi Zarelli Hg6

48Solvay Hg120

49Tessenderlo Chemie Hg40

The Netherlands52Akzo Nobel Hg70 Portugal61Uniteca Hg,M61

Spain63EIASA Hg101

64EIASA Hg25

65EIASA Hg,M175

66Electroq.De Hernani Hg15

67Elnosa Hg33.5

68Erkima Hg150

69Quimical del Cinca Hg30

70Solvay Hg209

71Solvay Hg63 Sweden72Akzo Nobel Hg100

74Norsk Hydro Hg120

UK79Albion Chemicals Hg89

81Ineos Chlor Hg,M963

82Rohdia Hg29

Note:Hg:mercury;M:membrane;D:diaphragm.

A.B.Mukherjee et al./Resources,Conservation and Recycling42(2004)155–182169

Fig.5.Mercury in solid waste from chlor-alkali plants in western Europe(modi?ed from Garny,2001). Due to process changes caused by strict regulations,atmospheric Hg emissions from chlor-alkali plants in western Europe has reduced from3.3g Hg t?1Cl2production1989 to1.24g Hg t?1Cl2in1997(Euro Chlor,1998).Based on64%Cl2production by the Hg cell process and an emission factor1.24g Hg t?1,atmospheric Hg emission from the chlor-alkali industry can be estimated8.7t in2000,whereas in1995estimated Hg emission from caustic soda facilities summarised by the Working Group of Mercury(WGM)was 20.7t(European Communities,2001b).

At present,about11.8kt of Hg are in use in the Hg cells process for Cl2production in the EU-15(Lindley,1997).Waste from the Cl2industry contain Hg.It has been estimated that solid waste contain10–17g Hg t?1Cl2capacity.From this it can be estimated that in 1995mercury waste was(EU-15+Switzerland)95.2t based on a Cl2production capacity of6.8Mt and production of Hg containing solid waste corresponding to14g Hg t?1Cl2 capacity(Garny,2001).Fig.5indicates an average Hg content in waste per tonne Cl2 capacity between1980and2000.

The total phase out of Hg process for chlor-alkali production by the year2010was recommended by the Parties of the OSPAR Convention of the North European region (PARCOM Decision90/3of14June1990).Among EU countries,discussions are going on regarding fate of12kt of Hg.If this Hg is considered as“hazardous waste”,there will be transport restriction beyond the national boarder due to“Basel Convention”(UNEP, 2002).European Commission(2002)suggested that this amount of Hg will not be governed by the Community Waste Legislation or by the Basel Convention.Each EU country has right to determine whether or not this Hg is a“hazardous waste”.Sweden has decided that Hg from chlorine industry is considered as“hazardous waste”and Swedish legislation prohibits movement of waste beyond the national boarder(UNEP,2002).However,the European Chlorine Association(Euro Chlor)has recently signed an agreement with Mi?as de Almadén,Mayasa(Spain)that the mining company will accept Hg from EU member countries under term that“it displaces ton for ton,Hg that would otherwise have been newly mined and smelted to satisfy legitimate uses”(UNEP,2002).

However,it has not been de?ned what“legitimate uses”are.There is an evident risk that excess Hg from the European chlor-alkali plants will be used for gold mining by adding Hg to gold bearing river sediments,soils,and ores in developing countries.Mayasa has several of?ces situated outside Spain,most of which found in developing and gold mining countries,so the risk that Hg from Mayasa is abused in gold mining must be considered.

170 A.B.Mukherjee et al./Resources,Conservation and Recycling42(2004)155–182

3.7.Sewage sludge

Sewage sludge is a residual product from industrial and urban wastewater.In recent years production of sewage sludge is increasing due to better ef?uent treatment methods and strict national regulation.In1998,EU countries(except Italy)generated7175kt(dry matter)of sewage sludge of which the maximum amount(2660kt)stemmed from Germany and the minimum amount(13kt)from Luxembourg(EEA,2002).The Hg concentration in sewage sludge is not given by each member country.Best on the data for1996/1997 supplied by seven countries,it is observed that Hg concentration varies between3and 0.6mg kg?1(dw).Table4indicates the Hg concentration in sewage sludge for individual country and the total amount of Hg locked in sewage sludge was10.6t in1997.It is suitable for agricultural soils,but due to present of trace elements its use is restricted in most country.However,it is observed that the sludge is recycled,incinerated,land?lled, and occasionally delivered in the surface water by a few member countries.Fig.6indicates the amount of sewage sludge was used by different member states and2.9t of Hg entered the EU land?lls through1790kt of sewage sludge(based on average Hg concentration: 1.62mg kg?1dw).

4.Disposal methods

4.1.Overview

There is wide range of waste treatment methods which are generally based on thermal, physical,chemical or biological processes.The disposal methods for waste are generally: (a)land?lls;(b)incineration;(c)composting;(d)recycling/recovery.Hg containing waste are not however,suitable for land?lls,composting,and requires special treatment when incinerated(Fig.6).

https://www.360docs.net/doc/0d2418616.html,nd?lls

Most EU countries have separate collection systems for waste.Still signi?cant amount of Hg enters land?lls or waste incinerators.Negative effects from Hg emitted as a con-sequence of this can only be reduced by exercising strict regulations,preferably at the production stage,and by educational/information measures.Disposal strategies vary from one country to another.Special land?lls are generally constructed and maintained in ac-cordance with the EU hazardous waste directive(EEA,2001a).Such licensed land?lls are in operation in the following states:Ireland<40%;United Kingdom,The Netherlands, Germany and France40–70%;Denmark and Finland70–90%;Austria,Belgium,Portugal and Sweden>90%(EEA,1999a)Land?lls,such as SAKAB in Sweden,Kommunekemi in Denmark and Ekokem in Finland,are equipped with the impermeable membranes and leachate collection systems needed to protect the ecosystem(Huse et al.,1999).Though the infra structures are expensive to build and demand considerable funds to be set aside for operation costs in the future to avoid that our waste becomes an economic burden of future generations.Hg in waste is generally pre-treated to obtain better stability before land?lling

