牛顿迭代法文献综述

牛顿迭代法文献综述
牛顿迭代法文献综述

“牛顿迭代法”最新进展文献综述牛顿法是一种重要的迭代法,它是逐步线性化的方法的典型代表。牛顿迭代法又称为牛顿-拉夫逊方法,它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。另外该方法广泛用于计算机编程中。

介绍一下牛顿迭代法研究的前沿进展,1992年南京邮电学院基础课部的夏又生写的一篇题名一类代数方程组反问题的牛顿迭代法,对一类代数方程组反问题提出了一个可行的迭代解法。从算法上看,它是一种解正问题—迭代—解正问题迭代改善的求解过程。湖南师范大学的吴专保;徐大发表的题名堆浸工艺中浸润面的非线性问题牛顿迭代方法,为了研究堆浸工艺的机理,用牛顿迭代公式寻求浸润面的非线性方程的数值解,经过14次迭代的误差达到了,说明此算法收敛有效。浙江大学电机系的林友仰发表的牛顿迭代法在非线性电磁场解算中的限制对非线性电磁场解算中的限制做了分析,求解非线性方程组时迭代法是不可避免的。牛顿—拉斐森迭代法由于它的收敛速度快常被优先考虑。应用这个方法的主要问题是求雅可比矩阵。因为雅可比矩阵元素的计算非常费时。然而,本文要说明的是当利用以三角形为单元的有限元法求解非线性方程组时,应用牛顿法其雅可比矩阵容易求得,并且它保持了原系数的对称性和稀疏性,因而节省了时间。与此相反,若在差分法中应用牛顿迭代,并且按习惯用矩形网格进行剖分,则雅可比阵的计算很费时,而且不再保持原有对称性,这就使得存贮量和计算时间大为增加。南株洲工学院信息与计算科学系的吕勇;刘兴国发表的题名为牛顿迭代法加速收敛的一种修正格式,主要内容牛顿迭代法是求解非线性方程的一种重要的数值计算方法,在通常情况下,它具有至少平方收敛。本文利用文献[4]所建立的迭代格式xn+1=xn-αf(xfn)(x+n)f′(xn),对迭代格式中的参数α的讨论,实现了牛顿迭代法加速收敛的一种修正格式。

O5年江南大学理学院张荣和他的伙伴薛国民发表了一篇名为修正的三次收敛的牛顿迭代法的论文,给出了牛顿迭代法的两种修正形式,证明了它们都是三阶收敛的,给出的相互比较的数值例子有力地说明了这一点。哈尔滨工程大学水声工程学院的王大成和雷亚辉一块和丁士圻在07年做了一篇题名基于牛顿迭代法的频不变响应阵设计的文献,为了避免空间指向性随频率变化造成发射或接收信号失真,目标检测与分类用主动声呐常采用频不变响应阵。频域加权矢量的计算是设计频不变响应阵的关键技术。首先根据基阵对空间信号的接收模型给出频不变响应阵的定义,接着从描述基阵实际空间响应和预成空间响应之间差异的数学表达式出发,提出了频不变指数的概念,进而结合所研究问题的目标函数特性给出了利用牛顿迭代法获得实现频不变响应阵所需频域加权矢量的新算法。针对均匀线阵和圆弧阵所作的计算机仿真结果表明,新算法不但收敛速度快、计算精度高,而且不受基阵类型和阵元指向性的限制。

张子贤河北工程技术高等专科学校在93年发表一篇题名牛顿迭代法在内部回收率推求中的应用主要内容是<正> 在水利工程经济分析和财务分析中,内部回收率是《水利经济计算规范》中规定的方法之一。所谓内部回收率是指工程内在的回收投资的能力或内在的取得报酬的能力。也就是要计算出什么利率下,该工程在整个经济计算期内的效益现值与该工程的全部投资、年运行费用现值相等。湖南师范大学的吴专保,徐大为了研究堆浸工艺的机理,用牛顿迭代公式寻求浸润面的非线性方程的数值解,经过14次迭代的误差达到了,说明此算法收敛有效,发表了堆浸工艺中浸润面的非线性问题牛顿迭代方法。85年浙江大学电机系的林悠扬发表题名牛顿迭代法在非线性电磁场解算中的限制,在文献中讨论了求解非线性方程组时迭代法是不可避免的。牛顿—拉斐森迭代法由于它的收敛速度快常被优先考虑。应用这个方法的主要问题是求雅可比矩阵。因为雅可比矩阵元素的计算非常费时。然而,本文要说明的是当利用以三角形为单元的有限元法求解非线性方程组时,应用牛顿法其雅可比矩阵容易求得,并且它保持了原系数的对称性和稀疏性,因而节省了时间。与此相反,若在差分法中应用牛顿迭代,并且按习惯用矩形网格进行剖分,则雅可比阵的计算很费时,而且不再保持原有对称性,这就使

得存贮量和计算时间大为增加。

08年奥运会中北京化工大学数学系的余明明和吴开谡,张妍发表牛顿迭代法与几种改进格式的效率指数,主要研究牛顿迭代、牛顿弦截法以及它们的六种改进格式的计算效率,计算了它们的效率指数,得到牛顿迭代、改进牛顿法、弦截法和改进弦截法(即所谓牛顿迭代的P.C格式)、二次插值迭代格式、推广的牛顿迭代法、调和平均牛顿法和中点牛顿法的效率指数分别为0.347/n、0.3662/n、0.4812/n、0.4812/n、0.347/n、0.3662/n、0.3662/n、0.3662/n.我们的结果显示,利用抛物插值多项式推出的迭代格式和改进弦截法并没有真正提高迭代的计算效率。他们还改进弦截法与牛顿弦截法等价。牛顿迭代法在日常生活中应用非常广泛,许多论文介绍了这种方法,利用这种方法解决了很多实际问题,多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。为此我们在学习中要体会这种方法的重要性。

牛顿迭代法是以微分为基础的,微分就是用直线来代替曲线,由于曲线不规则,那么我们来研究直线代替曲线后,剩下的差值是不是高阶无穷小,如果是高阶无穷小,那么这个差值就可以扔到不管了,只用直线就可以了,这就是微分的意义。牛顿法是牛顿在17世纪提出的一种求解方程f(x)=0.

