音速-亚音速孔板设计方法

音速-亚音速孔板设计方法
音速-亚音速孔板设计方法

设计原理:

4

m

q d

π

=

其中:C称“流出系数”,为不可压缩流体确定的表示通过装置的实际流量与理论流量之间关系的系数。对于给定安装条件下的给定装置,流出系数仅与雷诺数有关;对于不同的一次装置,只要几何相似,流体的雷诺数相同,则C都相同。

称为“流量系数”,

d

D

β=是节流孔径与上游测量管道的内径之比;

ε为“可膨胀性系数”或“膨胀系数”,不可压缩流体1

ε=,可压缩流体1

ε<,取决于雷诺数、压力比和等熵指数。

孔板压力损失:指孔板上游侧的管壁处(约1D处)测得的压力与孔板下游侧(约6D处)测得的压力之间的静压差。

p

?

?=

近似值为: 1.91p

?

β?=-?

理论分析

1. 不可压流体

体积流量公式:Q F α=

其中,流量系数α=;φ指流束收缩系数,20F F φ=

=ζ指损失系数(包括摩擦损失和涡流造成的局

部损失)

;/d D β==。

不可压流量系数α必须由实验确定,其数值大小与节流件类型,孔径比,取压方式,管路条件,流体性质及流动状态等有关。国标中又进一步将α分解为光管流量系数0α和粗糙度修正系数Re γ之积。对于一定型式的节流件和一定的取压方式

0(,)eD f R αβ=

2. 可压缩流体

体积流量公式:dg Q C F =

其中,流量系数dg C αε=;ε指可压流体膨胀修正系数。

ε= 标准喷嘴和文氏管,由于其特殊的结构,能基本消除流束的收缩现象,故可令1k φφ==,可由上式直接计算膨胀修正系数。必须注意,国标特别规定用于

可压流体的节流件,压力比21/p p 不能小于0.75。

确定流量系数和膨胀系数的简化方法。

0α—流体的雷诺数为无限大时的流量系数;

D F —流体管线大小对流量系数的校正因数; R F —流体的雷诺数对流量系数的校正因数。

减压孔板快速计算书

减压孔板 在室内给排水工程中,减压孔板可用于消除给水龙头和消火栓前的剩余水头,以保证水系统均衡供水,达到节水、节能的目的。 (1) 减压孔板孔径的计算:水流通过孔板式的水头损失,按式中计算: )10(242 pa g H υξ= 1式 式中 H ——水流通过孔板的水头损失值(Pa ); ξ——孔板的局部阻力系数; υ——水流通过孔板后的流速(m/s ); g ——重力加速度(m/s )。 ξ值可从下列式中求得: ξ= 2式 式中 D ——给水管道直径(mm ); ——孔板孔径(mm )。 为简化计算,将各种不同管径及孔板孔径代入公式1式、2式,求得相应的H 值,所得计算结果列于表1.使用时,只要已知剩余水头及给水立管直径D ,九可从表中查的所需孔板孔径。 表1: 减压孔板的水头损失 D (mm ) 3 4 5 6 7 8 9 10 11 12 13 15 20 25 32 40 50 81.03 262.30 24.54 81.03 201.77 9.49 32.16 81.03 222.21 4.25 14.91 38.13 10 5.59 262.30 2.09 7.68 19.98 56.00 140.02 1.10 4.25 11.31 3 2.16 81.03 201.77 0.59 2.48 6.79 19.61 49.84 124.80 0.33 1.51 4.25 12.53 32.16 81.03 0.18 0.94 2.75 8.30 21.56 54.70 0.09 0.59 1.83 5.67 14.91 38.13 0.04 0.38 1.24 3.96 10.58 27.30 D

实验8 声速的测定

实验8 声速的测定 [实验目的] 1. 了解超声换能器的工作原理和功能。 学习不同方法测定声速的原理和技术。 2. 熟悉测量仪和示波器的调节使用。 3. 测定声波在空气及水中的传播速度。 [实验仪器] 1.ZKY —SS 型声速测定实验仪 一台 2.双踪示波器 一台 [仪器介绍] (示波器的使用见教材) 实验仪由超声实验装置(换能器及移动支架组合)和声速测定信号源组成。 超声实验装置中发射器固定,摇动丝杆摇柄可使接收器前后移动,以改变发射器与接收器的距离。丝杆上方安装有数字游标尺(带机械游标尺),可准确显示位移量。整个装置可方便的装入或拿出水槽。 超声实验装置(换能器及移动支架组合) 声速测定信号源

声速测定信号源面板上有一块LCD显示屏用于显示信号源的工作信息;还具有上下、左右按键,确认按键、复位按键、频率调节旋钮和电源开关。上下按键用作光标的上下移动选择,左右按键用作数字的改变选择,确认按键用作功能选择的确认以及工作模式选择界面与具体工作模式界面的交替切换。 同时还有超声发射驱动信号输出端口(简称TR,连接到超声波发射换能器)、超声发射监测信号输出端口(简称MT,连接到示波器显示通道1)、超声接收信号输入端口(简称RE,连接到超声波接收换能器)、超声接收信号监测输出端口(简称MR,连接到示波器显示通道2)。 声速测定信号源具有选择、调节、输出超声发射器驱动信号;接收、处理超声接收器信号;显示相关参数:提供发射监测和接收监测端口连接到示波器等其它仪器等功能。 开机显示欢迎界面后,自动进入按键说明界面。按确认键后进入工作模式选择界面,可选择驱动信号为连续正弦波工作模式(共振干涉法与相位比较法)或脉冲波工作模式(时差法)。 选择连续波工作模式,按确认键后进入频率与增益调节界面;在该界面下将显示输出频率值;发射增益档位,接收增益档位等信息,并可作相应的改动。[实验原理] 声波是一种在弹性媒质中传播的机械波。声波在媒质中传播时,声速、声衰减等诸多参量都和媒质的特性与状态有关,通过测量这些声学量可以探知媒质的特性及状态变化。例如,通过测量声速可求出固体的弹性模量;气体、液体的比重、成分等参量。 在同一媒质中,声速基本与频率无关,例如在空气中,频率从20赫兹变化到8万赫兹,声速变化不到万分之二。由于超声波具有波长短,易于定向发射,不会造成听觉污染等优点,我们通过测量超声波的速度来确定声速。超声波在医学诊断,无损检测,测距等方面都有广泛应用。 声速的测量方法可分为两类: 第一类方法是直接根据关系式V=S/t,测出传播距离S和所需时间t后即可算出声速,称为“时差法”,这是工程应用中常用的方法。 第二类方法是利用波长频率关系式V=f·λ,测量出频率f和波长λ来计算出声速,测量波长时又可用“共振干涉法”或“相位比较法”,本实验用三种方法测量气体和液体中的声速。 本实验采用压电陶瓷超声换能器将实验仪输出的正弦振荡电信号转换成超声振动。当把电信号加在发射端时,换能器端面产生机械振动(逆向压电效应)并在空气中发出声波。当声波传递到接收端时,激发起端面振动,又会在产生相应的电信号输出(正向压电效应)。每一只换能器都有其固有的谐振频率,换能器只有在其谐振频率,才能有效的发射(或接收)。实验时用一个换能器作为发射器,另一个作为接收器,二换能器的表面互相平行,且谐振频率匹配。