A.B.Mukherjee et al./Resources,Conservation and Recycling42(2004)155–182171

Fig.6.Sewage sludge generation,recycling,incineration and land?ll in the EU member states(except Italy;data for2000)(modi?ed after EEA,2002).

and there is a limit value of Hg in waste.For example,in Sweden,this is500mg kg?1 dw(Huse et al.,1999).At land?lling of hazardous waste,there is pressures on the en-vironment,in addition to leaching,also contribution to greenhouse gases by emissions of methane when the waste also contain organic materials,and land loss.The magnitude of the problems depends on the construction of the land?ll,and the hydrological,geotechnical and topographical conditions(Colombo et al.,1996).However,it should be noted that modern land?lls will always need economic resources for maintenance in the future.A?owchart for a land?ll where environmental impacts from the land?ll have been minimised is given in Fig.7.

The Swedish Environmental Protection Agency(EPA)has developed a strategy for ter-minal storage of Hg in waste and surplus Hg.The concept is based on the conversion of Hg in waste in the elemental(Hg0)or chemically stable form(e.g.HgS)and subsequently store it in a deep-rock storage facility.The groundwater will chemically favour this inert condition of the deposited Hg and the surrounding bedrock will protect the deposited waste for thousands of years or longer.This approach will guarantee that Hg in waste remain in-side the border of a country and the risks that the Hg in the waste will be converted into Hg compounds that enter the environment practically eliminated(SOU,2001;Swedish EPA, 1991;UNEP,2002;US EPA,2002).

172 A.B.Mukherjee et al./Resources,Conservation and Recycling42(2004)155–182

Fig.7.Flowchart for a modern land?lling system(redrawn from Colombo et al.,1996).

4.3.Incineration

Hg in waste varies from one type of waste to another type.Hence its behaviours and release during incineration in three major groups of incinerators(municipal waste com-bustion(MWC),medical waste incinerator(MWI)and sewage sludge incinerator(SSI)) are dif?cult to generalise(European Communities,2001b).In the EU-15(except Portugal), there are533non-hazardous waste incineration plants of varying capacities,of which280 are in France.In Finland,there is only one incineration plant for municipal waste.In ad-dition to these,there are239incineration plants for hazardous waste in operation(EEA, 1999a).The main aim of incineration is to reduce the volume of municipal waste to be land?lled,and to destroy and detoxify the many hazardous organic components within the waste through oxidation.It is also an alternative source of energy which can be used for example for district heating(Hylander et al.,2003).In many countries emission control technologies for waste incinerators have been improved during the last decade due to which it is possible to reduce Hg emissions from the incinerators by35–85%(Pirrone et al.,2001) or even above95%(Hylander et al.,2003).It has been cited that incineration of household waste in the EU has caused15–25%of atmospheric Hg emissions(Munthe et al.,2001; Umweltbundesamt/TNO,1997).In the US,90–94%Hg reduction was reported during com-

A.B.Mukherjee et al./Resources,Conservation and Recycling42(2004)155–182173 pliance tests at115large municipal waste incinerators equipped with control technologies (e.g.Fabric?lter bag house,electrostatic precipitator,scrubber)(UNEP,2002).Injection of activated carbon or nitrium sulphide to the?ue gas prior to the electrostatic precipitator (ESP)or fabric?lter(FF)is quite common in incineration of waste in EU countries,Canada and Japan(European Communities,2001b).This method will remove50–95%of Hg from the?ue gas in MWCs(Nebel and White,1991).

In the EU-15states+3non-EU countries,6–9Mt of slag are produced from waste incin-eration processes.This product is mostly used for road construction,noise barriers,concrete production or land?lled.In Denmark and The Netherlands,85–90%of slag are recycled, while only50%is recycled in Germany,and in Sweden no slag is recycled(DEPA,1998; International Ash Working Group,1997).The slag unfortunately contains high concen-trations of trace metals.Hg concentration varies from0.02to7.75mg kg?1(International Ash Working Group,1997).Assuming4mg kg?1,total Hg in slag from waste incinerators varies between24and54t.This material may contaminate the surrounding construction area if the surface is not sealed.Hg containing slag,residue or ashes must be in stable form for disposal if it cannot be used in a safe way.

4.4.Utility and non-utility boilers

It is important to note that the characteristics of coal,the combustion processes and the control equipment will in?uence Hg emissions to the atmosphere and its retention to residue and coal ash.Past studies indicated that retention of Hg from?ue gas streams of the wet ?ue gas desulphurisation or dry FGD systems for utility boilers is different.In the former, retention percent varies between30and50whereas in the later it is35–85%.But for the FF,the retention of particulate exceeds99%.The durability of FF is quite limited(Pacyna and Pacyna,2000).Hg in coal ash and residues have been discussed in Section3.4.

4.5.Others

In any recycling of hazardous waste,costs,health risks,and possible environmental dam-ages should be studied before starting this business and compared with costs for maintaining land?ll sites for the future potential health risks and environmental damages from land?ll sites.Recycling is higher up the“waste management hierarchy”than land?ll disposal(ERM, 2000).If it is economically or environmentally3viable,hazardous waste should be recycled, limiting the risk to environment and public health.Hg recovery units are mostly observed in the middle of the EU countries,e.g.Germany,France,The Netherlands,UK,and Ire-land,and also in Nordic countries in Sweden and Finland.Hg from batteries,thermometers, instruments and lamps become hazardous to the ecosystem when they are not properly han-dled in accordance with regulations for hazardous waste.Human health is in danger when Hg is observed above certain level in our environment.