多数方程不存在求根公式,从而求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。牛顿迭代法是取x0之后,在这个基础上,找到比x0更接近的方程的跟,一步一步迭代,从而找到更接近方程根的近似跟。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。另外该方法广泛用于计算机编程中。

罗佑新,李晓峰,罗烈雷,廖德岗组成小组在07年发表一篇题名混沌映射牛顿迭代法与平面并联机构正解研究,主要研究了自然科学与工程中的许多问题都可以转化为非线性方程组的求解问题,牛顿迭代法是重要的一维及多维的迭代技术,其迭代本身对初始点非常敏感。运用混沌映射xn+1=cos(2/xn)产生初始点,首次提出了基于混沌映射的牛顿迭代法求解非

线性方程组的新方法。对3-RPR平面并联机构正解问题进行了研究,给出了算例。该方法简单、实用,为实际机构的设计提供了多种选择方案,为机构学设计提供了全新的方法。北京联合大学应用文理学院的廖章钜写了牛顿迭代法与剖分相结合的一种多项式求根算法,主要解决了牛顿迭代法是多项式求根的一种效率很高的算法,但是它有两个缺点:第一每次只能求出一个ε-根,求其它根时若采用降次处理又会产生精度降低的问题。第二有时会遇到由于初始点选择不当而使算法失效。如果将牛顿迭代法与剖分相结合,可以产生一个新的多项式求根算法。经过对110个10次到20次多项式的求根检验发现:1)一次求根率(求出根数与应有根数之比)达到88%以上;2)已经求出的每一个根的平均迭代次数K(d)=c(d)·d,其中d为多项式的次数,c(d)<14;3)在复数域内求一个根的计算量为O(d3)次实数乘法。中国科学院地理信息产业发展中心的张立立发表对牛顿迭代法进行普通多圆锥投影的逆变换算法的改进,研究普通多圆锥投影坐标逆变换可以使用牛顿迭代法来求解超越方程。但是使用杨启和设计的牛顿迭代法只能对多圆锥投影坐标的部分区域内的数据进行逆变换,不能求解全球范围内的经纬度。本文对杨启和设计的牛顿迭代法的初值确定进行了改进,可以对全球范围内的数据进行逆变换,利于程序设计和实现。周新年,罗仙仙,罗桂生,郑丽凤,官印生从悬链线的标准线形出发 ,推导悬索无荷线形及拉力的计算式 ;通过建立状态协调方程 ,导出有荷水平拉力与有荷挠度的关系 ,运用牛顿迭代的数值解法求解悬索有荷线形与拉力。题名为牛顿迭代法悬索线形与拉力的研究。

廖章钜发表题名与剖分相结合的牛顿迭代法使牛顿迭代法与剖分相结合所产生的新算法显示出: l.几乎可以求出一元复n次多项式的所有根。2.可以求出二元n次多项式的等位线。南京师范大学李贤成发表题名3000m障碍跑场地设计的一种新方案——牛顿迭代法在场地设计中的应用,本文用牛顿迭代法求得3000m障碍跑第二弯道所需设计线应对圆心角的弧度和圆的半径,给障碍跑场地的设计和测画提供了理论依据。兰州工业高等专科学校机械工程系,兰石总厂石化公司的罗文翠,王玉虎写了一篇基于牛顿迭代法计算圆弧齿轮传动公法线长度的文献,这篇文献主要讲述了以圆弧齿轮传动及

其测量尺寸公法线长度的计算原理和公式为依据 ,以 6 7型单圆弧齿轮为例 ,提出利用牛顿迭代法计算圆弧齿轮公法线的原理、求解方程流程图、迭代方程及编程 ,比手工计算大大降低了工作量 ,而且精度也得到了很好保证。宁波高等专科学校电子系洪立给出了牛顿迭代的广义收敛条件,并在Banach空间中建立了相应的收敛定理.用自己题名为牛顿迭代的收敛条件的文章说明了此收敛条件比SmaleS在1986年的结果更佳。武汉化工学院自动化系杨帆,郭德文用题名为“牛顿迭代法”构造高阶 M -J分形图阐述了用“牛顿迭代法”构造高阶 M J分形图的原理、方法及分形图特征 ;并用 VB编制了分形演示程序软件包 ;用计算机模拟了大量分形图。

沈阳化工学院邵国万,刘玉芹发表基于牛顿迭代法的移动机器人编队算法,该文借鉴滚动规划的思想,探究了全局环境未知,障碍物分散条件下移动机器人系统的编队问题。文中提出的基于牛顿迭代法的移动机器人编队算法,将机器人系统的编队问题分解为各个机器人自主移向预定目标的过程,利用实时探得的局部环境信息,不断修整预定目标而完成编队。该算法计算量小,实时性强,不受编队形状所限。仿真结果表明了该算法的有效性。

兰州工业高等专科学校机械系,兰州兰石国民油井工程公司,兰州工业高等专科学校机械系,电源车辆研究所的罗文翠,王玉虎,刘哲,于海滨共同发表题名利用牛顿迭代法计算双圆弧齿轮传动公法线长度,以双圆弧齿轮传动及其测量尺寸公法线长度的计算原理和公式为依据,以 81型双圆弧齿轮为例,提出利用牛顿迭代法计算双圆弧齿轮公法线长度的原理、流程及迭代方程,与手工计算相比大大降低了工作量,而且精度也得到了很好的保证。燕山大学机械工程学院秦泗吉,李洪波,朱清香,杨煜生发表刚塑性有限元牛顿迭代解法收敛性分析及改进方法说明了刚度阵迭代算式中非线性项含有应变速率倒数,易使刚度阵产生畸变,迭代难以收敛 对此,提出了在使迭代算式仍满足牛顿法的要求的情况下,逐步增加非线性项对刚度阵贡献的方法 经编程计算验证,该方法可放宽对初始近似的要求,较易得到收敛解 。

牛顿迭代法具有平方收敛的速度,所以在迭代过程中只要迭代几次就会得到很精确的解。这是牛顿迭代法比简单迭代法优越的地方。选定的初值要接近方程的解,否则有可能的不到收敛的结果。再者,牛顿迭代法计算量比

较大。因每次迭代除计算函数值外还要计算微商值。

牛顿迭代法文献综述

“牛顿迭代法”最新进展文献综述牛顿法是一种重要的迭代法,它是逐步线性化的方法的典型代表。牛顿迭代法又称为牛顿-拉夫逊方法,它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。另外该方法广泛用于计算机编程中。 介绍一下牛顿迭代法研究的前沿进展,1992年南京邮电学院基础课部的夏又生写的一篇题名一类代数方程组反问题的牛顿迭代法,对一类代数方程组反问题提出了一个可行的迭代解法。从算法上看,它是一种解正问题—迭代—解正问题迭代改善的求解过程。湖南师范大学的吴专保;徐大发表的题名堆浸工艺中浸润面的非线性问题牛顿迭代方法,为了研究堆浸工艺的机理,用牛顿迭代公式寻求浸润面的非线性方程的数值解,经过14次迭代的误差达到了,说明此算法收敛有效。浙江大学电机系的林友仰发表的牛顿迭代法在非线性电磁场解算中的限制对非线性电磁场解算中的限制做了分析,求解非线性方程组时迭代法是不可避免的。牛顿—拉斐森迭代法由于它的收敛速度快常被优先考虑。应用这个方法的主要问题是求雅可比矩阵。因为雅可比矩阵元素的计算非常费时。然而,本文要说明的是当利用以三角形为单元的有限元法求解非线性方程组时,应用牛顿法其雅可比矩阵容易求得,并且它保持了原系数的对称性和稀疏性,因而节省了时间。与此相反,若在差分法中应用牛顿迭代,并且按习惯用矩形网格进行剖分,则雅可比阵的计算很费时,而且不再保持原有对称性,这就使得存贮量和计算时间大为增加。南株洲工学院信息与计算科学系的吕勇;刘兴国发表的题名为牛顿迭代法加速收敛的一种修正格式,主要内容牛顿迭代法是求解非线性方程的一种重要的数值计算方法,在通常情况下,它具有至少平方收敛。本文利用文献[4]所建立的迭代格式xn+1=xn-αf(xfn)(x+n)f′(xn),对迭代格式中的参数α的讨论,实现了牛顿迭代法加速收敛的一种修正格式。

