基于骨骼数据的人体行为识别

基于骨骼数据的人体行为识别
基于骨骼数据的人体行为识别

基于骨骼数据的人体行为识别

摘要

人体动作姿态识别是计算机视觉研究领域中最具挑战的研究方向,是当前的研究热点。对人体动作姿态进行自动识别将带来一种全新的交互方式,通过身体语言即人体的姿态和动作来传达用户的意思,如在机场、工厂等喧闹的环境下,采用手势、动作姿态识别等人机交互技术能够提供比语音识别更加准确的信息输入。总之,在智能监控、虚拟现实、感知用户接口以及基于内容的视频检索等领域,人体动作姿态的识别均具有广泛的应用前景。该文首先简单介绍了人体动作姿态序列的分割,然后对人体动作姿态识别的方法进行了分类介绍,并对一些典型的算法的研究进展情况及其优缺点进行了重点介绍。

关键词:人体动作姿态识别; 人工智能; 隐马尔可夫模型; 动态贝叶斯网络; 模板匹配前言

人体姿态识别是计算机视觉的一个重要研究方向,它最终目的是输出人的整体或者局部肢体的结构参数,如人体轮廓、头部的位置与朝向、人体关节点的位置或者部位类别。姿态识别的研究方法应该说,几乎涵盖了计算机视觉领域所有理论与技术,像模式识别、机器学习、人工智能、图像图形、统计学等。到目前为止,已经有众多识别方法被提出,并且也取得了许多重要的阶段性的研究成果,但是以往的方法都是基于普通光学图像,比如常见的RGB 图像,这类图像容易受光照、阴影等外界变化的影响,尤其在环境黑暗的情况下无法来识别人体姿态,并且由于人体关节自由度大,及人的体型、着装较大差异性,常导致姿态识别系统识别率低。尽管有研究者利用多个摄像机获取采集的图像来获取人体深度信息以克服以上问题[1],但是该类方法恢复的深度信息不是唯一的,而且计算量非常大,尤其是这种方法要求事先用人工对传感设备进行标定,而在选取场景中的标定物时,往往又会遇到实际环境操作困难的问题。

随着光电技术的快速发展,深度传感设备的成本逐渐降低,人们获取深图像的途径及方法也越来越多。该方向的研究也逐渐成为计算机视觉领域的研究趋势。具体原因包括:一方面,深度传感设备不仅操作简单,并且极大简化了普通摄像机的标定过程;另一方面,得到的深度图像由于直接包含了人体的深度信息,能够有效的克服普通光学图像遇到的上述问题。到目前为止,较有影响力的基于该类图像的人体姿态识别算法,应该是 Shotton 等人利用一种深度传感器 Kinect 来实时捕捉人体运动的算法,该算法虽然能够满足人们对识别系统实时性的要求,但其对硬件要求特别高,并且不适合低分辨率图像中的人体关节点提取,容易导致人体骨架扭曲。下文将具体陈述人体运动分析的主要用途和前人在不同时期对这些难题的处理办法。

主题

基于计算机视觉的人体运动分析不仅在智能监控、人机交互、虚拟现实和基于内容的视频检索等方面有着广泛的应用前景,更是成为了未来研究的前瞻性方向之一。Gavrila 总结了它的一些主要应用领域[2,3,4],下面据此对其典型应用做出进一步的介绍。

智能监控(Smart Surveillance)

所谓“智能监控”是指监控系统能够监视一定场景中人的活动,并对其行为行分析和识别,跟踪其中的可疑行为(例如在一些重要地点经常徘徊或者人流密集的场合下突发的人群拥挤等状况)从而采取相应的报警措施。智能监控系统应用最多的场合来自于那些对安全

要求较为敏感的场合,常见于银行、机场、车站、码头、超市、办公大楼、住宅小区、军事基地等,以实现对这些场所的智能监控。

高级人机交互(Advanced Human-Computer Interaction)

人体的行为分析常被用来提供控制和指令。通常来说,人们之间的信息交流主要靠语言,并结合适当的手势和面部表情等,因此视觉信息可以作为语音和自然语言理解的有效补充来完成更加智能的人机交互。更进一步的人机交互是进行人的识别和行为理解,结合面部表情、身体姿势和手势等[5-8]的分析来与人进行相应的交流。

运动分析(Motion Analysis)

基于计算机视觉的人体运动分析可以大量地应用在用于各种体育项目中,通过提取运动员的各项技术参数(如肢体的关节位置、摆动的速度和角速度等等),对这些参数信息进行分析,可以为运动员的训练提供较为全面的指导和建议,有助于提高运动员的水平,这对于体育运动的发展是极为有用的。同时,它也被广泛地应用在医疗诊断方面:目前的医学步态分析[9-11]就是通过为人体正常步态建模,开发生物反馈系统用来分析病人的步态,从而可以将其应用于临床矫形术等领域,用来诊断病人的腿部受伤情况或者畸形程度,而做出恰当的治疗;

虚拟现实(Virtual Reality)