格栅设计

格栅设计

一、课程设计的内容 (1)污水处理厂的工艺流程比选,并对工艺构筑物选型做说明; (2)主要处理设施格栅的工艺计算; (3)确定污水处理厂平面和高程布置; (4)绘制主要构筑物图纸。 二、课程设计应完成的工作 (1)确定合理的污水处理厂的工艺流程,并对所选择工艺构筑物选型做适当说明; (2)确定主要处理构筑物格栅的尺寸,完成设计计算说明书; (3)绘制主要处理构筑物格栅的设计图纸。

目录 1总论 (2) 1.1污水处理的必要性 (2) 1.2设计任务和内容 (2) 1.3基本资料 (2) 1.3.1格栅的作用 (2) 1.3.2格栅的种类 (2) 1.3.3格栅的工艺参数 (2) 1.3.4待处理污水的各项指标及出水指标要求 (3) 2污水处理工艺流程 (4) 2.1污水处理方法 (4) 2.1.1基本原理及优点 (4) 2.1.2存在问题 (4) 2.2处理工艺流程 (4) 3 处理构筑物设计——格栅设计 (5) 3.1格栅种类选择 (5) 3.2格栅设计计算 (5) 结论 (8) 参考文献 (9)

1总论 1.1污水处理的必要性 随着工农业生产的迅速发展和人民生活水平的不断提高,用水紧张和污水排放的问题已越来越突出。污水未经处理直接排放,加重了对环境的污染。在国家可持续发展的新政策下,环境保护已受到各级政府和全国人民的重视,对污水进行彻底的治理以保护人类赖以生存的环境的重要性越来越大,高效节能的城市污水处理技术与工艺已能为国民经济的发展起到较大的推动作用。 1.2设计任务和内容 (1)确定污水处理厂的工艺流程,并对工艺构筑物选型做说明; (2)主要处理设施格栅的工艺计算; (3)完成格栅三视图 1.3基本资料 1.3.1 格栅的作用 格栅是由一组平行的金属栅条或筛网、格栅柜和清渣耙三部分组成,安装在污水处理厂的端部。格栅主要作用是将污水中的大块污染物拦截出来,否则这些大块污染物将堵塞后续单元的机泵或工艺管线。格栅上的拦截物成为栅渣,其中包括十种杂物,大至腐尸,小至树杈、木料、塑料袋、破布条、碎砖石块、瓶盖、尼龙绳等均能在栅渣中发现。 1.3.2 格栅的种类 (1)按格栅条间距的大小分类:细格栅、中格栅和粗格栅3类,其栅条间距分别为4~10mm,15~25mm和大于40mm。 (2)按清渣方式不同分类:人工除渣格栅和机械除渣格栅两种。人工清渣主要是粗格栅。 (3)按栅耙的位置不同分类:前清渣式格栅和后清渣式格栅。前清渣式格栅要顺水流清渣,后清渣式格栅要逆水流清渣。 (4)按形状不同分类:平面格栅和曲面格栅。平面格栅在实际工程中使用较多。 (5)按构造特点不同分类:抓扒格栅、循环式格栅、弧形格栅、回转式格栅、转鼓式格栅和阶梯式格栅。 1.3.3格栅的工艺参数

声速的测量

物理实验报告 一、【实验名称】 超声波声速的测量 二、【实验目的】 1、了解声速的测量原理 2、学习示波器的原理与使用 3、学习用逐差法处理数据 三、【仪器用具】 1、SV-DH-3型声速测定仪段 2、双踪示波器 3、SVX-3型声速测定信号源 四、【仪器用具】 1.超声波与压电陶瓷换能器 频率20Hz-20kHz的机械振动在弹性介质中传播形成声波,高于20kHz称为超声波,超声波的传播速度就是声波的传播速度,而超声波具有波长短,易于定向发射等优点,声速实验所采用的声波频率一般都在20~60kHz之间。在此频率范围内,采用压电陶瓷换能器作为声波的发射器、接收器效果最佳。 图1 压电陶瓷换能器根据它的工作方式,分为纵向(振动)换能器、径向(振动)换能器

及弯曲振动换能器。声速教学实验中所用的大多数采用纵向换能器。图1为纵向换能器的结构简图。 2.共振干涉法(驻波法)测量声速 假设在无限声场中,仅有一个点声源S1(发射换能器)和一个接收平面(接收换能器S2)。当点声源发出声波后,在此声场中只有一个反射面(即接收换能器平面),并且只产生一次反射。 在上述假设条件下,发射波ξ1=Acos (ωt+2πx /λ)。在S2处产生反射,反射波ξ 2 =A 1cos (ωt+2πx /λ),信号相位与ξ1相反,幅度A 1<A 。ξ1与ξ2在反射平面相交叠加, 合成波束ξ 3 ξ3=ξ1+ξ2=(A 1+A 2)cos (ωt-2πx /λ)+A 1cos (ωt+2πx /λ) =A 1cos(2πx /λ)cos ωt+A 2cos (ωt - 2πx /λ) 由此可见,合成后的波束ξ3在幅度上,具有随cos(2πx /λ)呈周期变化的特性,在相位上,具有随(2πx /λ)呈周期变化的特性。 图4所示波形显示了叠加后的声波幅度,随距离按cos(2πx /λ)变化的特征。 图2 换能器间距与合成幅度 实验装置按图7所示,图中S1和S2为压电陶瓷换能器。S1作为声波发射器,它由信号源供给频率为数十千赫的交流电信号,由逆压电效应发出一平面超声波;而S2则作为声波的接收器,压电效应将接收到的声压转换成电信号。将它输入示波器,我们就可看到一组由声压信号产生的正弦波形。由于S2在接收声波的同时还能反射一部分超声波,接收的声波、发射的声波振幅虽有差异,但二者周期相同且在同一线上沿相反方向传播,二者在S1和S2区域内产生了波的干涉,形成驻波。我们在示波器上观察到的实际上是这两个相干波合成后在声波接收器S2处的振动情况。移动S2位置(即改变S1和S2之间的距离),你从示波器显示上会发现,当S2 在某此位置时振幅有最小值。根据波的干涉理论可以知道:任何 发射换能器与接收换能器之间的距离

