BKMJ0.48-40-3低压并联电力电容器BKMJ0.48-40-3自愈式并联电力电容器BKMJ0.48-40-3 厂家直销

BKMJ0.48-40-3低压并联电力电容器BKMJ0.48-40-3自愈式并联电力电容器BKMJ0.48-40-3 厂家直销
BKMJ0.48-40-3低压并联电力电容器BKMJ0.48-40-3自愈式并联电力电容器BKMJ0.48-40-3 厂家直销

产品型号BKMJ0.48-40-3品牌上海民恩

额定电压0.48KV额定容量40Kvar

相数三相产品功能自愈式无功补偿

产品价格(具体价格请来电咨询)产品包装纸箱

自放电:断电后3分钟内剩余电压小于75V

制造商Manufacturer上海民恩电气有限公司

依据标准Standard GB/T12747-2004、IEC60831:1996

型式Type并联电容器防护等级IP20

电容器容量Rated power40kvar联结Connection并联

系统电压Se.Vol0.4KV额定电流Se.Cur48.1A

相数Number of phases三相频率Frequency50Hz

电容量Inductance60μF工作环境温度-25/C

冷却方式Cooling Type自冷损耗Loss≤0.25W/kVar 极壳耐压Extreme pressure3000Vac/1min相对湿度Humidity≤90%RH

包装Packing木箱运输方式Transport物流运输质保期Warranty period一年产品货期Delivery5-7天

电容器的作用

●补偿电网中的感性无功功率,提高功率因数,降低线损,提高变压器的利用率。

●稳定母线电压,提高供电系统的稳定性。

●安装在用电设备附近进行就地补偿,起到节电、稳定电压的作用。

●用于无源滤波装置中,滤除或抑制谐波,改善供电质量。

一、BKMJ0.48-40-3电力电容器的型号含义

B S MJ 0.45 - 30 - 3 - B1

结构代码

接线方式:1——单相

3——3相△接法

3Y——3相Y接法

3YN——3相Y接法,中性点引出

1*3——3相独立

额定容量(kvar)

额定电压(kv)

介质:金属化膜

封装介质:S——石蜡

K——空气

D——氮气

系列:A——滤波

B——并联

H-B——加强型

二、BKMJ0.48-40-3电力电容器的频率特性

三、BKMJ0.48-40-3电力电容器的结构

四、BKMJ0.48-40-3电力电容器联接方式

五、BKMJ0.48-40-3电力电容器的补偿方案

1.产品特点----低压并联电力电容器BKMJ0.48-40-3

1)采用优质材料及欧洲先进设备和制造工艺,可靠性高,寿命长;

2)产品种类齐全,满足不同应用领域特殊需求;

3)干式结构,无漏油风险,环保无污染;

4)先进的干式防爆技术,在安全性方面达到国际先进水平;

2.技术参数----低压并联电力电容器BKMJ0.48-40-3

执行标准:GB/T12747-2004、IEC60831-1996

额定电压:130~1000V

额定频率:50(或60)Hz,当频率为60Hz时须在订货时特别说明。

额定容量:2.5~100KVar

容量偏差:-5%~+10%,如需更精确的容量精度,由供需双方协商。

介质损耗:≤0.2W/KVar

极间耐压:2.15Un/10S

极壳耐压:3KV/60S

最大允许过电压:1.1Un(Un为额定电压)

最大允许过电流:1.3In(In为额定电流)

自放电:断电3min后电压降至75V以下(特别要求时由供需双方协商确定)

工作环境温度:-25℃~+50℃(最高50℃,24小时平均最高40℃,1年平均最高30℃)海拔:普通型≤2000m

高原型≤4000m

结构代码说明

序号结构代码

描述

备注外壳形状引出端

1A1

马口铁

(椭圆、方形)椭圆螺栓BSMJ小容量

2A2小方形螺栓、内螺纹分补小容量、相间补偿3A3大方形螺栓、内螺纹BSMJ、H-BSMJ、相间补偿

4A4小方形内螺纹智能单元

5A5长方形内螺纹智能一体式单元

6B1铝

(圆柱形)圆柱型压接式BSMJ、ASMJ

7B2圆柱形螺栓BSMJ、ASMJ、H-BSMJ

8C1冷轧钢板

(箱式)箱式1螺栓BKMJ、高原型

9C2箱式2螺栓超大容量、矿热炉电容器

尊敬的客户:

欢迎选用上海民恩电气有限公司生产的低压电力电容器。为了使我们的产品和服务为您带来更大的价值,请在使用前仔细阅读本说明书。

请将此说明书随产品交给直接使用的用户。

一、产品用途----低压并联电力电容器BKMJ0.48-40-3

1)提高电网功率因数,降低线损、稳定母线电压、提高变压器利用率。

2)用于无源滤波装置中,滤除或抑制电网中的谐波污染。

二、技术参数----低压并联电力电容器BKMJ0.48-40-3

执行标准:GB/T12747-2004、IEC60831:1996

额定电压(Un):0.48kV

额定容量(Qn):25kVar

额定电容量(Qc):345.4μF

额定频率(fn):50或60Hz

额定电流(In):30.1A

容量允许偏差:-5%~+10%

损耗:≤0.25W/kVar

极间耐压:2.15Un

极壳耐压:3000Vac/1min或2Un+1000V (取较大值)

自放电:断电后3分钟内剩余电压小于75V

最大允许过电压:1.1Un

最大允许过电流:1.3In

工作环境温度:-25/C(最低-25℃,最高50℃,月平均最高40℃,年平

均最高30℃)

相对湿度:≤90%RH

海拔:≤2000m

防护等级:IP20

注:特殊要求按双方协商所达成的指标执行。

三、型号说明

序号结构

代码

描述

外壳形状引出端

1A1

马口铁

(椭圆、

方形)椭圆螺栓

2A2小方形螺栓、内

螺纹

3A3大方形螺栓、内

螺纹

4A4小方形内螺纹5A5长方形内螺纹

6B1铝

(圆柱

形)圆柱型压接式

7B2圆柱形螺栓

8C1冷轧钢

(箱式)方形1螺栓

9C2方形2螺栓

四、安装、接线与维护----低压并联电力电容器BKMJ0.48-40-3

1.安装

1)电容器安装尺寸详见产品样本或专门提供的图纸。

2)电容器必须可靠稳固的固定,引出端向上。

3)圆柱形电容器之间的距离≥30mm,其它电容器之间的距离≥50mm。如果需要更密集的安装,必须采取强制通风措施。

4)固定螺栓拧紧时力矩≤12N.m,或者以刚好压平弹簧垫片为准。

2.接线

1)请根据电容器的工作电流和相关电气规范选择线径。

2)接线螺栓拧紧时的力矩≤15N.m,最好使用带扭矩刻度的扳手,或以刚好压平弹簧垫片为准。

3)接线完毕后请扣上防护罩。

4)请正确连接外壳接地线。圆柱形电容器的底部螺栓同时也是接地柱。

5)对于圆柱形电容器,应该使用软线连接,不能使用铜排直接压在引出端上,这样可能会导致防爆装置失灵。

3.运行及维护

a)请确保电容器在技术参数(第二条)规定的条件下运行,否则会影响电容器的使用寿命或造成电容器失效。

b)电容器通电前及通电运行1个月后,应停电检查接线是否牢固可靠。

c)例行检查维护:检查电容器接线是否松动、外壳有无变形。在粉尘大的场合需要定期清理引出端上粉尘。

★警告:

1)过大的力矩(过度拧紧)会使底部螺栓和接线端子断裂或滑丝,导致产品报废。

2)需要人直接接触引出端时,应该在电容器断电至少5分钟后,用导电材料在电极之间进行短路放电,之后才能进行操作,否则有触电危险。

5.快速选型指南(电容器)

型号

产品外形

产品特点

适用场合

BSMJ-A1ASMJ-A1

第***页

额定电压:0.23~0.69KV 额定容量:5~20KVar 马口铁外壳,螺栓引出,性能稳定,成本低。

普通补偿/滤波(小容量)

BSMJ-A2

第***页

额定电压:0.23~0.69KV 额定容量:5~30KVar 马口铁外壳,螺栓或内螺纹引出,性能稳定,成本低。

分相补偿(小容量)相间补偿(小容量)

BSMJ-A3ASMJ-A3H-BSMJ

第***页

额定电压:0.23~0.69KV 额定容量:20~40KVar 马口铁外壳,性能稳定,螺栓或内螺纹引出,成本低。

普通补偿/滤波(大容

量)

分相补偿(大容量)相间补偿(大容量)

加强型电容器

BSMJ-A4BKMJ-A4

第***页

额定电压:0.25~0.525KV 额定容量:5~40KVar 马口铁外壳,内螺纹引出,性能稳定,成本低。

智能电容器单元(双台型)

BSMJ-A5BKMJ-A5

第***页

额定电压:0.25~0.525KV 额定容量:5~60KVar 马口铁外壳,内螺纹引出,性能稳定,成本低。

智能电容器单元(一体式)

BSMJ-B1ASMJ-B1

第***页

额定电压:0.18~0.85额定容量:5~30KVar

圆柱形铝外壳,压接式引出端,防爆性能优良,尺寸小。

普通补偿/滤波(小容量)

BSMJ-B2ASMJ-B2H-BSMJ

第***页

额定电压:0.18~0.85

额定容量:5~50KVar

圆柱形铝外壳,螺栓引出端,

防爆性能优良,尺寸小。

普通补偿/滤波(大容

量)

加强型电容器

BKMJ-C1

第***页

额定电压:0.18~0.525额定容量:15~40KVar 冷轧钢板喷塑外壳,螺栓引出端,纯干式。

普通补偿/滤波(大容

量)

矿热炉电容器高原型电容器

BSMJ-A 低压并联电容器

用途

补偿低压电网中的感性无功功率,提高功率因数,降低输电线路损耗。

主要应用领域:农网/城网台区无功优化改造、工矿企业、居民、办公、商业配电网络的无功补偿、就地无功补偿及节电装置。

产品特点

1.额定电压:0.25~0.69KV

2.容量范围:5~40KVar

3.马口铁外壳,螺栓引出端,内置过压力保护装置。

4.设计场强低,寿命长,故障率低,容量稳定性好。

5.

技术成熟,性价比高。

170178192

30

H

7φ10L

50

6044

65A1型M8*15

80

55204220

18071H

7φ10L

A2型

35

25

75M8*15

--------以上内容由上海民恩电气有限公司提供

产品照片A1型(共补)A2型(分补)A3型(共补)

电力电容器保护原理解释

常见电力电容器保护类型: 电容器保护 1 保护熔丝 现代电容器组的每台电容器上都装有单独的熔丝保护,这种熔丝结构简单,安装方便,只要配合得当,就能够迅速将故障电容器切除,避免电容器的油箱发生爆炸,使附近的电容器免遭波及损坏。此外,保护熔丝还有明显的标志,动作以后很容易发现,运行人员根据标志便可容易地查出故障的电容器,以便更换。 2 过电流保护(电流取自线路TA) 过电流保护的任务,主要是保护电容器引线上的相间短路故障或在电容器组过负荷运行时使开关跳闸。电容器过负荷的原因,一是运行电压高于电容器的额定电压,另一种情况是谐波引起的过电流。 为避免合闸涌流引起保护的误动作,过电流保护应有一定的时限,一般将时限整定到0.5s以上就可躲过涌流的影响。 3 不平衡电压保护(电压取自放电TV二次侧所构成的开口三角型) 电容器发生故障后,将引起电容器组三相电容不平衡。电容器组的各种主保护方式都是从这个基本点出发来确定的。 根据这个原理,国内外采用的继电保护方式很多,大致可以分为不平衡电压和不平衡电流保护两种。这两种保护,都是利用故障电容器被切除后,因电容值不平衡而产生的电压和电流不平衡来启动继电器。这些保护方式各有优缺点,我们可以根据需要选择。 单星形接线的电容器组目前国内广泛采用开口三角电压保护。 对于没有放电电阻的电容器,将放电线圈的一次侧与电容器并联,二次侧接成开口三角形,在开口处连接一只低整定值的电压继电器,在正常运行时,三相电压平衡,开口处电压为零,当电容器因故障被切除后,即出现差电压U0,保护采集到差电压后即动作掉闸。 4 不平衡电流保护 这种保护方式是利用故障相容抗变化后,电流变化与正常相电流间形成差电流,来启动过电流继电器,以达到保护电容器组的目的。常见的不平衡电流保护的方式有以下两种: 4.1 双星形中性点间不平衡电流保护 保护所用的低变比TA串接于双星型接线的两组电流器的中性线上,在正常情况下,三相阻抗平衡,中性点间电压差为零,没有电流流过中性线。如果某一台或几台电容器发生故障,故障相的电压下降,中性点出现电压,中性线有不平衡电流I0流过,保护采集到不平衡电流后即动作掉闸。

