材料化学导论__复习提纲

材料化学导论__复习提纲
材料化学导论__复习提纲

材料化学导论复习提纲

第一章绪论

一、材料的分类(按成分分类、按功能分类)

1、按组成、结构特点分

金属材料:由金属及合金构成的材料。

黑色金属:如钢Fe、Mn、Cr及其合金;

有色金属:黑色金属以外的各种金属及其合金。

无机非金属材料:由非金属单质或金属与非金属组成的化合物所构成的材料。

传统无机非金属材料:水泥、玻璃、陶瓷等

新型无机非金属材料:高温结构陶瓷、光导纤维等。如水晶(SiO2)、金刚石(C)、刚玉(Al2O3)、

新型陶瓷材料或精细陶瓷。

高分子材料:以脂肪族或芳香族的C-C 共价键为基础结构的大分子组成。

天然高分子材料:木材,天然橡胶,棉花,动物皮毛等。

合成高分子材料:塑料,合成橡胶,合成纤维和粘合剂等。

复合材料:金属、无机非金属和有机高分子材料有机结合,可以在性能上起到协同作用,从而获得全新性能的一类材料。如碳纤维等。

2、按使用性能分

结构材料:主要利用材料的力学性能的材料。

功能材料:主要利用材料的物理和化学性能的材料。

二、原料与材料的区别、(化学过程与材料过程?)。

材料:人类能用来制作有用物件的物质。是为获得产品,无化学变化。

原料:人们在自然界经过开采而获得的劳动对象。是生产材料,往往伴随化学变化。

注意:材料和原料合成为原材料。

三、.材料的发展过程(了解)。

第一代:天然材料

在原始社会,生产技术水平低下,人类使用的材料只能是自然界的动物、植物和矿物,主要的工具是棍棒,用石料加工的磨制石器。

第二代:烧炼材料

烧炼材料是烧结材料和冶炼材料的总称。天然的矿、土烧结的砖瓦、陶瓷、玻璃、水泥,都属于烧结材料;从天然矿石中提炼的铜、铁等,属于冶炼材料。

第三代材料:合成材料

如合成塑料、合成橡胶、合成纤维。

第四代:可设计的材料

近代出现的根据实际需要去设计特殊性能的材料。

第五代:智能材料

随时间、环境的变化改变自己的性能或形状的材料。如形状记忆合金。

第二章

一、晶体的对称性:点对称操作的独立操作元素、点对称操作与平移对称操作的组合(空间群)。

晶体的对称性:指对晶体施加某种几何操作后,晶体可以完全复原的性质。这种几何操作为对称操作。

点对称操作:在晶体对称操作过程中,若至少有一个点保持不变,则这种对称操作称为点对称操作。晶体的这种对称性称为点对称性或宏观对称性。

能使点阵结构复原的对称元素:平移群、对称中心(又称倒反)、镜面、旋转轴、旋转反轴。

空间点阵结构中只能容纳有限的几种旋转轴,即二重轴、三重轴、四重轴和六重轴,所以其最基本的对称元素只有七种。

1、旋转对称性:指以一个假想直线为轴,绕此直线旋转一定的角度可使图形相同部分重合。

(该直线称为对称轴,以L 表示,分为n 重旋转轴,其中n =360/α, α为旋转角度。受点阵结构的限制,晶体中只存在1,2,3,4,6几种旋转轴,用L1, L2 ,L3,L4,L6 表示。)

n= 1: 平庸对称性,单位对称操作,所有晶体均具有的对称性。

n= 2: n= 3: n= 4: n= 6:

旋转轴—— 1.2.3.4.6重轴。 镜面m 、倒反操作i 。

2、 共有化电子

只有一个价电子:电子在离子实电场中运动时,单

个原子的势能曲线表示为:

两个原子很近时:每个价电子将同时受到两个离

子实电场的作用,这时的势能

曲线表示为:

3、导体、绝缘体和半导体的能带结构、用能带理论解释其性质及温度对其导电性的影响。

(1)导体的能带结构(三种形式)。

形式1:价带中只填充了部分电子,在外加电场作用下,这些电子很容易在该能带中从低能级跃迁到较高能级,从

而形成电流。是电子导电型,如Li 。

形式2:价带被电子填满,成为满带,且与空带发生交叠,形成更宽的能带,从而使可添充的电子数目大于2N ,使

能带不完全被电子充满,以致出现电子和空穴同时参与导电。包括:空穴导电型导体、电子导电型导体。

如二价Bi 、As 、Mg 、Zn 。

形式3:金属的价带本来就没有被电子填满,同时价带又同邻近的空带重叠,形成一个更宽的导带,实际参与导电的是那些未被填满的价带中的电子。是电子导电型导体,如Na 、K 、Cu 、Al 、Ag 。

价带 空带 导带 空带

(2)绝缘体能带结构。

绝缘体具有充满电子的满带和很宽的禁带,禁带宽△Eg 约 3~6 eV ;一般温度下,满带中的电子在外电场作用下很难激发,越过禁带到空带参与导电。如大多数离子晶体。

例: NaCl 晶体,它的能带是由 Na+ 和 Cl-离子的能级构成的,Na+

的最外壳层 2p 和Cl- 的最外壳层3p ,都已被电子填满,且这

最高满带与空带之间存在着很宽的禁带,所以NaCl 是绝缘体。

绝缘体:电子刚好填满最低的一系列能带(最上边的满带叫价带),再高

的各能带全部都是空的(即为空带),由于没有未满带,禁带宽度

比较大,不能导电。 (3)半导体能带结构。 在温度 T=0K 时,能带结构与绝缘体相似,只是禁带宽度△Eg

很窄,约0.1~1.5 eV ;在温度 T >0K 时,电子热激发,能从满带

跃迁到空带,使空带成为导带,同时在满带中产生空穴;外加电场

后,电子和空穴从低能级跃迁到高能级,而形成电流,因此半导体 具有导电性。

半导体:硅、硒、锗、硼等元素,硒、碲、硫的化合物,各种金属氧化物等物质都是半导体。

(a )导体(b )绝缘体(c )半导体(d )半金属

4、晶体缺陷的分类(按H.Pick 法分类和几何分类法)。

(1)几何形态:点缺陷、线缺陷、面缺陷、体缺陷等。

点缺陷:发生在晶格中一个原子尺寸范围内的一类缺陷,亦称零维缺陷,例如空位、间隙原子等。

线缺陷:缺陷只在一个方向上延伸,或称一维缺陷,主要是各种形式的“位错”,例如晶格中缺少一列原子。 面缺陷:晶体内一个晶面不按规定的方式来堆积,部分偏离周期性点阵结构的二维缺陷。

体缺陷:指在三维方向上相对尺寸较大的缺陷,例如完整的晶格中可能存在着空洞或夹杂有包裹物等,使得晶体内

部的空间点阵结构整体中出现了异性形式的缺陷

(2)形成原因:热缺陷、杂质缺陷、非化学计量缺陷、电荷缺陷、辐照缺陷。

热 缺陷:亦称本征缺陷,指由热起伏的原因所产生的空位或间隙质点。类型:弗仑克尔缺陷和肖特基缺陷 杂 质 缺陷:亦称为组成缺陷,是由外加杂质的引入所产生的缺陷。

非整比缺陷:指组成上偏离化学中的定比定律所形成的缺陷。它是由基质晶体与介质中的某些组分发生交换而产生。电 荷缺陷:质点排列的周期性未受到破坏,但因电子或空穴的产生,使周期性势场发生畸变而产生的缺陷。

辐 照缺陷:材料在辐照下所产生的结构不完整性。

5、固溶体的分类方法。

带隙

空带 非导体 空带(导带) 半导体 满带(价带) 不同固体的能带填充情况 (a) 导体;(b) 绝缘体;(c) 半导体;(d) 半金属

(1)按溶质原子(或离子)在固溶体中的位置划分:

置换型固溶体:溶质的质点进入主晶体中正常结点位置。

间隙型固溶体:溶质的质点进入溶剂晶格的间隙位置。如:碳在铁中形成间隙型固溶体。

(2)按溶质在主晶体中的溶解度(固溶度)划分:

连续固溶体:溶质和主晶体可以按任意比例无限制地相互溶解。

有限固溶体:溶质原子在主晶体中的溶解度是有限的。

6.固溶体的相图(连续固溶体的相图种类,各区域、各线的意义,组分的确定方法;有限固溶体的二元系统相图,主要是低共熔点共晶相图各区域、各线的意义,组分的确定方法)。

(1)连续固溶体的二元系统相图

连续固溶体:两种组分,在液态下可无限互溶,在固态下形成的固溶体的溶解度可无限大。

连续固溶体形成的相图称为匀晶相图,有三种类型:

①没有最低及最高熔点型。

▽加入一种组分使熔点上升,而加入另一种组分使熔点降低。

▽相图由两条曲线将其分为三个区。

▽左右两端点分别为组元的熔点。

▽上面的一条曲线称为液相线,液相线之上为液相的单相区,常用L表示;

▽下面的一条曲线称为固相线,固相线之下为固溶体的单相区,常用α表示;

▽两条曲线之间是双相区,标记L+α表示。L1、a1点分别为平衡的液体和固体的成分。

②具有最低熔点型。

▽加入一组分后都使熔点下降,出现一个最低点。

③具有最高熔点型。

▽加入一组分后都使熔点上升,出现一个最高点

(a)具有最低熔点(b)具有最高熔点

(2)有限固溶体的二元系统相图。

有限固溶体:组分A、B间在液态下无限互溶,固态下可以形成固溶体但溶解度有限,不能以任意比例互溶。有两种类型:

①低共熔点型-共晶相图。

▽A,B分别表示两个组元,T A和T B为两个组元的熔点。

▽左、右端区域分别为B溶于A中的固溶体(以α表示)以及A溶于B

中的固溶体(以β表示)。

▽T A E、T B E分别α、β为固溶体的凝固曲线,两条液相线相交于E点。

▽E点所对应的温度称为共晶温度。在该温度下,液相凝固同时结晶出两

个固相,这种两相的混合物称为共晶组织或共晶体。

▽T A C和T B D为两固相线;CF和DG为固溶体α、β的溶解度随温度变化线;

▽CED水平线是:组成为Q点的α相,组成为I的β相and熔融液的三相

平衡共存线。称为共晶线。

▽相图分成三个单相区L、α、β;三个双相区L+α、L+β、α+β。

▽成分位于共晶点E以左,C点以右的合金称为亚共晶合金。

▽成分位于共晶点E点以右、D点以左的合金称为过共晶合金。

②转熔点类型-包晶相图。

▽T A C和T B C为两液相线,T A D和T B P为两固相线;

▽DF和PG为固溶体α、β的溶解度随温度变化线;

▽相图有3个单相区:液相L、固相α和β。

▽单相区之间是L+α、L+β和α+β的3个双相区。

▽DPC称为包晶线,L、α、β三相共存区。

包晶线系:组成为D的固溶体α,组成为P的固溶体β和组成为C的熔液的

三相平衡共存线,其平衡关系式可示为:

当成分处于DP范围的合金冷却时,首先析出的是α固溶体。当温度降至tP时,成分为C的剩余液体与固溶体α相相互作用形成β固溶体。β相的生长在液体和α相的交界面处,形成的β相包围在α相外围,将α相与液体分隔开,所以把这种转变称为包晶转变。

这类由一种固溶体转变为另一种固溶体的温度(tp)就称为两固溶体的“转变温度”“转熔点”。

第三章材料结构的表征

一、材料结构分析的意义、材料研究的组成部分。

材料研究的三个组成部分:材料的设计、制备和表征。

材料结构分析的意义:材料设计的重要依据,来源于材料的结构分析。材料制备的实际效果,必须通过材料结构分析的检验。因此可以说,材料科学的进展极大地依赖于对材料结构分析的表征水平。材料结构表征的主要手段:热分析技术、显微技术、X射线衍射技术、波谱技术。

材料结构表征的任务:主要有三个:成分分析、结构测定、形貌观察。

二、热分析方法、热重法的含义、分类、热重曲线的分析。

热分析含义:在程序控制温度条件下,测量材料物理性质与温度之间关系的一种技术。从宏观性能的测试来判断材料结构的方法。

热分析分类:热重法(TG)、差热分析法(DTA)和差示扫描量热法(DSC)。

热重法含义:在程序控制温度条件下,测量物质的质量与温度关系的一种热分析方法。

热重法分类:等温热重法:在恒温下测量物质质量变化与时间的关系

非等温热重法:在程序升温下测量物质质量变化与温度的关系

热重曲线分析:

由热重法记录的质量变化对温度的关系曲线称为热重曲线(TG曲线)。

TG曲线以质量为纵坐标,从上到下表示减少,以温度或时间作横坐标,从左自右增加。如图。

▽热重曲线显示了试样的绝对质量(W)随温度的恒定升高

而发生的一系列变化。

▽如图中质量从W0到W1,从W1到W2,从W2到0是

三个明显的失重阶段,它们表征了试样在不同的温度范围内发

生的挥发性组分的挥发and分解产物的挥发,从而可以得到试

样的组成、热稳定性、热分解温度、热分解产物and热分解动力

学等有关数据。

▽由TG曲线还可获得试样的质量变化率与温度关系曲线,即

微分热重曲线(DTG曲线),它是TG曲线对温度的一阶导数。

▽以物质的质量变化率dm/dt对温度T作图,所得的曲线为微

分热重曲线(DTG曲线)。DTG曲线的峰顶即失重速率的最大值,

它与TG曲线的拐点相对应。即样品失重在TG曲线形成的每一个

拐点,在DTG曲线上都有对应的峰。并且DTG曲线上的峰数目

和TG曲线的台阶数目相等。

▽由于DTG曲线上的峰面积与样品的失重成正比,因此可以从

DTG的峰面积计算出样品的失重量。

三、X射线衍射技术的含义、分类、应用。

1含义:X射线衍射分析(X-ray diffraction,简称XRD),是利用X射线在晶体中所产生的衍射现象来分析材料的晶体结构、晶格参数、晶体缺陷、不同结构相的含量及内应力的方法。

2分类:粉末法X射线衍射分析单晶法X射线衍射分析

3应用:晶体X射线衍射方法是目前研究晶体结构最有力的方法。根据研究对象的不同可以分为粉末法和单晶法。

粉末法:可以用来确定立方晶的晶体结构的点阵形式、晶胞参数等。

单晶法:可以精确给出晶胞参数、晶体中成键原子的键长、键角等重要的结构化学数据。

粉末衍射的应用:(1)物相分析,即固体由哪几种物质构成

(2)衍射图的指标化

(3)点阵常数的精确测定

(4)晶粒尺寸和点阵畸变的测定

四、波谱技术的含义、分类及优点。

1含义:以光学理论为基础,以物质与光相互作用为条件,建立物质分子结构与电磁辐射之间的相互作用,从而进行物质分子几何异构、立体异构、构象异构和分子结构的分析和鉴定的方法。(即一定波长的电磁波(光波),作用于被研究物质的分子,引起分子内某种物理量的改变(能级跃迁),便产生波吸收谱。)

2分类:紫外光谱(UV)红外光谱(IR)核磁共振谱(NMR)质谱(MS)

3优点:

(1)样品用量少,一般2~3 mg (可<1mg);

(2)除红外和质谱外,无样品消耗,可回收;

(3)省时,简便;

(4)配合元素分析(或高分辨率质谱),可准确确定化合物的分子式and结构。

五、红外光谱的特点、应用。

1特点:

(1)具有高度的特征性。

就像人的“指纹”一样,依据红外光谱的吸收谱线的形状和相对强度来确定化合物。(物质的红外光谱是其分子结构的反映,谱图中的吸收峰和分子中各集团的振动形式相对应。)

(2)灵敏度高,测定时间短,近于无损的检测。

(3)样品不受状态限制。固体采用压片法或制成溶液,液体取1~2滴滴在圆形盐片之间测定,气体需转入专用的吸收瓶(或池)内。

2应用(鉴定化合物、测定分子结构)

(1)定性鉴定

①已知物的鉴定

将试样的谱图与标准谱图进行对照,或者与文献上的谱图进行对照。如果两张谱图各吸收峰的位置和形状完全

相同,峰的相对强度一样,就可以认为样品是该种标准物。如果两张谱图不一样,或峰位不一致,则说明两者不为同一种化合物,或样品有杂质。

②未知物结构的测定

测定未知物的结构,是红外光谱法定性分析的重要用途。如果未知物不是新化合物,可以通过两种方式,利用标准谱图进行查对:

㈠ 查阅标准谱图的谱带索引,寻找与试样光谱吸收带相同的标准谱图;

㈡ 进行光谱解析,判断试样的可能结构,然后再由化学分类索引查找标准谱图对照核实。

(2)定量鉴定

红外光谱的定量分析是根据组分的吸收峰的强度来进行。

六、原子吸收光谱分析法的含义、优点。

1含义:

原子吸收光谱分析法:是基于 自由原子吸收光辐射的一种 元素定量分析方法,即被测元素的基态原子对 光源发出的该原子的 特征性窄频辐射 产生共振吸收,其吸光度在一定浓度范围内 与蒸汽相中 被测元素的基态原子 浓度成正比。

注:即原子吸收法与紫外可见光光度法的基本原理相同,都遵循Beer 定律。

2优点:

(1)灵敏度高(检出限低)

(2)精密度好

(3)选择性高

(4)精确度高、分析速度快

(5)应用广泛

七、光谱图的三要素。 (1)波峰位置:反映波谱的特征振动频率,是鉴定官能团的基础,依据峰位可确定聚合物的类型;

(2)峰形状:从峰的形状可知分子的对称性,旋转异构等特征;

(3)峰强度:反映分子振动时偶极矩的变化率,又与分子的含量成正比,可定量分析样品。

第四章 材料制备化学

一.材料制备的目的?