基于计算机视觉的人体运动分析在虚拟现实方面也应用的相当广泛:目前电脑游戏的开发相当成熟,游戏中各种人物的形体、运动及它们之间行为交互设计的逼真性得益于对物理空间中人的运动分析,它包括人体模型的建立和运动姿势的恢复等一系列相关理论及技术的成熟应用;基于互联网交互式空间的虚拟网络聊天室的开发才刚刚起步,它通过文本交流同时可以使用二维图标来导航用户。此外,人体运动识别在视频会议、人物动画、虚拟工作室等其他虚拟现实场合也有着相当广泛的应用。

在基于内容的视频检索方面,人体运动识别也有着重要的应用价值:由于人往往是视频记录的主要对象,在基于内容的视频检索中,如何检索在大段视频中的特定的人体运动,也需要这方面技术的发展。

总之,对人体运动识别的研究及到计算机视觉、模式识别、视频图像处理等方面的理论和实际应用问题。对人体的跟踪与运动分析将会促进这些领域在理论上产生新的方法,并且在诸多应用领域将会产生潜在的影响和价值。

综上所述,姿态识别具有重要的理论价值与广泛的应用前景,因此,它受到国内外许多学校重点实验室、研究所的关注[13、14],除此之外,国际上一些著名会议和权威期刊也将其作为研究的主题之一,例如 ICCV(International Conferenceon Computer Vision)、CVPR (Computer Vision and Pattern Recognition)等国际会议,PAMI(IEEE Transactions on PatternAnalysis and Machine Intelligence)、CVIU(Computer Vision and Image Understanding)等国际期刊。

为了进行人体运动识别,需要解决运动数据的、特征表示与提取(人体运动建模)、人体运动序列分割、动作分类等问题,主要的流程如图1所示

人体运动

序列特征提取

与表示

序列分割动作识别分类结果图1基于运动捕获数据的人体运动识别框架

特征提取与表示

到目前为止,已经有很多方法被设计用来表示人体运动或人体运动特征,按照特征的表示范围大致可以分为三大类:基于底层运动捕获信息的时空特征,基于变换域的表示,以及描述性特征。

时空特征

时空特征主要为基于运动捕获系统捕获数据的直接或间接表示,例如直接釆用关节点的三维坐标,关节角度相对变化值等运动捕获信息,以及在这些底层信息之上的简单处理后的信息比如关节点的速度,角速度,朝向信息,骨豁夹角等。关于几何特征的设计与描述主要有文献[15][16]的工作。在他们的基础上,文献[17][18]加入时间信息,提出了基于三维时空特征的

运动描述。

基于变换域的表示

首先将运动捕获的底层信息进行数学变换,然后在变换域中进行运动的特征分析与描述。在信号处理过程中,在变换域中能更好地体现在时域中不能体现的信号特性。样条函数基、多项式函数基、傅立叶基、小波基等均可以用于运动描述子[19]。文献[20]首先基于傅立叶基描述人体行走步态,然后分析人体行走步态提取人体行走运动的关键帧,进而用于运动匹配与识别。文献[21]提出了一种基于加权主成分分析(WPCA, Weighted Primary Component Analysis)的方法用于实现运动捕捉数据的检索,通过计算姿态与姿态之间的距离作为相似度实现稳定高效的检索,并且分别使用合成数据和运动捕捉数据验证了该方法。除了PCA方法之后,研究人员提出了许多子空间的方法,如ICA(Independent Component Analysis), FLA(Fisher Linear Analysis)等,这些方法都属于线性子空间降维方法。

描述性特征

基于时空特征、数学变换域特征等描述方法通常通过底层数值特征进行计算,动作序列中丰富的语义信息并没有得到充分的利用。因此,研究者提出利用运动描述语言(motion description language) [22], 李等[23]提出的字库模型标记每一个运动姿态等来描述用户设计的运动特征。

序列分割

人体运动序列分割是指将连续的视频序列V分割n个独立的行为段,每个行为段中有且仅有一种有意义的行为式。行为段之间的分割边界及行为段的数目n是该问题需要求解的变量。

现有的人体运动序列分割算法可分为有监督方法和无监督方法两类。有监督方法采用手动方法分割视频序列,分割过程非常烦琐、耗时,且由于手动分割受到人的主观影响,分割结果往往不够准确。无监督方法则能自动或半自动地分割行为序列,包括按照等长、有重叠的时间窗口进行分割。前者比较简单,但准确率较低,其分割结果可能是一个不完整的行为模式或是多个行为模式的组合,这些误分割会导致后续的行为误识别。为提高分割准确率,吴晓婕等人提出了由粗到细的分割思想图,在采用等长、有重叠的时间窗口进行粗分割的基础上,再结合segmental-DTW (dynamic time warping)和图聚类方法进行细分割,此方法运算量较大,且精度较低。为了进一步提高分割准确率,周峰等人[24]结合核函数化的k均值聚类与DTAK( Dynamic Time Alignment Kernel)[25]对运动序列进行分割,这种方法不仅有较高的分割精度,而且还能分割出每个运动包含的周期子运动。