牛顿迭代法

牛顿迭代法 李保洋 数学科学学院信息与计算科学学号:060424067 指导老师:苏孟龙 摘要:牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法,即牛顿迭代法.迭代法是一种不断用变量的旧值递推新值的过程.跟迭代法相对应的是直接法或者称为一次解法,即一次性解决问题.迭代法又分为精确迭代和近似迭代.“牛顿迭代法”属于近似迭代法,本文主要讨论的是牛顿迭代法,方法本身的发现和演变和修正过程,避免二阶导数计算的Newton迭代法的一个改进,并与中国古代的算法,即盈不足术,与牛顿迭代算法的比较. 关键词:Newton迭代算法;近似求解;收敛阶;数值试验;中国古代数学; 九章算术;Duffing方程;非线性方程;收敛速度;渐进性 0 引言: 迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法或者称为一次解法,即一次性解决问题.迭代法又分为精确迭代和近似迭代.“二分法”和“牛顿迭代法”属于近似迭代法. 迭代算法是用计算机解决问题的一种基本方法.它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值.具体使用迭代法求根时应注意以下两种可能发生的情况: (1)如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制. (2)方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败. 所以利用迭代算法解决问题,需要做好以下三个方面的工作: 1、确定迭代变量.在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量. 2、建立迭代关系式.所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系).迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成. 3、对迭代过程进行控制,在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题.不能让迭代过程无休止地重复执行下去.迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定.对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件. 1牛顿迭代法:

最新整理初二物理《牛顿第一定律》教案

初二物理《牛顿第一定律》教案 实验分析: 三次实验,小车最终都静止,为什么? 三次实验,小车运动的距离不同,这说明什么问题? 小球运动距离的长短跟它受到的阻力有什么关系? 若使小车运动时受到的阻力进一步减小,小车运动的距离将变长还是变短? 根据上面的实验及推理的思想,还可以推理出什么结论? 推理:小球在光滑的阻力为零的表面,将会怎样运动? 实验结论:通过伽利略的实验和科学推理得出“运动的物体,如果受到的阻力为零,它的速度将不会减慢,将以恒定不变的速度永远运动下去。”即作匀速运动。 [微机模拟实验]:简介伽利略理想实验 迪卡儿的补充 如果运动物体不受任何力的作用,不仅速度大小不变,而且运动方向也不变,将沿原来的方向匀速运动下去。 牛顿的成果:补充与概括 师:物体除了运动的以外,还有静止的。那么,静止的物体在没有受到外力作用时,保持什么状态呢?(牛顿补充:将保持静止状态) 师(引导学生概括):我们现在已经有了伽利略的研究成果,又

有了迪卡儿和牛顿的补充,把两者进行一下概括:一切物体在没有受到外力作用时,将如何呢?(对概括出来大致意思的同学给予鼓励) 介绍:牛顿抓住时机,概括总结得出著名的牛顿第一运动定律方法2:学生探究式学习 针对基础较好的学生,可以由学生在老师的指导下自己完成斜面小车实验,根据现象学生分组讨论,明确亚里士多德的观点的问题根源.由学生互相补充确定实验结论。 2.定律分析 定律成立条件:不受外力作用 运动规律:总保持匀速直线运动状态或静止状态。 师(回应课题引入实验):回想我们最开始的.实验,有推力板擦运动,撤去推力板擦停下来,从表面现象上得到的结论运动需要力维持是错误的,但这种现象是千真万确摆在我们面前的,我们如何用牛一的观点正确的解释这个现象呢? 三、巩固练习 1. 一物体放在桌上静止,假若某瞬间撤掉所有的外力,物体将怎么样? 2. 对于牛顿第一定律的看法,下列观点正确的是( ) A.验证牛顿第一定律的实验可以做出来,所以惯性定律是正确的 B.验证牛顿第一定律的实验做不出来,所以惯性定律不能肯

ICA使用牛顿迭代法对FastICA算法经行改进

ICA用牛顿迭代法改进的FastICA算法 ICA算法原理: 独立分量分析(ICA)的过程如下图所示:在信源()st中各分量相互独立的假设下,由观察xt通过结婚系统B把他们分离开来,使输出yt逼近st。 图1-ICA的一般过程 ICA算法的研究可分为基于信息论准则的迭代估计方法和基于统计学的代数方法两大类,从原理上来说,它们都是利用了源信号的独立性和非高斯性。基于信息论的方法研究中,各国学者从最大熵、最小互信息、最大似然和负熵最大化等角度提出了一系列估计算法。如FastICA算法, Infomax算法,最大似然估计算法等。基于统计学的方法主要有二阶累积量、四阶累积量等高阶累积量方法。本实验主要讨论FastICA算法。 1. 数据的预处理 一般情况下,所获得的数据都具有相关性,所以通常都要求对数据进行初步的白化或球化处理,因为白化处理可去除各观测信号之间的相关性,从而简化了后续独立分量的提取过程,而且,通常情况下,数据进行白化处理与不对数据进行白化处理相比,算法的收敛性较好。 若一零均值的随机向量 满足 , 其中:I为单位矩阵,我们称这个向量为白化向量。白化的本质在于去相关,这同主分量分析的目标是一样的。在ICA中,对于为零均值的独立源信号 , 有: , 且协方差矩阵是单位阵cov( S ) = I,因此,源信号 S( t )是白色的。对观测信号X( t ),我们应该寻找一个线性变换,使X( t )投影到新的子空间后变成白化向量,即:

其中,W0为白化矩阵,Z为白化向量。 利用主分量分析,我们通过计算样本向量得到一个变换 其中U和 分别代表协方差矩阵XC的特征向量矩阵和特征值矩阵。可以证明,线性变换W0满足白化变换的要求。通过正交变换,可以保证 因此,协方差矩阵: 再将 代入 且令 有 由于线性变换A~连接的是两个白色随机矢量Z( t )和S( t ),可以得出A~ 一定是一个正交变换。如果把上式中的Z( t )看作新的观测信号,那么可以说,白化使原来的混合矩阵A简化成一个新的正交矩阵A~。证明也是简单的: 其实正交变换相当于对多维矢量所在的坐标系进行一个旋转。 在多维情况下,混合矩阵A是N*N 的,白化后新的混合矩阵A~ 由于是正交矩阵,其自由度降为N*(N-1)/2,所以说白化使得ICA问题的工作量几乎减少了一半。 白化这种常规的方法作为ICA的预处理可以有效地降低问题的复杂度,而且算法简单,用传统的PCA就可完成。用PCA对观测信号进行白化的预处理使得原来所求的解混合矩阵退化成一个正交阵,减少了ICA的工作量。此外,PCA本身具有降维功能,当观测信号的个数大于源信号个数时,经过白化可以自动将观测信号数目降到与源信号维数相同。

§2.3牛顿Newton法及其变形.doc

2.3 牛顿(Newton )法及其变形 一、Newton 迭代方法 牛顿迭代法计算公式的推导过程 设*x 是()0f x =的根,()f x 在*x 的邻域内具有二阶连续导数,在*x 的邻域内取一点0x ,使0()0f x '≠,则()f x 在*x 的邻域内连续,将它在0x 点二阶Taylor 展开得 2 0000000()()()()()()2! ()()() f f x f x f x x x x x f x f x x x ξ'''=+-+-'≈+- 又()0f x =,则有 000()()()0f x f x x x '+-≈ 故()0f x =的近似解000()()f x x x f x ≈-',记0100()() f x x x f x =-' 类似,在点1x 处Taylor 展开,可得: 111()() f x x x f x ≈-',记1211()()f x x x f x =-' 依次往下做,可得一般的迭代格式:

上述迭代格式称为求()0 f x=的解的牛顿迭代法。 几何意义 在点 00 (,()) x f x处作() f x的切线,交x轴于一点,求该点的横坐标。此切线方程为 000 ()()() y f x f x x x ' -=-, 当0 y=时,得0 () () f x x x f x =- ' ,正是 1 x的值。 类似地,在点(,()) k k x f x作函数() f x的切线,交x轴于一点,切线方程为 ()()() k k k y f x f x x x ' -=-, 当0 y=时,得 () () k k k f x x x f x =- ' ,正是 1 k x + 的值。 所以,牛顿迭代法又称为切线求根法。 例6用牛顿迭代法求方程x x e- =在0.5 x=附近的根。解.将原方程化为()0 x f x x e- =-=,则牛顿迭代格式为

牛顿第一定律教学设计

牛顿第一定律教学设计 教学目标 知识目标: 1.知道牛顿第一定律,常识性了解伽利略理想实验的推理过程。 能力目标: 1.通过斜面小车实验,培养学生的观察能力。 2.通过实验分析,初步培养学生科学的思维方法(分析、概括、推理)。情感目标: 1.通过科学史的简介,对学生进行严谨的科学态度教育。 2.通过伽利略的理想实验,给学生以科学方法论的教育。 教学建议 本节课的重点是揭示物体不受力时的运动规律,即牛顿第一运动定律。 教法建议 1.学生学习牛顿第一定律的困难在于从生活经验中得到的一种被现象掩盖了本质的错误观念,认为物体的运动是力作用的结果。如推一个物体,它就动,不再推它时,它便静止。为使学生摆脱这种错误观念,首先要把运动和运动的变化区别开,树立从静到动和从动到静都是“运动状态改变”的概念,这是为了揭示力和运动的关系做的重要铺垫。其次,通过实验确立“力是改变运动状态的原因”的概念。再通过推理建立“不受力运动状态不变”的概念。 2.通过演示实验的比较、分析、综合、推理是本节课的核心,可对学生进行简单的科学推理方法的教育。在此演示实验中可通过设计不同的问题渗透研究方法。 3.本节课可按着人类对知识的认识顺序组织教学,让学生体会规律的认识过程,对学生进行学史教育。从亚里士多德的观点——伽利略的研究——笛卡尔的补充——牛顿的总结。 教学设计示例 牛顿第一定律 教学重点:通过对小车实验的分析比较得出牛顿第一定律。 教学难点: 1.明确“力是维持物体运动的原因”观点是错误的。 2.伽利略理想实验的推理过程教学用具:斜面,小车,毛巾,棉布,玻璃板,微机,实物投影,大倍投电视。 教学过程 一、实验引入:批驳亚里士多德的观点

Newton迭代法实例

基于牛顿迭代法的圆形断面临界水深直接计算 学院:建筑工程学院学号:2111206052 姓名:王瑞峰 一、问题来源 圆形断面由于具有受力条件好、适应地形能力强、水力条件好等优点,已成为农田灌溉、城市给水排水等工程较常采用的断面形式。而临界水深的计算则是进行圆形断面水力计算的关键,但其计算较繁杂,要求解高次隐函数方程,且未知量包含在三角函数中,求解难度大。自20世纪90年代,对圆形断面临界水深的计算进行了大量研究,获得了较多成果。鉴此,本文应用牛顿迭代算法,得到一种较简洁且可提供高精度算法程序的近似计算公式。 二、数学模型 相应于断面单位能量最小值的水深称为临界水深,其计算公式为: 需满足的临界流方程为: 其中 式中,d为洞径;为临界水深对应的圆心角,rad;n为流速分布不均匀系数(不特殊说明时取1.0);Q为流量,m3Is;g为重力加速度(通常取9.81 m/s2);分别为临界流对应的过水断面面积和水面宽度。 无压流圆形断面的水力要素见图1 将式(1)、(3)、(4)代入式(2)得: 将式(5)整理即得临界水深的非线形方程: 由此可知.式(6)为临界水深h。的高次隐函数方程,且未知量包含在三角函数中。 即圆形断面临界水深的求解即为式(6)的求根问题。在现行工程实际中计算临界水深时均采用近似公式或试算法,所得结果精度不高且效率较低。 三、方法选择 牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。 解非线性方程f(x)=0的牛顿法是把非线性方程线性化的一种近似方法。把f(x)在x0点