二.陶瓷法制备晶体材料的反应过程(以尖晶石的制备为例说明)、陶瓷法制备材料的缺陷。

1陶瓷法制备晶体材料的反应过程。

MgO(s) + Al2O3(s) → MgAl2O4(s) 从热力学上看:反应的自由能允许反应正向自发进行。

从动力学上看:在室温时反应速率极慢,仅当温度超过1200℃时,才开始有明显的反应,要使反应进行完全,

必须将粉末混合物在1500℃下加热数天。原因:MgAl2O4晶核的生长困难以及扩散困难。 第一阶段:反应-成核

当MgO 和Al2O3两种晶体加热后,在接触面上局部生成一层 MgAl2O4。 (解释:反应的第一步是先生成MgAl2O4晶核,晶核的生成是比较困难的,这是因为,在 这个过程中化学键必须断裂和重新组合,原子也需要作相当大距离(原子尺度的)的迁移等。

MgO 中的Mg2+和Al2O3中的Al3+本来被束缚在它们固有的格点位置上,仅在极高温度时,

这些离子具有足够的热能使之从正常的格位上跳出,并通过晶体扩散。)

MgO Al 2O 3MgO Al 2O 3Mg 2+Al 3+MgAl 2O 4产物层新反应物-产物界面3x/4

x/4起始界面(a )(b)(c )x 2106(cm 2)

2010

5

151500℃

1400℃

1300℃

(a) MgO 和Al2O3反应时相互紧密接触状态 (b) MgO 和Al2O3相互扩散反应

第二阶段:反应-扩散

为使反应进一步进行并使产物MgAl 2O 4的厚度增加,Mg 2+和Al3+离子必须通过已存在的MgAl2O4产物层,相互扩散达到新的反应界面。(解释:在此阶段有两个反应界面:MgO 和MgAl2O4 之间以及MgAl2O4和Al2O3之间的

界面。因为Mg2+和Al3+扩散速率很慢,所以反应即使在高温下进行也很慢,而且其速率随尖晶石产物层厚度增加而降低。反应-扩散过程更为困难。)

尖晶石产物厚度x 与温度和时间的关系如图所示:在三种不同温度下,x 2对时间的图是

直线,随着温度的增高,反应速率增加得很快。

为使电荷平衡,每有3个Mg2+扩散到右边界面,就有2个Al3+离子扩散到左边界面,

在理想情况下,在两个界面进行的反应可以写成如下的形式:

界面MgO/MgAl2O4 2Al 3-3Mg 2+4MgO →MgAl 2O 4

界面MgAl2O4/Al2O3 3Mg 2-2Al 3+4Al 2O 3→3MgAl 2O 4

2陶瓷法制备材料的缺陷。 (1)反应只能在界面进行,随后的扩散过程也十分困难;

(2)反应最终得到的是反应物和产物的混合体系,极难分离和提纯; (3)即使反应进行得很完全,也很难得到一个纯相的体系; (4)高温反应条件苛刻,还存在容器污染的问题。 3消除缺陷方法(需朝两个方向发展) 一个是向极端条件发展,如采用超高温(〉1600℃)、高压和超高压、电离辐射、射频、激光、冲击波等; 另一个方向是向缓和的条件发展,称为软化学法。 三.无定形材料的制备(了解)。 定 义:无定形材料也叫非晶态材料或玻璃态材料,这是一大类刚性固体,具有和晶态物质可相比较的高硬度和高粘滞系数。其组成的原子、分子的空间排列不呈现周期性和平移对称性,晶态的长程序受到破坏。只是由于原子间的相互关联作用,使其在几个原子(或分子)直径的小区域内具有短程序。

制备方法:1液相骤冷法(是先将金属或合金加热熔融成液态,然后通过不同途径使它们以105~108K/s 高速冷却)。 2.气相沉积法(先用各种不同的工艺将固体的原子或离子以气态形式离解出来,然后使它们无规则地沉积在冷却底板上,从而形成非晶态。根据离解和沉积方式的不同,分为:溅射法、真空蒸发沉积法、电解和化学沉积法、辉光放电分解法)。 3离子轰击。 4强激光辐射。 5高温爆聚

第五章 材料的结构与物理性能

一.晶体的基本特征。

1均 匀 性:晶体不同部位的宏观性质相同,即晶体的平移特性。

2各向异性:晶体的不同方向上具有不同的物理性质,即具有旋转特性

3自限性(或自范性): 晶体具有自发地形成规则的几何外形的特性

4对称性:经过某种操作后,晶体能够与自身重合的特性

5解离性:晶体常具有在某些确定范围的沿晶面劈裂的性质,劈裂面称解理面。

6稳定性(最小内能):同一种物质的几种不同形态(气、液、非晶态、晶态),以晶体的内能最小。 7确定的和明显的熔点。

8衍射效应:由于晶体结构的特殊性,晶体相当于三位光栅,能使波长相当于X 射线、电子流或中子流产生衍射效 应。并可以此来测定晶体的结构。

二非晶体材料的特征。

1均匀性:非晶材料的粒子杂乱无章地分布,但从无序分布的统计性规律上来说也是均匀的。

2长程无序:质点排列不具有格子构造特征,因而不能再使用对称性、晶系、晶胞等概念描述非晶固体。

3介稳性:也称亚稳性,非晶固体的内能并非最低,属于热力学不稳体系,由于动力学的原因,常温常压下,非晶 固体向结晶固体转化的速度非常缓慢,而呈现介稳状态。

MgO Al 2O 3

MgO Al 2O 3Mg 2+Al 3+MgAl 2O 4产物层新反应物-产物界面3x/4x/4

起始界面(a )(b)(c )200时间/小时

100

x 2106(cm 2)20010

515

1500℃1400℃

1300℃

4短程有序:固体非晶结构呈现长程无序特征,但与气体间质点的分布不同,由于质点间存在较强的化学键力,因而遵循一定的排列规律,在短程范围内呈现一定的次序,即短程有序。

三.液晶材料的分类及各种类型的特点。

液晶的相态结构(晶相):是指液晶分子在形成液晶相时的空间取向和晶体结构。液晶的晶相主要有以下三类:

(a)向列型晶相用符号N来表示。

在向列型液晶中,液晶分子刚性部分之间相互平行排列,但是其重心排列无序,只保持着一维有序性。

液晶分子在沿其长轴方向可以相对运动,而不影响晶相结构。因此在外力作用下可以非常容易流动,是在三种晶相中流动性最好的液晶。

(b)近晶型晶相通常用符号S来表示,在所有液晶中最接近固体结晶结构。

在这类液晶中分子刚性部分互相平行排列,并构成垂直于分子长轴方向的层状结构。在层内分子可以沿着层面相对运动,保持其流动性;这类液晶具有二维有序性。

由于层与层之间允许有滑动发生,因此这种液晶在其粘度性质上仍存在着各向异性。

(c)胆甾醇型晶相由于这类液晶,许多是胆甾醇的衍生物,所以称之为胆甾醇型液晶。

构成液晶的分子基本是扁平型的,依靠端基的相互作用,彼此平行排列成层状结构。

与近晶型液晶不同,它们的长轴与层面平行,而不是垂直。

在两相邻层之间,由于伸出平面外的光学活性基团的作用,分子的长轴取向依次规则地旋转一定角度,层层旋转,构成一个螺旋面结构;分子的长轴取向在旋转360度以后复原。

两个取向度相同的最近层间距离称为胆甾醇型液晶的螺距。

这类液晶具有彩虹般的颜色和很高的旋光本领等独特的光学性质。

第六章新型结构材料

一耐热合金的含义及分类。

1含义:又称高温合金,指在650℃以上温度下具有一定力学性能和抗氧化、耐腐蚀性能的合金,目前是铁基、镍基和钴基合金的统称。

2分类:

(1).按组织结构分:珠光体、马氏体和奥氏体耐热钢、耐热合金等;

(2)按成分分类:铁基、镍基和钴基合金等。

①铁基合金:以铁为主,含有大量镍、铬和适量的锰及钨、钼、钒、钛。基体主要是奥氏体耐热钢或奥氏体耐热合金,因为面心立方的奥氏体原子间结合力较强,再结晶温度较高,故比珠光体和马氏体耐热钢具有更高的耐热性。

奥氏体:γ—铁内固溶有碳和(或)其它元素的、晶体结构为面心立方的固溶体。

马氏体:α—铁的固溶体,黑色金属材料的一种组织名称。碳溶于α—铁的过饱和的固溶体,是奥氏体通过无扩散型相变转变成的亚稳定态。

珠光体:是奥氏体发生共析转变形成的铁素体和渗碳体的共析体。

铁素体:α—铁和以它为基体的固溶体

渗碳体:正交点阵,化学式近似于Fe3C的一种间隙式化合物或铁碳合金按亚稳定平衡系统凝固和冷却转变时析出的Fe3C碳化物

共析转变:一个固相同时转变为两个成分和结构均不相同的固相的转变。

②镍基合金:以镍为主要成分,一般含有10-20%Cr以便形成稳定的奥氏体组织,为提高抗氧化性和热强性还加人少量W、Mo、Ti、Al等元素。

③钴基合金:这类合金具有良好的热强性、热稳定性和抗冷热疲劳的性能。但在反应堆上禁用钴合金。

二高温结构陶瓷的含义及分类。

1含义:高温结构陶瓷,是指用于某种装置、或设备、或结构物中,能在高温条件下承受静态或动态的机械负荷的陶瓷。

2性能:高熔点、高温强度、较小的高温蠕变性能、较好的耐热震性、抗腐蚀、抗氧化和结构稳定性。

3分类:高温氧化物和高温非氧化物结构陶瓷

高温氧化物结构陶瓷

(1)包括:熔点高于1728℃的氧化物(如氧化硅晶体)或某些复合氧化物(如氧化铝、氧化锆、氧化镁等)。(2)优缺点:高温下的化学稳定性好,尤其是抗氧化性能好。但弱点是脆性较大,耐机械冲击性差。