刚格栅施工方案

目录1、编制说明 1.1编制依据 1.2编制原则 2、工程概况及特点 2.1工程概况 2.2工程特点 3、施工部署 3.1工程目标 3.2施工总体安排 3.3施工设备的投入 3.4施工劳动力安排 4、工程进度计划及保证措施4.1工期目标 4.2工程各实施阶段保证措施 4.3工程进度保证措施 5、质量控制及保证措施 5.1质量保证体系 5.2施工中的质量控制 5.3施工质量检测 6、工程文明、安全施工措施6.1工程文明施工保证措施6.2安全施工措施

1、编制说明 1.1编制依据 本施工方案适用江苏中烟工业有限责任公司徐州卷烟厂“十二五”易地技术改造暨“苏烟”品牌专用生产线项目联合工房项目钢格栅吊顶工程施工,在施工过程中严格按照国家、江苏省的有关标准进行。 编制时采用的依据是: 1、钢格栅吊顶深化设计图纸 2、我公司的相关技术、管理制度 3、国家和行业现行施工规范、技术规范、标准及江苏省关于建筑施工管理的有关规定。 1.2编制的原则 1、本工程的施工方案是根据现场施工条件,严格按照工程对施工组织设计的要求进行策划后编制的,在人员、设备、材料、施工方案、质量要求、进度安排、安全文明施工等统一部署的原则下经过综合考虑后而编制的。 2、根据本工程设计特点、功能要求,本着对建设单位资金合理利用,对工程质量的终身负责,对安全文明施工的强化管理的精神,以:科学、经济、优质、高效为原则编制。 3、我公司对此施工方案的编制高度重视,仔细研究图纸和充分了解现场实际情况,明确工程特点、难点,准确把握业主及监理单位要求的前提下成立编制小组,集思广益、博采众长,力求使本施工方案切合工程实际,方法先进,可操作性强。 2、工程概况及特点

限流孔板计算表编制说明

限流孔板计算表编制说明 1范围 本标准规定了限流孔板计算表的格式和填写要求,以及限流孔板的计算方法,适用于工程设计。 2引用标准 HG/T 20570.15—95 《管路的限流孔板》 3限流孔板的使用场所 限流孔板适用于以下几个方面: 3.1工艺物料需要降压且精度要求不高。 3.2在管道中阀门上、下游需要有较大压降时,为减少流体对阀门的冲蚀,当经孔板节流不会产生气相时,可在阀门上游串联孔板。 流体需要小流量且连续流通的地方,如泵的冲洗管道、热备用泵的旁路管道(低流量保护管道)、离心泵出口返回贮槽(罐)的旁路管、分析取样管等场所。 4限流孔板计算表填写 限流孔板计算表的格式见附表1,计算表应注明工程名称和装置名称。 4.1限流孔板位号 由系统专业提出并填写。 4.2PID图号 根据PID图填写。 4.3管道号 根据限流孔板所在的管道号填写。 4.4管道类别 根据限流孔板所在的管道填写。 4.5介质 根据工艺专业提供的工艺数据填写。 4.6流量 根据工艺专业提供的工艺数据填写。 4.7孔板流量系数 由系统专业根据Re和d。/D值查附图(附图1)填写。

4.8液体密度 根据工艺专业提供的工艺数据填写。 4.9分子量 根据工艺专业提供的工艺数据填写。 4.10压缩系数 由系统专业根据流体对比压力、对比温度查气体压缩系数图求取 4.11孔板前温度 根据工艺专业提供的工艺数据填写。 4.12绝热指数 根据工艺专业提供的工艺数据填写。 4.13粘度 根据工艺专业提供的工艺数据填写。 4.14板数 见5.2中说明。 4.15孔板允许压差 见5.2中说明。 4.16孔板前绝压 见5.2中说明。 4.17孔板后绝压 见5.2中说明。 4.18开孔数 见5.1中说明。 4.19计算孔径 见5.3中说明。 4.20选用孔径 由系统专业按计算的孔径圆整后填写。 5限流孔板的计算 5.1限流孔板孔数的计算 5.1.1管道公称直径小于或等于150m时,通常采用单孔孔板;大于150m时,采用多孔板。

孔板流量计计算公式

孔板流量计计算公式 孔板流量计,可广泛应用于石油、化工、天然气、冶金、电力、制药等行业中,各种液体、气体、天燃气以及蒸汽的体积流量或质量流量的连续测量。但是许多人不知道孔板流量计是怎么计算出来,今天我就和大家探讨一下孔板流量计的计算公式 简单来说差压值要开方输出才能对应流量 实际应用中计算比较复杂一般很少自己计算的这个都是用软件来计算的下面给你一个实际的例子看看吧 一.流量补偿概述 差压式孔板流量计的测量原理是基于流体的机械能相互转换的原理。在水平管道中流动的流体,具有动压能和静压能(位能相等),在一定条件下,这两种形式的能量可以相互转换,但能量总和不变。以体积流量公式为例: Q v = CεΑ/sqr(2ΔP/(1-β^4)/ρ1) 其中:C 流出系数; ε可膨胀系数 Α节流件开孔截面积,M^2 ΔP 节流装置输出的差压,Pa; β直径比 ρ1 被测流体在I-I处的密度,kg/m3; Qv 体积流量,m3/h 按照补偿要求,需要加入温度和压力的补偿,根据计算书,计算思路是以50度下的工艺参数为基准,计算出任意温度任意压力下的流量。其实重要是密度的转换。计算公式如下: Q = 0. *d^2*ε*@sqr(ΔP/ρ) Nm3/h 0C101.325kPa 也即是画面要求显示的0度标准大气压下的体积流量。 在根据密度公式: ρ= P*T50/(P50*T)* ρ50 其中:ρ、P、T表示任意温度、压力下的值 ρ50、P50、T50表示50度表压为0.04MPa下的工艺基准点 结合这两个公式即可在程序中完成编制。 二.程序分析 1.瞬时量 温度量:必须转换成绝对摄氏温度;即+273.15 压力量:必须转换成绝对压力进行计算。即表压+大气压力 补偿计算根据计算公式,数据保存在PLC的寄存器内。同时在画面上做监视。 2.累积量 采用2秒中一个扫描上升沿触发进行累积,即将补偿流量值(Nm3/h)比上1800单位转换成每2S的流量值,进行累积求和,画面带复位清零功能