附近展开成泰勒级数f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +… 取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x- x0)=f(x)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。 在对式(6)的求解方法中,应首选牛顿迭代法,因为牛顿迭代法可快速求解出其他方法求不出或难以求出的解。 引入无量纲参数k: 将式(7)代入式(6)得: 的一阶、二阶导函数分别为: 由牛顿迭代法可得: 式中,=0,1,2…为迭代次数;为的初值。 将式(8)、(9)代入式(10),可得相应于式(6)临界水深对应中心角的牛顿迭代公式: 由式(11)迭代计算出临界水深对应的中心角后,代入式(1)即可得临界水深。 根据文献,为避免渡状水面有可能接触洞顶引起水流封顶现象。洞内水面线以上的空间不宜小于隧洞断面面积的15%,且高度不小于0.4m。可得临界水深对应的中心角的最大值一般不超过4.692,相应可得无量纲参数值的上限为0.5044。故取值范围为[O.000 0,0.504 4]。 查阅文献与的近似公式: 若将式(12)视为初值函数,代入式(11)进行一次迭代计算,不仅得到了直接计算的公式,且提高了计算结果的精度。 其中 将式(13)代入式(1)即得圆形断面临界水深。 计算实例: 某引水式电站输水隧洞为圆形断面,已知洞径d=3.0 m,试确定设计流量Q=8.0m3/s时的临界水深。 四、编程实现 本文采用Fortran软件求解,程序的代码如下:

用牛顿迭代法求近似根

用牛顿迭代法求近似根

————————————————————————————————作者:————————————————————————————————日期:

第四题 题目:用Newton 法求方程在 74 28140x x -+= (0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001). 解:此题是用牛顿迭代法求解近似根的问题 1. Newton 迭代法的算法公式及应用条件: 设函数在有限区间[a,b]上二阶导数存在,且满足条件 ⅰ. ()()0f a f b <; ⅱ. ()''f x 在区间[a,b]上不变号; ⅲ. ()'0f x ≠; ⅳ. ()()'f c f c b a ≤-,其中c 是a,b 中使()()''min(,)f a f b 达到的一个. 则对任意初始近似值0[,]x a b ∈,由Newton 迭代过程 ()()() 1'k k k k k f x x x x f x +=Φ=-,k=0,1,2… 所生成的迭代序列{ k x }平方收敛于方程()0f x =在区间[a,b]上的唯一解а. 对本题: )9.1()9.1(0 )8(4233642)(0 )16(71127)(0 )9.1(,0)1.0(,1428)(3225333647>?''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f Θ 故以1.9为起点 ?? ???='-=+9.1)()(01x x f x f x x k k k k 2. 程序编写 #include #include void main() { double x0,x=1.9; do

牛顿第一定律

职前教师对牛顿第一运动定律的理解 1、中学物理中的牛顿第一运动定律 ??1.1定律的引入 牛顿第一定律描述的是一种理想化的运动状态,即物体不受外力作用的状态。很显然这无法用实验直接验证,但伽利略在分析大量事实的基础上,忽略次要因素、突出主要因素,运用理想实验这一科学推理的思维方法,阐明了力不是维持物体运动的原因,反映了物体运动的内在的本质规律。伽利略不但证实了牛顿第一定律的正确性,同时也开创了科学研究的正确方法——实验与思维的完美结合。他以系统的实验和观察推翻了以亚里士多德为代表的、纯属思辨的传统的自然观,开创了以实验事实为根据并具有严密逻辑体系的近代科学,因此,他被称为“近代科学之父”。他的工作为牛顿的理论体系的建立奠定了基础。 牛顿第一定律是力学基本定律建立的基础。牛顿第一定律以一切物体所具有的属性——惯性为出发点,比较严密地定义了惯性,揭示了惯性运动的本质,进一步还可以引入惯性参考系、惯性质量。定性地给出了力的科学定义,表述了力的本质和力的效果。牛顿第一定律包括了惯性、惯性运动、惯性参考系和力的概念,还启迪人们去研究物体运动状态的改变与外力作用的关系,可见牛顿第一定律是其它力学定律建立的基础。 1.2定律的内涵 牛顿第一定律有着丰富的内涵。第一,牛顿第一定律揭示了自然界一切物体在不受任何外力作用时,将如何运动的规律——总保持静止状态或匀速直线运动状态。自然界中不受外力作用的物体是没有的,但这一规律是客观的正确的,也足见在认识自然上人类智慧的力量。第二,定律揭示了任何物体都具有保持运动状态不变的本性——惯性,这是物体的固有属性,是由物体的内在因素决定的,物体要保持的这种运动也称为惯性运动。第三,牛顿第一定律定性地给出了力的科学定义:力是使物体运动状态改变的原因,即使物体产生加速度的原因,从而也批判了力是维持物体运动原因的错误。牛顿第一定律已指出了运动维持、运动状态改变的根本原因,虽没有直接解决加速度与力、质量的定量关系,但这两个问题已明白地提出,对这两个问题的深入探索和研究才导致了牛顿第二定律的产生。第四,牛顿第一定律也表明,物体的静止状态与匀速直线运动状态具有等价性。实质上,静止和运动只不过是相对于不同的参考系而得到的不同观察结果,静止和匀速直线运动均要求物体所受的合力为零。同时它给经典力学体系选取了一个特殊的参考系——惯性参考系,即静止或做匀速直线运动的物体。只有在惯性参考系里,牛顿运动定律才得以遵守。 从形式上看,牛顿第二定律在外力为零的情况下,可引出与牛顿第一定律似乎完全相同的表述,但绝不能理解为牛顿第一定律是牛顿第二定律在作用力为零时的特例。否则就是舍弃了牛顿第一定律的精髓,即割裂了牛顿第一定律与牛顿运动定律整体间的逻辑结构关系,扭曲了牛顿第一定律的内涵。没有惯性定律就没有惯性、惯性运动、惯性参考系、力的科学概念,牛顿第二定律就无从谈起,牛顿第一定律是前提、是基础,并具有独立性。 1.3定律的外延 牛顿第一定律说明了两个问题:(1)它明确了力和运动的关系。物体的运动并不是需要力来维持,只有当物体的运动状态发生变化,即产生加速度时,才需要力的作用。在牛顿第一定律的基础上得出力的定性定义:力是一个物体对另一个物体的作用,它使受力物体改变运动状态。⑵它提出了惯性的概念。物体之所以保持静止或匀速直线运动,是在不受力的条件下,由物体本身的特性来决定的。物体所固有的、保持原来运动状态不变的特性叫惯性。物体不受力时所作的匀速直线运动也叫惯性运动。牛顿在第一定律中没有说明静止或运动状态是相对于什么参照系说的,然而,按牛顿的本意,这里所指的运动是在绝对时间过程中的相对于绝对空间的某一绝对运动。牛顿第一定律成立于这样的参照系。通常把牛顿第一定律成立的参照系成为惯性参照系,因此这一定律在实际上定义了惯性参照系这一重要概念。牛

