中考专题1(由动点形生成的特殊三角形问题)

中考专题1(由动点形生成的特殊三角形问题)
中考专题1(由动点形生成的特殊三角形问题)

由动点形生成的特殊三角形问题

抛物线与直线形的结合表形式之一是,以抛物线为载体,探讨是否存在一些点,使其能构成某些特殊三角形,有以下常风的基本形式

(1)抛物线上的点能否构成等腰三角形(2)抛物线上的点能否构成直角三角形

(2)抛物线上的点能否构成相似三角形

解决这类问题的基本思路是:假设存在,数形结合,分类讨论,逐一考查

例题1:(2010重庆綦江县)已知抛物线y=ax2+bx+c(a>0)经过点B(12,0)和C(0,-6),对称轴为x=2.

(1)求该抛物线的解析式.

(2)点D在线段AB上且AD=AC,若动点P从A出发沿线段AB以每秒1个单位长度

的速度匀速运动,同时另一个动点Q以某一速度从C出发沿线段CB匀速运动,问是否存在某一时刻,使线段PQ被直线CD垂直平分?若存在,请求出此时的时间t(秒)和点Q的运动速度;若存在,请说明理由.

(3)在(2)的结论下,直线x=1上是否存在点M,使△MPQ为等腰三角形?若存在,

请求出所有点M的坐标;若存在,请说明理由.

例题2(2010四川巴中)如图12已知△ABC中,∠ACB=90°以AB 所在直线为x 轴,过c 点的直线为y 轴建立平面直角坐标系.此时,A 点坐标为(一1 , 0), B 点坐标为(4,0 )

(1)试求点C 的坐标

(2)若抛物线2

=++过△ABC的三个顶点,求抛物线的解析式.

y ax bx c

(3)点D( 1,m )在抛物线上,过点A 的直线y=-x-1 交(2)中的抛物线于点E,那么在x轴上点B 的左侧是否存在点P,使以P、B、D为顶点的三角形与△ABE 相似?若存在,求出P点坐标;若不存在,说明理由。

D

H

G

例题3(2010湖北荆门)已知一次函数y =

12

1+x 的图象与x 轴交于点A .与y 轴交于点

B ;二次函数c bx x y ++=

2

2

1图象与一次函数y =

12

1+x 的图象交于B 、C 两点,与x

轴交于D 、E 两点且D 点的坐标为)0,1(

(1)求二次函数的解析式;(2)求四边形BDEF 的面积S ;

(3)在x 轴上是否存在点P ,使得△PBC 是以P 为直角顶点的直角三角形?若存在,

求出所有的点P ,若不存在,请说明理由。

例题4(2010年厦门湖里模拟)已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB

(1)求A、B、C三点的坐标;

(2)求此抛物线的表达式;

(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;

(4)在(3)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由

练习1(2010重庆市潼南县)(12分)如图, 已知抛物线c bx x y ++=

2

2

1与y 轴相交于

C ,与x 轴相交于A 、B ,点A 的坐标为(2,0),点C 的坐标为(0,-1).

(1)求抛物线的解析式;

(2)点E 是线段AC 上一动点,过点E 作DE ⊥x 轴于点D ,连结DC ,当△DCE 的面积

最大时,求点D 的坐标;

(3)在直线BC 上是否存在一点P ,使△ACP 为等腰三角形,若存在,求点P 的坐标,

若不存在,说明理由.

题图26

练习2(2010湖南郴州)如图(1),抛物线42y x x =+-与y 轴交于点A ,E (0,b )为

y 轴上一动点,过点E 的直线y x b =+与抛物线交于点B 、C .

b ;若

练习3(2010湖北襄樊)如图7,四边形ABCD是平行四边形,AB=4,OB=2,抛物线过A、B、C三点,与x轴交于另一点D.一动点P以每秒1个单位长度的速度从B点出发沿BA 向点A运动,运动到点A停止,同时一动点Q从点D出发,以每秒3个单位长度的速度沿DC向点C运动,与点P同时停止.

(1)求抛物线的解析式;

(2)若抛物线的对称轴与AB交于点E,与x轴交于点F,当点P运动时间t为何值时,四边形POQE是等腰梯形?

(3)当t为何值时,以P、B、O为顶点的三角形与以点Q、B、O为顶点的三角形相似?

练习4、(2009年河南)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.

(1)直接写出点A的坐标,并求出抛物线的解析式;

(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD 向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E

①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?

②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?

请直接写出相应的t值.

特殊三角形复习学案

特殊三角形复习 课标要求 (1)了解等腰三角形的概念,探索并证明等腰三角形的性质定理:等腰三角形的两底角相等;底边上的高线、中线及顶角平分线重合。探索并掌握等腰三角形的判定定理:有两个角相等的三角形是等腰三角形。探索等边三角形的性质定理:等边三角形的各角都等于60°,及等边三角形的判定定理:三个角都相等的三角形(或有一个角是60°的等腰三角形)是等边三角形。 (2)了解直角三角形的概念,探索并掌握直角三角形的性质定理:直角三角形的两个锐角互余,直角三角形斜边上的中线等于斜边的一半。掌握有两个角互余的三角形是直角三角形。 (3)探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。 课标分析 从知识与技能、数学思考、问题解决、情感与态度等四个方面阐述 (1)、知识与技能 掌握基本的证明方法和基本的作图等技能;掌握基本的推理技能。 (2)、数学思考在研究图形性质和运动、确定物体位置等过程中,进一步发展空间观念;经历借助图形思考问题的过程,初步建立几何直观。体会通过合情推理探索数学结论,运用演绎推理加以证明的过程,在多种形式的数学活动中,发展合情推理与演绎推理的能力。能独立思考,体会数学的基本思想和思维方式(3)、问题解决 尝试从不同角度寻求解决问题的方法并能有效地解决问题;在与他人合作和交流过程中,能较好地理解他人的思考方法和结论。经历借助图形思考问题的过程,初步建立几何直观。 (4)、情感与态度 感受成功的快乐,体验独自克服困难、解决数学问题的过程,有克服困难的勇气,具备学好数学的信心。在运用数学表述和解决问题的过程中,认识数学具有抽象、严谨和应用广泛的特点,体会数学的价值。 教学目标: 1、知道等腰三角形的轴对称性及对称轴;