There are proven technologies for recovery of Hg from batteries,lamps,thermometers, and amalgam.These are based on distillation(wet/dry),thermal/chemical process,chemical precipitation,and solidifying.

3The environmental bene?t of recycling includes the bene?t from less demand for mining activity.

174 A.B.Mukherjee et al./Resources,Conservation and Recycling42(2004)155–182

4.5.1.Distillation process

It is used to recover Hg or to reduce the waste amount.Here the waste is placed in the vacuum chamber(temperature:500–700?C)where Hg is vaporised under sub-atmospheric pressure.The Hg vapour is passed into the cooling traps where Hg is condensed and collected in containers.The gas is passed to the atmosphere via carbon?lter.The operation takes from 8to24h and in one batch,10,000luminous tubes and300–400kg of button cells can be treated(TemaNord,1999).

A German recycling company in Lübeck runs a vacuum thermal recycling plant for the processing of waste material containing Hg(batteries and cells)for recycling and disposal. Here the sorted Hg cells are processed in the vacuum thermal plant and the yearly recovery is about100t Hg(99.5%).Similarly,there are more than ten recycling companies in Ger-many engaged on the recovery of Hg and other raw materials from?uorescent tubes and other discharge lamps based on physical/dry;physical/wet and chemical/wet processes.In addition to the recovery of Hg,it is also possible to recover other components of the?u-orescent tubes which can be re-used as raw materials(Genest,1997).Generally,thermal or chemical reactions,and solidi?cation are used to stabilise Hg to a form suitable com-pound(such as mercury selenide)for land?llings.The process is developed by Elektronik and?tervinning AB,G?teborg Renh?llningsverk and Tabulator A

B in Sweden.But the Swedish Environmental Protection Agency has not approved to deposit the compound in waste land?lls(TemaNord,1999).

4.5.2.Chemical precipitation process

This process makes it possible to precipitate Hg in aqueous solution with sulphide com-pound,e.g.HgS.Hg from the crashed?uorescent tubes can be separated by the chemical precipitation process and the residue cake contains only6ppm Hg which satis?es the EPAs leaching test.The process is developed and used by Ekoteho Oy,Finland(TemaNord,1999). In addition to chemical,there are biological processes by which Hg-bearing waste can be treated based on the use of micro-organisms,where degradation of organic compounds oc-curs.These processes partially or completely convert organic molecules into cellular mass, carbon dioxide,water and inorganic residue(Colombo et al.,1996).

5.Risk assessments

Risk can be expressed as the probability of an accident originating from inside or outside a process and its consequences.Risk assessment(RA)comprises information regarding the harmful effects of chemicals on humans and evaluation of the effects which can be used by the decision makers or by politicians.It generally includes:(i)risk identi?cation, (ii)risk prediction and(iii)risk evaluation(Ellis,1989;Swedish EPA,1996).In the EU, there is no legislative guidance for Environment Impact Studies(EISs)However,society needs adequate information on the risks of substances and their adverse effects on man and the environment.There are hundreds of thousands of existing chemicals including metallic Hg and its compounds,and a couple of hundred new substances are introduced onto the market every year(Vermeire and van der Zandt,1996),which may pose great threat to the environment.For this reasons risk assessment is necessary,although there is

部编版语文一年级上册《10大还是小》教案

10. 大还是小 教学过程 第一课时 【课时目标】 1.会认“时、候”等11个字,会写“自、己、衣”3个字,认识双立人、竖心旁2个偏旁。 2.正确、流利地朗读课文。 【教具准备】 课件、生字卡片 【教学过程】 一、激趣导入,引入课题

1.(课件出示2)出示鸡蛋(一大一小)图片。 同学们,这是什么?(鸡蛋),你发现了什么 呢?(这两个鸡蛋一大一小) 2.师板书“大”和“小”。你认为自己是大还 是小呢?说说原因。 3.有一位小朋友,他自己很矛盾,有时候觉得 自己很大,有时候又觉得自己很小,到底怎么回事 呢? 今天,我们一起学习《大还是小》一课,一起 去了解、感受这位小朋友的想法。 (板书课题:大还是小)齐读课题。 二、初读课文,检查预习 下面就让我们一起先来看看小作者认为自己是大 的还是小的。 1.自由读课文,注意读准字音,读通句子,做到“三 不”:不错字,不添字,不漏字。 2.要想读好课文,就必须先认识这些生字朋友。 (课件出示3) shí hou jué de zì jǐ hěn kuài chuān yī fu 时候觉得自己很快穿衣服 你认识它们吗?自己试着读一下。 指正:“自”是平舌音,“时、穿”是翘舌音。 “时候”中的“候”,“衣服”中的“服”在这里都 读轻声。 (1)谁能来当小老师带领大家读一读?其他同学 (2)这些字去掉拼音你还认识吗? (课件出示4) 时候觉得自己很快穿衣 服 我们来开火车读一读。