声速的测量

声速的测量 【一】实验目的 1.学习测量超声波在媒质中的传播速度的方法。 2.用共振干涉法、相位比较法和时差法测量声速,并加深对驻波、振动合成、波的干涉等理论知识的理解。 3.通过实验了解作为传感器的压电陶瓷的功能并培养综合使用仪器的能力。 【二】实验原理 1.声波 声波是一种在弹性媒质中传播的机械波,它能在气体、液体、和固体中传播。但在各种媒质中传播的速度是不同的。频率介于20Hz~20kHz的机械波振动在弹性介质中的传播就可形成声波。频率介于20kHz~500MHz的波称为超声波,在同一媒质中,超声波的传播速度就等于声波的传播速度。由于超声波具有波长短,易于定向发射和会聚等优点,因此在超声波段进行声速的测量比较方便。测量声速时可以利用声速与振动频率f和波长λ之间的关系(即v=λf)求出,也可以利用v=L/t求出,其中L为声波传播的路程,t为声波传播的时间。 声速测量的实验所采用的声波频率一般都在20KHz~60kHz之间。在此频率范围内,采用压电陶瓷换能器作为声波的发射器、接收器效果最佳。 2.共振干涉(驻波)法测声速 实验装置接线如图(1)所示,图中S1和S2为压电陶瓷超声换能器。由声源S1发出平面简谐波沿X轴正方向传播,接收器S2在接收超声波的同时还反射一部分超声波。这样,由S1发出的超声波和由S2反射的超声波在S1和S2之间形成干涉,出现驻波共振现象。 图(1)

设沿X 轴正方向入射波方向的方程为 )(2cos 1λ πx ft A Y ?= (1) 沿X 轴负方向反射波方程为 ) (2cos 1λπx ft A Y += (2) 在入射波和反射波相遇处产生干涉,在空间某点的合振动方程为 t x A Y Y Y ωλπ cos 2cos 2(21=+= (3) 由(3)式可知,当:2)12(2πλπ +=k x k = 0,1,2,3………. (4) 即4)12(λ +=k x k = 0,1,2,3……….时,这些点的振幅始终为零,即为波节。 当:πλπ k x =2 k = 0,1,2,3………. (5) 即2λ k x = k = 0,1,2,3……….时,这些点的振幅最大,等于2A ,即为波腹。 故知,相邻波腹(或波节)的距离为2/λ。 由上式可知,当S 1和S 2之间的距离L 恰好等于半波长的整数倍时,即 2λ k L = k = 0,1,2,3……… 形成驻波,示波器上可观察到较大幅度的信号,不满足条件时,观察到的信号幅度较小。移动S 2,对某一特定波长,将相继出现一系列共振态,任意两个相邻的共振态之间,S 2的位移为, 222)1(1λ λ λ =?+=?=Δ+k k L L L k k (6) 所以当S 1和S 2之间的距离L 连续改变时,示波器上的信号幅度每一次周期性变化,相当于S 1和S 2之间的距离改变了2λ 。此距离2λ 可由游标卡尺测得,频率f 由信号发生器读得,由f v ?=λ即可求得声速。 3.相位比较法 实验装置接线仍如图(1)所示,置示波器功能于X -Y 方式。当S 1发出的平面超声波通过媒质到达接收器S 2时,在发射波和接受波之间产生位相差为: v L f L πλπ???2221==?=Δ (7) 因此可以通过测量?Δ来求得声速。 ?Δ的测定亦可用相互垂直振动合成的李萨如图形来进行。设输入X 方向的入射波振动方程为: )cos(11?ω+=t A x (8) 输入Y 方向的是由S 2接收到的波动,其振动方程为:

机械格栅说明书(细格栅)

回转式细格栅除污机操作规程 宜兴市华电环保设备有限公司

目录 1、工作原理 2、一般性能描述 3、性能和结构 4、主要技术参数: 5、主要材质: 6、现场控制箱 7、设计、制造及质量控制 8、检验与试验要求 9、设备的安装、运行、维修手册 10、注意事项及维护

1、工作原理 回转式机械细格栅是一种用于水源口拦除固体垃圾的专用设备,它可以连续自动地清除污水中的各种形状的漂浮物。当格栅链在减速机驱动机构的驱动下,安工作方向做循环运动,此时水槽中的水流经齿耙栅隙,耙齿格栅对水中的固体杂物进行拦截,并由运动中的耙齿将其捞起,随耙齿链一起向上运行到达顶部后,通过链轮和弯轨的导向,使每组耙齿之间产生相对运动,达到自清目的,致使大部分固态杂物因自身重力而落下,另一些粘附在栅缝中的杂物在反转清洗刷的作用下把耙齿的杂物洗刷干净,并均匀地落入螺旋输送机中。由于耙齿格栅链是一个封闭式循环机构,所以它可以自动连续地工作,对水中漂浮杂物不断地进行清除。 2、一般性能描述 循环耙式清污机适用于原生污水的漂浮物的清除,其主要部件是通常称为“耙齿”或“耙爪”的过滤元件。整个格栅部件直接安装在渠道上,固体物由滤带捕获,通过耙齿送至格栅驱动装置后部的较高位置后排出。格栅支架的二侧均固定有混凝土渠道上,并且拆卸方便,格栅在安装过程中保证渠道内的所有污水能全部流经格栅,并且格栅在除污过程中在格栅两侧无死坑。格栅除污机构在运行中断后一旦恢复运行时,格栅除污机构能在完全阻塞的格栅上去除积聚的栅渣。机械格栅架、支架及各运动构件均为户外型,所有构件的设计保证在最恶劣的环境中使用寿命最长。 3、性能和结构 回转式机械格栅主要由机架、驱动装置(电机减速机)、二侧牵引链、导向链轮、钩形栅片、清扫用转刷及现场控制箱组成。 ◆齿耙 齿耙是由诸多小齿耙相互联接组成一个硕大的旋转面,捞渣彻底、干净、运转灵活可靠。齿耙具有足够的强度和刚度,不会造成连接轴的弯曲或影响耙栅平稳移动或脱链。卸料后的回程耙栅设置实用可靠的卸污吸嘴不会粘附污物。耙齿由采用尼龙材料制造。 ◆机架及机架护罩 格栅机的框架、机架护罩采用相当尺寸的不锈钢焊接而成,形成一个刚性支承结构。机架及护罩为连续焊接,以防止污水向外漏出。设备机架内侧设置牵引链循环运动轨导,机架