中考专题1(由动点形生成的特殊三角形问题)

由动点形生成的特殊三角形问题 抛物线与直线形的结合表形式之一是,以抛物线为载体,探讨是否存在一些点,使其能构成某些特殊三角形,有以下常风的基本形式 (1)抛物线上的点能否构成等腰三角形(2)抛物线上的点能否构成直角三角形 (2)抛物线上的点能否构成相似三角形 解决这类问题的基本思路是:假设存在,数形结合,分类讨论,逐一考查 例题1:(2010重庆綦江县)已知抛物线y=ax2+bx+c(a>0)经过点B(12,0)和C(0,-6),对称轴为x=2. (1)求该抛物线的解析式. (2)点D在线段AB上且AD=AC,若动点P从A出发沿线段AB以每秒1个单位长度 的速度匀速运动,同时另一个动点Q以某一速度从C出发沿线段CB匀速运动,问是否存在某一时刻,使线段PQ被直线CD垂直平分?若存在,请求出此时的时间t(秒)和点Q的运动速度;若存在,请说明理由. (3)在(2)的结论下,直线x=1上是否存在点M,使△MPQ为等腰三角形?若存在, 请求出所有点M的坐标;若存在,请说明理由.

例题2(2010四川巴中)如图12已知△ABC中,∠ACB=90°以AB 所在直线为x 轴,过c 点的直线为y 轴建立平面直角坐标系.此时,A 点坐标为(一1 , 0), B 点坐标为(4,0 ) (1)试求点C 的坐标 (2)若抛物线2 =++过△ABC的三个顶点,求抛物线的解析式. y ax bx c (3)点D( 1,m )在抛物线上,过点A 的直线y=-x-1 交(2)中的抛物线于点E,那么在x轴上点B 的左侧是否存在点P,使以P、B、D为顶点的三角形与△ABE 相似?若存在,求出P点坐标;若不存在,说明理由。 D H G

中考总复习讲义:三角形的基本性质+特殊三角形

21 D C B A D C B A 学生: 科目: 数 学 教师: 刘美玲 ⒈ 三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形. 三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC 用符号表示为△ABC ,三角形ABC 的边AB 可用边AB 所对的角C 的小写字母c 表示,AC 可用b 表示,BC 可用a 表示. 注意:(1)三条线段要不在同一直线上,且首尾顺次相接; (2)三角形是一个封闭的图形; (3)△ABC 是三角形ABC 的符号标记,单独的△没有意义. ⒉ 三角形的分类: (1)按边分类: (2)按角分类: ⒊ 三角形的主要线段的定义: (1)三角形的中线 三角形中,连结一个顶点和它对边中点的线段. 表示法:1.AD 是△ABC 的BC 上的中线. 2.BD=DC=1 2BC. 注意:①三角形的中线是线段; ②三角形三条中线全在三角形的内部; ③三角形三条中线交于三角形内部一点; ④中线把三角形分成两个面积相等的三角形. (2)三角形的角平分线 三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段 表示法:1.AD 是△ABC 的∠BAC 的平分线. 2.∠1=∠2=1 2∠BAC. 注意:①三角形的角平分线是线段; ②三角形三条角平分线全在三角形的内部; 课 题 中考总复习 : 三角形基本性质、 特殊三角形 教学内容 三角形 等腰三角形 不等边三角形 底边和腰不相等的等腰三角形 等边三角形 三角形 直角三象形 斜三角形 锐角三角形 钝角三角形 _C _B _A

二次函数综合(动点与三角形)问题方法与解析

二次函数综合(动点与三角形)问题 一、知识准备: 抛物线与直线形的结合表现形式之一是,以抛物线为载体,探讨是否存在一些点,使其能构成某些特殊三角形,有以下常见的基本形式。 (1)抛物线上的点能否构成等腰三角形; (2)抛物线上的点能否构成直角三角形; (3)抛物线上的点能否构成相似三角形; 解决这类问题的基本思路:假设存在,数形结合,分类归纳,逐一考察。 二、例题精析 ㈠【抛物线上的点能否构成等腰三角形】 例一.(2013?地区)如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c 经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合). (1)求抛物线的解析式; (2)求△ABC的面积; (3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标. 分析:(1)根据直线解析式求出点A及点B的坐标,然后将点A及点B的坐标代入抛物线解析式,可得出b、c的值,求出抛物线解析式; (2)由(1)求得的抛物线解析式,可求出点C的坐标,继而求出AC的长度,代入三角形的面积公式即可计算; (3)根据点M在抛物线对称轴上,可设点M的坐标为(﹣1,m),分三种情况讨论, ①MA=BA,②MB=BA,③MB=MA,求出m的值后即可得出答案. 解:(1)∵直线y=3x﹣3分别交x轴、y轴于A、B两点, ∴可得A(1,0),B(0,﹣3), 把A、B两点的坐标分别代入y=x2+bx+c得:,