(3)应用:高温氧化物陶瓷可用作高温炉衬,熔炼稀有金属和纯金属的坩埚,以及磁流体发电装置的高温电极材料和热机材料。

高温非氧化物结构陶瓷

(1)包括:氮化物、碳化物、硅化物、硼化物等。

(2)性能与应用:①与氧化物比较,难熔化合物的热导率较高,热膨胀系数较低,因此具有良好的抗热震性。

②氮化硅与碳化硅还具有较高强度,硬度仅次于金刚石,耐磨性好,是很好的热机材料。

③采用氮化硅或碳化硅作为燃气轮机和陶瓷发动机的高温部件,与金属部件比较,可承受较高的工作温度,省去水冷却系统,减轻自重,因而节能效果显著。

④由于氮化硼具有优良的热稳定性,而且对金属熔体有很好的耐蚀性,用它作为水平连续铸钢的分离环,可较氮化硅有更长的使用寿命。

⑤由于SiC陶瓷高温强度大,高温蠕变小,硬度高、耐磨、耐腐蚀、耐氧化以及热稳定性好,所以它是1400℃以上良好的高温结构陶瓷材料,在许多领域都有广泛的应用。在航天航空上主要用于发动机燃料燃烧构件方面。

⑥氮化硅(Si3N4)具有硬度大、熔点高、结构稳定、绝缘性能好、耐磨损、弹性模量大、高强度、热膨胀系数小、导热系数大、耐热冲击性好、密度低、耐腐蚀、抗氧化等优点。

三纤维材料的含义及分类。

1含义:聚合物经一定的机械加工(牵引、拉伸、定型等)后形成的细而柔软的材料。

2特点:纤维具有弹性模量大,塑性形变小,强度高等特点,有很高的结晶能力,分子量小,一般为几万。

3分类:

(1)天然纤维:自然界存在的纤维,又分为:植物纤维、动物纤维、矿物纤维。

(2)化学纤维:是经过化学处理加工而制成的纤维。分为人造纤维(或再生纤维)和合成纤维。

人造纤维:用天然高分子化合物或其衍生物做材料,经溶解后制成纺织溶液,然后纺制成的纤维。

分为人造丝、人造毛和人造棉。

合成纤维:用合成高分子化合物做原料而制成的化学纤维的总称。

四硬质合金的含义、组成及结构。

1含义:由难熔金属的硬质化合物和粘结金属通过粉末冶金工艺制成的一种合金材料。

2性能:硬质合金具有硬度高、耐磨、强度和韧性较好、耐热、耐腐蚀等一系列优良性能。

3组成:硬化相是元素周期表中过渡金属的碳化物,硬化相的存在决定了合金具有极高硬度和耐磨性。

粘结金属一般是铁族金属,常用的是钴和镍。

4结构:ⅣB、ⅤB、ⅥB族金属与碳形成的金属型碳化物,由于碳原子半径小,能填充于金属晶格的空隙中并保金属原有的晶格形式,形成间充固溶体。在适当条件下,这类固溶体还能继续溶解它的组成元素,直到达到饱和为止。因此,它们的组成可以在一定范围内变动,化学式不符合化合价规则。

间充化合物:当溶解的碳含量超过某个极限时,晶格型式将发生变化,使原金属晶格转变成另一种形式的金属晶格,这时的间充固溶体叫做间充化合物。

5合成方法:硬质合金是以高硬度难熔金属的碳化物(WC、TiC)微米级粉末为主要成分,以钴(Co)或镍(Ni)、钼(Mo)为粘结剂,在真空炉或氢气还原炉中烧结而成的粉末冶金制品。

6性能:硬度高、热硬性好、耐磨性好。脆性大,不能进行切削加工,难以制成形状复杂的整体刀具。

五.超塑性合金的分类及特征。

1组织超塑性(或恒温超塑性、微晶超塑性)特征:

(1)绝大多数合金的超塑性温度都很高,多数都在几百度到几千度。

(2)对变形速度的依赖性大。此种材料发生超塑性的速度范围很低,必须通过采用与之相适应的低速度加工来减少工序。(3)能实现在低压下的固相结合。可用于制造含有超塑性合金的复合材料,也促进了使超塑性合金用于复合材料的开发利用。(4)减震能力强。由于这种材料在超塑性温度附近有滞弹性行为,故减震能力很强,可用于减震和消音材料。

(5)其他:由于晶粒细小,加工变形时表面光洁度较高,易于实现精细雕刻面的转印;

由于变形抗力极小,可用于难加工材料加工时的润滑剂;

由于具有耐腐蚀性、低导热性、耐辐射性、高弹性恢复能力、软磁性能等,可用于功能材料或功能—结构材料。

2相变超塑性(或变态超塑性、动超塑性)

这类超塑性,并不要求材料有超细晶粒,而是在一定的温度和负荷条件下,经过多次的循环相变或同素异形转变获得大延伸。

变形的特点:初期时每一次循环的变形量比较小,而在一定次数之后,例如几十次之后,每一次循环可以得到逐步加大的变形,到断裂时,可以累积为大延伸。

六非晶态金属材料基本特征及应用。

1基本特征:

(1)非晶态形成能力对合金组分的依赖性:不同的合金组分形成非晶态时所需要的条件不同。纯金属比合金的条件更苛刻。

(2)结构的长程无序性和短程有序性:原子在三维空间呈拓扑无序状排列,不存在长程周期性,但在几个原子间距的范围内,原子的排列仍然有着一定的规律,因此可以认为非晶态合金的原子结构为“长程无序,短程有序”。(3)热力学的亚稳性:非晶态金属处于热力学不稳定状态,有自发地向晶态转化的趋势。

(4)优异的性能:高强度、极软的磁特性、耐腐蚀性。

2应用:

(1)非晶态软磁材料方面:磁芯材料、磁致伸缩材料、磁头材料、磁泡材料、磁屏蔽材料。

(2)弹性方面:可用作雷达、计算机及信息处理器中的导声材料,为各类仪表良好精密弹簧、敏感元件材料。(3)力学性能方面:作为传送带、高压管及轮胎的强化纤维丝,各种切割材料、刮胡须刀片材料、精密仪表结构材料及医用材料。

(4)耐腐蚀性方面:可部分代替一些不锈钢丝。可用于海底电缆、海军航空控制电缆、化学过滤器、反应器及其他化学工程构件。

第七章新型功能材料

一形状记忆合金与普通金属、超弹性的区别与联系;图示表示并能叙述说明。

形状记忆合金含义:简称SMA,是一种在加热升温后能完全消除其在较低的温度下发生的变形,恢复其变形前原始形状的合金材料。

形状记忆合金的特性:①合金在某一温度下变形后,仍保持其变形的形状,但当温度升高到某一温度时,其形状恢复到变形前的原形状,即对以前的形状保持记忆特性,称为形状记忆效应。

②在高温(奥氏体状态)下发生的“伪弹性”(又称“超弹性“)行为,表现为这种合金能承载比一般金属大几倍甚至几十倍的可恢复应变。

形状记忆合金与普通材料的变形及恢复特性差别如图所示:

a)普通金属;b)超弹性;c)形状记忆

普通金属和合金,在弹性范围变形时,载荷去除后可恢复到原来形状,无永久变形,但当变形超过弹性范围时再去除载荷,材料不能恢复到原来形状而保留永久变形,加热并不能使此永久变形消除,如图a所示。

而形状记忆合金在变形超过弹性范围时,去载后虽也有残留变形,但当加热到某一温度时,残留变形消失而恢复到原来形状,如图c。

另外,形状记忆合金变形超过弹性范围后,在某一程度内,当去除载荷后,也能徐徐返回原形,如图b所示,这一特性称为超弹性。

二图示温度的单程记忆合金及双程记忆合金的区别并叙述说明。

1将高温母相冷却到开始在母相中发生马氏体转变的温度称为马氏体开始相变温度Ms。

2继续冷却到马氏体相变停止的温度称为Mf。

3将处于低温的马氏体相加热,到开始发生马氏体到母相的逆相变的温度称为As。

4继续加温到某一温度,马氏体相全部转变到原母相的状态,此温度为Af。

5通常加热和冷却的相变曲线形成一热滞回线,As-Ms存在温度差。

▽当一定形状的母相材料由Af以上冷却至Mf以下T1温度形成马氏体后,

在Mf以下变形,经加热至Af以上(T2),伴随逆相变,材料会自动回复其在母

相时的形状,称为单程形状记忆效应,如图a所示。

▽有的材料经适当“训练”后,不但对母相形状具有记忆,并且在再度冷却

时能回复马氏体变形后的形状,称为双程记忆效应,如图b所示。

三.膜分离的含义及优点。

1分离膜的含义:

指能以特定形式限制和传递流体物质的分隔两相或两部分的界面。

膜的形式可以是固态的,也可以是液态的。被膜分割的流体物质可以是液态的,也可以是气态的.