孔板流量计简易计算公式应用

孔板流量计简易计算公式应用 介绍孔板流量计的计算公式,通过将简易公式和通用公式的对比,发现简易公式更直观,而且计量误差很小,能够满足生产要求,为维护提供了方便。 关键词计量学;孔板;流量;公式;误差 孔板是典型的差压式流量计,它结构简单,制造方便,使用广泛,主要用于测量氧气、氮气、空气、蒸汽及煤气等流体流量。由于孔板的流入截面是突然变小的,而流出截面是突然扩张的,流体的流动速度(情况)在孔板前后发生了很大的变化,从而在孔板前后形成了差压,通过测量差压可以反映流体流量大小。但是流量的计算是一个复杂的过程。炼铁厂以往仅仅是通过开方器对孔板前后差压进行开方,然后乘以设计最大流量从而获得实际流量值,如公式(1)所示。 其中Q ——体积流量,Nm3/h; Qmax——设计最大流量,Nm3/h;? P ——实际差压,Pa; ? P设——设计最大差压,Pa。 其实这种方法并不能真实反映准确流量,特别是在压力、温度波动(变化)较大的时候,测量出来的流量和真实流量相差较大。所以,流量的计算还需要增加温度、压力补偿。 在孔板通用公式中,增加压力、温度补偿的流量计算公式关键是对介质在工况下的密度进行处理,此外还需要孔板设计说明书上的流

量系数、孔板开孔直径、膨胀系数、工况密度等参数,公式比较复杂;经过大量的数据统计获得的简易公式则简单得多,只要有孔板的设计最大流量、设计差压和设计压力,即可准确获得实际流量值。 1、孔板流量计计算公式; 1.1 通用计算公式: 其中Q----体积流量,Nm3/h; K----系数; d----工况下节流件开孔直径,mm;ε----膨胀系数;α----流量系数;? P----实际差压,Pa;ρ----介质工况密度,kg/m3。 公式(2)中的介质工况密度ρ和温度、压力有关,根据克拉珀龙方 程,有(3) P ----压力,单位Pa;V ----体积,单位m3;T ----绝对温度,K; n ----物质的量;R ----气体常数。 相同(一定)质量的气体在温度和压力发生变化时,有: P1----某种状态下气体压强,Pa;V1----某种状态下气体体积,m3;T1----某种状态下气体绝对温度,K;又:

声速的测量

声速的测量 1. 实验目的 (1)了解声速测量仪的结构和测试原理; (2)通过实验了解作为传感器的压电陶瓷的功能; (3)用共振干涉法和相位比较法测量声速,并加深有关共振、振动合成、波的干涉等理论知识的理解; (4)进一步掌握示波器、低频信号发生器和数字频率计的使用。 2. 实验仪器 SV-DH系列声速测试仪,SVX-5型声速测试仪信号源,双踪示波器(20MHz)。 3. 仪器简介 (1) 声波 频率介于20Hz~20kHz的机械波振动在弹性介质中的传播就形成声波,介于20kHz~500MHz的称为超声波,超声波的传播速度就是声波的传播速度,而超声波具有波长短,易于定向发射和会聚等优点,声速实验所采用的声波频率一般都在20KHz~60kHz之间。在此频率范围内,采用压电陶瓷换能器作为声波的发射器、接收器、效果最佳。 (2) 压电陶瓷换能器 SV-DH系列声速测试仪主要由压电陶瓷换能器和读数标尺组成。压电陶瓷换能器是由压电陶瓷片和轻重两种金属组成。 压电陶瓷片是由一种多晶结构的压电材料(如石英、锆钛酸铅陶瓷等),在一定温度下经极化处理制成的。它具有压电效应,即受到与极化方向一致的应力T时,在极化方向上产生一定的电场强度E且具有线性关系:E=CT;当与极化方向一致的外加电压U加在压电材料上时,材料的伸缩形变S与U之间有简单的线性关系:S=KU,C为比例系数,K为压电常数,与材料的性质有关。由于E与T,S与U之间有简单的线性关系,因此我们就可以将正弦交流电信号

4. 实验原理 根据声波各参量之间的关系可知V =λν,其中V 为波速,λ为波长, ν为频率。 在实验中,可以通过测定声波的波长λ和频率ν求声速。声波的频率ν可以直接从低频信号发生器(信号源)上读出,而声波的波长λ则常用相位比较法(行波法)和共振干涉法(驻波法)来测量。 (1) 相位比较法 实验装置接线如图2所示,置示波器功能于X -Y 方式。当S1发出的平面超声波通过媒质到达接收器S2,在发射波和接收波之间产生相位差: V L L πνλπ???2221==-=? (1) 因此可以通过测量??来求得声速。 ??的测定可用相互垂直振动合成的李萨如图形来进行。设输入X 轴的入射波振动方程为 )cos(11?ω+=t A x (2) 输入Y 轴的是由S2接收到的波动,其振动方程为: )cos(22?ω+=t A y (3) 图2 实验装置 上两式中:A 1和A 2分别为X 、Y 方向振动的振幅,ω为角频率,1?和2?分别为X 、Y 方向振动的初相位,则合成振动方程为 )(sin )cos(2122122 1222212????-=--+A A xy A y A x (4) 此方程轨迹为椭圆,椭圆长、短轴和方位由相位差21???-=?决定。当??=0时,由式得