解得:. ∴抛物线解析式为:y=x2+2x﹣3. (2)令y=0得:0=x2+2x﹣3, 解得:x1=1,x2=﹣3, 则C点坐标为:(﹣3,0),AC=4, 故可得S△ABC=AC×OB=×4×3=6. (3)抛物线的对称轴为:x=﹣1,假设存在M(﹣1,m)满足题意: 讨论: ①当MA=AB时,, 解得:, ∴M1(﹣1,),M2(﹣1,﹣); ②当MB=BA时,, 解得:M3=0,M4=﹣6, ∴M3(﹣1,0),M4(﹣1,﹣6), ③当MB=MA时,, 解得:m=﹣1, ∴M5(﹣1,﹣1), 答:共存在五个点M1(﹣1,),M2(﹣1,﹣),M3(﹣1,0),M4(﹣1,﹣6),M5(﹣1,﹣1)使△ABM为等腰三角形. 点评:本题考查了二次函数的综合题,涉及了待定系数法求二次函数解析式、等腰三角形的性质及三角形的面积,难点在第三问,注意分类讨论,不要漏解. ㈡【抛物线上的点能否构成直角三角形】 例二.(2013)如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数y=ax2+bx+c 的图象交于y轴上的一点B,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.

中考专题复习《动点问题》教学设计

中考专题复习《动点问题》教学设计【学情分析】 动点一般在中考都是压轴题,步骤不重要,重要的是思路。动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论 【教学目标】 知识与技能: 1、利用特殊三角形的性质和定理解决动点问题; 2、分析题目,了解有几个动点,动点的路程,速度(动点怎么动); 3、结合图形和题目,得出已知或能间接求出的数据。 过程与方法: 1、利用分类讨论的方法分析并解决问题; 2、数形结合、方程思想的运用。

情感态度价值观:通过动手操作、合作交流,探索证明等活动,培养学生的团队合作精神,激发学生学习数学的兴趣。 【教学重点】 根据动点中的移动距离,找出等量列方程。 【教学难点】 1、两点同时运动时的距离变化; 2、运动题型中的分类讨论 【教学方法】教师引导、自主思考 【教学过程】 一、动点问题的近况: 1、动态几何 图形中的点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力. 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析

过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)它通常分为三种类型:动点问题、动线问题、动形问题。在解这类问题时,要充分发挥空间想象的能力,不要被“动”所迷惑,而是要在“动”中求“静”,化“动”为“静”,抓住它运动中的某一瞬间,寻找确定的关系式,就能找到解决问题的途径。本节课重点来探究动态几何中的第一种类型----动点问题。所谓动点问题:是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放新题目。 2、三年中考概况; 近年来运动问题是以三角形或四边形为背景,用运动的观点来探究几何图形变化规律的问题.这类题的特点是:图形中的某些元素(如点、线段、角等)或整个图形按某种规律运动,图形的各个元素在运动变化过程中相互依存,相互制约. 3、解题策略和方法: “动点型问题”题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。解决动点问题的关键是“动中求静”.动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、

最新数学中考专题复习——《动点问题》教案

中考专题复习——动点问题 【学情分析】 动点一般在中考都是压轴题,步骤不重要,重要的是思路。动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论 【教学目标】 知识与技能: 1、利用特殊三角形的性质和定理解决动点问题; 2、分析题目,了解有几个动点,动点的路程,速度(动点怎么动); 3、结合图形和题目,得出已知或能间接求出的数据。 过程与方法: 1、利用分类讨论的方法分析并解决问题; 2、数形结合、方程思想的运用。 情感态度价值观:通过动手操作、合作交流,探索证明等活动,培养学生的团队合作精神,激发学生学习数学的兴趣。 【教学重点】 根据动点中的移动距离,找出等量列方程。 【教学难点】 1、两点同时运动时的距离变化; 2、运动题型中的分类讨论 【教学方法】教师引导、自主思考 【教学过程】 一、动点问题的近况: 1、动态几何 图形中的点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力. 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)它通常分为三种类型:动点问题、动线问题、动形问题。在解这类问题时,要充分发挥空间想象的能力,不要被“动”所迷惑,而是要在“动”中求“静”,化“动”为“静”,抓住它运动中的某一瞬间,寻找确定的关系式,就能找到解决问题的途径。本节课重点来探究动态几何中的第一种类型----动点问题。所谓动点问题:是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放新题目。

专题 特殊三角形-讲义

特殊三角形 主讲教师:傲德 我们一起回顾 1、等腰三角形 2、等边三角形 3、直角三角形 重难点易错点解析 等腰三角形 题一:如图,已知BD=CE,AD=AE,求证:∠B=∠C. 等边三角形 题二:已知:如图,在△ABC中,AB=AC,∠A=60°,BD是中线,延长BC至点E,使CE=CD.求证:DB=DE. 直角三角形 题三:如图所示,△ABC是等腰直角三角板,过A点作AE⊥EF,过B点作BF⊥EF. 请证明:∠EAC=∠BCF,EF=AE+BF.

金题精讲 题一:如图,△ABC中,∠C=90°,∠B=30°,AD平分∠BAC交BC于D. 求证:BD=2CD. 题二:如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°,AC=2,求AB的长. 题三:如图,已知△ABC为等边三角形,D为BC延长线上的一点,CE平分∠ACD,CE=BD,求证:△ADE为等边三角形. 思维拓展 题一:已知:在同一平面内,直线m⊥l,直线n与l相交但不垂直,求证:直线m、n相交. 学习提醒 重点: 等腰三角形的性质——等边对等角、三线合一 等腰三角形的判定——等角对等边 等边三角形的性质——三边相等,3个60° 等边三角形的判定——三个角都相等,一个角是60°的等腰三角形 30°的直角三角形——30°所对直角边是斜边的一半 直角三角形的性质——两锐角互余,勾股定理 直角三角形的判定——有两角互余,勾股定理逆定理