并联电容器组配套装置及应用技术

并联电容器组配套装置及应用技术 摘要:阐述高压并联电容器组的配套装置断路器、串联电抗器、放电装置、氧化锌避雷器及熔断器的电气特性和实际应用中的配置问题。 高压并联电容器组的配套装置,包括投、切电容器组用的断路器、串联电抗器、放电元件、氧化锌避雷器及熔断器等设备。在电容器组的安装、运行和试验中,必须充分了解它们之间的有机联系和相互关系、电气性能和技术标准,在实际应用中,合理配置、有效配合,以确保设备、系统和人身的安全。 一断路器在高压并联电容器组上的应用 电容器在电网中的运行方式,随着无功负荷及电网电压变化而变化,因此电容器组用断路器的操作较为频繁,为此必须解决好两方面问题:①合闸时的频率、高幅值的合闸涌流给断路器带来的过电压、机械应力和机械振动;②开断时,电弧重燃给断路器及其他回路设备带来的重击穿过电压及绝缘冲击。故并联电容器除应满足一般的技术性能和要求以外,还必须满足以下要求:①合闸时,触头不应有明显的弹跳和振动;②分闸时不允许有严重的电弧重燃而导致的击穿过电压;③应有承受合闸涌流的耐受能力;④经常投、切的断路器应具有承受频繁操作的能力。根据目前国产断路器的生产情况,要同时满足以上四点要求,尚有难度,例如真空断路器虽然适于频繁的操作要求,但存在合闸弹跳和重燃问题,必须加装氧化锌避雷器以进行防止过电压的配合、加装串联电抗器以降低合闸涌流倍数的配合。可见,断路器在电容器组上的应用,尚无法完成其独立开断的任务,必须有其他配套设备进行补偿性配合。 二串联电抗器在高压并联电容器组上的应用 为了限制电容器合闸过程中的涌流、操作过电压及电网谐波对电容器的影响,大容量电容器一般应区分具体情况,加装串联电抗器。其作用为:①降低电容器组合闸涌流倍数及涌流频率;②减少电网中高次谐波引起的电容器过负荷;③减少电容器组用断路器在两相重燃时的涌流以利灭弧;④抑制一组电容器故障时,其他电容器组对其短路电流的影响;⑤抑制电容器回路中产生的高次谐波及谐波过电压。可见,加装串联电抗器对电容安全运行的重要性、对断路器顺利完成开断任务的必要性。但在实际应用中,是否加装串联电抗器,还要根据电容器的分组方式及安装地点的具体情况而定。比如装设在配电线路35kV农村变电所母线上的电容器组,容量较小,大多在2000kvar以下,一般没必要加装串联电抗器。但在下列情况下,必须加装串联电抗器:①采用“△”连接的电容器组;②装设于一次变电站中容量较大的电容器组; ③变电站装有两组以上且频繁投切的电容器组;④电容器投运时有谐波现象或因谐波引起电容器过负荷等。 三放电装置在高压并联电容器组上的应用 电容器从电源断开时,两极处于储能状态,如果电容器整组从电源断开,储存电荷的能量非常大,必然在电容器两极之间持续保持着一定数值的残余电压,其初始值,即是电源电压的有效值,此时电容器组在带电荷的情况下,一旦再次投入,将产生强烈冲击性的合闸涌流,并伴有大幅值的过电压出现,工作人员一旦不慎触及就有可能遭到电击伤、电灼伤的严重伤害。为此,电容器组必须加装放电装置。根据标准规定,与电容器连接的放电装置应能使电容器从电源断开后,其剩余电压在10min内降至75V以下。高压成套装置用放电装置的选择和安装与低压成套装置用放电装置十分相似又略有不同:①低压成套装置用放电装置通常有灯泡、带变压器指示灯和电阻三种形式。放电元件采用“V”形和“△”形连接方式,多以“△”连接为推荐方式,原因是任一相发生断线,仍能转化成“v”形连接方式,维持放电的不间断进行; ②高压电容器组通常除了在电容器内部接入放电电阻以外,配套装置中还必须加装与电容器直接相连的放电装置。一般中小容量的电容器组,放电装置可以采用相应电压等级的电压互感器,2O00kvar及以上的电容器组,多选用专用的放电线圈来完成。

并联电容器无功补偿方案

课程设计 并联电容器无功补偿方案设计 指导老师:江宁强 1010190456 尹兆京

目录 1绪论 (2) 1.1引言 (2) 1.2无功补偿的提出 (3) 1.3本文所做的工作 (3) 2无功补偿的认识 (3) 2.1无功补偿装置 (3) 2.2无功补偿方式 (4) 2.3无功补偿装置的选择 (4) 2.4投切开关的选取 (4) 2.5无功补偿的意义 (5) 3电容器无功补偿方式 (5) 3.1串联无功补偿 (5) 3.2并联无功补偿 (6) 3.3确定电容器补偿容量 (6) 4案例分析 (6) 4.1利用并联电容器进行无功功率补偿,对变电站调压 (6) 4.2利用串联电容器,改变线路参数进行调压 (13) 4.3利用并联电容器进行无功功率补偿,提高功率因素 (15) 5总结 (21) 1绪论 1.1引言 随着现代科学技术的发展和国民经济的增长,电力系统发展迅猛,负荷日益增多,供电容量扩大,出现了大规模的联合电力系统。用电负荷的增加,必然要

求电网系统利用率的提高。但由于接入电网的用电设备绝大多数是电感性负荷,自然功率因素低,影响发电机的输出功率; 降低有功功率的输出; 影响变电、输电的供电能力; 降低有功功率的容量; 增加电力系统的电能损耗; 增加输电线路的电压降等。因此,连接到电网中的大多数电器不仅需要有功功率,还需要一定的无功功率。 1.2无功补偿的提出 电网输出的功率包括两部分:一是有功功率;二是无功功率。无功,简单的说就是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。电机和变压器中的磁场靠无功电流维持,输电线中的电感也消耗无功,电抗器、荧光灯等所有感性电路全部需要一定的无功功率。为减少电力输送中的损耗,提高电力输送的容量和质量,必须进行无功功率的补偿。 1.3本文所做的工作 主要对变电站并联电容器无功补偿作了简单的分析计算,提出了目前在变电站无功补偿实际应用中计算总容量与分组的方法,本文主要作了以下几个方面的工作: 对无功补偿作了简单的介绍,尤其是电容器无功补偿,选取了相关的案例进行了简单的计算和分析。 2无功补偿的认识 2.1无功补偿装置 变电站中传统的无功补偿装置主要是调相机和静电电容器。随着电力电子技术的发展及其在电力系统中的应用,交流无触点开关SCR、GTR、GTO等相继出现,将其作为投切开关无功补偿都可以在一个周波内完成,而且可以进行单相调节。如今所指的静止无功补偿装置一般专指使用晶闸管投切的无功补偿设备,主要有以下三大类型: 1、具有饱和电抗器的静止无功补偿装置; 2、晶闸管控制电抗器、晶闸管投切电容器,这两种装置统称为SVC 3、采用自换相变流技术的静止无功补偿装置——高级静止无功发生器。