动作识别方法

运动识别可以简单看成时变数据的分类问题,即将测试序列与预先标定的代表典型运动的参考序列进行匹配,且能够处理在相似的运动模式类别中空间和时间尺度上轻微的特征变化。

运动检索方法也可用于进行运动识别。一般的思路是在已有的数据集中査找一个与未知类型的运动序列相似的运动序列,然后根据数据集中已知运动序列的类别标签来判断未知运动序列的类别标签。

但是直接基于数值计算相似度的方式难以对逻辑上相似的动作进行识别,比如,两次跳跃运动的高度、跨度可能会差别较大,如果直接从运动捕获的数值上进行计算则难以匹配,因此

可以根据两个动作的逻辑上是否相似来进行匹配和判断分类。

基于概率统计的方法基于运动分类建立概率模型,对待识别的动作序列进行概率估计,然后基于概率值进行分类和识别。在基于运动分类建立的概率模型中,将运动的一个姿势或者几个姿势定义为状态,状态与状态之间采用概率表示状态转移的可能性,这样,整个动作序列可以建模为一个状态转移的时间序列过程描述。目前,广泛采用的概率模型有HMM((Hidden Markov Model)模型及其扩展模型[26],CRF(Conditional Random Field)模型[27]与高斯动态过程模型。

在基于HMM的动作识别中,动作的种类被当作状态,而由视觉观测得到的特征向量作为观察值,通过一组监督训练数据可以学习得到HMM模型的状态转移概率矩阵和观测概率矩阵,最后利用该HMM模型求解时序数据所对应的状态,即进行动作分类。夏等人[28]提出了基于HMM视角不变性的人体运动识别。该算法通过以人体骨骼的hip关节点为原点建立局部坐标系,再把各关节点相对于坐标原点的欧拉角作为该姿态的特征,通过降维,训练HMM 模型达到识别的目的。

但是,HMM模型有它不可回避的缺陷。如要求在学习之前必须指定隐藏状态的数量,而对于不同类型不同长度的序列数据指定相同数量的状态显然是不合适的。

除了以上的方法之外,其它基于机器学习方法也用于运动识别。文献[29]将AdaBoost算法应用到多分类的三维姿势识别。文献[30]提出一个基于概率神经网络和可调节模糊聚类算法的增强学习方法,该方法通过初始训练数据集建立一个概率神经网络,当有新增训练数据集时,使用可调节模糊聚类在新数据集中学习新的人体动作特征,将新增人体动作特征添加到已有概率神经网络中。Raviteja等[31]通过用李群的方法表示相邻骨骼向量之间的旋转平移关系,再利用DTW能处理运动时间的不同,最后通过训练SVM模型达到识别的目的。

总结

人体动作姿态识别本质上是一个人工智能问题,在智能监控、虚拟现实以及感知用户接口等领域具有广泛的应用前景。该文简单介绍了人体动作姿态的分割和人体动作姿态识别的方法,并对一些算法的优缺点进行描述,为下一步的工作打下了坚实的基础。

参考文献

[1] Huo F, Hendriks E, Paclik P, et al. Markerless human motion capture and poserecognition[C]//Image Analysis for Multimedia Interactive Services, 2009. WIAMIS'09. 10thWorkshop on. IEEE, 2009: 13-16.

[2] Yamato J, Ohya J, Ishii K. Recognizing human action in time sequential images using Hidden Markov model [A].In Proc CVPR[C],IEEE,1992:379-385.

[3] Brand M, Oliver N, Pentland A. Coupled hidden markov models for complex action recognition [A].In Proc CVPR [C] .USA :IEEE Computer Society Press,1997:994-999.

[4] Nguyen N T, Phung D Q, Venkatesh S,et al. Learning and detecting activities from movement trajectories using the hierachical hidden Markov model [A]. In Proc CVPR[C]. San Diego: IEEE Computer Society Press, 2005: 955-960.

[5] Duong T V, Bui H H, Phung D Q, et al. Activity recognition and abnormality detection with the switching hidden semi-Markov model [A]。In Proc CVPR[C].San Diego: IEEE Computer Society Press, 2005: 838-845.

[6] Luo Y, Wu T D, Hwang J N. Object-based analysis and interpretation of human motion in sports video sequences by dynamic Bayesian networks[J]. CVIU, 2003, 92(2):196-216.

[7] Gong S, Xiang T. Recognition of group activities using dynamic probabilistic networks

[A]. In Proc ICCV [C].Washington: IEEE Computer Society Press, 2003: 742-749.

[8] Oliver N, Horvitz E. A comparison of HMMs and dynamic Bayesian networks for recognizing office activities [J]. Lecture Notes in Artificial Intelligence, 2005: 199-209

[9] N. Robertson, I. Reid. Behaviour understanding in video: a combined method. In: Internatinal Conference on Computer Vision, 2005:15-21.