特殊三角形 讲义参考答案 重难点易错点解析 题一:证明略 点拨:等腰三角形的性质——等边对等角、三线合一 等腰三角形的判定——等角对等边 题二:证明略 点拨:等边三角形的性质——三边相等,3个60° 等边三角形的判定——三个角都相等,一个角是60°的等腰三角形30°的直角三角形——30°所对直角边是斜边的一半 题三:证明略 点拨:直角三角形的性质——两锐角互余,勾股定理 直角三角形的判定——有两角互余,勾股定理逆定理 金题精讲 题一:证明略 题三:证明略 思维拓展 题一:证明略

浙教版八年级上册特殊三角形常见的题目模型

八年级上册第二章 特殊三角形 一、将军饮马 例1 如图,在正方形ABCD 中,AB=9,点E 在CD 边上,且DE=2CE ,点P 是对角线AC 上的一个动点,则PE+PD 的最小值是( ) A 、3 B 、10 C 、9 D 、9 【变式训练】 1、如图,在矩形ABCD 中,AD=4,∠DAC=30°,点P 、E 分别在AC 、AD 上,则PE+PD 的最小值是( ) A 、2 B 、2 C 、4 D 、 2、如图,∠AOB=30°,P 是∠AOB 内一定点,PO=10,C ,D 分别是OA ,OB 上的动点,则△PCD 周长的最小值为 3、如图,∠AOB=30°,C ,D 分别在OA ,OB 上,且OC=2,OD=6,点C ,D 分别是AO ,BO 上的动点,则CM+MN+DN 最小值为 4、如图,C 为线段BD 上一动点,分别过点B ,D 作AB ⊥BD ,DE ⊥BD ,连结AC ,CE . (1)已知AB=3,DE=2,BD=12,设CD=x .用含x 的代数式表示AC+CE 的长; (2)请问点C 满足什么条件时,AC+CE 的值最小?并求出它的最小值; (3)根据(2)中的规律和结论,请构图求出代数式 的最小值 E B C A D P 第2题 B O A P C D 第1题 B O A C N 第3题 E C

二、等腰三角形中的分类讨论 例2(1)已知等腰三角形的两边长分别为8cm和10cm,则它的周长为 (2)已知等腰三角形的两边长分别为8cm和10cm,则它的腰长为 (3)已知等腰三角形的周长为28cm和8cm,则它的底边为 【变式训练】 1、已知等腰三角形的两边长分别为3cm和7cm,则周长为 2、已知等腰三角形的一个角是另一个角的4倍,则它的各个内角的度数为 3、已知等腰三角形的一个外角等于150°,则它的各个内角的度数为 4、已知等腰三角形一腰上的高与另一边的夹角为25°,则它的各个内角的度数 5、已知等腰三角形底边为5cm,一腰上的中线把其周长分为两部分的差为3cm,则腰长为 6、在三角形ABC中,AB=AC,AB边上的垂直平分线与AC所在的直线相交所得的锐角为40°,则底角∠B的度数为 7、如图,A、B是4×5的网格中的格点,网格中每个小正方形的边长都是单位1,请在图中清晰地标出使以A、B、C为顶点的三角形是等腰三角形的所有格点C的位置 三、两圆一线定等腰 例3在平面直角坐标系xOy中,已知点A(2,3),在坐标轴上找一点P, 使得△AOP是等腰三角形,则这样的点P共有个 B

特殊三角形基本知识点整理汇编

学习-----好资料 特殊三角形的定义、性质及判定

等腰三角形 1.有两条边相等的三角形叫做等腰三角形;三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形。 2.等腰三角形的性质: (1)等腰三角形的两个底角相等; (2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。 3.等腰三角形的判定: 如果一个三角形有两个角相等,那么这两个角所对的边也相等。 4.等边三角形的性质: 等边三角形的三个内角都相等,并且每一个角都等于60°。 5.等边三角形的判定: (1)三个角都相等的三角形是等边三角形; (2)有一个角是60°的等腰三角形是等边三角形。 6.含30°角的直角三角形的性质: 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。等边三角形 (1)等边三角形的定义:三条边都相等的三角形叫等边三角形. (2)等边三角形的性质: ①等边三角形的三个角都相等,并且每个角都是60° ②等边三角形具有等腰三角形的所有性质,并且每一条边上都有三线合一,因此等边三角形是轴对称图形,它有三条对称轴;而等腰三角形只有一条对称轴 (3)等边三角形的判定 ①三条边都相等的三角形是等边三角形; ②有一个角等于60°的等腰三角形是等边三角形; ③有两个角都等于60°的三角形是等边三角形; ④三个角都相等的三角形是等边三角形. (4)两个重要结论 ①在直角三角形中,如果一个锐角是30°那么它所对的直角边等于斜边的

学习-----好资料 一半? ②在直角三角形中,如果一条直角边是斜边的一半,那么它所对的锐角等于 30° 两个重要结论的数学解释: 已知:如图4,在△ ABC中,/ C = 90°,贝 ①如果AB = 2BC,那么/ A = 30° ; ②如果/ A = 30°,那么AB = 2BC. 直角三角形 1.认识直角三角形。学会用符号和字母表示直角三角形。 按照角的度数对三角形进行分类:如果三角形中有一个角是直角,那么这个三角形叫直角三角形。通常用符号“ Rt △”表示“直角三角形”,其中直角所对的边称为直角三角形的斜边,构成直角的两边称为直角边。如果△ ABC是直角三角形,习惯于把以C为顶点的角当成直角。用三角A、B、C对应的小写字母a、b、c分别表示三个角的对边。 如果AB = AC且/ A = 90°,显然这个三角形既是等腰三角形,又是直角三角形,我们称之为等腰直角三角形。 2.掌握“直角三角形两个锐角互余”的性质。会运用这一性质进行直角三角形中的角度计算以及简单说理。 3.会用“两个锐角互余的三角形是直角三角形”这个判定方法判定直角三角形。 4.掌握“直角三角形斜边上中线等于斜边的一半”性质。能通过操作探索出这一性质并能灵活应用。 5在直角三角形中如果一个锐角是30°,则它所对的直角边等于斜边的一半” 学习-----好资料