谈谈电力电容器保护技术

Value Engineering 0引言 电力电容器是城市电力系统的重要组成部分,广泛应用与电力系统和电工设备之中,在均压、稳压、降低线路系统损耗以及提高电力系统功率因数等方面有良好的表现性能,因而在工厂、居民区、市政设施、交通设施等电力系统的配电系统中都有着巨大的作用。另一方面,电容器又是非常容易受损,对安装于维护有着较高要求的电力设备,其回路中若存在任何细微的非正常接触,均可能激发高频振荡电弧,同时电力系统在运行过程中电流与电压均会对电力电容器产生不同程度的影响,因而电力电容器的保护对于其自身功效和寿命的稳定乃至整个电力系统的正常运行有着十分重要的意义,而关于电力电容器的保护技术,我们大致也可以从电流与电压两个方面切入进行分析。 1电流保护 电容器组的电流保护主要包含了过电流保护和电流速断保护两个方面,装设过电流保护的目的主要是保护电容器组的引线、套管的短路故障,也可作为电容器组内部故障的后备保护。过电流保护接在电容器组断路器回路电流互感器二次侧。通常非为速断和过流两段,速断段的动作电流按在最小运行方式下引线相间短路,保护灵敏度大于2来整定。 当电容器组引接母线、电流互感器、放电电压互感器、串联电抗器等回路发生相间短路,或者电容器组本身内部元件全部或者部分被击穿形成相间短路时,电容器系统内部会产生很大的短路电流,为了防止此种情况对电力电容器造成不可逆转性破坏,应该在系统内装设速断和过电流(定时限或者反时限)保护。 “电流速断保护的动作电流按在最小运行方式下引线相间短路[1]”,起保护灵敏度大于2来整定,利用动作时带有0.1~0.2s 的延时来躲过电容器的充电涌流,进而对电力电容系统进行保护,其通常以在三相电容器端在最小运行方式下发生两相短路时,保护具有足够灵敏度来整定动作电流为标准。 除速断保护之外,电容器的过电流保护是速断保护的后备,同时兼做电容器组的过负荷保护,其动作电流应该考虑以下三点: ①电容器组的电容有±10%的偏差,使负荷电流增大;②电容器长期工作环境电流为额定电流的1.3倍;③合闸涌流冲击下不发生误动。 另一方面,电容器过电流保护最好采用反时限特性,并与电容器的过电保护相配合,建议两段电流保护均采用三相式接线以获得较高的灵敏度。 2低电压保护 在电力电容器正常运行的过程中若发生突然断电或者失去电压,可能对电容器系统造成两种不良后续反应,进而对电容器系统 造成破坏。例如,当“电力系统断电后供电恢复,电容器若未能及时 切除,则可能造成变压器带电容器合闸,产生谐振过电压,从而造成 变压器或者电容器的损坏[2] ”。除此之外,电路系统在停电后恢复供电的初期,变压器还未完全带负荷运行,母线电压较高,这也可能引起电容器产生过电压,所以从种种情况来看,电力电容器应该装设低电压保护。 一般情况下,电力电容器低电压保护的动作电压可以取值为Uop=(0.5~0.6)Un/n bv 其中,Un 表示系统额定电压,n bv 表示电压互感器变比。当Uop 取值在0.5Un/n b 及以下时,互感器二次一相熔丝熔断也不会使低电压保护误动作,为避免同级电压出现短路时低电压保护误切电容机组,应以时限躲过。 3过电压保护 “过电压保护是通过电压继电器来反映外部工频电压升高的,电压继电器可以接在放电线圈或放电用电压互感器的二次侧。在同一母线上同时接有几组电容器时,电压继电器也可以接在母线电压互感器二次侧,几组电容器共用一套过电压保护[3]”。对系统产生的过电压,只考虑对称过电压,要求电容器的过电压保护返回系数不低于0.98。目前在我国的电力系统中已经广泛采用微机保护技术,其返回系数基本都能符合这一要求。过电压元件的整定范围为1.1~1.3倍额定电压,同时动作时间应小于电容器允许的过电压时间。 按照我国国标的强制规范,电容器工频过电压以及其相应的允许运行时间如表1所示。 4不平衡保护技术 在一组电容器中,由于故障切除或者一部分电容器发生短路后,剩余的电容器承受的电压大小和电容器组的接线方式、每组并联的台数、串联的段数等因素有关。内过电压保护的接线方式很多,砖石内过电压保护的目的是防止电容器组中因个别电容器故障切除后,健全电容器上的电压查过额定电压的1.1倍,如不及时处理这一情况并断开电容器组,就会造成其他电容器的损坏,对系统产生进一步的危害。 在一组电容器的各串联段上装设电压互感器,可以监视电容器两端出现的工频过电压,但这通常需要多台电压互感器和电压继电 —————————————————————— —作者简介:张磊(1978-),男,河南信阳人,技师。 谈谈电力电容器保护技术 Talking about the Power Capacitor Protection Technology 张磊Zhang Lei (河南省信阳市供电公司变电检修部,信阳464000) (Henan Province Xinyang City Power Supply Company Substation Maintenance Department , Xinyang 464000,China )摘要:电力电容器组均压、稳压、降低线路系统损耗以及提高电力系统功率因数等方面有良好的表现性能,但同时又容易受到来自电流和电 压等方面的损害,因而电力电容器的保护对于其自身功效和寿命的稳定乃至整个电力系统的正常运行有着十分重要的意义,本文就将从电流、 电压、不平衡保护等方面对电力电容器保护技术进行分析。 Abstract:Power capacitors have good performance in equalizing pressure,voltage regulation,reducing line losses and improving power factor of power system and other factors,however,they are vulnerable to be damaged by the current and voltage.So the protection of the power capacitor has a very important sense for the stability of its effectiveness and life as well as the normal operation of the entire power system.This paper makes analysis on the power capacitor protection technology from the current,voltage,unbalance protection and other aspects. 关键词:电力电容器;过电压;不平衡保护Key words:power capacitors ;over-voltage ;unbalance protection 中图分类号:F407.61 文献标识码:A 文章编号:1006-4311(2012)01-0025-02 注:表中所示过电压1.15U 、1.2U 、1.3U 及其相应的运行时间,在电容器的寿命期间总共不超过2000次,其中若干次过电压实在电容器内部温度低于零度但未低于温度下限时发生. 表1电容器工频过电压与相应允许运行时间表 工频过电压值 最大允许运行时间 备注 1.1U 长期运行长期运行过电压的最高值不应超过1.1U 1.15U 1.2U 1.3U 30min 5min 1min 系统电压调整与波动轻负荷时电压升高 ·25·

低压电容器并联装置

中华人民共和国机械行业标淮 JB711393 低压并联电容器装置 机械工业部1993-10-08批准 1994-01-01实施 1 主题内容与适用范围 本标准规定了低压并联电容器装置的适用范围术语产品分类技术要求试验方法检验规则标志等 本标准适用于交流频率50Hz,额定电压1kV及以下的三相配电系统中用来改善功率因数的并联电容器装置(以下简称装置) 2 引用标准 GB2681 电工成套装置中的导线颜色 GB2682 电工成套装置中的指示灯和按钮的颜色 GB2900.16 电工名词术语电力电容器 GB3047.1 面板架和柜基本尺寸系列 GB4942.2 低压电器外壳防护等级 JB3085 装有电子器件的电力传动控制装置的产品包装与运输规程 3 术语 除在本标准内明确说明的以外,其余的术语均应符合GB2900.l6的规定 3.1 (单台)电容器 由一个或多个电容器元件组装于单个外壳中并有引出端子的组装体 3.2 电容器组 电气上连接在一起的一组电容器 3.3 并联电容器装置 主要由电容器组及开关等配套设备组成的,并联连接于工频交流电力系统中用来改善功率因数降低线路损耗的装置 3.4 装置的额定频率(N) 设计装置时所采用的频率 3.5 装置的额定电压(U N)