[10] 谢林海, 刘相滨.基于不变矩特征和神经网络的步态识别[J].微计算机信息,2007,23(7-1):279-281.

[11] Bobick A F, Wilson A D. A state-based approach to the representation and recognition of gesture [J] .IEEE Trans PAMI, 1997, 19(12):1325-1337.

[12] Bobick A F, Andy Wilson. Using configuration states for the representation and recognition of gestures. MIT Media Lab Perceptual Computing Section Technical Report, No. 308, 1995.

[13] R.Urtasun and T.Darrell.Local Probabilistic Regression for Activity Independent Human Pose Inference[C].IEEE Conference on Computer Vision and Pattern Recognition,2008.

[14] A.Imai,N.Shimada,Y.Shirai.Hand Posture Estimation in Complex Backgrounds by Considering[C].Asian Conference on Computer Vision,2007.

[15] Muller M, Roder T. Motion templates for automatic classification and retrieval of motion capture data[C]. Proceding of Eurographics/ACM SIGGRAPH Symposium on Computer Animation,Switzerland:Eurographics Association Aire-la-Ville, 2006: 137-146.

[16] Li Yin. Effcient Motion Search in Large Motion Capture Databases [J]. Advancesin Visual Computing,Lecture Notes in Computer Science, 2006, 4291: 151-160

[17] 杨跃东,王莉莉,郝爱民,等.基于几何特征的人体运动捕获数据分割方法[J].系统仿真学报,2007,19(10).

[18] 向坚,朱红丽.基于三维特征提取的人体运动数据分析和检索[J].计算机应用,2008,28(5):1344-1316.

[19] 李淳充,王兆其,夏时洪.人体运动的函数数据分析与合成[J].软件学报,2009,20 (6):

1664-1672.

[20] 韩鸿哲,李彬,王志良,刘冀伟.基于傅立叶描述子的步态识别[J].计算机工程,2005,31 (2):48-162.

[21] Forbes K, Fiume E. An Efficient Search Algorithm for Motion Data Using Weighted PCA[C]. Proceding of Eurographics/ACM SIGGRAPH Symposium on Computer Animation,2005: 67-76.

[22] Meinard Muller,Tido Roder, Michael Clausen. Efficient Content-Based Retrieval of Motion Capture Data[C]. Proceedings of ACM SIGGRAPH,2005:677-685.

[23] W. Li, Z. Zhang, Z. Liu, Action recognition based on a bag of 3D points, CVPRW, 2010

[24] Feng Zhou, Fernando De la Torre, and Jessica K. Hodgins.Hierarchical Aligned Cluster Analysisfor Temporal Clustering of Human Motion.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013,35(3):582-598.

[25] H.Shimodaira,K.-I.Noma,M.Nakai,andS.Sagayama. Dynamic Time-Alignment Kernel in Support Vector Machine. Proc. Neural Information Processing Systems,2001

[26] Guenterberg E, Yang A Y, Ghasemzadeh H. A method for extracting temporal parameters based on hidden Markov models in body sensor networks with inertial sensors [J]. IEEE Transactions on Information Technology in Biomedicine,2009, 13(6): 1019-1030.

[27] 柴桦,邹北驢.基于条件随机场的连续运动识别技术m.计算机工程和科学, 2009,31(5):53-56.

[28] L. Xia, C. C. Chen, and J. K. Aggarwal. View Invariant Human Action Recognition Using Histograms of 3D Joints. In CVPRW, 2012.

[29] F Lv, R Nevatia. Recognition and segmentation of 3-d human action using hmm and multi-class adaboost[C]. Proceedings of ECCV, 2006:359-372.

[30] Ming Jiang, Zhelong Wang. An incremental learning method based on probabilistic neural networks and adjustable fuzzy clustering for human activity.

[31] Raviteja VemulaRaviteja Vemulapalli, Felipe Arrate, and Rama Chellappa, "Human Action Recognition by Representing 3D Human Skeletons as Points in a Lie Group", CVPR, 2014.