机械格栅说明书

机械格栅 一、机械格栅用途: GSHZ型回转式格栅除污机(又称“固液分离器”),广泛应用于城市污水处理厂、自来水厂、泵站、电厂进水口,自动拦截并清除水中的漂浮物,保证下道工序的正常运行;也可用作纺织、印染、屠宰、制革、造纸、制糖、酿酒、食品加工中的固液分离。 二、机械格栅型号表示方法: 三、机械格栅主要特点: 该设备的最大优点是自动化程度高、分离效率高、动力消耗小、无噪音、耐腐蚀性能好,在无人看管的情况下可保证连续稳定工作,全过水断面清污。 每2米一道齿耙,齿耙线速度6米/分钟,清污效率高。栅体过梁支撑于混凝土基础之上,使清污机整机运行平稳,工作可靠。 齿耙插入栅条一定深度,把附着在栅条上的污物带到清污机顶部,完成翻转卸污动作,保持过水断面清洁无污物。 牵引链条一般为全不锈钢材质保证水下工作无锈蚀,免维护。 设置了过载安全保护装置,在设备发生故障时,会产生声光报警并自动停机,可以避免设备超负荷工作。 本设备可以根据用户需要任意调节设备运行间隔,实现周期性运转;可以根据格栅前后液位差自动控制;并且有手动控制功能,以方便检修。用户可根据不同的工作需要任意选用。由于该设备结构设计合理,在设备工作时,自身具有很强的自净能力,不会发生堵塞现象,所以日常维修工作量很少。 四、机械格栅结构及工作原理: 机械格栅主要由拦污栅体,回转齿耙,驱动传动机机构,过载保护机构和不锈钢牵引链条等。该设备是由ABS工程塑料、尼龙或不锈钢制成的特殊形耙齿,按一定的排列次序装在耙齿轴上形成封闭式耙齿链,其下部装在进水渠水中。当传动系统带动链轮作匀速定向旋转时,整个耙齿链便自上而下运动,并携带固体杂物从液体中分离出来,流体通过耙齿间隙流出去,

管道孔板计算说明如下

计算说明如下: 1 输入数据 介质相态:根据介质情况填写相应字母。 G—气体 L—气体 G/L—气体/液体 正常流量:根据物料和热量平衡数据表填写。 孔板前流体正常温度:根据物料和热量平衡数据表填写孔板前流体正常温度。 计算临界限流压力的公式选择说明:根据流体情况填写相应数字。1—饱和蒸汽 2—过热蒸汽及多原子气体 3—空气及双原子气体 孔板流量系数:由本附录“限流孔板C-Re-d0/D关系图”查取。 孔板作用:根据孔板作用填写相应数字:1-降压作用2-限流作用 孔数:根据情况填写相应数字:1-单孔2-多孔 板数:根据情况填写相应数字:1-单板 2-多板 2 计算数据 2.1孔板前压力 孔板前压力(P1)根据管道压力降计算结果填写。

2.2 孔板后压力 a. 气体、蒸汽:根据管道压力降计算得出的孔板后压力(P2)、计算的临界限流压力(Pc),取两者中的较大值。推荐的临界限流压力值计算如下: 饱和蒸汽:Pc=0.58P1 过热蒸汽及多原子气体:Pc=0.55P1 空气及双原子气体:Pc=0.53P1 b.液体:根据压力降计算结果填写。 2.3 孔板压差 孔板压差为ΔP= P1-P2,式中: ΔP—通过孔板的压降,MPa P1—孔板前压力,MPa(A) P2—孔板后压力,MPa(A) 2.4 计算孔径 a. 气体、蒸汽单板孔板 式中: W—流体流量,kg/h C—孔板流量系数 d0—孔板孔径,m D—管道内径,m P1—孔板前压力,MPa(A) P2—孔板后压力,MPa(A)

M—分子量 Z—压缩系数。 T—孔板前流体温度,K k—绝热指数,k=Cp/Cv Cp—流体定压热容,kJ/(kg?K) Cv—流体定容热容,kJ/(kg?K) b. 液体单板孔板 式中: Q—液体流量,m3/h ΔP—通过孔板的压降,MPa γ—液体密度,kg/m3 c.气-液两相流孔板 分别按气、液流量用各自公式计算气相和液相孔板孔径,然后按下式计算两相流孔板孔径: 式中: d—两相流孔板孔径,m dL—液相孔板孔径,m dV—气相孔板孔径,m d.限流作用的孔板 按上述公式计算孔板的孔径,然后根据值和k值,查本附录“γc-k-d0/D

声速测量

实验十二 声速测量 编辑:李家望 赵斌 摘 要 本实验通过压电换能器将声波转换为电信号,从而利用示波器测量了空气中的声速。相对不确定度为1.9%和1.3%。 关键词 压电换能器,声波,电信号,示波器,声速 实验目的 1. 利用共振干涉法和位相比较法测量超声波在空气中的传播速度。 2. 加强对驻波及振动合成等理论的理解。 实验原理 1.声波在空气中传播速度:理想气体μ γRT v = V P C C /=γ为比热容比,μ是气体的摩尔质量。 在室温时,声速的近似理论公式为:15 .273145.33110 0t T t v v + ≈+= (m/s ) 2.压电换能器工作原理 压电换能器是一种多晶结构的压电陶瓷材料,被极化的压电陶瓷具有压-电效应。超声波的产生是利用压电陶瓷的逆压电效应使电压变化转变为声压变化,超声波的接收则是利用压电陶瓷的正压电效应使声压变化转变为电压变化。 3.共振干涉法(驻波法)测声速 实验装置如图一所示。图中S 1、S 2为压电陶瓷喇叭,S 1接函数信号发生器,作为超声波源; S 2为接收器,接二踪示波器,且能在接收声波的同时反射部分声波。这样,S 1发出的超声波和S 2反射的超声波在它们之间的区域内因同频率,同振动方向,传播方向相反相干涉而形成驻波。 移动S 2即改变L ,当S 2将经过波腹时,声波信号最强,在示波器上得到的信号振幅最大;当S 2将经过波节时,在示波器上得到的信号振幅最小(因反射声波(会衰减)振幅小于入射声波振幅,合成后波节振幅不为零)。S 2将经过一系列波腹,波节的位置,示波器上的信号幅度会周期性变化,任意两个相邻波腹(节)的距离,通过S 2的移动的距离由游标卡尺可测得:必满足 ΔL = L n +1- L n =λ/2 又声波频率f 由函数信号发生器上读得,可得声速: v =λ f =2ΔL f 4.位相比较法(行波法)测声速 实验装置如图二所示。将函数信号发生器的交变信号输入S 1的同时输入示波器的X 轴(CH1通道),将S 2输出的信号接入示波器的Y 轴(CH2通道),则示波器上就会出现李萨如图形。 当改变S 1和S 2之间的距离L ,相当于改变了发射波和接收波之间的相位差Δφ,示波器上图形也随之不断变化。当S 2与S 1的距离变化ΔL = L n +1- L n =λ,它们之间的相位差Δφ=2π,如图三所示。显然,根据李萨如图形的变化情况可测得波长λ,频率f 仍由函数信号发生器上读得, 由v =λ f =ΔL f 即可求得声速。 图 一 共振干涉法测声速