非线性方程组的牛顿迭代法的应用

CENTRAL SOUTH UNIVERSITY 数值分析实验报告

非线性方程组的牛顿迭代法的应用 一、问题背景 非线性是实际问题中经常出现的,并且在科学与工程计算中的地位越来越重要,很多我们熟悉的线性模型都是在一定条件下由非线性问题简化的,为得到更符合实际的解答,往往需要直接研究非线性科学,它是21世纪科学技术发展的重要支柱,非线性问题的数学模型有无限维的如微分方程,也有有限维的。道遥咏计算机进行科学计算都要转化为非线性的单个方程或方程组的求解。从线性到非线性是一个质的变化,方程的性质有本质不同,求解方法也有很大差别。本文主要介绍的是非线性方程组的牛顿迭代法的数值解法。 二、数学模型 对于方程()0=x f ,如果()x f 湿陷性函数,则它的求根是容易的。牛顿法实质上是一种线性化方法,其基本思想是将线性方程()0=x f 逐步归结为某种线性方程来求解。 设已知方程()0=x f 有近似根k x (假定()0'≠k x f ),将函数()x f 在点k x 展开,有 ()()()()k k k x x x f x f x f -+≈', 于是方程()0=x f 可近似地表示为 ()()()0'=-+k k k x x x f x f 这是个线性方程,记其根为1+k x ,则1+k x 的计算公式 ()() k k k k x f x f x x ' 1- =+, ,1,0=k 这就是牛顿法。 三、算法及流程 对于非线性方程 ()()()???? ????????=n n n n x L x x f M x L x x f x L x x f f ,,,,,,,,,2 1212211 在()k x 处按照多元函数的泰勒展开,并取线性项得到

数值计算(二分法、简单迭代法、Newton迭代法、弦截法(割线法、双点弦法))

本科生实验报告 实验课程数值计算方法 学院名称信息科学与技术学院 专业名称计算机科学与技术 学生姓名 学生学号 指导教师 实验地点 实验成绩 二〇一六年五月二〇一六年五月

实验一非线性方程求根 1.1问题描述 实验目的:掌握非线性方程求根的基本步骤及方法,。 实验内容:试分别用二分法、简单迭代法、Newton迭代法、弦截法(割线法、双点弦法),求x5-3x3+x-1= 0 在区间[-8,8]上的全部实根,误差限为10-6。 要求:讨论求解的全过程,对所用算法的局部收敛性,优缺点等作分析及比较, 第2章算法思想 2.1二分法 思想:在函数的单调有根区间内,将有根区间不断的二分,寻找方程的解。 步骤: 1.取中点mid=(x0+x1)/2 2.若f(mid)=0,则mid为方程的根,否则比较与两端的符号,若与f(x0) 异号,则根在[x0,mid]之间,否则在[mid,x1]之间。 3并重复上述步骤,直达达到精度要求,则mid为方程的近似解。

2.2 简单迭代法 思想:迭代法是一种逐次逼近的方法,它是固定公式反复校正跟的近似值,使之逐步精确,最后得到精度要求的结果。 步骤:1.构造迭代公式f(x),迭代公式必须是收敛的。 2.计算x1,x1=f(x0). 3.判断|x1-x0|是否满足精度要求,如不满足则重复上述步骤。 4.输出x1,即为方程的近似解。 f为迭代函数

2.3 Newton迭代法 思想:设r 是的根,选取作为r的初始近似值,过点 做曲线 的切线L,L 的方程为,求出L与x轴交点的 横坐标,称x 1 为r的一次近似值。过点做曲线 的切线,并求该切线与x 轴交点的横坐标,称为r的二次近似值。重复以上过程,得r 的近似值序列,其中,称为r 的 次近似值 步骤:1.计算原函数的导数f’(x);构造牛顿迭代公式 2.计算 ,若f’(x0)=0,退出计算,否则继续向下迭代。 3.若|x1-x0|满足精度要求,x1即为方程的近似解。

改进的牛顿迭代法

改进的牛顿迭代法求解非线性方程 摘要:牛顿法思想是将非线性方程线性化,以线性方程的解逐步逼近非线性方程的解,但是其对初值、波动和可能出现的不收敛等缺点,而牛顿下山法克服了可能出现的发散的缺点。 关键词:牛顿法、牛顿下山法、非线性方程 一、牛顿法的迭代公式 设)(x f 在其零点*x 附近一阶连续可微,且0)(≠'x f ,当*0x x →时,由Taylor 公式有: ))(()()(000x x x f x f x f -'+≈ 以方程 0))(()(000=-'+x x x f x f 近似方程0)(=x f ,其解 ) ()(0001x f x f x x '-= 可作为方程的近似解,重复上述过程,得迭代公式 ),1,0(,) ()(1 ='-=+n x f x f x x n n n n 该方法称为牛顿迭代法。 二、牛顿法的改进 由于牛顿法缺点对牛顿法进行改进,使其计算简单,无需每次迭代都去计算)(x f ',且能够更好的收敛。 2.1简化的牛顿法 牛顿法的缺点之一是每次迭代都得去计算)(k x f '。为回避该问题,常用一个固定 )(k x f '迭代若干步后再求)(k x f '。这就是简化牛顿法的基本思想。 简化牛顿法的公式为: )(1k k k x cf x x -=+

迭代函数 )()(x cf x x -=? 若 2)(0,1)(1)(<'<<'-='x f c x f c x 即?,在根*x 附近成立,则迭代法局部收敛。 显然此法简化了计算量,却降低了收敛速度。 2.2牛顿下山法 牛顿法的缺点二是其收敛依赖与初值0x 的选取,若0x 偏离所求根*x 较远,则牛顿法可能发散。为防止迭代发散,我们对迭代过程再附加一项条件,即具有单调性: )()(1k k x f x f <+ 保证函数值稳定下降,然后结合牛顿法加快收敛速度,即可达目的。将牛顿法的计算结果 ) ()(1k k k k x f x f x x '-=+ 与前一步的近似值k x 适当加权平均作为新的改进值 k k k x x x )1(11λλ-+=++ 其中,称 )10(≤<λλ为下山因子,即为: ) ()(1k k k k x f x f x x '-=+λ 称为牛顿下山法。选择下山因子λ时,从 1=λ开始逐次将λ减半进行试算,直到条件成立为止。 三 举例说明 例1 求方程013=--x x 的根 (1)取5.10=x ,用牛顿法公式: 1 32131---=-+k k k k x x x x x 计算得:32472.1,32520.1,34783.1321===x x x

牛顿第一定律

牛顿第一定律 知识目标: 知道牛顿第一定律,常识性了解伽利略理想实验的推理过程. 能力目标: 1.通过斜面小车实验,培养学生的观察能力. 2.通过实验分析,初步培养学生科学的思维方法(分析、概括、推理). 情感目标: 1.通过科学史的简介,对学生进行严谨的科学态度教育. 2.通过伽利略的理想实验,给学生以科学方法论的教育. 教学建议 教材分析 教材首先通过回忆思考的形式提出问题:如果物体不受力,将会怎样?通过小车在不同表面运动的演示实验,使学生直观的看到物体运动距离与阻力大小的关系,为讲解伽利略的推理作准备。然后讲述伽利略的推理方法和通过推理得出的结论,再介绍迪卡儿对伽利略结论的补充,牛顿最后总结得出的牛顿第一定律。通过这些使学生了解定律的得出是建立在许多人研究的基础上的,正如牛顿所说:如果说我所看的更远一点,那是因为站在巨人肩上的缘故。最后指出牛顿第一定律不是实验定律,而是用科学推理的方法概括出来的,