(3)识记生字: 本课生字以合体字为主,可以运用多种方法帮助学生识记字形、理解字义。 (课件出示5)出示会意字图片:学习会意字“穿”。教师出示老鼠挖掘洞穴的图片,告诉学生:上面是一个“穴”,表示的是野兽居住的洞穴;下面是“牙”,表示野兽用自己的牙齿来挖掘洞穴,是凿通、凿穿的意思。 用熟字组成新词:时间、感觉、得到、很多、大自然、穿过。 小结:识字的时候,我们不仅可以用加一加、换一换的方法,还可以用猜字谜的方法,但要注意编的字谜要合理。 指名认读,齐读。 3.认识了生字朋友,读课文就更容易了。下面我请几位同学接读课文,其他同学边听边想,本文介绍了“我” 什么时候感觉自己很大,什么时候感觉自己很小? 预设:“我”自己穿衣服和系鞋带的时候感觉自己很大。 预设:4.教师评价学生的朗读。 三、观察生字,指导书写 1.出示生字:自、己、衣(课件出示6) 观察字形,记住它们在田字格中位置。 2.指导写字规律。 自:横平竖直,中间几横之间的间距要均匀。 己:整个字上窄下宽,竖弯钩要圆转。 衣:整个字的重心落在田字格的正中,撇捺舒展,呈三角形;注意笔顺,最后一笔是长捺。

人教版一年级语文上册aneninunvn

汉语拼音12、an en in un ün 52小学石红丽 【教学目标】 1.学会前鼻韵母ɑn、en的发音方法,探究前鼻韵母的发音规律。 2.运用前鼻韵母的发音规律,同桌合作学习前鼻韵母in、un、ün的发音。 3.能正确书写前鼻韵母,感受书写美和紧凑美。 4.学会整体认读音节yuɑn、yin、yun。 【教学重点】 前鼻韵母的发音、整体认读音节的识记、 【教学难点】 【课前准备】 课件、ɑn、en、in、un、ün音节卡片,yuɑn、yin、yun卡片、智慧树、智慧果。 【课时安排】 1课时 【教学过程】 课前活动 1、我说你来做。嘴巴、牙齿舌头、鼻子 2、看,在黑板上有棵智慧树,你看它光长着光秃秃的枝,一点都不漂亮,智慧树老爷爷说:“小朋友们,你能用你的智慧让我长出智慧叶,结出智慧果吗?” 一、复习导入: 1、拼音乐园的朋友可真多,今天他们想和大家打个招呼,看,谁来了?你能和他们打个招呼吗?指名读。 在和这些单韵母朋友打招呼时,你们的口型发生变化了吗?(口型不变) 2、(复习复韵母ɑo、ei、ui、ɑo、ou、iu、ie、üe、 er。 瞧,又有几个老朋友来了,你能响亮的叫出他们的名字吗?指名读。 第一排!第二排!第三排我们一起来吧!叫出这些复韵母名字时,大家的口型有没有发生变化?(复韵母发音口型是要变化的。) 3、今天,我们又要认识几个特殊的拼音朋友哦!看,他们随着气球飘来了。请小朋友们仔细观察这5个韵母,你发现了什么(它们都是由一个单韵母和韵尾-n组成的)。 4、这五个韵母都是由一个单韵母和一个声母n组成。他们后面这个相同的小尾巴-n,却不读声母n,那该怎么读呢?请同学们看大屏幕。 动画演示【课件】 请小朋友像这样,用你的舌尖很快地抵住上齿龈,让气流从鼻孔里出来,就

部编版一年级语文上册10大还是小教学反思1

精品教学资料,欢迎老师您参考使用! 《大还是小》教学反思 孩子们都希望自己快快长大,成为一个独立的人。与此同时,他们也离不开父母的呵护。《大还是小》这篇课文通过3个“有时候”和“更多的时候”把文章紧密地串联起来,形成一个有机整体。课文多处运用对比的方式来展现儿童的世界,儿童的内心是矛盾的,又是充满趣味的。第二自然段的“大”,第四自然段的“小”,就是这种矛盾的具体体现。教学重点为认识“时”“候”等11个生字和双人旁、竖心旁两个偏旁;会写“自”“己”等3个生字;正确、流利地朗读课文,结合插图,体会“我”自相矛盾的内心世界。结合生活体验,说说什么时候觉得自己很大,什么时候觉得自己很小。上完课后,教学效果感觉良好,也有许多的感受、体会。回顾整堂课的教学,总结如下: 一、教学效果 本节课围绕着教学目标,我取得了以下效果: 1.为了实现教学目标,我的教学思路主要还是提示学生读准字音。为了激发学生的识字兴趣用图片的方式来学习会意字“穿”。出示老鼠挖掘洞穴的图片,告诉学生,上面是一个穴表示的是野兽居住的洞穴,下面是“牙”表示野兽用自己的牙齿来挖掘洞穴,是凿通、凿穿的意思。因为学生认知事物的方式不同,鼓励学生用自己喜欢的方式进行识字。组内交流汇报识字方法,效率高。在写字教学中,采取对比学习方式“自”和“白”;“己”“衣”引导观察笔画互相衔接的位置。 2.朗读指导。采取男女生对读、同桌之间对读的形式,引导孩子读出内心成长的感受,体会“大”和“小”的情感变化,当自己觉得很大时,读出自豪之感;当自己觉得自己很小时,读出一种儿童依赖大人的感觉。在熟读的基础上,通过指导读好几个“有时候”和“更多的时候”,读出文章的结构的特点。第一个“有时候”要读出内心的自豪感;第二个“有时候”朗读时语调要有变化,相较于第一个“有时候”在语调上稍微短一点,读出“我觉得自己很小”中的“很小”。学生在朗读中体会到“我”内心世界的自相矛盾。 3.理解运用。从题目入手,学生说说对大和小的理解,能否用到一个人身上,激发学生的学习兴趣。 4.说一说。结合生活实例,将学生带入文本,加深对课文内容的理解。借助句式“有时候,我觉得自己()。()的时候,()的时候,我觉得自己()”引导学生说感受,把语言学习和内容理解有机结合。 二、成功之处 《语文课程标准》中提出语文课程是一门学习语言文字运用的综合性、实践性课程。读写不分家,学生初步了解课文的基础上,结合生活实例,将学生带入文本,借助句式“有时候,我觉得自己()。()的时候,()的时候,我觉得自己()”练