基于MATLAB的人体姿态的检测课程设计

基于视频的人体姿态检测 一、设计目的和要求 1.根据已知要求分析视频监控中行人站立和躺卧姿态检测的处理流程,确定视频监中行人的检测设计的方法,画出流程图,编写实现程序,并进行调试,录制实验视频,验证检测方法的有效性,完成系统软件设计。 2.基本教学要求:每人一台计算机,计算安装matlab、visio等软件。 二、设计原理 图像分割中运动的运用(运动目标检测) 首先利用统计的方法得到背景模型,并实时地对背景模型进行更新以适应光线变化和场景本身的变化,用形态学方法和检测连通域面积进行后处理,消除噪声和背景扰动带来的影响,在HSV色度空间下检测阴影,得到准确的运动目标。 噪声的影响,会使检测结果中出现一些本身背景的区域像素点被检测成运动区域,也可能是运动目标内的部分区域被漏检。另外,背景的扰动,如树枝、树叶的轻微摇动,会使这部分也被误判断为运动目标,为了消除这些影响,首先对上一步的检测结果用形态学的方法进行处理,在找出经过形态学处理的后的连通域,计算每个连通域中的面积,对于面积小于一定值的区域,将其抛弃,不看做是前景运动目标。 2.2bwlabel函数 用法:L = bwlabel(BW,n) [L,num] = bwlabel(BW,n),这里num返回的就是BW中连通区域的个数。 返回一个和BW大小相同的L矩阵,包含了标记了BW中每个连通区域的类别标签,这些标签的值为1、2、num(连通区域的个数)。n的值为4或8,表示是按4连通寻找区域,还是8连通寻找,默认为8。 四连通或八连通是图像处理里的基本感念:8连通,是说一个像素,如果和其他像素在上、下、左、右、左上角、左下角、右上角或右下角连接着,则认为他们是联通的;4连通是指,如果像素的位置在其他像素相邻的上、下、左或右,则认为他们是连接着的,连通的,在左上角、左下角、右上角或右下角连接,则不认为他们连通。

基于骨骼数据的人体行为识别

基于骨骼数据的人体行为识别 摘要 人体动作姿态识别是计算机视觉研究领域中最具挑战的研究方向,是当前的研究热点。对人体动作姿态进行自动识别将带来一种全新的交互方式,通过身体语言即人体的姿态和动作来传达用户的意思,如在机场、工厂等喧闹的环境下,采用手势、动作姿态识别等人机交互技术能够提供比语音识别更加准确的信息输入。总之,在智能监控、虚拟现实、感知用户接口以及基于内容的视频检索等领域,人体动作姿态的识别均具有广泛的应用前景。该文首先简单介绍了人体动作姿态序列的分割,然后对人体动作姿态识别的方法进行了分类介绍,并对一些典型的算法的研究进展情况及其优缺点进行了重点介绍。 关键词:人体动作姿态识别; 人工智能; 隐马尔可夫模型; 动态贝叶斯网络; 模板匹配前言 人体姿态识别是计算机视觉的一个重要研究方向,它最终目的是输出人的整体或者局部肢体的结构参数,如人体轮廓、头部的位置与朝向、人体关节点的位置或者部位类别。姿态识别的研究方法应该说,几乎涵盖了计算机视觉领域所有理论与技术,像模式识别、机器学习、人工智能、图像图形、统计学等。到目前为止,已经有众多识别方法被提出,并且也取得了许多重要的阶段性的研究成果,但是以往的方法都是基于普通光学图像,比如常见的RGB 图像,这类图像容易受光照、阴影等外界变化的影响,尤其在环境黑暗的情况下无法来识别人体姿态,并且由于人体关节自由度大,及人的体型、着装较大差异性,常导致姿态识别系统识别率低。尽管有研究者利用多个摄像机获取采集的图像来获取人体深度信息以克服以上问题[1],但是该类方法恢复的深度信息不是唯一的,而且计算量非常大,尤其是这种方法要求事先用人工对传感设备进行标定,而在选取场景中的标定物时,往往又会遇到实际环境操作困难的问题。 随着光电技术的快速发展,深度传感设备的成本逐渐降低,人们获取深图像的途径及方法也越来越多。该方向的研究也逐渐成为计算机视觉领域的研究趋势。具体原因包括:一方面,深度传感设备不仅操作简单,并且极大简化了普通摄像机的标定过程;另一方面,得到的深度图像由于直接包含了人体的深度信息,能够有效的克服普通光学图像遇到的上述问题。到目前为止,较有影响力的基于该类图像的人体姿态识别算法,应该是 Shotton 等人利用一种深度传感器 Kinect 来实时捕捉人体运动的算法,该算法虽然能够满足人们对识别系统实时性的要求,但其对硬件要求特别高,并且不适合低分辨率图像中的人体关节点提取,容易导致人体骨架扭曲。下文将具体陈述人体运动分析的主要用途和前人在不同时期对这些难题的处理办法。 主题 基于计算机视觉的人体运动分析不仅在智能监控、人机交互、虚拟现实和基于内容的视频检索等方面有着广泛的应用前景,更是成为了未来研究的前瞻性方向之一。Gavrila 总结了它的一些主要应用领域[2,3,4],下面据此对其典型应用做出进一步的介绍。 智能监控(Smart Surveillance) 所谓“智能监控”是指监控系统能够监视一定场景中人的活动,并对其行为行分析和识别,跟踪其中的可疑行为(例如在一些重要地点经常徘徊或者人流密集的场合下突发的人群拥挤等状况)从而采取相应的报警措施。智能监控系统应用最多的场合来自于那些对安全