特殊三角形与动点问题

特殊三角形与动点问题 1、如图,在Rt△ABC中,∠ABC=90°,AB=8,BC=6,点D为AC边上的动点,点D从点C出发,沿边CA往A运动,当运动到点A时停止,若设点D运动的时间为t秒,点D 运动的速度为每秒1个单位长度 (1)当t=2时,CD= ,AD= ;(请直接写出答案) (2)求当t为何值时,△CBD是直角三角形?并说明理由. (3)求当t为何值时,△CBD是等腰三角形?并说明理由. 2、已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题: (1)当t为何值时,△PBQ是直角三角形? (2)当t为何值时,△PBQ是等腰三角形? (3)设四边形APQC的面积为y(cm2),求y与t的关系式。

3、已知:如图所示,等边三角形ABC的边长为2,点P和Q分别从A和C两点同时出发,做匀速运动,且它们的速度相同.点P沿射线AB运动,点Q沿边BC的延长线运动,设PQ与直线AC相交于点D,作PE⊥AC于E,当P和Q运动时,线段DE的长是否改变?证明你的结论. 4、如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s, (1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数; (2)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.

“等腰三角形”重难点剖析

“12.3等腰三角形”重难点剖析 丁浩勇(安徽省无为县刘渡中心学校 238341) 等腰三角形有着广泛的应用,一定要熟练掌握它的相关知识. 知识点一:等腰三角形的性质 【例1】如图1,已知AB AC AD AE ==,.求证:BD CE =. 分析:由于△ABC 和△ADC 是等腰三角形,且它们底边上的高重合,添加辅助线根据“三线合一”容易得出BD CE =. 证明:过点A 作BC AM ⊥,垂足为M . ∵AB AC AD AE ==,,BC AM ⊥,∴EM DM CM BM ==,(三线合一).∴BD CE =. 点拨:等腰三角形的“三线合一”性质是证明线段(或角)相等的一种容易被忽视的方法.本题也可以根据全等三角形来证,但用“三线合一”要简便. 知识点二:等腰三角形的判定 【例2】如图2,在△ABC 中,AC AB =,BC AD ⊥于点D ,DE ∥AB . 求证:△EAD 是等腰三角形. 分析:由等腰三角形的性质可知21∠=∠,又由DE ∥AB 得32∠=∠,所以31∠=∠,由“等角对等边”得△EAD 是等腰三角形. 证明:∵AC AB =,BC AD ⊥,∴21∠=∠(三线合一). ∵DE ∥AB ,∴32∠=∠.∴31∠=∠. ∴ED EA =,即△EAD 是等腰三角形. 点拨:判定一个三角形是等腰三角形的方法有 (1)等腰三角形的定义; (2)等腰三角形的判定定理; (3)在一个三角形中,如果①一边上的高、②一边上的中线、③一边所对的角平分线,这三个条件中的任意两条线段重合,就可以推出此三角形是等腰三角形. 知识点三:等边三角形的性质 【例3】已知:如图3,△ABC 是等边三角形,过顶点B 作边AC 的垂线,垂足为D ,E 是BC 延长线上一点,且CDE E ∠=∠.求证: DE DB =. 分析:要证DE DB =,只要E DBC ∠=∠即可. 证明:∵△ABC 是等边三角形,且BD ⊥AC , ∴?=∠?=∠30,60DBC ACB . 又∵CDE E ∠=∠,∴?=∠=∠=∠302 1ACB CDE E .∴E DBC ∠=∠.∴DE DB =. M B D C E A 图1 图2 B C A D E 2 3 1 A B C D 图3 E

中考数学压轴题专题 动点问题

2012年全国中考数学(续61套)压轴题分类解析汇编 专题01:动点问题 25. (2012吉林长春10分)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到 点B停止.点P在AD的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作 PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s). (1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示).(2)当点N落在AB边上时,求t的值. (3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式. (4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s 的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P 在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围. 【答案】解:(1)t-2。 (2)当点N落在AB边上时,有两种情况: ①如图(2)a,当点N与点D重合时,此时点P在DE上,DP=2=EC,即t-2=2,t=4。 ②如图(2)b,此时点P位于线段EB上. ∵DE=1 2 AC=4,∴点P在DE段的运动时间为4s, ∴PE=t-6,∴PB=BE-PE=8-t,PC=PE+CE=t-4。 ∵PN∥AC,∴△BNP∽△BAC。∴PN:AC = PB:BC=2,∴PN=2PB=16-2t。 由PN=PC,得16-2t=t-4,解得t=20 3 。 综上所述,当点N落在AB边上时,t=4或t=20 3 。 (3)当正方形PQMN与△ABC重叠部分图形为五边形时,有两种情况:

特殊三角形基本知识点

特殊三角形基本知识点整理

————————————————————————————————作者:————————————————————————————————日期:

特殊三角形的定义、性质及判定 三角形类型定义性质判定 等腰三角形有两条边相等的三角 形是等腰三角形,其 中相等的两条边分别 叫做腰,另一条边叫 做底边,两腰的夹角 叫顶角,腰和底边的 夹角为底角 1、等腰三角形是对称图形,顶 角平分线所在直线为它的 对称轴 2、等腰三角形两底角相等,即 在同一个等腰三角形中,等 边对等角 3、等腰三角形的顶角平分线, 底边上的中线和高线互相 重合,简称等腰三角形的三 线合一 1、(定义法)有两 条边相等的三角形 是等腰三角形 2、如果一个三角形 有两个角相等,那 么这个三角形是等 腰三角形,即,在 同一个三角形中, 等角对等边 等边三角形三条边都相等的三角 形是等边三角形,它 是特殊的等腰三角 形,也叫正三角形 1、等边三角形的内角都相等, 且为60° 2、等边三角形是轴对称图形, 且有三条对称轴 3、等边三角形每条边上的中 线,高线和所对角的角平分 线三线合一,他们所在的直 线都是等边三角形的对称 轴 1、三条边都相等 的三角形是等 边三角形 2、三个内角都等 于60°的三角 形是等边三角 形 3、有一个角是 60°的等腰三 角形是等边三 角形 直角三角形有一个角是直角的三 角形是直角三角形, 即“R t△” 1、直角三角形的两锐角互余 2、直角三角形斜边上的中线 等于斜边的一半 3、直角三角形中30°角所对 的直角边等于斜边的一半 4、直角三角形中两条直角边 的平方和等于斜边的平方 (勾股定理) 1、有一个角是直 角的三角形是 直角三角形 2、有两个角互余 的三角形是直 角三角形 3、如果一个三角 形中两条边的 平方和等于第 三条边的平 方,那么这个 三角形是直角 三角形(勾股 定理逆定理)

特殊三角形常见的题目型.docx

八年级上册第二章特殊三角形 一、将军饮马 例1如图,在正方形 ABCD 中,AB=9,点E 在CD 边上,且 DE=2CE 点P 是对角 线AC 上的一个动点,则 PE+PD 的最小值是( ) A 3 — B 、10 一 C 、9 D 、9 — 【变式训练】 1、如图,在矩形 ABCD 中,AD=4,∠ DAC=30 ,点 P 、E 分别在 AC AD 上,则 PE+PD 的最小值是( ) 2、 如图,∠ AOB=30,P 是∠ AOB 内一定点,P0=1Q G D 分别是 OA OB 上的动点,则△ PCD 周长的最小 值为 ______________ 3、 如图,∠ AOB=30,C, D 分别在 OA OB 上,且0C=2 0D=6点C, D 分别是 AO BO 上的动点,贝U CM+MN+DN 最小值为 4、如图,C 为线段BD 上一动点,分别过点 B , D 作AB 丄BD, DEl BD 连结 AC, CE (1) 已知AB=3, DE=Z BD=12设CD=X 用含X 的代数式表示 AC+CE 的长; (2) 请问点C 满足什么条件时,AC+CE 的值最小?并求出它的最小值; (3) 根据(2)中的规律和结论,请构图求出代数式 的 最 小值 二、等腰三角形中的分类讨论 例2 (1)已知等腰三角形的两边长分别为 8cm 和10cm,则它的周长为 ________________ (2) 已知等腰三角形的两边长分别为 ____________ 8cm 和10cm,则它的腰长 为 (3) 已知等腰三角形的周长为 _________________ 28cm 和8cm,则它的底边为 【变式训练】 1、 已知等腰三角形的两边长分别为 3cm 和7cm,则周长为 __________________ 2、 已知等腰三角形的一个角是另一个角的 4倍,则它的各个内角的度数为 _________________ 3、 已知等腰三角形的一个外角等于 150°,则它的各个内角的度数为 _______________________ 4、 已知等腰三角形一腰上的高与另一边的夹角为 25°,则它的各个内角的度数 __________________ 第1题 D 、4 M D B

动点问题最值

1文档来源为:从网络收集整理.word 版本可编辑. G F D A E A C B D F E B A C D F B A C D 动点问题最值 最值问题有四种情形:定点到动点的最值,动点在圆上或直线上,就是点到圆的最近距离,和点到直线的最近距离;三角形两边之和大于第三边的问题,当两边成一直线最大;几条线段之和构成一条线段最小;还有就是对称点最小问题。 一、定点到动点所在圆的最大或最小值,动点在一个定圆上运动,其实质是圆外一点到圆的最大或最小距离,就是定点与圆心所在直线与圆的交点的两个距离。 方法:证明动点在圆上或者去找不变的特殊三角形,证明两个三角形相似,求出某些边的值。 1.如图,△ABC 、△EFG 均是边长为2的等边三角形,点D 是边BC 、EF 的中点,直线AG 、FC 相交于点M .当△EFG 绕点D 旋转时,线段BM 长的最小值是( ) A .32- B .13+ C .2 D .13- 提示:点M 在以AC 为直径的圆上 2.(2015?咸宁)如图,已知正方形ABCD 的边长为2,E 是边BC 上的动点,BF ⊥AE 交CD 于点F ,垂足为G ,连结CG .下列说法:①AG >GE ;②AE =BF ;③点G 运动的路径长为π;④CG 的最小值为﹣1.其中正确的说法是 ②③ .(把你认为正确的说法的序 号都填上) 提示:G 在以AB 为直径的圆上:正确答案是:②④ 3、如图,正方形ABCD 的边长为4cm,正方形AEFG 的边长为1cm ,如果正方形AEFG 绕点A 旋转,那么C 、F 两点之间的最小距离为 4、如图,在边长为2的菱形ABCD 中,∠A=60°,M 是AD 边的中点,N 是AB 边上一动点,将 △AMN 沿MN 所在直线翻折得到△A ′MN ,连接A ′C ,则A ′C 长度的最小值是 5、如图,等腰直角△ACB ,AC=BC=5,等腰直角△CDP ,且PB=2,将△CDP 绕C 点旋转. (1)求证:AD=PB (2)若∠CPB=135°,求BD ; (3)∠PBC= 时,BD 有最大值,并画图说明; ∠PBC= 时,BD 有最小值,并画图说明. 分析:在△ABD 中有:BD ≤AB+AD ,当BD=AB+AD 时BD 最大,此时AB 与AD 在一条直线上,且AD 在BA 的延长线上,又△ACB 是等腰直角三角形,∠CAB=45°,由(1)知∠PBC=∠CAD=180°-45°=135° BD ≥AB-AD ,当BD=AB-AD 时BD 最小,此时,AB 与AD 在一条直线上,且AD 此时∠CAD=45°,所以∠PBC=∠CAD=45° 6、如图,△ABC 和△ADE 都是等腰直角三角形,∠ACB=∠ADE=90°,∠BAE=135°,AD=1, 2,F 为BE 中点. (1)求CF 的长 (2)将△ADE 绕A 旋转一周,求点F 运动的路径长; (3)△ADE 绕点A 旋转一周,求线段CF 的范围.