部编人教版一年级语文上册第10课《大还是小》优秀教案

10 大还是小 教材解读: 《大还是小》是一篇富有儿童情趣的文章,内容浅显易懂,同时富有教育意义。孩子们都希望自己快快长大,成为一个独立的人。与此同时,他们也离不开父母的呵护。课文通过 3 个“有时候”和“更多的时候”把文章紧密地串联起来,形成一个有机整体。课文多处运用对比的方式来展现儿童的内心世界,儿童的内心世界是矛盾的,又是充满趣味的。第二自然段的“大”,第四自然段的“小”,就是这种矛盾的具体体现。课文配有一幅插图,“大”和“小”的行为都在其上,可以借助课文插图来展开教学。 教学目标: 1.认识“时、候”等 11 个生字和双立人、点横头、竖心旁 3 个偏旁;会写“自、己” 等3个字。 2.正确、流利地朗读课文。结合插图,体会“我”自相矛盾的内心世界。 3.结合生活体验,说说什么时候觉得自己很大,什么时候觉得自己很小。 教学重点、难点: 教学重点:正确、流利地朗读课文。 教学难点:体会“我”自相矛盾的内心世界;会写“己、衣”等 字。 第一课时 一、课时目标: 1.认识“时、候”等 11 个生字,能用不同的识字方法进行识记。学习双立人、点横头、竖心旁 3 个偏旁;会写“自、己”两个生字。 2.正确、流利地朗读课文,初读课文学习质疑并能通过自读自悟解读疑问。 二、教学过程 (一)激趣导入,引出课题,启发质疑 1.出示字卡“大”。

大声读这个字。说说和它意思相反的字是什么吗? 2.出示字卡“小”。 小声读这个字。(生读:小) 提醒:上课时,回答问题声音不能太小,否则别人就听不到了。老师要看看这节课谁的表现最棒。 3.同时出示字卡“大小”,一起来读一读。 4.质疑:你认为自己是大还是小呢?能说说为什么吗?(指名回答) 5.过渡:有一个小朋友也遇到了这个问题,他是怎么回答的呢?我们这节课就来学习《大还是小》。(板书课文题目) 6.读了课文题目,你有什么疑问?(师生梳理出主要问题) (二)自主探究学习 1.教师出示自读要求 (1)自由朗读课文,遇到不认识的字,借助拼音多读几遍。把词语读正确,句子读通顺。 (2)拼读课前圈画的生字,要读准字音,想办法记住这些生字。 2.根据自探提示先自主学习,然后在小组长的组织下在小组内交流。 (三)初读课文,学习生字 1.检查自主学习情况。 (1)我会读 课件出示词语: 时候觉得穿衣服自己很小快点儿 ①指名开火车朗读,师生正音。 ②齐读。 ③自主选择一个词语说一句话。 ④去掉拼音指名读,齐读。 (2)我会认 ①这些词中有些生字需要我们记住,瞧,它们已经从词中跳出来了,你还能认出它们吗? 课件出示生字,指名读。

部编人教版一年级语文上册第10课《大还是小》优质教案

10.大还是小 同学们,你们愿意快快长大,还是永远做一个孩子呢?《大还是小》这篇课文的小作者有时候觉得自己很小,有时候觉得自己很大,怎么回事呢,我们一起走进课文看看吧! 学习目标—要知道 1.能正确流利、有感情地朗读课文。 2.会正确认读“候、穿”等12个生字,学会写“自”等4个字,认识“ㄔ”等个部首。 3.感受小作者要长大心情,能自己的事情自己做。 字词详解—要掌握 2.会认的字

3.多音字 ào (睡觉)de (写得) ? (感觉)d ěi (得学会) 运用:我宁愿睡觉也不看这部电影。我觉得你应该走快点。 他的作文写得很华丽。他们得学会尊重并欣赏这一点。 4.近义词 觉得——感觉 陪——伴 照顾——照看 盼着——希望 5.反义词 大——小 多——少 快——慢 运用:①妈妈买了两个西瓜,一个大一个小。 ②我们班的学生多,二班的学生少。 ③散步时奶奶的脚步总是很慢,而我总是走得飞快。 6.词语听写 自己 妈妈 妹妹 7.一词多义 8.词语拓展 反义词:前——后 左——右 上——下 外——内

表示动作的词语:散步漫步飞跑张望倾听大哭 课文内容详解 导读:每个小朋友都有自己的梦想。有的小朋友希望自己快快长大,成为很厉害的人。但是他们有时候又离不开父母的呵护。课文以简洁、生动、形象的语言写出了一个小朋友心里的真实想法。本文共八个自然段,通过生活中的几件小事写出了一个渴望长大的孩子的心情。 课文详解—要领悟 1.概述内容 《大还是小》这篇课文,以简洁、生动、形象的语言写出了“我”在做不同的事的时候,会有不同的想法和感受,表达了自己想要长大的心情。 2理清层次