定律是否正确要通过实践来检验。给学生以科学方法论的教育。 本节课的重点是揭示物体不受力时的运动规律,即牛顿第一运动定律。 教法建议 1.学生学习牛顿第一定律的困难在于从生活经验中得到的 一种被现象掩盖了本质的错误观念,认为物体的运动是力作用的结果。如推一个物体,它就动,不再推它时,它便静止。为使学生摆脱这种错误观念,首先要把运动和运动的变化区别开,树立从静到动和从动到静都是运动状态改变的概念,这是为了揭示力和运动的关系做的重要铺垫。其次,通过实验确立力是改变运动状态的原因的概念。再通过推理建立不受力运动状态不变的概念。 2.通过图9-1演示实验的比较、分析、综合、推理是本节课的核心,可对学生进行简单的科学推理方法的教育。在此演示实验中可通过设计不同的问题渗透研究方法。 3.本节课可按着人类对知识的认识顺序组织教学,让学生体会规律的认识过程,对学生进行学史教育。从亚里士多德的观点伽利略的研究笛卡尔的补充牛顿的总结。 教学设计示例 牛顿第一定律 教学重点:通过对小车实验的分析比较得出牛顿第一定律。

线性方程组的迭代法应用及牛顿迭代法的改进

线性方程组的迭代法应用及牛顿迭代法的改进 摘要: 迭代解法就是通过逐次迭代逼近来得到近似解的方法。由于从不同 的问题而导出的线性代数方程组的系数矩阵不同,因此对于大型稀疏矩阵所对应线性代数方程组,用迭代法求解。本文论述了Jacobi 法,Gauss-Seidel 法,逐次超松弛法这三种迭代法,并在此基础上对牛顿型的方法进行了改进,从而使算法更为精确方便。 关键词:线性方程组,牛顿迭代法,Jacobi 法,Gauss-Seidel 法,逐次超松弛 法 1.线性方程组迭代法 1.1线性方程组的迭代解法的基本思想 迭代法求解基本思想:从某一初始向量X (0)=[x 1(0) ,x 2(0) ,……………x n (0) ]出发,按某种迭代规则,不断地对前一次近似值进行修改,形成近似解的向量{X (k)}。当近似解X (k) =[x 1(k) ,x 2(k) ,……………x n (k) ]收敛于方程组的精确解向量X* =[x 1*,x 2*,……………x n *]时,满足给定精度要求的近似解向量X (k)可作为X*的数值解。 1.2 线性方程组的迭代法主要研究的三个问题 (1) 如何构造迭代公式 (2) 向量数列{X (k)}的收敛条件 (3) 迭代的结束和误差估计 解线性方程组的迭代解法主要有简单迭代法、 Gauss-Seidel 法和SOR 法。简单迭代法又称同时代换法或Jacobi 法,是最简单的解线性方程组的迭代解法也是其他解法的基础。 1.3Jacobi 迭代法 设方程组点系数矩阵n n j A ai R ???=∈??满足条件0ii a ≠,i=0,1,2, …n 。把A 分解为 A=D+L+U

牛顿迭代法实验报告

用牛顿迭代法求非线性方程的根 一、 实验题目 求方程()013=--=x x x f 在5.1附近的根。 二、 实验引言 (1)实验目的 1. 用牛顿迭代法求解方程的根 2. 了解迭代法的原理 3. 改进和修缮迭代法 (2)实验意义 牛顿迭代法就是众多解非线性方程迭代法中比较普遍的一种,求解方便实用。 三、 算法设计 (1)基本原理 给定初始值0x ,ε为根的容许误差,η为()x f 的容许误差,N 为迭代次数的容许值。 1.如果()0='x f 或迭带次数大于N ,则算法失败,结束;否则执行2. 2.计算()() 0001x f x f x x '-=. 3.若ε<-21x x 或()η<1x f ,则输出1x ,程序结束;否则执行4. 4.令10x x =,转向1. (2)流程图

四、程序设计program nndd01 implicit none real,parameter::e=0.005 real,parameter::n=9 real::x1 real::x0=1.5 integer::k real,external::f,y do k=1,9 if (y(x0)==0) then write(*,*)"失败" else x1=x0-f(x0)/y(x0) if (abs(x1-x0)

else x0=x1 end if end if end do end function f(x) implicit none real::f real::x f=x*x*x-x-1 return end function function y(x) implicit none real::y real::x y=3*x*x-1 return end function 五、求解结果 3 1.324718 4 1.324718 5 1.324718 6 1.324718 7 1.324718 8 1.324718 9 1.324718 六、算法评价及讨论 1.在求解在1.5处附近的根,不难发现在输入区间左端值为1时 需要迭代6次,而输入区间左端值为1.5时,却只要4次。初

牛顿第一定律观后感

八年级物理《牛顿第一定律》观后感 铜仁一中初级中学八年级物理备课组疫情期间,国家教育部门,以“停课不停学”为宗旨,推出了“空中黔课”为孩子们在疫情期间提供了在家学习的机会,也为我们老师提供了再学习的机会。 借此机会,八年级物理备课组全体教师于2020年2月24日,下午14:30准时收看了由贵阳十九中骨干教师——高彬老师带来的《牛顿第一定律》,通过收看获益良多: 1、本节课条理清晰,重难点突出,上课语速较合理。 2、本节课介绍了,亚里士多德、伽利略、笛卡尔、牛顿等科学家,以实验再现的方式带领学生层层推进,让学生对《牛顿第一定律》的来历有了全面深刻的了解,在实验中让学生知道了理想实验法、控制变量法等常用的物理方法,而且在总结的时候叫同学们回忆在哪些地方用到了这两种方法,做到首位呼应,更深刻的加深了学生的印象。 3、教学设计层层递进,引导学生创设情景、提出问题,每个问题都有时间让学生思考,特别是最后总结的时候,留下一分钟的时间给学生整理笔记,充分体现了以学生主体的教学思想。 4、解析了《牛顿第一定律》的内涵,力不是维持物体运动的原因,只是改变物体运动状态的原因,从而讲到《牛顿第一定律》的适用范围,自然界中物体不受外力的情况是不存在的,静止在桌面上的小车就受到了重力和支持力的作用,之所以还能静止,是由于重力和支持力的作用效果相互抵消,和不受外力作用相似,从而推广《牛顿第一