声速测量

3.10 声速测量 声音是一种在弹性媒质中传播的机械波,频率在20Hz~20kHz 的声波可以被人听到,称为可闻声波;频率低于20Hz 的声波称为次声波;频率在20kHz 以上的声波称为超声波。超声波具有波长短,易于定向发射和会聚等优点,声速实验所采用的声波频率一般都在20kHz~60kHz 之间。在此频率范围内,采用压电陶瓷换能器作为声波的发射器和接收器效果最佳。 实验目的 1.了解声速综合测定仪的结构和测试原理; 2.通过实验了解压电陶瓷换能器的功能; 3.用共振干涉法、相位比较法和时差法测定声速,加深有关共振、振动合成、波的干涉等理论知识的理解。 仪器用具 THQSS-3型声速综合测试仪信号源、THQSS-1型声速测试仪、固体声速测量试验仪、双踪示波器 实验原理 根据声波各参量之间的关系可知V λν=,其中V 为波速,λ为波长,ν为频率。在实验中可以通过测定声波的波长和频率求声速。声波的频率可以直接从低频信号发生器(信号源)上读出,而声波的波长λ则常用相位比较法和共振干涉法(驻波法)来测量。 1.相位比较法 当发射换能器T 发出的超声波通过介质到达接收换能器R 时,在发射波和接收波之间产生相位差: 122/2/L L V ???πλπν?=-== (3.10-1) 因此,可以通过测量??来求得声速。 ??的测定可用相互垂直振动合成的李萨茹图形来进行。设输入X 轴(CH1)的入射波振动方程为 ()11cos x A t ω?=+ (3.10-2) 输入Y 轴(CH2)的是由R 接收到的波,其振动方程为: ()12cos y A t ω?=+ (3.10-3) 上述两式中1A 、2A 分别为X 、Y 方向振动的振幅,ω为角频率,1?和2?分别为X 、Y 方向振动的初相位,则合成振动方程为

孔板流量计理论流量计算公式

孔板流量计理论流量计 算公式 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

如果你没有计算书,你只需要向制造厂提供下列数据:管道(法兰)尺寸,管道(法兰)材质,介质,流体的最大和常用流量,温度,压力和你现有的孔板外圆尺寸,生产厂会根据你的数据重新计算,然后你根据计算书重新调整你的差压变送器和流量积算仪引用孔板流量计理论流量计算公式 2009-05-10 17:11:29|分类: |标签: |字号大中小订阅 引用 的 (1)差压式流量计 差压式流量计是以伯努利方程和流体连续性方程为依据,根据节流原理,当流体流经节流件时(如标准孔板、标准喷嘴、长径喷嘴、经典文丘利嘴、文丘利喷嘴等),在其前后产生压差,此差压值与该流量的平方成正比。在差压式流量计中,因标准孔板节流装置差压流量计结构简单、制造成本低、研究最充分、已标准化而得到最广泛的应用。孔板流量计理论流量计算公式为: 式中,qf为工况下的体积流量,m3/s;c为流出系数,无量钢;β=d/D,无量钢;d为工况下孔板内径,mm;D为工况下上游管道内径,mm;ε为可膨胀系数,无量钢;Δp为孔板前后的差压值,Pa;ρ1为工况下流体的密度,kg/m3。 对于天然气而言,在标准状态下天然气积流量的实用计算公式为: 式中,qn为标准状态下天然气体积流量,m3/s;As为秒计量系数,视采用计量单位而定,此式As=×10-6;c为流出系数;E为渐近速度系数;d为工况下孔板内径,mm;FG为相对密度系数,ε为可膨胀系数;FZ为超压缩因子;FT为流动湿度系数;p1为孔板上游侧取压孔气流绝对静压,MPa;Δp为气流流经孔板时产生的差压,Pa。 差压式流量计一般由节流装置(节流件、测量管、直管段、流动调整器、取压管路)和差压计组成,对工况变化、准确度要求高的场合则需配置压力计(传感器或变送器)、温度计(传感器或变送器)流量计算机,组分不稳定时还需要配置在线密度计(或色谱仪)等。 孔板流量计,可广泛应用于石油、化工、天然气、冶金、电力、制药等行业中,各种液体、气体、天燃气以及蒸汽的体积流量或质量流量的连续测量。但是许多人不知道孔板流量计是怎么计算出来,今天我就和大家探讨一下孔板流量计的计算公式 简单来说差压值要开方输出才能对应流量 实际应用中计算比较复杂一般很少自己计算的这个都是用软件来计算的下面给你一个实际的例子看看吧 一.流量补偿概述 差压式流量计的测量原理是基于流体的机械能相互转换的原理。在水平管道中流动的流体,具有动压能和静压能(位能相等),在一定条件下,这两种形式的能量可以相互转换,但能量总和不变。以体积流量公式为例: Q v = CεΑ/sqr(2ΔP/(1-β^4)/ρ1)