新部编人教版小学一年级语文上册第10课《大还是小》教案及反思

新人教版部编小学一年级语文上册教案及反思 10、大还是小 教学目标: 知识与技能 1.会认“时”“候”“觉”等11个生字,会写“自”“己”“衣”3个生字。掌握3种偏旁“彳”“亠”“忄”。 2.正确、流利地朗读课文,读准字音。 情感态度与价值观 引导学生要学会正视自己,知道什么时候自己很大,什么时候自己又很小。 教学重难点: 1.掌握本课所学生字,能够按笔顺准确、规范地书写生字。 2.正确、流利地朗读课文,读准字音。 教学课时:2课时 第一课时 教学过程: 一、谈话导入 1.师:同学们,每天早上爸爸妈妈送你们上学的时候,当你们看到高年级的哥哥姐姐们自己来上学,有没有很羡慕呢?(生答:有) 2.师:那个时候,你心里是怎么想的呢?(要是我也像哥哥姐姐一样大多好啊!) 3.师:为什么呢?(因为我再大一些,爸爸妈妈就不用每天辛苦送我上学了。)

4.师:有一个小朋友啊,他也和你们一样,有时候能自己系鞋带、穿衣服时,他觉得自己很大;但是有时候呢,够不到按钮、害怕打雷时,他又觉得自己很小。这节课我们一起去认识这位小朋友吧! 二、看图读文,整体感知 1.让学生自由朗读课文,画出课文生字词,多读几遍。 2.读一读,标出自然段序号。 3.看图,说说图上画了什么。你能根据课文内容说一说吗?(引导学生结合插图说一说。) 4.不明白的地方用横线画下来,并向老师请教。 三、动动脑筋,学习生字 1.看拼音读词语。(课件出示重点词语) 2.课件出示课文生字(去拼音),指名读,开火车读。 3.认读这些生字,并给这些生字找朋友。(口头扩词练习) 4.巧识字形。 (1)师:你们有什么好办法能很快记住这些字的字形吗? (2)四人小组讨论识记方法。(鼓励学生结合字形和字义巧识巧记。)(3)同桌之间互相说一说你是如何记住的,汇报交流识记方法。 (比一比:己—已自—目) 第二课时 教学过程: 一、创设情境,激发兴趣 1.出示本课生字词卡片,检查学生认读情况。 2.出示课件“图图上小学了”。

《aneninunvn》教学设计和教学反思(人教版一年级上册)

《aneninunvn》教学设计和教学反思(人教 版一年级上册) 教法:多种形式认读 学法:反复练读,采用多种方式读。 教学准备:卡片小黑板 教学目标: 知识目标:学会前鼻韵母an en in un ün和整体认读音节yuan yin yun,读准音,记清形,正确书写。认识“山、田、左、片、右、风、云、她”8个生字,并能在一定的语境中使用能力目标:能够看图说话,根据音节拼读词语和句子。能够自己拼读儿歌,做到词语连读 情感目标:培养学生对拼音拼读的兴趣。 教学重、难点:学会前鼻韵母an en in un ün和整体认读音节yuan yin yun,掌握en in yun的读音,掌握整体认读音节yuan。 学情分析:一年级学生具有好奇、爱探索、易受感染的心理特点,容易被新鲜的事物所吸引。 教学过程: 第一课时 一、复习检查。 1、卡片认读复韵母:ai ei ui ao ou iu ie üe er .

教师小结:我们已经学了8个复韵母,1个特别韵母。 2、出示整体认读音节ye yue,让学生找出和它们读音相同的复韵母。 二、提出教学任务。 今天我们要学习鼻韵母,板书:an en in。这三个复韵母后面都有-n,这个-n,不是声母n,只表示鼻音。发音时摆好发“n”的准备,舌尖顶住上颚的前部,让气流从鼻孔出来。(教师用手势演示。)因此,这样的韵母叫前鼻韵母。领读“前鼻韵母”2遍。 三、教前鼻韵母an和整体认读音节yuan。 1.看插图说话引出an:图上画着什么?(天安门)领读2遍,读准“安”的音。指名读“天安门”。简介天安门,天安门的“安”就是韵母an。 2.教学an的发音。 (1)讲解发音要领:把an和-n合在一起,先发a,口不宜张得太大,马上用舌尖顶住上腭的前部,使气流从鼻孔出来,要念成一个音。 (2)教师范读、领读、指名读、开火车读、齐读。 (3)看看an是怎么写的。先写a,再写n,团结友爱不分开。学生书空。 3.an的四声练习:ān(天安门)ǎn(俺家)àn(黑暗) 4.教学整体认读音节yuan,看图,图上画着什么?

部编一上语文10 大还是小【教案】

部编版一年级上册语文10大还是小 1.认识“时、候”等11个生字和双人旁、竖心旁2个偏旁;会写“自、己”等3个生字。 2.正确、流利地朗读课文。结合插图,体会“我”自相矛盾的内心世界。 3.结合生活体验,说说什么时候觉得自己很大,什么时候觉得自己很小。 4.在仿说中迁移运用文中句式。 重点 1.正确、流利地朗读课文。 2.体会“我”自相矛盾的内心世界。 难点 在仿说中迁移运用文中句式,让学生与主人公的心理产生共鸣。 1.字词教学。 生活识字:在教学“穿”时联系学生生活,说说自己还会穿什么,如“穿鞋子、穿裤子”等,在拓展中认读生字,识记生字。 对比识字:“双人旁”是本课新学的偏旁。教学时可引导学生与“单人旁”进行辨析,将“得、很”组合教学,并给“很”组词,通过对“很大、很小、很多、很少”等词语的对读,体会“很”是表示程度的加深,也为后面的朗读指导打好基础。 字义识字:学习“竖心旁”时结合“心”字说说演变过程,从而理解带有“竖心旁”的字大多跟心情有关。 书写生字:“自、己、衣”在写字板块需重点指导。指导“自”时可采用加一加的办法记住字形 “目+ ”;“己”的书写要点是笔顺及书写最后一笔的位置;“衣”要让学生观察笔画的细节,以及几个笔画相互衔接的位置。 2.朗读教学。 本课的语言兼有散文和诗歌的特点,语句有长有短,长句由结构重复的短句组成,如“______的时候,_____的时候,我觉得自己_____”。在指导朗读时,可以采用范读法,让学生能明显判断停顿的位置,进行标注后再反复练习。如:“我自己/穿衣服的时候,我自己/系鞋带的时候,我觉得/自