定律》适用于生活中的所有物体,让学生更深刻的了解该定律的适用范围。 5、课堂最后,以物体竖直上抛和自由下落研究动静点,如果力撤去判断物体的运动情况,该例题非常典型,更好的抓住了本节课的重点,加深了同学们对《牛顿第一定律的理解》 6、线上学习十分方便,不受地点约束,线上课程能无限回放,会让我们的同学记得更牢固,查缺补漏。 7、对于铜仁地区的学生来说,唯一遗憾的就是,我们和贵阳用的物理教材版本不一样,我们用的人教版在八年级上册还没有学习力的知识,学生更是对力的作用效果全然不知,马上就进入力与运动的关系的学习,学生会感觉很吃力。

牛顿迭代法及其应用教学提纲

编号 毕业设计(论文)题目 Newton Raphson 算法及其应用 二级学院数学与统计学院 专业信息与计算科学 班级108010101

学生姓名侯杰学号10801010106 指导教师职称 时间 目录 摘要 (3) Abstract (3) 一、绪论 (4) 1.1 选题的背景和意义 (4) 1.2 牛顿迭代法的优点及缺点 (4) 二、Newton Raphson 算法的基本原理 (5) 2.1 Newton Raphsn算法 (5) 2.2 一种修正的Newton Raphsn算法 (7) 2.3 另外一种Newton Raphsn算法的修正 (11) 三、Newton Raphson 算法在计算方程中的应用 (18) 四、利用牛顿迭代法计算附息国债的实时收益率 (21) 4.1附息国债实时收益率的理论计算公式 (22) 4.2附息国债实时收益率的实际计算方法 (22)

4.3利用牛顿迭代法计算 (23) 五、结论 (26) 致谢 (27) 参考文献 (28) 摘要 牛顿在17世纪提出的一种近似求解方程的方法,即牛顿拉夫森迭代法.迭代法是一种不断的用变量的旧值递推新值的过程.跟迭代法相对应的是直接法或被称为一次解法,即一次性解决的问题.迭代法又分为精确迭代以及近似迭代.“牛顿迭代法”就属于近似迭代法,本文主要讨论的就是牛顿迭代法,方法本身的发现到演变到修正的过程,避免二阶导数计算的Newton迭代法的一个改进,以及用牛顿迭代法解方程,利用牛顿迭代法计算国债的实时收益率。 关键词:Newton Raphson迭代算法;近似解;收益率; Abstract In the 17th century,Newton raised by an approximate method of solving equations,that is Newton Iteration,a process of recursion new value constantly with the old value of variable. Correspond with the iterative method is a direct method or as a solution,that is a one-time problem solving. Iteration is divided into exact iterative and approximate iterative. "Newton Iterative Method" are approximate iterative method. This article mainly focuses on the Newton Iteration. The main contents of this article include the discovery,evolution and amendment process of this methods; an improve of avoiding calculating Newton Iteration with second-order derivative; Newton Raphson iterative method of solving equations and Calculating the real-time yield of government bonds. Keywords: Newton Iterative Algorithm; approximate solution; Yield;

牛顿第一定律说课稿

人教版《牛顿第一定律》说课稿 尊敬的各位评委、老师们: 大家早上好! 我是3号选手。我今天说课的内容是《牛顿第一定律》.下面我从教材分析、教法学法、教学过程、板书设计、课堂反思五个方面来谈我对本节课的理解。 一、教材分析 (一)教学内容 牛顿第一定律是人教版九年级物理第十二章第五节内容。包括牛顿第一定律和惯性两方面的内容。本节设计有两个课时,我说的是第一课时。 (二)教材的地位和作用 牛顿第一定律是经典力学中三大定律之一。是整个力学的基础,因为它把最基本的匀速直线运动和物体是否受力联系起来,确立了力和运动之间的关系,是前面力的作用效果的延伸,又为后面学习二力平衡的知识打下了基础,起着承前启后的作用。因此,可以说,牛顿第一定律是本章的重点。 (三)教学目标 根据课程标准要求,结合教材内容以及学生现有的认知基础,我制定如下三维教学目标: 知识与技能 1、知道伽利略的理想实验及主要推理过程; 2、知道牛顿第一定律,并理解其意义。 过程与方法: 1、实验探究阻力对物体运动的影响。 2、常识性了解伽利略理想实验的推理方法。 情感、态度与价值观 1.体验在研究过程中成功的喜悦,学会分工与合作,提高团结协作的能力。 2.感悟科学探究的艰辛与曲折,感悟科学就在我们身边。 (四)重点、难点

教学重点:牛顿第一定律。之所以确立它是本节教学内容的重点理由在于本节课是一节物理规律教学课,通过本节课的科学探究及实验论证的目的就是为了认识力和运动的关系,揭示力和运动之间的内在规律。 教学难点:力和运动的关系。学生在从生活经验中获得了一种被现象掩盖了本质的错误认识。那就是物体的运动是力作用的结果,为了使学生摆脱这种观念,转变错误认识,需要教师精心设计,严密推理,才能帮助学生走出误区。 二、教法学法 (一)学情分析 学习者是九年级学生。有利的方面是:经过一年的物理学习,学生具备了一定的实验探究能力,并且学习了机械运动、力的作用效果,知道力可以改变物体的运动状态,为本节学习做好了铺垫。不利的方面是:学生受生活经验的影响,“物体的运动需要力来维持”的错误观念不容易转变。 (二)教法 “教学有法,教无定法”。选择行之有效的方法是取得良好教学效果的保证。本课时我主要采用“演示法”与“科学推理法”相结合来进行教学,即通过实验现象的观察、分析、讨论,又加以科学的想象和推理,引导学生去发现知识,总结规律。 (三)学法 教学活动是教与学两方面的有机结合,在上述教学方法的正确实施下,我引导学生采用:科学探究法、小组合作学习法、讨论法、分析归纳法等学习方法。我认为“教给学生方法比教给学生知识更重要”。目的是让学生有足够的机会投入到学习活动之中,培养学生动脑动手的习惯,变学生由“学会”转向“会学”。 (四)教具与学具 电教器材:多媒体 教师演示用:斜面、小车、毛巾、棉布等 学生分组器材: 书、圆珠笔、铅笔盒、小车、书包、斜面、毛巾、棉布、乒乓球等 丰富的教学设备,尤其是身边的器材拿来实验,提高了训练密度及广度,使教学过程从枯燥到有趣,从抽象到形象。课堂演示实验并利用计算机多媒体辅助教学,不仅提供了大量的教学信息,使学生在生动形象的环境中,得以迅速理解和掌握物理规律,激发学生们的学习兴趣,调动他们的主动性,从而提高课堂教学效率。

相关文档
最新文档