装置拟接入的系统的额定电压 3.6 装置的额定电流(I N) 设计装置时所采用的电流(方均根值),其值为装置内电容器组的额定电流 3.7 装置的额定电容(C N) 设计装置时所采用的电容值,其值为装置内电容器组的额定电容 3.8 装置的额定容量(Q N) 设计装置时所采用的容量值,其值为装置内电容器组的额定容量 3.9 电容器组的额定电压(U n) 设计电容器组时所采用的电压 注对于内部联结的多相电容器,U n系指线电压 3.10 主电路 用以完成主要功能的电路 3.11 辅助电路 用以完成辅助功能的电路 3.12 过电压保护 当母线电压超过规定值时能断开电源的一种保护 3.13 过电流保护 当流过装置的电流超过规定值时能断开电源的一种保护 3.14 带电部件 在正常使用中处于电压下的任何导体或导电部件包括中性导体,但不包括中性保护导体(PEN) 3.15 裸露导电部件 装置中一种可触及的裸露导电部件,这种导电部件,通常不带电,但在故障情况下可能带电 3.16 对直接触电的防护 防止人体与带电部件产生危险的接触 3.17 对间接触电的防护 防止人体与裸露导电部件产生危险的接触

继电保护中电容器保护常用保护原理

继电保护中电容器保护常用保护原理 电力电容器组不平衡保护综述 科技日益进步,经济持续发展,用户用电对电能的要求也日益升高。不单是对电能数量的需求不断增长,其对电压质量要求也越来越高,电容器保护测控装置不单要有足够的电能,还要有稳定的电能——即电压、频率、波形需符合要求,才能保证用户的用电设备持续保持最好的工作性能,从而保证工效效率。其中,电压质量是很重要的一个方面,不单对用户生产、生活、工作有重大影响,对整个电网的安全稳定经济运行也有着至关重要的作用。 与电压质量息息相关的就是无功电源,无功不足,会使得系统的电压幅值降低,对整个电网来说,电压过低可能引起电压崩溃,进而使系统瓦解,造成负荷大幅流失;对单个元件而言,电压的降低可能使其无法运行在最佳工况,同时造成电能损耗增大,甚至可能损坏设备,同时输电线路在同等条件下,电压越低传输的电能就越小。因此,必须保证无功电源的供应。同时,为了确保电网经济运行与用户的用电正常,又必须减小无功功率的流动,因此,无功补偿的基本原则是就地补偿。即在变电站及用户负荷处,将一定量的电容器串联、并联在一起,形成电容组,使其达到一定的容量、满足一定的电压要求,补偿系统无功、调节该节点电压。 1电容器组接线方式的决定因素 电容器通常是将若干元件封装在一铁壳内,构成电容器单元,再

由各单元先并后联,封装在铁箱内组成的。 当电容器组所接入电网的电压等级、容量要求确定以后,接线方式的选择则关系到了电容器组的安全性、可靠性以及经济性。决定接线方式的主要因素包括以下几个方面。 1.1受耐爆容量限制 电容器组在运行过程中,若其中某个电容器击穿短路,这个电容器将承受来自其自身及其他并联10KV电容器保护组的放电。为防止故障元件受放电能量过大冲击,导致电容元件爆炸,必须限制同一串联段上的并联台数,即有所谓的最大并联台数问题。可以通过减少并联数与增大串联段数的方法,来降低冲击故障电容器的放电能量。 1.2接线方式与设备不配套的限制 20世纪90年代末至21世纪初,由于工艺上的改进,使电力电容器的介质,结构发生改变,普遍采用了全膜电容器。电容器的容量越来越大,因此派生出了很多新的结构与接线方式。同时,在一段时间内,由于缺乏较高的 66kV电压等级的放电线圈,致使其66KV电容器保护测控装置选择及相应接线方式的应用受到限制,因此使相关接线方式适用范围受到了限制。由于这种不配套的限制,导致该时期电容器运行故障明显上升。经过阵痛之后,对配套设备的研究也跟上技术的研发进度,因此,这种限制现在基本消除。 1.3与应用的场合有关 在电力企业中,多采用星形接法,在工矿企业变电所中多采用三

并联电容器设计要求规范

并联电容器装置设计规范(GB50227-95) 第一章总则 第1.0.1条为使电力工程的并联电容器装置设计贯彻国家技术经济政策, 做到安全可靠、技术先进、经济合理和运行检修方便,制订本规范. 第1.0.2条本规范适用于220KV及以下变电所、配电所中无功补偿用三相交流高压、低压并联电容器装置的新建、扩建工程设计. 第1.0.3条并联电容器装置的设计, 应根据安装地点的电网条件、补偿要求、环境状况、运行检修要求和实践经验,确定补偿容量、选择接线、保护与控制、布置及安装方式. 第1.0.4条并联电容器装置的设备选型, 应符合国家现行的产品标准的规定. 第1.0.5条并联电容器装置的设计,除应执行本规范的规定外,尚应符合国家现行的有关标准和规范的规定. 第二章-1 术语 1.高压并联电容器装置 (installtion of high voltage shunt capacitors): 由高压并联电容器和相应的一次及二次配套设备组成, 可独立运行或并联运行的装置. 2.低压并联电容器装置 (installtion of low voltage shunt capacitors): 由低压并联电容器和相应的一次及二次配套元件组成, 可独立运行或并联运行的装置. 3.并联电容器的成套装置 (complete set of installation for shunt capacitors): 由制造厂设计组装设备向用户供货的整套并联电容器装置. 4.单台电容器(capacitor unit): 由一个或多个电容器元件组装于单个外壳中并引出端子的组装体. 5.电容器组(capacitor bank): 电气上连接在一起的一群单台电容器. 6.电抗率(reactance ratio): 串联电抗器的感抗与并联电容器组的容抗之比,以百分数表示.

并联电容器补偿装置基础知识

并联电容器补偿装置基本知识 无功补偿容量计算的基本公式: Q = P (tg φ1——tg φ2) =P( 1cos 1 1cos 12 2 12---?? ) tg φ1、tg φ2——补偿前、后的计算功率因数角的正切值 P ——有功负荷 Q ——需要补偿的无功容量 并联电容器组的组成 1.组架式并联电容器组:并联电容器、隔离开关(接地开关或隔离带接地)、放电线圈、串联电抗器、氧化锌避雷器、并联电容器专用熔断器、组架等。 2.集合式并联电容器组(无容量抽头):并联电容器、隔离开关(接地开关或隔离带接地)、放电线圈、串联电抗器、氧化锌避雷器、组架等。 并联电容器支路串接串联电抗器的原因: 变电所中只装一组电容器时,一般合闸涌流不大,当母线短路容量不大于80倍电容器组容量时,涌流将不会超过10倍电容器组额定电流。可以不装限制涌流的串联电抗器。 由于现在系统中母线的短路容量普遍较大,且变电所同时装设两组以上的并联电容器组的情况较多,并联电容器组投入运行时,所受到的合闸涌流值较大,因而,并联电容器组需串接串联电抗器。 串联电抗器的另一个主要作用是当系统中含有高次谐波时,装设并联电容器装置后,电容器回路的容性阻抗会将原有高次谐波含量放大,使其超过允许值,这时应在电容器回路中串接串联电抗器,以改变电容器回路的阻抗参数,限制谐波的过分放大。 串联电抗器电抗率的选择 对于纯粹用于限制涌流的目的,串联电抗器的电抗率可选择为(0.1~1)%即可。 对于用于限制高次谐波放大的串联电抗器。其感抗值的选择应使在可能产生的任何谐波下,均使电容器回路的总电抗为感性而不是容性,从而消除了谐振的可能。电抗器的感抗值按下列计算: X L =K X C n 2 式中 X L ——串联电抗器的感抗,Ω; X C ——补偿电容器的工频容抗, Ω;