2膜分离的优点:

(1)可在常温下进行。有效成分损失极小,特别适用于热敏性物质,如抗生素等、医药、果汁、酶、蛋白的分离与浓缩等。(2)无相态变化。保持原有的风味。

(3)无化学变化。典型的物理分离过程,不用化学试剂和添加剂,产品不受污染。

(4)选择性好。可在分子级内进行物质分离,具有普通滤材无法取代的卓越性能。

(5)适应性强。处理规模可大可小,可以连续也可以间隙进行,工艺简单,操作方便,易于自动化。

第八章功能转换材料

一了解热电材料的Seebeck效应、Peltier效应及Thomson效应。

1热电效应(Seebeck效应):当两种不同金属接触时,它们之间会产生接触电位差。如果两种不同金属形成一个回路时,两个接头的温度不同,则由于该两接头的接触电位不同,电路中会存在一个电动势,因而有电流通过。电流与热流之间有交互作用存在,其温度梯度不但可以产生热流,还可以产生电流,这是一种热电效应,称为Seebeck 效应,其所形成的电动势,称为Seebeck电动势。

Seebeck电动势的大小既与材料有关,也是温度差的函数。在温度差ΔT较小时,Seebeck电动势EAB与温度差呈线性关系,即EAB=SABΔT,式中SAB为材料A和B的相对Seebeck系数。

2.Peltier效应:是Peltier发现Seebeck效应的逆效应,即当两种金属通过两个接点组成一回路并通以电流时,会使得一个接头发热而使另一个接头制冷,这就是Peltier效应。

由此效应而产生的热称为Peltier热,其数值大小既取决于两种材料的性质,也与通过的电流成正比,即QAB=ΠAB×I,式中ΠAB为材料A和B间的相对Peltier系数。

3.Thomson效应:Thomson发现,只考虑两个接头处发生的效应是不完全的,还必须同时考虑沿单根金属线由于其两端温度差而产生的电动势。

二了解压电材料及压电效应原理。

含义:压电材料,受到压力作用时会在两端面间出现电压的晶体材料。

压电效应:压电材料是实现机械能与电能相互转变的工作物质。

①当压电材料受到机械应力时,会引起电极化,其极化值与机械应力成正比,这种现象称为正压电效应;

②反过来,材料在电场作用下,产生一个在数量上与电场强度成正比的应变,这种现象称为逆压电效应。

压电效应原理:如果对压电材料施加压力,它便会产生电位差(称之为正压电效应),反之施加电压,则产生机械应力(称为逆压电效应)。

如果压力是一种高频震动,则产生的就是高频电流。而高频电信号加在压电陶瓷上时,则产生高频声信号(机械震动),这就是我们平常所说的超声波信号。也就是说,压电陶瓷具有机械能与电能之间的转换和逆转换的功能。

三了解光电效应的机理

光电效应:物质由于受到光照而引发其某些电性质变化的这一现象称为光电效应。

海洋科学导论课后习题答案()

海洋科学导论复习题 第一章绪论 2.海洋科学的研究对象和特点是什么? 海洋科学研究的对象是世界海洋及与之密切相关联的大气圈、岩石圈、生物圈。 它们至少有如下的明显特点。首先是特殊性与复杂性。 其次,作为一个物理系统,海洋中水—汽—冰三态的转化无时无刻不在进行,这也是在其它星球上所未发现的。 第三,海洋作为一个自然系统,具有多层次耦合的特点。 3.海洋科学研究有哪些特点? 海洋科学研究也有其显著的特点。首先,它明显地依赖于直接的观测。 其次是信息论、控制论、系统论等方法在海洋科学研究中越来越显示其作用。 第三,学科分支细化与相互交叉、渗透并重,而综合与整体化研究的趋势日趋明显。 5.中国海洋科学发展的前景如何? 新中国建立后不到1年,1950年8月就在青岛设立了中国科学院海洋生物研究室,1959年扩建为海洋研究所。1952年厦门大学海洋系理化部北迁青岛,与山东大学海洋研究所合并成立了山东大学海洋系。1959年在青岛建立山东海洋学院,1988年更名为青岛海洋大学。1964年建立了国家海洋局。此后,特别是80年代以来,又陆续建立了一大批海洋科学研究机构,分别隶属于中国科学院、教育部、海洋局等,业已形成了强有力的科研技术队伍。目前国内主要研究方向有海洋科学基础理论和应用研究,海洋资源调查、勘探和开发技术研究,海洋仪器设备研制和技术开发研究,海洋工程技术研究,海洋环境科学研究与服务,海水养殖与渔业研究等等。在物理海洋学、海洋地质学、海洋生物学、海洋化学、海洋工程、海洋环境保护及预报、海洋调查、海洋遥感与卫星海洋学等方面,都取得了巨大的进步,不仅缩短了与发达国家的差距,而且在某些方面已跻身于世界先进之列。 第二章地球系统与海底科学 3.说明全球海陆分布特点以及海洋的划分。 地表海陆分布:地球表面总面积约5.1×108km2,分属于陆地和海洋。 地球上的海洋是相互连通的,构成统一的世界大洋;而陆地是相互分离的,故没有统一的世界大陆。在地球表面,是海洋包围、分割所有的陆地,而不是陆地分割海洋。

化学导论论文

化学与现代社会的发展 熊俊杰 材化学院应用化学一班(03111128) 摘要:化学在我们的日常生活中随处可见,已经渗透到我们生活的各个方面,它在改善人类的生活和社会的发展等方面起着非常重要的作用。 关键词:化学与生活,化学与科技,化学与环境 化学与生活 化学是一门基础自然科学,它是人类认识世界、改造世界的锐利武器。目前化学科学已经渗透到国民经济的—切技术领域,它在为人类提供丰美的食品、丰富的能源、品种繁多的材料、治疗疾病的医药,以及保护人类的生存环境等方面起了巨大的作用。 先说说化学对日常生活的影响。由于有了化学,我们的住房才有多彩的装饰。生石灰浸在水中成熟石灰,熟石灰涂在上干后成洁白坚硬的碳酸钙,覆盖了泥土的黄色,房子才显得整洁明亮。化学炼出钢铁,我们才有铁制品使用。化学加工石油,我们才能用上轻便的塑料,而塑料,这是我们每天都必须接触的东西,电脑外壳,键盘,鼠标,塑料杯子,拖鞋,衣服,都离不开塑料。化学锻烧陶土,才能使房屋有漂亮的瓷砖表面。 化学反应是交通工具得以行驶的动力。没有燃料的燃烧放出热量,车辆根本无法开动。化学能是它们得以行动的最原始的能量来源,即使用了电做动力,也不能忘记化学能伟大的贡献。在现在,化学仍是交通工具的生命仍对人们出行起重大作用。可以说没有化学就没有我们现在的美好生活。 这几年苹果产品在全求掀起了一股热潮,但是一切物质包括我们人类自己,都是由化学物质构成的,所以没有化学就没有苹果的产品。不但如此,现在我们生活用的电子电器产品譬如手机,相机等都离不开工程塑料。 化学与生物 再说化学对生物医学的影响。医药上:所有西药及部分中药都是化学合成的,青霉素,阿司匹林这些都属于化学范畴,在医药方面有重大贡献,而医学的发展和人们的健康息息相关。举个例子,1933年Fl e ming氏十年前(1928)发现青霉素可以对抗很多致病菌的文章后,对青霉素的兴趣大增。Fle mi ng虽然发现了青霉素的抗菌性能,但是认为要把它提纯大量生产作药用,却是很难实现的。傅氏却不接受这一看法,与另一个化学家C hai n氏合作,而使用工业的方法,在二次大战末期,大规模生产出实用的青霉素。使战场受伤的士兵伤口受到感染的机会大减。后来又用於对很多其它细菌感染的疾病,产生

海洋科学导论复习题纲

《海洋科学导论》复习题纲 1. 回顾海洋科学发展历史,你能够得到那些启示? 当今世界,人口激增,耕地锐减,陆地资源几近枯竭,环境状况渐趋恶化。众多的有识之士,预见到这些危机,并把目光再次投向海洋。一些国家相继制订了21世纪的海洋发展战略,许多知名的科学家、政治家,异口同声地称21世纪为“海洋科学的新世纪”。联合国及有关国际组织,也更加关注海洋事务。仅从1994年算起就有:《联合国海洋法公约》生效,成立国际海底管理局,建立国际海洋法庭,召开“海洋和海岸带可持续利用大会”,“保护海洋环境国际会议”和“世界海洋和平大会”,并把1998年定为“国际海洋年”等大事。何以如此?盖因全世界面临的人口、资源、环境三大问题,几乎都可以从海洋中寻求出路。如何将上述可能变为现实?海洋科学则是架设在它们之间的桥梁。海洋科学在历经古代、近代和现代的发展之后,必将迎来一个更为辉煌的新时代。 2. 简述海水密度的表示方法(历史上和现在的)。何谓密度状态方程? 3. 海洋热平衡方程中各项的物理含义是什么?它们是怎样对海洋的热状况产生作用的? 海洋热平衡方程(Sea thermal equilibrium equation)是指描述海洋中特定海区某一水层热收支的方程。 方程式:Qs-Qc-Qe-Qn±Qw±QA=Qt 式中: Qs为海水吸收的太阳总辐射能; Qc为海水通过与大气的辐射热交换而失去的热量; Qe为海水通过与大气的蒸发热交换失去的热量; Qn为海水通过与大气的接触热交换失去的热量; Qw为该水层与垂直方向上其他水层的涡动热交换; QA为水平方向上的海洋热平流。 如方程左边各项之和大于零,Qt为正,表示给定时间内该水层收入的热量较放出的热量为大,海水的热含量增加,水温因而增高。 反之,Qt为负,表示热支出大于热收入,海水热含量减少,水温随之降低。 因此,Qt是直接体现海洋温度变化的热量要素,可用来说明给定海区的水温变化的过程。 4. 何谓海洋水团?它和水型、水系有何关系? 水型,斯维尔德鲁普1942年首次定义水型,其后广为引用。通常它是指温盐度均匀,在温—盐图解上仅用一个单点表示的水体。由于性质完全相同的水样,其观测值皆对应于温—盐图解中的一个点,故水型实质上是“性质完全相同的水体元的集合”。由此引伸,即可给出水团的集合论定义:“水团是性质相近的水型的集合”。水系原为陆地水文学的术语,在海洋学中水系可定义为“符合一个给定条件的水团的集合”。换言之,水系的划分只考虑一种性质相近即可。在浅海水团分析中,经常提到的沿岸水系和外海水系,就是只考虑盐度而划分的。前者指沿岸低盐水团的集合,后者是指外海(受大陆径流影响较小的)高盐水团的集合。 5.何谓海洋混合?引起海洋混合的主要原因有哪些? 在海洋中的各种动力因素的综合作用下,导致海水不断地发生混合。混合是海水的一种普遍运动形式,混合的过程就是海水各种特性(例如热量、浓度、动量等)逐渐趋向均匀的过程。