(名师整理)最新数学中考专题冲刺《二次函数动点成特殊三角形问题》压轴真题训练(含答案)

冲刺中考《二次函数动点成特殊三角形问题》压轴专题 1.如图,在平面直角坐标系中,二次函数y =- 1 3 x2+bx+c的图象与坐标轴交于A,B, C三点,其中点A的坐标为(-3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ. (1)填空:b=________,c=________; (2)在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由; (3)在x轴下方的二次函数的图象上是否存在点M,使△PQM是以点P为直角顶点的等腰直角三角形?若存在,请求出运动时间t;若不存在,请说明理由. 第1题图 解:(1)1 3 ,4; 【解法提示】∵二次函数y=-1 3 x2+bx+c与x轴交于A(-3,0),B(4,0), ∴ b c= b c= --+ ? ? ? -++ ?? 330 16 40 3 ,解得 b= c= ? ? ? ?? 1 3 4 , 1

(2)可能是,理由如下: ∵点P在AC上以每秒1个单位的速度运动, ∴AP=t, ∵点Q在OB上以每秒1个单位的速度运动,∴OQ=t, ∴AQ=t+3, ∵∠PAQ<90°,∠PQA<90°, ∴若要使△APQ是直角三角形,则∠APQ=90°, 在Rt△AOC中,OA=3,OC=4, ∴AC=5, 如解图①,设PQ与y轴交于点D, 第1题解图① ∵∠ODQ=∠CDP,∠DOQ=∠DPC=90°, 2

一次函数中(特殊三角形)的存在性问题优秀教学设计

《一次函数中特殊三角形的存在性问题》教学设计 【教学目标】 1、知识与技能 (1)使学生体会定点与动点之间的关系,做到以静制动。 (2)通过数形结合,利用几何法和代数法求一次函数中特殊三角形的存在性问题。 2、过程与方法 (1)借助几何画板探究一次函数中特殊三角形的存在性问题,使学生初步形成正确、科学的分析解决问题的方法。 (2)学生与其他人交流的过程中,能合理清晰地表达自己的思维过程。 (3)在自己动手画图的过程中,培养学生的动手实践能力及丰富的想象力,积累数学活动经验,增强学生的创新意识。 3、情感态度与价值观 (1)通过新媒体手段和个性化的学习方式,培养学生交流合作的意识,激发学生学习数学的兴趣,树立学生学好数学的信心,培养学生良好的学习习惯。 (2)以小组活动形式对本节内容进行综合探索,在与他人的合作过程中,培养学生敢于面对挑战和勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,培养学生的合作意识和团队精神。 【教学重、难点】 教学重点:(1)一次函数中的动点问题; (2)两圆一中垂线求等腰三角形;外K全等求等腰指教三角形。 教学难点:(1)分类讨论思想的运用; (2)学会以静制动 【学情分析】 学生已经初步掌握了用待定系数法求解一次函数的解析式,联立方程组求解两个一次函数图像的交点,求解三个顶点为定点的三角形的面积以及用铅锤法表示有顶点是动点的三角形的面积,但是对一次函数中特殊三角形的存在问题还存在一定的困难。 【教学活动策略及教法设计】 1.活动策略 课堂组织策略:创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流中,主动发现特殊三角形中动点坐标的规律。 学生学习策略:明确学习目标,了解所需掌握的知识,在教师的组织、引导、点拨下主动地从事观察、实验、猜测、验证与交流等教学活动,从而真正有效地理解和掌握知识。 辅助策略:借助几何画板,使学生直观形象地观察、操作。 2、教法 演示法:通过几何画板演示两圆一中垂线和外K全等,使学生直观、形象的感知因动点的移动,在何时会出现等腰三角形和等腰直角三角形,思考在没有几何画板的时候,我们自己该如何作图,快速确定动点的位置。 实验法:让学生自己动手、在探究过程中,自己发现动点的规律 讨论法:在学生进行了自主探索之后,进行小组讨论,让他们进行合作交流,使之互

中考数学相似三角形动点问题专题复习

中考数学相似三角形动点问题专题复习一、几何动点问题 例题:如图,在△ABC 中,AB=8cm,BC=16cm,点P 从点A 出发沿AB 边向点B 以2cm/s 的速度移动,点Q 从点B 出发沿BC 边向点C 以4cm/s 的速度移动(有一点到达端点后即停止移动),如果P,Q 同时出发,经过几秒后△PBQ 和△ABC 相似? 1、如图,Rt△ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm,D 为BC 的中点,若动点E 以1cm/s的速度从A 点出发,沿着A→B→A 的方向运动,设E 点的运动时间为t 秒(0≤t<6),连DE,当△BDE 是直角三角形时,t 的值为 2、如图,Rt△ABC 中,∠C=90°,AC=8,BC=6,点D 是BC 边的中点,动点P 从点C 出发,沿C→A→B 的方向在AC、AB 边上以每秒2 个单位的速度向点B 移动,运动至点B 即停止。连接PD,当点P 运动时间t 为何值时,线段PD 截