己很大。”还可采用对比朗读法,一年级的孩子读书时最容易出现拖音拖气的现象,教师通过示范形成对比,让学生正确朗读。评价法也是指导学生朗读的有效途径。如“我自己穿衣服的时候,我自己系鞋带的时候……”教师评价:“你把‘我自己’读得那么响亮,教师听出了你的自豪。” 3.迁移运用。 课文第1、2自然段与第3、4自然段用了以下句式:“有时候,我觉得自己很_____。我自己的时候,我自己______的时候,我觉得自己很_____。”教学时可引导学生联系自身经历进行仿说。不仅做到句式上的迁移运用,还让学生与课文中的主人公产生共鸣。 教学准备 1.借助拼音读课文,认读本课生字。 2.多媒体课件。 教学课时 2课时 第1课时 1.认识“候、得”等生字,注意读准轻声。 2.认识“双人旁”,会写“衣”字。 3.正确、流利地朗读课文。 一、创设情境,引出课题,启发质疑。 1.教师讲故事:在森林王国里住了小白兔一家,一天小白兔欢欢跑到妈妈跟前对妈妈说:“妈妈,妈 妈,你看我长高啦!我是个大孩子了!”同学们,你们同意欢欢的说法吗?说说你的看法。(生自由讨论) 2.质疑:你认为自己是大还是小呢?能说说为什么吗?(生自由回答) 3.有一个小朋友也遇到了这个问题,他是怎么回答的呢?我们这节课就来学习《大还是小》。 4.给课题加上问号,指导学生读出疑问的语气。

部编新人教版一年级语文上册第10课大还是小课堂教学实录

部编新人教版一年级语文上册第10课《大还是小》课堂教学实录 本帖最后由 ljalang 于 XX-10-29 11:31 编辑 10 大还是小 名师教学设计片段 ◆激发识字兴趣,运用多种方法识字(教学难点) 师:看到小朋友们能正确地读出这篇课文,老师心里可高兴了。不仅我高兴,连藏在这篇课文里的十一个生字娃娃也为你们高兴呢。瞧它们出来了!(课件出示:时、候、觉、得、穿、衣、服、自、己、很、快) 师:没有拼音,你们还能叫出它们的名字吗?别急,试着读一读吧。 (学生认读,教师巡视) 师:刚才老师看到有几位小朋友皱起了眉头,看来是碰到了不会认的字,不过没有关系,这很正常。只要我们动动脑筋,想想办法,就一定能认识它们。请你想一想:如果碰到了不会认的字,你会怎么办呢? 生1:我会看书上的拼音。

生2:我会去查字典。 师:对,字典的确是一位好老师。 生3:我会举手问老师,还可以问旁边的同学。师:你们真聪明,一下子想出了这么多好办法,有了这么多好办法,老师相信你们一定都能跟这些生字娃娃交朋友。好,赶快行动,想办法和这些生字娃娃交朋友吧。 (学生自由认读生字,有的大声认读,有的在看书上的拼音,还有的问起了旁边的同学,老师一会儿看看这个小朋友,一会儿问问那个小朋友。) 师:你们学得这么认真,一定都和生字娃娃交了朋友。老师想来检查一下,请把书合上。看,生字娃娃都跑到老师这里来了。(出示生字卡片)能叫出它们名字的请举手。 师:这些生字娃娃的名字会认了,那这些生字娃娃的模样我们又该怎么记住呢? (课件出示“很、得”) 师:你有什么发现吗? 生:它们很像。 师:是呀,这两个生字娃娃长得这么像,怎么把它们区分开呢?

最新人教部编版一年级语文上册《大还是小》说课稿

《大还是小》说课稿 今天我说课的内容是小学语文一年级上册第七单元第10课《大还是小》。下面我将从教材、学情、教学目标、教法学法、教学过程、教学板书六个方面作简单的说明。 一、说教材 《大还是小》是一篇富有儿童情趣的文章,内容浅显易懂,同时富有教育意义。课文用简洁平实的语言写了“我”有时候觉得自己很大,有时候又觉得自己很小,并举了一些具体的事例,让孩子们意识到自己的事情应该自己做。 二、说学情 一年级的小朋友对“长大”非常向往,但是有时候又有一些力不从心的事情,让他们意识到自己还没有长大。这篇课文能让他们对“长大”有更确切的认识,能够让他们意识到自己的事情应该自己做。 三、说教学目标 依据教材和学情,我设定以下教学目标: 1.认识11个生字,会写3个生字。 2.能正确、流利、有感情地朗读课文。 3.理解课文内容,体验长大的快乐。 本课的教学重点:学会本课生字词,能正确、流利、有感情地朗读课文。 教学难点:理解课文内容,体验长大的快乐。 四、说教法学法 语文课程标准提出:“努力建设开放而有活力的语文课程。”所以本节课主要采用媒体演示、自主读书,自主识字、合作学习、合作解疑的方法。学生在教师的引导下动脑、动手、动口。通过自己的劳动获取知识,变被动学习为主动学习。体现“以教师为主导,学生为主体,训练为主线”的原则。 五、说教学过程 (一)谈话导入,激发兴趣 “兴趣是最好的老师。”“兴趣是求知获艺的先导。”因此,上课伊始,我先出示“大”和“小”两个字,让孩子们说说觉得自己是大还是小,为什么?顺势引出课题,激发学生探究课文的兴趣。 (二)初读感知,学习生字