2021版电力电容器的维护与运行管理

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 2021版电力电容器的维护与运行 管理

2021版电力电容器的维护与运行管理导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 电力电容器是一种静止的无功补偿设备。它的主要作用是向电力系统提供无功功率,提高功率因数。采用就地无功补偿,可以减少输电线路输送电流,起到减少线路能量损耗和压降,改善电能质量和提高设备利用率的重要作用。现将电力电容器的维护和运行管理中一些问题,作一简介,供参考。 1电力电容器的保护 (1)电容器组应采用适当保护措施,如采用平衡或差动继电保护或采用瞬时作用过电流继电保护,对于3.15kV及以上的电容器,必须在每个电容器上装置单独的熔断器,熔断器的额定电流应按熔丝的特性和接通时的涌流来选定,一般为1.5倍电容器的额定电流为宜,以防止电容器油箱爆炸。 (2)除上述指出的保护形式外,在必要时还可以作下面的几种保护: ①如果电压升高是经常及长时间的,需采取措施使电压升高不超

电力电容器保护原理解释

电力电容器保护原理解 释 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

常见电力电容器保护类型: 电容器保护 1 保护熔丝 现代电容器组的每台电容器上都装有单独的熔丝保护,这种熔丝结构简单,安装方便,只要配合得当,就能够迅速将故障电容器切除,避免电容器的油箱发生爆炸,使附近的电容器免遭波及损坏。此外,保护熔丝还有明显的标志,动作以后很容易发现,运行人员根据标志便可容易地查出故障的电容器,以便更换。 2 过电流保护 (电流取自线路TA) 过电流保护的任务,主要是保护电容器引线上的相间短路故障或在电容器组过负荷运行时使开关跳闸。电容器过负荷的原因,一是运行电压高于电容器的额定电压,另一种情况是谐波引起的过电流。 为避免合闸涌流引起保护的误动作,过电流保护应有一定的时限,一般将时限整定到0.5s以上就可躲过涌流的影响。 3 不平衡电压保护 (电压取自放电TV二次侧所构成的开口三角型) 电容器发生故障后,将引起电容器组三相电容不平衡。电容器组的各种主保护方式都是从这个基本点出发来确定的。 根据这个原理,国内外采用的继电保护方式很多,大致可以分为不平衡电压和不平衡电流保护两种。这两种保护,都是利用故障电容器被切

除后,因电容值不平衡而产生的电压和电流不平衡来启动继电器。这些保护方式各有优缺点,我们可以根据需要选择。 单星形接线的电容器组目前国内广泛采用开口三角电压保护。 对于没有放电电阻的电容器,将放电线圈的一次侧与电容器并联,二次侧接成开口三角形,在开口处连接一只低整定值的电压继电器,在正常运行时,三相电压平衡,开口处电压为零,当电容器因故障被切除后,即出现差电压U0,保护采集到差电压后即动作掉闸。 4 不平衡电流保护 这种保护方式是利用故障相容抗变化后,电流变化与正常相电流间形成差电流,来启动过电流继电器,以达到保护电容器组的目的。常见的不平衡电流保护的方式有以下两种: 4.1 双星形中性点间不平衡电流保护 保护所用的低变比TA串接于双星型接线的两组电流器的中性线上,在正常情况下,三相阻抗平衡,中性点间电压差为零,没有电流流过中性线。如果某一台或几台电容器发生故障,故障相的电压下降,中性点出现电压,中性线有不平衡电流I0流过,保护采集到不平衡电流后即动作掉闸。

电力电容器的保护原理及技术要求

电力电容器保护原理技术要求 (1)电容器组应采用适当保护措施,如采用平衡或差动保护或采用瞬时作用过电流继电保护,对于3.15kV及以上的电容器,必须在每个电容器上装置单独的熔断器,熔断器的额定电流应按熔丝的特性和接通时的涌流来选定,一般为1.5倍电容器的额定电流为宜,以防止电容器油箱爆炸。 (2)除上述指出的保护形式外,在必要时还可以作下面的几种保护: ①如果电压升高是经常及长时间的,需采取措施使电压升高不超过1.1倍额定电压。 ②用合适的电流自动开关进行保护,使电流升高不超过1.3倍额定电流。 ③如果电容器同架空线联接时,可用合适的避雷器来进行大气过电压保护。 ④在高压网络中,短路电流超过20A时,并且短路电流的微机保护装置或熔丝不能可靠地保护对地短路时,则应采用单相短路保护装置。 (3)正确选择电容器组的保护方式,是确保电容器安全可靠运行的关键,但无论采用哪种保护方式,均应符合以下几项要求: ①保护装置应有足够的灵敏度,不论电容器组中单台电容器内部发生故障,还是部分元件损坏,电容器保护装置都能可靠地动作。

②能够有选择地切除故障电容器,或在电容器组电源全部断开后,便于检查出已损坏的电容器。 ③在电容器停送电过程中及电力系统发生接地或其它故障时,保护装置不能有误动作。 ④保护装置应便于进行安装、调整、试验和运行维护。 ⑤消耗电量要少,运行费用要低。 (4)电容器不允许装设自动重合闸装置,相反应装设无压释放自动跳闸装置。主要是因电容器放电需要一定时间,当电容器组的开关跳闸后,如果马上重合闸,电容器是来不及放电的,在电容器中就可能残存着与重合闸电压极性相反的电荷,这将使合闸瞬间产生很大的冲击电流,从而造成电容器外壳膨胀、喷油甚至爆炸。 电容器组保护: 开口三角保护,开口三角形保护标准名称为零序电压保护,多用于单星形接线 (对于没有放电电阻的电容器,将放电线圈的一次侧与电容器并联,二次侧接成开口三角形,在开口处连接一只低整定值的电压继电器,在正常运行时,三相电压平衡,开口处电压为零,当电容器因故障被切除后,即出现差电压U0,保护装置采集到差电压后即动作掉闸。 并联电容器组的保护及应用