Rt△ABC 为两部分,所得的三角形与Rt△ABC 相似. 3、如图,在直角梯形ABCD 中, D 900 ,AB=10cm,BC=6cm,AB ∥CD , AC BC , F点以2cm / s 的速度在线段AB 上由A 向B 匀速运动,E 点同时以1cm / s 的速度在线段BC上由B 向C 匀速运动,设运动的时间为t (0<t <5). (1)求证:△ ACD ∽△BAC ; (2)求DC 的长 (3)当t 为何值时,△ FEB 为直角三角形? 4、已知,在矩形ABCD 中,AB=a,BC=b,动点M 从点A 出发沿边AD 向点D 运动. (1)如图1,当b=2a,点M 运动到边AD 的中点时,请证明∠BMC=90°;

动点问题最值

G F D A B C E 动点问题最值 最值问题有四种情形:定点到动点的最值,动点在圆上或直线上,就是点到圆的最近距离,和点到直线的最近距离;三角形两边之和大于第三边的问题,当两边成一直线最大;几条线段之和构成一条线段最小;还有就是对称点最小问题。 一、定点到动点所在圆的最大或最小值,动点在一个定圆上运动,其实质是圆外一点到圆的最大或最小距离,就是定点与圆心所在直线与圆的交点的两个距离。 方法:证明动点在圆上或者去找不变的特殊三角形,证明两个三角形相似,求出某些边的值。 1.如图,△ABC 、△EFG 均是边长为2的等边三角形,点D 是边BC 、EF 的中点,直线AG 、 FC 相交于点M .当△EFG 绕点D 旋转时,线段BM 长的最小值是( ) A .32- B .13+ C .2 D .13- 提示:点M 在以AC 为直径的圆上 2.(2015?咸宁)如图,已知正方形ABCD 的边长为2,E 是边BC 上的动点,BF ⊥AE 交CD 于点F ,垂足为G ,连结CG .下列说法:①AG >GE ;②AE =BF ;③点G 运动的路径长为π;④CG 的最小值为 ﹣1.其中正确的说法是 ②③ .(把你认为正确的说法的序号都填上) 提示:G 在以AB 为直径的圆上:正确答案是:②④ 3、如图,正方形ABCD 的边长为4cm,正方形AEFG 的边长为1cm ,如果正方形AEFG 绕点A 旋转,那么C 、F 两点之间的最小距离为 4、如图,在边长为2的菱形ABCD 中,∠A=60°,M 是AD 边的中点,N 是AB 边上一动点,将△AMN 沿MN 所在直线翻折得到△A ′MN ,连接A ′C ,则A ′C 长度的最小值是

特殊三角形与四边形——几何综合专题复习

特殊三角形与四边形 ——几何综合专题复习一、教材内容解析 《特殊三角形与四边形》,是在九年级下学期第一轮系统复习《直线形》中的一节小专题复习课,是在前面复习了三角形、特殊三角形、平行四边形、矩形、菱形及正方形的基础上进行的,本节课将以直线形为载体,以方程、分类讨论的思想为主线,是学生学习几何图形的再知和整合的过程,通过本节课的学习,逐步增强学生利用特殊三角形与四边形的相关知识解决综合问题的能力,为中考和以后学习其它的几何图形做好准备. 二、学习目标 1、在问题的引导下,进一步体会特殊三角形与四边形之间的关系; 2、通过问题的解决,形成解决相关问题的基本方法和思路,进一步优化解决问题的策略; 3、在活动的探究中,逐步增强利用特殊三角形与四边形的相关知识解决综合问题的能力; 4、结合特殊三角形与四边形相关的几何问题,体会方程、分类讨论的数学思想. 三、重点难点 重点:体会特殊三角形与四边形之间的联系。 难点:在特殊三角形与四边形的背景下,综合运用相关知识解决问题 四、教学活动 活动一:动手操作 两个全等的直角三角形可以拼成哪些特殊的三角形或四边形? (1)拼成的等腰三角形可能三条边都相等吗?这两个直角三角形需要满足什么条件?(2)拼成的矩形会是正方形吗? (3)拼成的平行四边形可能是菱形吗?为什么? 【设计意图】从动手操作中激发学习对特殊三角形与四边形复习的兴趣,通过追问,体会特殊三角形与四边形之间的联系,从而使学生在轻松的氛围中进入学习的佳境。 活动二:基础练习 1、如图,在平行四边形ABCD中,AB>AD,用直尺和圆规作∠DAB的平分线; (1)△ADH的形状是;

(2)连接BH ,若BH 平分∠ABC ,则AD 、AB 的数量关系是 。 2、如图所示,菱形ABCD 的边长为4,∠B=60°,则菱形ABCD 的面积为 . 【设计意图】这组基础训练题,以便了解学生对基础知识、基本方法的掌握情况,通过巧妙变式,使学生总结方法、形成能力,感受三角形是四边形的基础,四边形问题的转化途径是三角形。 活动三:例题讲解 例1、如图,矩形ABCD 中,E 为BC 边上一点,将矩形ABCD 沿AE 所在的直线折叠,B 点恰好落在对角线AC 上的B′处, (1)若AB=3,BC=4; ①B’C= ; ②求CE 的长 ; (2)若BC=3BE ,则∠ACB= . 【设计意图】例一体现了矩形与直角三角形的联系,例题讲解针对学生日常重点问题,通过一题多解,从不同角度,不同方位审视分析同一题中的数量关系,用不同解法求得相同结果,逐步增强学生解决综合问题的能力,同时也渗透方程的数学思想。 例2、如图,在△ABC 中,∠ABC=90°,将△ABC 沿EF 所在的直线折叠,点C 恰好落在点B 处。 (1)证明:点E 是AC 的中点; (2)过点B 作AC 的平行线,交EF 的延长线于点D ,连接CD ,证明:四边形BECD 是菱形 B A C F B A C F D B D

相关文档
最新文档