(最新版)人体行为检测和识别毕业设计

本科生毕业设计(论文) 题目:人体行为检测与识别 姓名: 学号: 系别: 专业: 年级: 指导教师: 2015 年 4 月20日 独创性声明 本毕业设计(论文)是我个人在导师指导下完成的。文中引用他人研究成果的部分已在标注中说明;其他同志对本设计(论文)的启发和贡献均已在谢辞中体现;其它内容及成果为本人独立完成。特此声明。 论文作者签名:日期: 关于论文使用授权的说明 本人完全了解华侨大学厦门工学院有关保留、使用学位论文的规定,即:学院有权保留送交论文的印刷本、复印件和电子版本,允许论文被查阅和借阅;学院可以公布论文的全部或部分内容,可以采用影印、缩印、数字化或其他复制手段保存论文。保密的论文在解密后应遵守此规定。 论文作者签名:指导教师签名:日期:

人体行为检测与识别 摘要 人体行为检测与识别是当前研究的重点,具有很高的研究价值和广阔的应用前景。主要应用在型人机交互、运动分析、智能监控和虚拟现实也称灵境技术(VR)领域,对于研究人体检测和识别有着重要的意义。因为人的运动的复杂性和对外部环境的多变性,使得人们行为识别和检测具有一些挑战。对人类行为和检测的研究目前处于初级阶段,有待进一步研究和开发。 本文基于matlab人体行为识别和检测的研究,本文主要研究的是从图像中判断出目标处于何种行为,例如常见的走、坐、躺、跑、跳等行为的识别。从现有的很多主流研究成果来看,最常见的行为识别系统结构包括几个模块:目标检测、目标跟踪、行为识别。本文首先对图像进行判断是否有人体目标,识别出人体后对图像进行灰度化,在对灰度图像用背景差法与背景图像比对,最后,比对提取出的人体来判断人体处于何种行为。 关键词:matlab,肤色识别,行为检测

计算机视觉+人体姿态识别+双目视觉

Computer vision application 院(系)电子与信息工程学院 专业集成电路工程 学生吕广兴14S158054

Computer vision application The directory Report: Computer vision application (2) 1.The object of the project (2) 2.The method and the principle applied to the project (2) 2.1 Platform (2) 2.2 The principle of transform the RGB image to the gray image (2) 2.3 The principle of image enhancement (2) 2.4 The principle of thresholding (3) 2.5 The principle of classifier (3) 3.The content and the result of the project (4) 3.1 The main steps in the project (4) 3.2 About human body posture recognition (4) About three kinds of methods are most common: (4) 3.3.Stereo vision (11) 4.Reference (18)

Report: Computer vision application 1.The object of the project The object of the project is Gesture recognition and location in the interior of people. 2.The method and the principle applied to the project 2.1 Platform The platform is based on Visual Studio 2012 and OpenCV 2.4.10. 2.2 The principle of transform the RGB image to the gray image There are three major methods to transform the RGB image to the gray image. The first one is called the maximum value that is set the value of R, G, and B to the maximum of these three. Gray=R=G=B=max(R, G, B) The second one is called mean value which is set the value of R, G, and B to the mean value of these three. Gray=R=G=B=(R+G+B)/3 The third one is called weighted average that is giving different weights to the R, G and B according to the importance or other indicators, and then adding the three parts together. In fact, human’s eye is very high se nsitive to green, then red, last blue. Gray=0.30R+0.59G+0.11B 2.3 The principle of image enhancement Image enhancement is the process of making images more useful. There are two broad categories of image enhancement techniques. The first one is spatial domain technique, and it is a direct manipulation of image pixels that includes point processing and neighborhood operations. The second one is frequency domain technique, and it is a manipulation of Fourier transform or wavelet transform of an image. The principle of the median filter is to replace the value of a pixel by the median of the gray levels in the neighborhood of that pixel(the original value of the pixel is included in the computation of the median). It forces the points with distinct gray levels to be more like their neighbors.

人体行为识别技术

人体行为识别技术 在计算机视觉领域中,人体运动行为识别是一个被广泛关注的热点问题,在智能监控、机器人、人机交互、虚拟现实,智能家居,智能安防,运动员辅助训练等方面有巨大应用价值。行为识别问题一般遵从如下基本过程:数据图像预处理,运动人体检测、运动特征提取、特征训练与分类、行为识别。着重从这几方面逐一回顾了近年来人体行为识别的发展现状和常有方法。并对当前该研究方向上待解决的问题和未来趋势做了分析。行为理解可以简单地认为是时变数据的分类问题,即将测试序列与预先标定的代表典型行为的参考序列进行匹配。通过对大量行为理解研究文献的整理发现:人行为理解研究一般遵从特征提取与运动表征、行为识别、高层行为与场景理解等几个基本过程。 特征提取与运动表征是在对目标检测、分类和跟踪等底层和中层处理的基础上,从目标的运动信息中提取目标图像特征并用来表征目标运动状态;行为识别则是将输入序列中提取的运动特征与参考序列进行匹配,判断当前的动作处于哪种行为模型;高层行为与场景理解是结合行为发生的场景信息和相关领域知识,识别复杂行为,实现对事件和场景的理解。【2】 1、行为识别的应用 从应用领域的分类来讲,可以将人体运动分析的应用分成如下几个领域: ①智能监控 这里所指的“智能”包含两个方面的含义。一种“智能”是指系统能够在一定的场景中检测是否有人的出现(如通过检测人脸的方法)防止只是简单的通过 运动目标检测所造成的错误报警(例如因为动物活动或者刮风摇动树枝等等而造