化学导论

化学导论 摘要:人类的进化史就是化学的发展史。对化学的了解对于每一个人都是十 分重要的了。透过化学所能了解的东西更是广阔。通过对化学与工业,我们明白啦化学在建立于发展现代工业所起的重要作用,还有化学-与生活,化学与军事,化学与能源,化学与环境等等等。总之,我们离不开化学。 化学与生活:化学来源于生活又服务于生活,当远古人类发现和使用火的时 候,人类就接触到了化学,后来随着人类的进步,人类把化学应用于生活,通过粮食发酵酿出了酒和醋,就利用了化学中的缓慢氧化原理,而应农业与军事的需要,人们开始有意识的用化学来炼铜和冶铁,更别说现代社会中人类的衣,食,住,行等各个方面,无处都有化学的身影,可以说化学与生活息息相关,渗透到我们生活的每个角落。 比如说涤纶布料的衣服,穿起来不怎么透气,如果经过改进以后利用合成的一些材料,制成了像真丝的衣服,及软又透气,人们穿起来就会很舒服。这就是化学在“衣”方面的用处的简单举例。 说道“食”,不得不提的就是尿素的合成与合成氨了。人类过去是靠天吃饭,但随着人口的增加,尤其是我国这种人口大国,吃饭问题是至关重要的。1905年,德国的化学家哈勃第一次解决了这个问题,把氨气变成了肥料。这是人类发展史上一个非常重要的事件。由于有了化学,我们的住房才有了多姿多彩的装饰。生石灰浸在水中变成了熟石灰,熟石灰涂在墙体上风干后成了洁白坚硬的碳酸钙,覆盖了泥土的黄色,房子才显得整洁明亮。而化学煅烧陶土,才使得房屋有漂亮的瓷砖表面。 化学与军事:人类刚刚迈进21世纪的门槛,由于科学技术的迅速发展,社会生产力极大提高,世界经济得到前所未有的繁荣。全球性的科技竞赛推动科技的高速发展,国际金融一体化进程将加快,世界金融业将掀起新一轮的兼并和联合浪潮,国际贸易和跨国直接投资迅猛发展。跨区域、洲际间的区域经济组织进一步发展,合作的空间不断扩大。各区域经济组织之间的相互联系将进一步加强,合作的领域和范围进一步拓展。世界多极化日益发展,世界的和平发展趋势日益明显,全球迎来一个高速发展的时期。但是在某些地区仍存在着不和谐的因素,争斗不断,战争频发。如伊拉克战争,叙利亚局势,利比亚战争,巴以问题等等,这些地方的人民深受其害,生活处于水深火热之中。因此各国开始扩充军备,企图用军事实力来安定国家。我国人民虽然爱好和平,珍惜这来之不易的幸福生活,但也要阻止外来势力的挑衅,建立强大的军事力量,加强震慑力,吓阻一切敌人。化学作为一门基础学科,是建立强大军队,研制新型武器的重要保障。 纵观世界军事发展史,化学在其中起着举足轻重的作用。每一种新型武器的发明 都与化学息息相关。军事武器的进步也是化学的进步,化学的发展带动着军事发

海洋科学导论分析

海洋科学导论复习提纲 第一章绪论 海洋科学研究内容:全球海洋总面积约3.6亿平方公里,平均深度约3800米,最大深度11034米。全球海洋的容积约为13.7亿立方公里,占地球总水量的97%以上。 海洋科学特点:1、特殊性与复杂性;2、作为一个物理系统,海洋中的三态变化无时不刻不在进行,是其他星球上未发现的。3、海洋作为一个自然系统,具有多层耦合的特点。 研究特点:1、明显依赖于直接观测;2、信息论控制论系统论等方法在研究中越来越显示其作用;3、学科分支细化与相互交叉渗透并重,而综合与整体化研究的趋势日益明显。 海洋学研究意义:1海洋与人类生存环境关系密切;2.海洋蕴藏着丰富的资源(矿产、化学、生物、动力)3.军事、航运、港工、油气开发; 第二章地球系统与海底科学 1、地球外部圈层 (1)按自然地理学观点,地球外部分为五大圈层,从外到内: a、大气圈 b、水圈——97%集中于海洋 2%以固态水存在 c、生物圈——渗透在另三大圈层内部 d、岩石圈——属于地球内部圈层部分 e、人类圈(智能圈) (2)按环境学观点第五圈层为土壤层 (3)按大气科学的观点,第五层为冰雪圈,冰雪圈可包含在广义水圈中 2、地球内部圈层 海洋的划分 1、洋:辽阔连续巨大的咸水体;全球共4个,远离大陆;占海洋总面积的90.3%;水深>2000m,平均3000m;底质为红粘土和软泥;有独立的潮汐与洋流系统;温、盐要素不受大陆影响;平均盐度35,年变化小。 2、海:陆地边缘的咸水小水体;全球共54个,靠近陆地;占海洋总面积的9.7%;水深<2000m;底质:陆沉积;无独立潮汐和洋流系统,潮波是大洋传入;温、盐要素受大陆影响很大。 3、海湾——外宽内窄,洋或海伸进大陆的一部分。海湾中常出现最大潮差,如杭州湾大潮,最大潮差可达8.9m。 4、海峡——两块陆地之间形成的两端连接海洋的狭窄水道。 海的分类 1、陆间海:大陆之间的,面积深度较大。例如—地中海、加勒比海。 2、内海:伸入大陆内部的海,面积较小,其水文特征受周围大陆的强烈影响。世家海和波罗的海。 3、边缘海:位于大陆边缘,以半岛、岛屿或群岛与大洋分隔。如东海、日本海。 南大洋:三大洋在南极洲附近连成一片的水域称为南大洋,又名南极水域。 2.3 海底的地貌形态 海岸带:水位升高便被淹没、水位降低便露出的狭长地带即是海岸带。海岸带是陆地与海洋相互作用、相互交界的一个地带(潮上带,潮间带,潮下带)。 海岸线:陆地与海面的交线。近期大潮平均高潮面与陆岸的交线。 海岸动力学:下界浅海波浪对海底开始起作用的地方,上界最高潮位激浪还能作用到的上限。 潮间带:高潮时的海岸线与低潮时的海岸线之间的带状区域。 一、稳定型大陆边缘:由大陆架、大陆坡和大陆隆三部分组成。 大陆架:大陆周围被海水淹没的浅水地带,是大陆向海洋底的自然延伸。其范围是从低潮线起以极其平缓的坡度延伸到坡度突然变大的地方为止。 大陆坡:大陆坡是一个分开大陆和大洋的全球性巨大斜坡,其上限是大陆架外缘(陆架坡折),

材料化学导论2-8章练习题,唐小真版

2章材料化学的理论基础 1.用固体能带理论区别导体、半导体、绝缘体。 2.晶体的宏观特性有那些。 3.说明晶体点阵缺陷的分类情况。 4.用实验事实简述非晶体材料的几何特征。 5.写出TiO2在还原气氛中失去部分氧,生成的缺陷反应,说明代表的意义。 6.晶体一般的特点有哪些;点阵和晶体的结构有何关系。 7.晶体衍射的两个要素是什么?它们与晶体结构有何对应关系?在衍射图上有何反映。 8.总结位错在金属材料中的作用。 9.说明晶界对材料性能及变形的影响。 10.画出fcc晶胞中(111)晶面上的所有[110]晶向。 11.假设把MgO固溶到ZrO2中(10%),,(1)写出两种可能的固溶反应式;(2)设Mg2+进入Zr2+位置的摩尔分数为x,试写出相应两种固溶体分子式。 12.一个立方晶系晶胞中,一晶面在晶轴X、Y、Z上的截距分别为2a、1/2a 、 2/3a,确定此晶面的晶面指数,并图示。 13.简述P型半导体和N型半导体导电机理。 14.Mg(熔点924K)和Zn(熔点692K)的相图具有两个低共熔点,一个为641K (3.2%Mg,质量分数),另一个为620K(49%Mg,质量分数),体系的熔点曲线上有一个最高点863K(15.7%Mg)。(1)绘出Mg和Zn的T—x(温 度—组成)图。(2)标明各区中的相。 15.四面体型分子CH3Cl具有哪些那些对称元素。 16. 在立方晶系中写出面OBC’、ODD’O’的晶面 指数和OB、OD晶向指数(AD=1/2AB)。 17.图例是A-B-C三元系成分三角形的一部分,其中X合金的成分是 _______________。