低压自愈式并联电容器试验大纲

BZMJ0.45-40-3低电压自愈式并联电容器试验大纲 0ZTR.102.014 浙江正泰电器股份有限公司 2013-3-27

BZMJ0.45-40-3低电压自愈式并联电容器技术条件 0ZTR.102.014 1 电容测量和容量计算 按GB/T 12747.1-2004第7章执行。电容器的实测电容与其额定值之间的偏差应在-5%~+10%范围内。 2 损耗角正切tanδ 按GB/T 12747.1-2004第8章执行。电容器在额定频率、额定电压下,20℃时的损耗角正切tanδ应不大于0.002。 3端子间电压试验 按GB/T 12747.1-2004第9.2条执行。电容器两个端子间的电介质应能承受2.15U N的交流试验电压,历时10s。 4端子与外壳间电压试验(干试) 按GB/T 12747.1-2004第10.2条执行。电容器端子与外壳间应能承受3kV的交流试验电压,历时1min。 5 内部放电器件试验 按GB/T 12747.1-2004第11章执行。电容器内装有放电电阻,该放电电阻应能在3min内将电容器的剩余电压自2U N降到75V以下。 6密封性试验 按GB/T 12747.1-2004第12章执行。电容器通体加热到75℃,保持8小时,应无渗漏现象。 7 热稳定性试验 按GB/T 12747.1-2004第13章执行。单元之间间距100mm。试验温度45℃。8高温下电容器损耗角正切测量 按GB/T 12747.1-2004第14章执行,损耗角正切tanδ应不大于0.002。 9放电试验 按GB/T 12747.1-2004第16章执行。试验电压为2U N的直流电压,10min中内进行5次。在试验后的5min内进行一次端子间耐压试验,历时2s。 10自愈性试验 按GB/T 12747.1-2004第18章执行。 11老化试验 按GB/T 12747.1-2004第17章执行。 12破坏试验 按GB/T 12747.1-2004第19章执行。 编制: 校核: 批准:

电力电容器保护原理解释修订稿

电力电容器保护原理解 释 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

常见电力电容器保护类型: 电容器保护 1 保护熔丝 现代电容器组的每台电容器上都装有单独的熔丝保护,这种熔丝结构简单,安装方便,只要配合得当,就能够迅速将故障电容器切除,避免电容器的油箱发生爆炸,使附近的电容器免遭波及损坏。此外,保护熔丝还有明显的标志,动作以后很容易发现,运行人员根据标志便可容易地查出故障的电容器,以便更换。 2 过电流保护 (电流取自线路TA) 过电流保护的任务,主要是保护电容器引线上的相间短路故障或在电容器组过负荷运行时使开关跳闸。电容器过负荷的原因,一是运行电压高于电容器的额定电压,另一种情况是谐波引起的过电流。 为避免合闸涌流引起保护的误动作,过电流保护应有一定的时限,一般将时限整定到以上就可躲过涌流的影响。 3 不平衡电压保护 (电压取自放电TV二次侧所构成的开口三角型) 电容器发生故障后,将引起电容器组三相电容不平衡。电容器组的各种主保护方式都是从这个基本点出发来确定的。 根据这个原理,国内外采用的继电保护方式很多,大致可以分为不平衡电压和不平衡电流保护两种。这两种保护,都是利用故障电容器被切除后,因电容值不平衡而产生的电压和电流不平衡来启动继电器。这些保护方式各有优缺点,我们可以根据需要选择。 单星形接线的电容器组目前国内广泛采用开口三角电压保护。 对于没有放电电阻的电容器,将放电线圈的一次侧与电容器并联,二次侧接成开口三角形,在开口处连接一只低整定值的电压继电器,在正常运行时,三相电压平衡,开口处电压为零,当电容器因故障被切除后,即出现差电压U0,保护采集到差电压后即动作掉闸。 4 不平衡电流保护 这种保护方式是利用故障相容抗变化后,电流变化与正常相电流间形成差电流,来启动过电流继电器,以达到保护电容器组的目的。常见的不平衡电流保护的方式有以下两种: 双星形中性点间不平衡电流保护 保护所用的低变比TA串接于双星型接线的两组电流器的中性线上,在正常情况下,三相阻抗平衡,中性点间电压差为零,没有电流流过中性线。如果某一台或几台电容器发生故障,故障相的电压下降,中性点出现电压,中性线有不平衡电流I0流过,保护采集到不平衡电流后即动作掉闸。