成误报)。另外一种“智能”是指系统能够监视一定场所中人的活动,并对其行为进行分析和识别,跟踪可疑行为(如经常在重要地点徘徊等等行为)从而采取相应的报警措施。通常把报警系统设置于银行、机场、车站、码头、超市、办公大楼、住宅小区等地,以实现对这些场所的智能监控。 ②虚拟现实 跟踪现实世界人的姿态,从而创建一个虚拟的仿真场景,实现人与这个虚拟世界的交互。该领域的具体应用涉及视频游戏、虚拟摄影棚、计算机动画等方面。 ③高级用户接口 指可以通过对用户手势的识别来代替传统的鼠标和键盘输入,从而实现人与计算机之间的智能交互。此外,通过对手势语言的理解,还可以进行聋人与计算机之间的手语交流。 ④运动分析 人体运动分析可以运用于基于容的视频检索领域。例如可以检索在运动会上单杠比赛中运动员的杠上动作。这样可以节省用户大量的查询视频资料的时间和精力。另外一种应用是用于各种体育项目中,提取运动员的各项技术参数(如关节位置、角度和角速度,等等),通过分析这些信息,可以为运动员的训练提供指导和建议,有助于提高运动员的训练水平。此外,还可以用于体育舞蹈动作的分析,以及临床矫形术的研究等领域。 ⑤基于模型的视频编码 通过提取一定的静态场景中人物的形态特征参数和3D姿态参数,以较低的数据量对视频数据流加以描述,实现视频数据的压缩和低比特率传送。可以用于在因特网上展开远程视频会议以及VOD(Video-On-Demand)视频点播。

自然的人体动作识别

自然的人体动作识别 黄飞跃徐光祐 清华大学计算机科学与技术系,普适计算教育部重点实验室,北京,100084 摘 要:人体动作识别是计算机视觉的一个重要研究课题。目前大多数动作识别的研究都 假设是在特定受限的场景下,即特定的视角、位置、对象、背景和光照条件下工作。其中, 尤以要求特定的视角和位置对实际应用的限制最为严重。本文致力于研究能处理视角和位 置变化并可用于非特定对象的人体动作识别方法。我们把它称为自然的人体动作识别方法。 为此我们提出了"包容形状"的人体表示,这种表示不受视角、位置的变化影响,充分利用了 两个正交摄像机拍摄的轮廓信息以去除由人的身体旋转引起的影响。利用包容形状,我们 取得了非特定人、任意视角下的自然人体动作识别较好的实验结果。同时我们也介绍了该 识别方法在实际智能家居——老人看护系统中的应用。 关键词:自然动作识别;包容形状 1.引言 人体动作识别是计算机视觉里一个活跃的研究方向,有不少综述,力图把以前的相关研究方法进行总结和分类,比如[1], [2], [3], [4]。至今为止,关于动作识别的大多数研究工作都是在特定受限的场景下展开,比如特定的视角、动作人、背景和光照。在这之中,尤以视角和位置的限制最为突出。我们认为要实现自然场景下的动作识别,就必须消除应用条件中的这些限制。为此,我们在这篇论文中,重点研究了动作识别中与视角和位置无关的体态表示,以实现非特定人、任意视角下的自然人体动作识别。 现阶段已经开展了不少视角无关的动作识别研究工作,比如Cen Rao [5],Vasu Parameswaran[6]。但是还有很多问题亟待解决,大多数的方法依赖鲁棒的语义特征点检测或者是点对应,而这些是比较难实现的。 在本文中,我们提出使用了一种“包容形状”的体态表示。在仿射摄像机投影模型的假设下,这种表示对于视角和位置的变化具有不敏感性,同时不需要依靠任何较难提取并且对误差很敏感的语义点检测和点对应。利用这种表示,我们开发了自己的动作识别系统并且把它部署到实际应用:智能家居—老人看护系统中。实验结果表明我们的系统对于非特定人、任意视角和位置下的自然动作有着很理想的识别能力。 资助项目:国家自然科学基金资助项目(60673189,60433030) 联系作者:黄飞跃, Email:hfy01@https://www.360docs.net/doc/062975916.html,