17题图18题图 18.如图是A-B-C三元系统相图,根据相图回答下列问题: (1)写出点P,R,S的成分; (2)设有2kgP,问需要多少何种成分的合金Z才可混熔成6kg成分为R的合金。 19.相变的含义是什么?从热力学角度来划分,相变可以分为哪几类? 3章材料结构的表征 1.什么是材料结构的表征?包括那些内容? 2.热分析技术包括那些?可研究那些内容? 3.X射线衍射技术 4.简述波谱技术的分类。 4章材料制备化学 1.晶体材料制备的方法有哪些,简述其原理。 2.分别从热力学和动力学分析MgO和Al2O3以1:1摩尔比生成尖晶石MgAl2O4的固态反应。 3.如何控制晶体颗粒的生长。 5章材料结构的物理性能 1.简述晶体材料共同的和基本的特性。 2.晶体缺陷在材料的改性和制备新型或特殊性能材料的作用。

材料化学硕士教学大纲.doc-西北大学化学与材料科学学院

材料化学专业硕士研究生课程 教学大纲 课程名称:材料化学导论课程编号:0703212X01 学分:3 总学时:54 开课学期:1-2 学期考核方式:笔试+课程论文课程说明: 本课程是材料化学专业硕士研究生学位课。要求同学以固体结构、用为主线,掌握二元离子晶体和三元典型离子晶体的结构描 述和各类点缺陷,握主要类型电、光和磁功能材料 的结构和性能, 纳米技术。教学内容、要求及学时分配: 01 绪论(4 学时)定义和分类材料科 学中基本化学问题 02 理想晶体的结构(10学时)宏观 特征等径球主要堆积方式 03 缺陷晶体的结构(10学时)两类热 缺陷非化学整比化合物不等价元 素置换固溶体能带理论的概念 04 固体的电学性质与电功能材料(固 体电导率定义Frenkel 导体和 Schottky 导体超导概念和特征参 数压电效应和压电材料 材料与新技术革命 点阵概念 间隙杂质和替代杂质缺陷点缺 陷F- 心双重价态控制半导体 各类 缺陷 的拟化学平衡 10 学时)固体中的离子扩散快离子导 体两类超导体和库柏电子对模 型铁电效应和铁电材料 性能和应掌 了解固体材料的基本制备方法和

05 固体的光性质和光功能材料(8 学时) 光导电和光电转化材料发光材料组固体光吸收的本质发光材料的发光特性 成和发光原理 激光原理和激光材料 06 固体的磁性和磁功能材料(6 学时) 固体的磁性磁化率与温度的关系 磁性材料的分类过渡金属、合金和铁氧体的磁结构 分子磁体及其磁化学 07 纳米材料化学简介(6 学时) 纳米材料的概念、特性及应用主要纳米技术 纳米粉材料、孔材料和纳米碳管材料制备原理和典型示例 教材或主要参考书目: [1]张逢星、李珺编著,《材料化学导论》,西北大学本科讲义,2004 年 [2]张逢星、李珺编译,《无机材料化学》,牛津双语读物,2005 年 [3]苏勉曾,固体化学导论,北京大学出版社,1996 年 [4]唐小真主编,材料化学导论,高等教育出版社,1997 年 (大纲起草人:张逢星大纲审定人:史启祯) 课程名称:功能高分子材料导论 课程编号:0703212X02 学分:3 总学时数:54 开课学期:第1-2 学期 考核方式:笔试 课程说明: 本课程是材料化学专业硕士研究生学位课。功能高分子材料在生态环境保护、信息功能化、生物医用器材、物质分离膜、能量转换和储能技术等工业领域有着极为广泛的应用。本课程的目的是使学生了解和掌握功能高分子材料的基本内容、研究方法、主要研究领域、国内外发展现状及发展趋势。要求学生全面了解和掌握功能高分子材料类型、结构和功能的关系、制备原理及方法,提高研究、开发特种功能高分子材料的能力。

海洋科学导论-海洋学基础-重点知识

海洋科学导论重点知识 第一章 1.海洋科学:研究地球上海洋的自然现象、性质以及其变化规律,以及和开发与利用海洋有关的知识体系。 研究对象:海洋---海水、海水的组成、海洋生物以及海洋的边界(海洋沉积、海底岩石圈,河口、海岸带,海面上的大气等)。 研究内容:海水的运动规律、海洋中的物理、化学、生物和地质过程及其相互作用的基础理论、海洋资源的开发、利用、海洋军事活动应用研究等。 2. 海洋科学研究的特点是什么 1)明显地依赖于直接的观测。 2)。 3) 4)信息论、控制论、系统论等方法在海洋科学研究中越来越显示其作用。 5)学科分支细化与相互交叉、渗透并重,而综合与整体化研究的趋势日趋明显。 相似问题:海洋科学研究对象的特点 ①海洋科学研究对象具有特殊性和复杂性; ②海洋中水---汽---冰的转化时刻都在进行; ③海洋作为一个自然体系,具有多层次耦合的特点。 ¥ 3. 海洋矿产资源的分布特点是什么有哪些主要类型 ·分布特点: 深海锰结核以锰和铁的氧化物及氢氧化物为主要组分,富含锰、铜、镍、钴等多种元素。主要分布于太平洋,其次是大西洋和印度洋水深超过3000米的深海底部。以太平洋中部北纬6°30′~20°、西经110°~180°海区最为富集。 世界96%的锆石和90%的金红石产自海滨砂矿。复合型砂矿多分布于澳大利亚、印度、斯里兰卡、巴西及美国沿岸。金刚石砂矿主要产于非洲南部纳米比亚、南非和安哥拉沿岸;砂锡矿主要分布于缅甸经泰国、马来西亚至印度尼西亚的沿岸海域。 中国近海水深小于200米的大陆架面积有100多万公里,某中含油气远景的沉积盆地有7个:渤海、南黄海、东海、台湾、珠江口、莺歌海及北部湾盆地,总面积约70万公里,并相继在渤海、北部湾、莺歌海和珠江口等获得工业油流。在辽东半岛、山东半岛、广东和

材料化学导论习题库

材料化学导论习题库 第一篇高分子材料导论 第一章 1.叙述高分子科学在科学技术发展中的地位。 2.说出获得诺贝尔奖的高分子科学家的名字和他们的主要贡献。 3.说出十种你日常生活中遇到的高分子的名称。 4.查阅最新的全世界合成材料的年产量,并与图1-2相比较,看又增长了多少?(提示: 从当年的“塑料工业”、“橡胶工业”和“合成纤维工业”的有关文章中可查到前一年的数据) 5.调查学习高分子的学生毕业后就业的百分比是多少? 6.下列产品中哪些属于聚合物?(1) 水;(2)羊毛;(3) 肉;(4) 棉花;(5) 橡胶轮胎;(6) 涂料 7.写出下列高分子的重复单元的结构式:(1) PE;(2) PS;(3) PVC;(4) POM;(5) 尼龙; (6) 涤纶 8.用简洁的语言说明下列术语:(1)高分子;(2) 链节;(3)聚合度;(4) 多分散性; (5) 网状结构;(6) 共聚物 9.说出具有下列重复单元的一种聚合物的名称。 A.亚乙基—CH2—CH2— B.苯酚和甲酚缩合后的单元 C.氨基酸缩和后的单元 10.H(CH2CH2)3000H的分子量是多少? 11.平均分子量为100万的超高分子量PE的平均聚合度是多少? 12.已知一个PS试样的组成如下表所列,计算它的数均分子量、重均分子量和d。 组分重量分数平均分子量组分重量分数平均分子量 1 0.10 20.19 30.24 4 0.18 1.2万 2.1万 3.5万 4.9万 5 6 7 8 0.11 0.08 0.06 0.04 7.5万 10.2万 12.2万 14.6万 13.按值递增的次序排列数均分子量、重均分子量、Z均分子量和粘均分子量。 14.下列哪一种聚合物是单分散的?(1)天然橡胶;(2) 玉米淀粉;(3) 棉纤维素;(4) 牛奶酪蛋白;(5) 高密度聚乙烯;(6) 聚氯乙烯;(7) β—角蛋白;(8) 尼龙-66;(9) 脱氧核糖核酸;(10) 石腊 15.高分子结构有哪些层次?各层次研究的内容是什么? 16.什么是高分子的构型?什么是高分子的构象?请举例说明。 17.有一种等规度不高的聚丙烯,能否通过改变构象的办法提高它的等规度?为什么?18.由以下单体聚合得到的高分子是否存在有规立构体?有几种? (1) CH2=CH-CH2-CH=CH2;(2) CH2=C(CH3)2 19.画出PE的平面锯齿形构象示意图。 20.当n=2000时,高密度聚乙烯分子链的近似长度为多少?重复单元数目相同的聚氯乙烯分子链的近似长度是多少? 21.线形聚合物和支化聚合物中碳原子的近似键角各是多少度?