电力电容器常见故障的探析

电力电容器常见故障的探析 发表时间:2018-10-01T09:55:42.983Z 来源:《电力设备》2018年第16期作者:赵昕 [导读] 摘要:电容器作为电力系统的无功补偿装置,对系统的安全稳定运行起着非常重要的作用。 (国网冀北电力有限公司唐山供电公司河北唐山 063000) 摘要:电容器作为电力系统的无功补偿装置,对系统的安全稳定运行起着非常重要的作用。但是,由于本身质量问题、人为因素及外在因素的原因,电容器故障时常发生,影响电力系统的安全生产。本文结合现场实际,提出电容器常见的故障类型,并总结故障发生原因以及应采取的相应措施。 关键词:电力电容器;故障;诊断;维护 在泵站的机电设备中,电力电容器是一种静止的无功补偿设备。它的主要作用是向供电系统提供无功功率,达到提高系统的功率因数。电容器在电力系统中对于提高电能质量还有十分重要的作用, 它是保障电力系统经济安全运行的重要手段, 所以电容器的安全运行和故障处理非常重要。在长期的机电运行中, 因为运行环境、人为因素等方面的原因, 电容器故障时常发生发, 严重地威胁着电力系统的安全运行。从电容器损坏的形态来分, 以油箱鼓肚和渗漏油情况居多,其次为内部故障熔丝动作、绝缘不良、爆炸等。 一、日常运行中的电力电容器的维护和保养 对运行中的电力电容器组应进行日常巡视检查、维护和保养,定期停电检查。(1)电容器应有值班人员, 应做好设备运行情况记录。(2)对运行的电容器组的外观巡视检查,应按规程规定每天都要进行,如发现箱壳膨胀应停止使用,以免发生故障。(3)检查电容器组每相负荷可用安培表进行。(4)电容器组投入时环境温度不能低于-40℃,运行时环境温度1h,平均不超过+40℃,2h平均不得超过+30℃,及一年平均不得超过+20℃。如超过时,应采用人工冷却(安装风扇)或将电容器组与电网断开。(5)安装地点的温度检查和电容器外壳上最热点温度的检查可以通过水银温度计等进行, 并且做好温度记录(特别是夏季)。(6)电容器的工作电压和电流,在使用时不得超过1.1倍额定电压和1.3倍额定电流。(7)接上电容器后,将引起电网电压升高,特别是负荷较轻时,在此种情况下,应将部分电容器或全部电容器从电网中断开。(8)电容器套管和支持绝缘子表面应清洁、无破损、无放电痕迹,电容器外壳应清洁、不变形、无渗油,电容器和铁架子上面不应积满灰尘和其他脏东西。(9)必须仔细地注意接有电容器组的电气线路上所有接触处(通电汇流排、接地线、断路器、熔断器、开关等) 的可靠性。因为在线路上一个接触处出了故障, 甚至螺母旋得不紧, 都可能使电容器早期损坏和使整个设备发生事故。(10)如果电容器在运行一段时间后,需要进行耐压试验,则应按规定值进行试验。(11)对电容器电容和熔丝的检查,每个月不得少于一次。在一年内要测电容器的tg2~3次,目的是检查电容器的可靠情况, 每次测量都应在额定电压下或近于额定值的条件下进行。 二、电力电容器在运行中的故障处理 (1)电容器喷油、爆炸着火时的处理。当电容器喷油、爆炸着火时,应立即断开电源,并用砂子或干式灭火器灭火。此类事故多是由于系统内、外过电压,电容器内部严重故障所引起的。为了防止此类事故发生,要求单台熔断器熔丝规格必须匹配,熔断器熔丝熔断后要认真查找原因, 电容器组不得使用重合闸,跳闸后不得强送电,以免造成更大损坏的事故。 (2)电容器的断路器跳闸的处理。电容器的断路器跳闸, 而分路熔断器熔丝未熔断时。应对电容器放电3min后,再检查断路器、电流互感器、电力电缆及电容器外部等情况。若未发现异常,则可能是由于外部故障或母线电压波动所致, 并经检查正常后,可以试投,否则应进一步对保护做全面的通电试验。通过以上的检查、试验, 若仍找不出原因, 则应拆开电容器组,并逐台进行检查试验。但在未查明原因之前, 不得试投运。 (3)当电容器的熔断器熔丝熔断的处理。当电容器的熔断器熔丝熔断的时, 应向值班调度员汇报, 待取得同意后, 再断开电容器的断路器。在切断电源并对电容器放电后, 先进行外部检查, 然后用绝缘摇表摇测极间及极对地的绝缘电阻值。如未发现故障迹象,可换好熔断器熔丝后继续投入运行。如经送电后熔断器的熔丝仍熔断,则应退出故障电容器, 并恢复对其余部分的送电运行。 (4 )处理故障电容器应注意的安全事项。处理故障电容器应在断开电容器的断路器,拉开断路器两则的隔离开关,并对电容器组经放电电阻放电后进行。电容器组经放电电阻( 放电变压器或放电电压互感器)放电以后,由于部分残存电荷一时放不尽,仍应进行一次人工放电。放电时先将接地线接地端接好, 再用接地棒多次对电容器放电,直至无放电火花及放电声为止,然后将接地端固定好。由于故障电容器可能发生引线接触不良、内部断线或熔丝熔断等,因此有部分电荷可能未放尽,所以检修人员在接触故障电容器之前, 还应戴上绝缘手套, 先用短路线将故障电容器两极短接,然后方动手拆卸和更换。电容器在变电所各种设备中属于可靠性比较薄弱的电器,它比同级电压的其他设备的绝缘较为薄弱,内部元件发热较多,而散热情况又欠佳,内部故障机会较多,制造电力电容器内部材料的可燃物成分又大, 所以运行中极易着火。因此, 对电力电容器的运行应尽可能地创造良好的低温和通风条件。 (5)环境温度问题。电容器周围环境的温度不可太高, 也不可太低。如果环境温度太高, 电容工作时所产生的热就散不出去; 而如果环境温度太低, 电容器内的油就可能会冻结, 容易电击穿。按电容器有关技术条件规定, 电容器的工作环境温度一般以40℃为上限。我国大部分地区的气温都在这个温度以下, 所以通常不必采用专门的降温设施。如果电容器附近存在着某种热源, 有可能使室温上升到40℃以上, 这时就应采取通风降温措施, 否则应立即切除电容器。电容器环境温度的下限应根据电容器中介质的种类和性质来决定。YY型电容器中的介质是矿物油, 即使是在- 45℃以下, 也不会冻结, 所以规定- 40℃为其环境温度的下限。而YL 型电容器中的介质就比较容易冻结,所以环境温度必须高于- 20℃。 (6)常见故障处理及预防措施 (1)当电容器发生放电、爆炸等着火现象时,首先应该切断电源,再进行灭火处理。 (2)当电容器相应的断路器发生跳闸现象时,首先要对电容器进行充分放电,然后再检查相关设备,如果检查没有异常,则可能是电网电压的波动所致,可尝试投运,若投运不正常,则可能是电容器内部发生故障,检查试验每只电容器,直至找出故障原因。 (3)发生熔丝熔断情况时,首先要对电容器充分放电,然后更换熔丝,检查相应设备无其他异常现象后可以试投运,如果试投运不成功,则停电后对每一只电容器检查试验。 (4)电容器运维时应该注重加强巡视,定期进行停电检查工作,主要检查外观情况、是否有鼓包、渗漏油、熔丝异常以及闪络等现象,如有以上情况应及时停电组织处理。

电力电容补偿柜的运行及维护

电力电容补偿柜的运行及维护电力电容补偿柜是一种静止的无功补偿设备。它的主要作用可以减少输电线路输送电流,起到减少线路能量损耗和压降,改善电能质量和提高设备利用率的重要作用。但电力电容在工作过程中,由于大电流经常性投入和退出,化学及物理相互作用,会导致补偿电容发生爆炸和火灾等风险,为减少此类风险,特规范运行及维护。 一、电力补偿电容的运行 1、环境温度 按电容器有关技术条件规定,电容器的工作环境温度不得超过40°C。 2、工作温度 电容器外壳的温度是在介质温度与环境温度之间,一般为50?60C,不得超过60C。 3、工作电压 电网电压一般应低于电容器本身的额定电压,最高不得超过其额定电压10%但应注意:最高工作电压和最高工作温度不可同时出现。 4、工作电流 电容器的工作电流不得超过额定电流的 1.3倍。超过此值应退出运行。三相电流应平衡,各相相差应不大于 10%;三相电容值的误差不应超过一相总电容值的5% 5、变压器空载时,电容器必须退出运行。

二、电力补偿电容的巡视和操作 1、每班值班人员需对电容器进行一次巡视,并做好设备运 行情况记录。 巡视内容。 ①电容器运行是否放电声、鼓胀、渗油现象;套管绝缘 子应清洁,无裂纹、破损;外壳接地良好。 ②室内环境温度,电容器外壳温度。 ③电容器的工作电压和工作电流。

④功率因数是否在规范范围内。 2、操作 ①在正常情况下,低压配电停电操作时,应先断开电容器 组断路器后,再拉开各路出线断路器。恢复送电时应与此顺序相反。 ②事故情况下,系统无电后,必须将本系统中的电容器组 的断路器断开。 ③电容器组断路器跳闸后不准强送电。保护熔丝熔断后, 未经查明原因之前,不准更换熔丝送电。 ④禁止断路器带电容器合闸。电容器组再次合闸时,必须 在断路器断开5分钟之后才可进行。 3、发生下列故障之一时,应紧急退出电容 ①接点严重过热甚至熔化。 ②套管/绝缘子闪络放电。 ③壳膨胀变形。 ④电容器组或放电装置声音异常。 ⑤电容器漏液、冒烟、起火或爆炸。 三、维护保养 1、月保养 ①柜体。表面清洁、无损伤。 ②主、分回路熔断器。无烧焦、无破损、接触正常、熔断 指示无动作。 ③接触器。接点无变色及污垢,外部无破损,动作正常。 ④电容器、电抗器。外观无变形变色;导线、接线端子, 无烧焦、无破损、无松脱,接触良好。 ⑤功率因数控制器。显示正常,无报警信号。 ⑥控制线路。无破损、无断线、接线端子紧固。 ⑦按钮开关、指示灯。动作正常。 2、年度需对电容绝缘电阻做检测,绝缘电阻不得小于100兆欧姆。 ①测量方法 a、测量部位:并联电容器只测量两极对外壳的绝缘电 阻; b、测量接线:兆欧表的L端子接被试设备的高压端,E

相关文档
最新文档