人体行为识别技术讲解学习

人体行为识别技术

人体行为识别技术 在计算机视觉领域中,人体运动行为识别是一个被广泛关注的热点问题,在智能监控、机器人、人机交互、虚拟现实,智能家居,智能安防,运动员辅助训练等方面有巨大应用价值。行为识别问题一般遵从如下基本过程:数据图像预处理,运动人体检测、运动特征提取、特征训练与分类、行为识别。着重从这几方面逐一回顾了近年来人体行为识别的发展现状和常有方法。并对当前该研究方向上待解决的问题和未来趋势做了分析。行为理解可以简单地认为是时变数据的分类问题,即将测试序列与预先标定的代表典型行为的参考序列进行匹配。通过对大量行为理解研究文献的整理发现:人行为理解研究一般遵从特征提取与运动表征、行为识别、高层行为与场景理解等几个基本过程。 特征提取与运动表征是在对目标检测、分类和跟踪等底层和中层处理的基础上,从目标的运动信息中提取目标图像特征并用来表征目标运动状态;行为识别则是将输入序列中提取的运动特征与参考序列进行匹配,判断当前的动作处于哪种行为模型;高层行为与场景理解是结合行为发生的场景信息和相关领域知识,识别复杂行为,实现对事件和场景的理解。【2】 1、行为识别的应用 从应用领域的分类来讲,可以将人体运动分析的应用分成如下几个领域: ①智能监控 这里所指的“智能”包含两个方面的含义。一种“智能”是指系统能够在一定的场景中检测是否有人的出现(如通过检测人脸的方法)防止只是简单的通过运动目标检测所造成的错误报警(例如因为动物活动或者刮风摇动树枝等等而造成误报)。另外一种“智能”是指系统能够监视一定场所中人的活动,并对其行为进行分析和识别,跟踪可疑行为(如经常在重要地点徘徊等等行为)从而采取相应的报警措施。通常把报警系统设置于银行、机场、车站、码头、超市、办公大楼、住宅小区等地,以实现对这些场所的智能监控。 ②虚拟现实 跟踪现实世界人的姿态,从而创建一个虚拟的仿真场景,实现人与这个虚拟世界的交互。该领域的具体应用涉及视频游戏、虚拟摄影棚、计算机动画等方面。 ③高级用户接口 指可以通过对用户手势的识别来代替传统的鼠标和键盘输入,从而实现人与计算机之间的智能交互。此外,通过对手势语言的理解,还可以进行聋人与计算机之间的手语交流。 ④运动分析 人体运动分析可以运用于基于内容的视频检索领域。例如可以检索在运动会上单杠比赛中运动员的杠上动作。这样可以节省用户大量的查询视频资料的

人体行为识别技术

在计算机视觉领域中,人体运动行为识别是一个被广泛关注的热点问题,在智能监控、机器人、人机交互、虚拟现实,智能家居,智能安防,运动员辅助训练等方面有巨大应用价值。行为识别问题一般遵从如下基本过程:数据图像预处理,运动人体检测、运动特征提取、特征训练与分类、行为识别。着重从这几方面逐一回顾了近年来人体行为识别的发展现状和常有方法。并对当前该研究方向上待解决的问题和未来趋势做了分析。行为理解可以简单地认为是时变数据的分类问题,即将测试序列与预先标定的代表典型行为的参考序列进行匹配。通过对大量行为理解研究文献的整理发现:人行为理解研究一般遵从特征提取与运动表征、行为识别、高层行为与场景理解等几个基本过程。 特征提取与运动表征是在对目标检测、分类和跟踪等底层和中层处理的基础上,从目标的运动信息中提取目标图像特征并用来表征目标运动状态;行为识别则是将输入序列中提取的运动特征与参考序列进行匹配,判断当前的动作处于哪种行为模型;高层行为与场景理解是结合行为发生的场景信息和相关领域知识,识别复杂行为,实现对事件和场景的理解。【2】 1、行为识别的应用 从应用领域的分类来讲,可以将人体运动分析的应用分成如下几个领域: ①智能监控 这里所指的“智能”包含两个方面的含义。一种“智能”是指系统能够在一定的场景中检测是否有人的出现(如通过检测人脸的方法)防止只是简单的通过运动目标检测所造成的错误报警(例如因为动物活动或者刮风摇动树枝等等而造成误报)。另外一种“智能”是指系统能够监视一定场所中人的活动,并对其行为进行分析和识别,跟踪可疑行为(如经常在重要地点徘徊等等行为)从而采取相应的报警措施。通常把报警系统设置于银行、机场、车站、码头、超市、办公大楼、住宅小区等地,以实现对这些场所的智能监控。 ②虚拟现实 跟踪现实世界人的姿态,从而创建一个虚拟的仿真场景,实现人与这个虚拟世界的交互。该领域的具体应用涉及视频游戏、虚拟摄影棚、计算机动画等方面。 ③高级用户接口 指可以通过对用户手势的识别来代替传统的鼠标和键盘输入,从而实现人与计算机之间的智能交互。此外,通过对手势语言的理解,还可以进行聋人与计算机之间的手语交流。 ④运动分析 人体运动分析可以运用于基于内容的视频检索领域。例如可以检索在运动会上单杠比赛中运动员的杠上动作。这样可以节省用户大量的查询视频资料的时间和精力。另外一种应用是用于各种体育项目中,提取运动员的各项技术参数(如关节位置、角度和角速度,等等),通过分析这些信息,可以为运动员的训练提

相关文档
最新文档