格栅的计算

第一章 工艺设计和计算 一. 格栅的计算 设计说明 格栅是一组(或多组)相互平行的金属栅条与框架组成,倾斜安装在进水渠 道,以控制水中粗大悬浮物及杂质,对下面的微滤机和水泵其保护作用,拟采用 细格姗,格栅间距取16mm. 设计流量:最大流量s m d m Q /092.0/800033max == 设计参数:栅条间距d=16.00mm,栅前水深h=0.3m,过栅流速v=0.6m/s ,安装 倾角α=600 1.栅条的间隙数n 2.栅槽的有效宽度b.取¢10圆钢为栅条,即s=0.01m,栅槽宽度一般要比格姗 宽0.2-0.3m,这里取0.2 m. 3.通过格栅的水头损失h 2,m 设栅条断面为锐边圆形断面,取阻力系数 β=1.83,k=3.36v-1.32=3.36*0.6-1.32=0.7,则 4.栅后槽总高度H ,m 设栅前渠道超高h 1=0.3m.,有H=h+h 1+h 2=0.3+0.3+0.02=0.62 m , 5.格姗的总建设长度L 1l ----进水渠道渐宽部分的长度(m), 设进水渠宽b 1=0.23 m ,其渐宽部分展开角 度α=200 )(306 .03.0016.060sin 092.0sin 0 max 个≈??==bhv Q n α) (97.02.030016.0)130(01.02.0)1(m dn n s b ≈+?+-=++-=)(02.060sin 7.08 .926.083.1sin 202 21m k g v h ≈????==αβα tg H l l L 1 215.00.1++++=)(5.020 223.097.02011m tg tg b b l ≈-=-=α

孔板流量计计算公式

0 引言 孔板是典型的差压式流量计,它结构简单,制造方便,在柳钢炼铁厂使用广泛,主要用于测量氧气、氮气、空气、蒸汽及煤气等流体流量。由于孔板的流入截面是突然变小的,而流出截面是突然扩张的,流体的流动速度( 情况) 在孔板前后发生了很大的变化,从而且在孔板前后形成了差压,通过测量差压可以反映流体流量大小[1]。但是流量的计算是一个复杂的过程。炼铁厂以往仅仅是通过开方器对孔板前后差压进行开方,然后乘以设计最大流量从而获得实际流量值,如公式(1)所示。 (1) 其中Q ——体积流量,Nm3/h; Q max——设计最大流量,Nm3/h; ΔP ——实际差压,Pa; ΔP设——设计最大差压,Pa。 其实这种方法并不能真实反映准确流量,特别是在压力、温度波动( 变化) 较大的时候,测量出来的流量和真实流量相差较大。所以,流量的计算还需要增加温度、压力补偿。在孔板通用公式中,增加压力、温度补偿的流量计算公式关键是对介质在工况下的密度进行处理,此外还需要孔板设计说明书上的流量系数、孔板开孔直径、膨胀系数、工况密度等参数,公式比较复杂;笔者经过大量的数据统计获

得的简易公式则简单得多,只要有孔板的设计最大流量、设计差压和设计压力,即可准确获得实际流量值。 1 孔板流量计计算公式 1.1通用计算公式(2) (2) 其中Q——体积流量,Nm3/h; K——系数; d——工况下节流件开孔直径,mm; ε——膨胀系数; α——流量系数; ΔP——实际差压,Pa; ρ——介质工况密度,kg/m3。 公式(2)中的介质工况密度ρ和温度、压力有关,根据克拉珀龙方程,有 (3) P ——压力,单位Pa; V ——体积,单位m3; T ——绝对温度,K; n ——物质的量; R ——气体常数。

用驻波法测声速

用驻波法测声速实验目的 1.学会用驻波法测空气中的声速 2.学会用逐差法处理实验数据 实验仪器

实验原理 频率介于20Hz ~20kHz 的机械波振动在弹性介质中的传播就形成声波,介于20kHz ~500MHz 的称为超声波,超声波的传播速度就是声波的传播速度,而超声波具有波长短,易于定向发射和会聚等优点,声速实验所采用的声波频率一般都在20KHz ~60kHz 之间。在此频率范围内,采用压电陶瓷换能器作为声波的发射器、接收器、效果最佳。 使S1发出一平面波。S2作为超声波接收头,把接收到的声压转换成交变的正弦电压信号后输入示波器观察,示波器置扫描方式。S2在接收超声波的同时还反射一部分超声波。这样,由S1发出的超声波和由S2反射的超声波在S1和S2之间产生定域干涉。 当S1和S2之间的距离L 恰好等于半波长的整数倍时,即 2 λ k L =, k = 0,1,2,3 …… ; 形成驻波共振。任意两个相邻的共振态之间,S2的位移为, 2 22) 1(1λ λλ= -+=-=?+k k L L L k k 所以当S1和S2之间的距离L 连续改变时,示波器上的信号幅度每一次周期性变 化,相当于S1和S2之间的距离改变了 2λ。此距离2 λ 可由读数标尺测得,频率f 由信号发生器读得,由f ?=λυ即可求得声速。

实验步骤 只有当换能器S1和S2发射面与接收面保持平行时才有较好的接收效果;为了得到较清晰的接收波形,应将外加的驱动信号频率调节到发射换能器S1谐振频率点处,才能较好地进行声能与电能的相互转换,提高测量精度,以得到较好的实验效果。 超声换能器工作状态的调节方法如下:各仪器都正常工作以后,首先调节声速测试仪信号源输出电压(100mV~500mV之间),调节信号频率(在25~45kHz),观察频率调整时接收波的电压幅度变化,在某一频率点处(34.5~37.5kHz之间)电压幅度最大,同时声速测试仪信号源的信号指示灯亮,此频率即是压电换能器S1、S2相匹配的频率点,记录频率νi ,改变S1和S2之间的距离,适当选择位置(即:至示波器屏上呈现出最大电压波形幅度时的位置),再微调信号频率,如 此重复调整,再次测定工作频率,共测5次,取平均值 0 。 将测试方法设置到连续波方式,把声速测试仪信号源调到共振工作频率(根据共振特点观察波幅变化进行调节)。 在共振频率下,将S2移近S1处,依次记下各振幅最大时的读数标尺位置 L 1、L 2 …共10个值; 记下室温t ; 实验数据 序号 1 2 3 4 5 6 7 8 f Hz 37164 37165 37167 37168 37168 37169 37168 37169 Xn 8.060cm 8.500cm 8.968cm 9.422cm 9.890cm 10.360c m 10.820c m 11.276c m 序号9 1 16 f Hz 37169 37168 37168 37168 37168 37169 37169 37169 X n11.746c m 12.204c m' 12.660c m 13.120c m 13.590c m 14.040c m 14.500c m 14.960c m

相关文档
最新文档