1、老师先范读课文。 2、孩子们借助拼音自由读课文,圈出不认识的字,向小组内其他的同学请教后,多读几遍。 3、学习生字词。首先,课件出示词语,再出示生字进行认读,接着让学生先小组合作交流识记方法,再全班交流,认识双人旁,竖心旁。并利用游戏的方式激发学生的识字兴趣。然后,把生字词放到句中读,再放到文中分段朗读课文。这样,一层层的推进,集中识字与随文识字相结合,字不离词,词不离句,只有将汉字及时纳入词中、句中,并在语言环境中会认、会读,才算真正“会认”,这样的识字也才是有意义。 4、指导写字。出示生字,让学生先自己观察,说说书写时要注意什么,强调笔画顺序。然后老师范写,学生在练习。 新课标提出:要让学生初步感受汉字的形体美。一年级学生是训练写字的关键时期,上课时有选择地渗透一些书法知识可为学生以后的书写奠定良好的基础。 【设计意图:在这一环节中,我从学生实际出发,以“扎实、朴实”为目标,利用课件,认读字词,努力在字词上抓落实,为深入学习课文打下坚实的基础。】(三)合作探究,细读体悟 《语文课程标准》明确指出:阅读是学生的个性化行为,不应以教师的分析代替学生的阅读实践,要十分重视培养学生的自学能力。因此在教学中,要特别注重学法的指导和渗透。 1、自由朗读课文,勾画语句,思考:什么时候觉得自己“很大”,用“____”画出来;“我”什么时候觉得自己“很小”,用“﹏”画出来。在小组内交流,想一想为什么。在汇报交流中,课件相机出示句子引导理解,并进行朗读指导。 2、仿照课文的句式说一说:你什么时候觉得自己很大?什么时候觉得自己很小? 【设计意图:授人以鱼,不如授人以渔。在这一环节,让学生自己探究并找到答案。,以“画一画”“说一说”“读一读”的方式培养学生的动口、动手、动脑的学习习惯,充分激发了学生的主动意识和进取精神,加深了学生对文本的理解。同时,合作学习的方式,又培养了学生的合作意识和能力。】 (四)联系生活,拓展升华 《语文课程标准》指出:教学要结合课内外资源,多途径的提高学生的语文素养。 1、说一说,你是盼望长大,还是希望一直这样小小的?为什么。在全班交流中对学生进行情感教育,体验长大的快乐。

最新部编人教版一年级语文上册第10课《大还是小》教学设计

10.大还是小

课文10 大还是小 【教学目标】 1. 认识“时、候”等 11 个生字和双立人、点横头、竖心旁 3 个偏旁;会写“自、己”等 3 个字。 2. 正确、流利地朗读课文。结合插图,体会“我”自相矛盾的内心世界。 3. 结合生活体验,说说什么时候觉得自己很大,什么时候觉得自己很小。 【教学重点】 正确、流利地朗读课文。 【教学难点】 体会“我”自相矛盾的内心世界;会写“己、衣”等字。 【课前准备】 1.制作多媒体课件,准备生字词卡片。(教师) 2.借助拼音自主朗读课文,预习课文,标出自然段,圈画生字,拼读生字,记忆生字。(学生) 【课时安排】 2课时 【教学过程】 第一课时 一、激趣导入,引出课题,启发质疑 1.出示字卡“大”。 师:同学们,请大声地读这个字。(生读:大) 师:上课时,回答问题的声音要大。你知道和它意思相反的字是什么吗?(生答:小) 2.出示字卡“小”。 师:请小声地读这个字。(生读:小)上课时,回答问题声音不能太小,否则别人就听不到了。老师要

看看这节课谁的表现最棒。(同时出示字卡“大小”)现在,我们一起来读一读。(生读:大小) 3.质疑:你认为自己是大还是小呢?能说说为什么吗?(指名回答) 师:有一个小朋友也遇到了这个问题,他是怎么回答的呢?我们这节课就来学习《大还是小》。(板书课文题目) 4.读了课文题目,你有什么疑问? (师生梳理出主要问题) 5.自主探究学习。 教师出示自探提示一。 (1)自由朗读课文,遇到不认识的字,借助拼音多读几遍。把词语读正确,句子读通顺。 (2)拼读课前圈画的生字,要读准字音,想办法记住这些生字。 6.根据自探提示先自主学习,然后在小组长的组织下在小组内交流。 二、初读课文,学习生字 检查自主学习情况。 (1)我会读 时候觉得穿衣服 自己很小快点儿 (2)我会认 ①这些词中有些生字需要我们记住,瞧,它们已经从词中跳出来了,你还能认出它们吗? 时候觉得自己很穿衣服快 ②识记生字: ③我来考考大家: “我在洞穴里发现了一颗牙。”(穿) 这是我们的识字办法之一——编谜语,猜谜语。接下来要看你们的本领了,说说你们的识字办法吧!(学生自由选择生字说说自己的识字方法。) ④小结:识字的时候,我们不仅可以用加一加、换一换的方法,还可以用猜字谜的方法,但要注意编的字谜要合理。 ⑤指名认读,齐读。 三、写字指导(自、己) 1.交流谈话。 师:你觉得在这十一个生字中哪个字最简单?(己)组一个词好吗?(自己)现在我们就来写好下面这两

相关文档
最新文档