海洋科学导论试题

海洋科学导论试题一、名词解释 1. 海洋科学:研究地球上海洋的自然现象、性质与其变化规律,以及和开发与利用海洋有关的知识体系。 2. 大陆架:海岸线到水深200米以内,平均深度133米;宽度1—1000km,平均75km ;平均坡度度;地壳为硅质花岗岩构成。浪、潮、流季节变化,丰富的油气田,渔业,养殖业主要 场所。 3. 海洋科学分支:物理海洋学、化学海洋学、生物海洋学、海洋地质学、环境海洋学、海气相互作用以及区域海洋学等。 4. 海洋科学研究的对象及特点: 特殊性与复杂性:极大的比热容、介电常数和溶解能力,极小的粘滞性和压缩性等。 海洋中水-汽孙三态的转化无时无刻不在进行。海洋每年蒸发约44X 108t淡水 海水的运动还受制于海面风应力、天体引力、重力和地球自转偏向力等。诸如此类各种因素的共同作用,必然导致海洋中的各种物理过程更趋复杂,即不仅有力学、热学等物理类型,而且也有大、中、小各种空间或时间特征尺度的过程。 具有多层次耦合的特点蒸发与降水,结冰与融冰,海水的增温与降温,下沉与上升,物质的溶解与析出,沉降与悬浮,淤积与冲刷,海侵与海退,潮位的涨与落,波浪的生与消,大陆的裂离与聚合,大洋地壳的扩张与潜没,海洋生态系平衡的维系与破坏等等。海洋科学研究 的特点: 1. 它明显地依赖于直接的观测 2. 信息论、控制论、系统论等方法,在海洋科学研究中越来越显示其作用。 3. 学科分支细化与相互交叉、渗透并重,而综合与整体化研究的趋势日趋明显。 5. 太阴日 地球上一点由第一次正对月球中心的的二次正对所需的时间 太阴日=平太阳日时=20 h 50 min (由于月球公转速度大于太阳在地球上的视觉运动 速度,当地球转动一周,平太阴日以运行了大约度。地球上一点由第一次正对月球中心的的二次正对约需旋转度角!) 6.新中国海洋科学的发展历程1950 年8月就在青岛设立了中国科学院海洋生物研究室。

海洋科学导论复习提纲

复习提纲 1、陆半球陆地约占47%,海洋占51%;水半球海洋占89%,陆地占11%。 2、海洋的平均深度为3795米,陆地的平均高度为875米,地球的平均球面深度 为2646米。 3、南大洋是三大洋在南极洲附近连成一片的水域,是从南极大陆到南纬40°为 止的海域,或从南极大陆起到亚热带辐合线明显时的连续海域。 4、按照海所处的位置可将其分为陆间海、内海和边缘海。如地中海和加勒比海 属于陆间海,渤海和波罗的海属于内海,东海和日本海属于边缘海。 5、现代海岸带一般包括海岸、海滩和水下岸坡三部分,也称之为潮上带、潮间 带和潮下带。 6、大陆边缘分为稳定型大陆边缘和活动型大陆边缘。稳定型大陆边缘也称之为 大西洋型大陆边缘,由大陆架、大陆坡和大陆隆三部分组成。活动型大陆边缘也称之为太平洋型大陆边缘,分为岛弧亚型和安第斯亚型两类,结构上都有深邃的海沟与大洋底分界。 7、中国的渤海和黄海海底地形为大陆架,东海海底有2/3大陆架和1/3的大陆坡, 南海海底有大陆架、大陆坡和深海盆地。 8、大洋中脊是指贯穿世界四大洋、成因相同、特征相似的海底山脉系列。大西 洋大洋中脊位居中央,与两岸平行,边坡较陡;印度洋大洋中脊大致位于中央呈“入”字型展布;太平洋大洋中脊偏居东侧且边坡平缓。 9、海底的矿物资源主要有滨海砂矿、海底石油和天然气、磷钙石和海绿石、锰 结核和富钴结壳、海底热液硫化物、天然气水合物 10、海水的盐度定义经历了三个阶段:1902年基于化学方法的首次定义、1969 年的电导盐度定义、1978年的实用盐度定义。实用盐标PSS78采用了浓度为 32.4356‰的氯化钾溶液作为电导标准。 11、海水的比热容约为3.89×103J.kg-1.℃-1在所有固体和液态物质中是名列前茅 的。海水的热膨胀系数较小,当其为负值时说明当温度升高时海水收缩;海水压缩系数小,所以在动力海洋学中为了简化求解常把海水看作不可压缩的流体;海水在绝热下沉时温度升高,绝热上升时温度降低;位温就是指海洋中某一深度的海水微团,当绝热上升到海面时所具有的温度。 12、海水的冰点是盐度的函数,随着盐度的增大冰点下降。 13、海水的密度是温度、盐度和压力的函数,其单位为千克每立方米,一般海水 密度在1020-1030千克每立方米,目前使用密度超量表示海水密度,使它与历史上使用的条件密度在数值上一致,保持了资料使用的连续性。 14、海冰的形成通常比纯水冰困难,其盐度一般为3-7,盐度的高低取决于冻结 前海水的盐度、冻结的速度和冰龄等,结冰时气温越低,结冰速度越快,海冰的盐度要大。海冰由冰晶、卤汁和气泡组成,因此其抗压性要比纯水冰差。 15、影响海面热收支的主要因子有太阳辐射、海面有效回辐射、蒸发或凝结潜热 以及海气之间的感热交换。海面有效回辐射是热量主要支出部分,其大小与海面水温、海上的水汽含量和云的特征有关;其次是蒸发,有利于蒸发的条件是水汽的铅直梯度大、海面水温高于气温以及海面风大等。 16、影响水平衡的因子有蒸发、降大陆径流、结冰与融冰等。大洋的表面盐度分

海洋科学导论 复习资料

海洋科学导论试题 一、填空题 1、按照海所处的位置可将其分为陆间海、内海和边缘海,据此则东海属于边缘海海,渤海属于内海,地中海属于陆间海海。 2、一只船在极地融冰区通过时, 船只不能前进或进速甚为缓慢,这就是”死水”现象.其原因是在淡咸水的界面上产生内波。 3、海水的沸点和冰点与盐度有关,即随盐度的增大,沸点升高而冰点下降。 4、源地和形成机制相近,具有相对均匀的物理、化学和生物特征及大体一致的变化趋势,而与周围海水存在明显差异的宏大水体称为水团,温-盐特性作为分析水团的主要指标。7、地球绕地月公共质心公转所产生的公转惯性离心力与月球引力的合力称为引潮力。 9、海洋中水的收入主要靠降水、径流和融冰;支出主要有蒸发 和结冰 10、大洋西岸流线密集、流速大;而大洋东岸稀疏、流速小,这种现象被称为洋流西向强化。 11、深水波的群速为波速的一半;浅水波的群速与波速相等,群速也可视为波动能量的传递速度。 12、根据潮汐静力理论,在赤道上永远出现正规半日潮;当月赤纬不等于0时,两极高纬地区出现正规日潮;当月赤纬不等于0时,在其他纬度上出现日不等现象,越靠近赤道,半日潮的成分越大,反之,越靠近南、北极日潮的成分越显著。 13、活动型大陆边缘是全球最强烈的构造活动带,集中分布在太平洋东西两侧,故又称太平洋型大陆边缘,其可进一步分为岛弧亚型和安第斯亚型两个亚型。 14、Wilson旋回将大洋盆地的形成和构造演化归纳为胚胎期、幼年期、成年期、衰退期、终了期和遗痕期。据此则东非大裂谷属于胚胎期,而大西洋属于成年期。 3、水分子由水面逃出和同时回到水中的过程达到动态平衡时,水面上水汽所具有的压力称为饱和水汽压。 6、大洋上层西边界流主要有湾流、黑潮。 7、表面波的恢复力主要为重力,而内波的恢复力则为科氏力和弱化重力。 8、海洋向大气提供热量有两种方式分别是潜热输送和感热交换。 9、深层环流的驱动力是海水密度差异。 12、在不考虑海水的湍应力和其它能够影响海水流动的因素时,在水平压强梯度力作用下运动的海水,当其水平压强梯度力与科氏力大小相等方向相反时的定常流动称为地转流。 13、海水混合的方式主要有分子混合、涡动混合和对流混合。 14、对小振幅重力波而言,深水波波速取决于波长,而浅水波波速取决于水深。 1. 2.1.3地球内部圈层结构------地球内部圈层结构划分为(地壳)、(地幔)和(地核)三大圈层构成。 2. 2.2.2海洋的划分------ 世界大洋通常被分为(太平洋)、(大西洋)、(印度洋)、(北冰洋)所组成。 3. 2.3.2大陆边缘------ 太平洋型大陆边缘活动性可分为(岛弧亚型)和(安第斯亚型)两种类型。 4. 2.3.2大陆边缘------ 大陆边缘是(大陆)与(海洋)之间过度带组成,其构造活动性分为(稳定性)和(活动型)两大类。

海洋科学导论作业复习(重新整理,精简版)

第一章绪论 2.海洋科学的研究对象和特点是什么? 海洋科学研究的对象是世界海洋及与之密切相关联的大气圈、岩石圈、生物圈。 它们至少有如下的明显特点。 首先是特殊性与复杂性。 其次,作为一个物理系统,海洋中水—汽—冰三态的转化无时无刻不在进行,这也是在其它星球上所未发现的。 第三,海洋作为一个自然系统,具有多层次耦合的特点。 3.海洋科学研究有哪些特点? 海洋科学研究也有其显著的特点。首先,它明显地依赖于直接的观测。 其次是信息论、控制论、系统论等方法在海洋科学研究中越来越显示其作用。 第三,学科分支细化与相互交叉、渗透并重,而综合与整体化研究的趋势日趋明显。 5.中国海洋科学发展的前景如何? 书本:新中国建立后不到1年,1950年8月就在青岛设立了中国科学院海洋生物研究室,1959年扩建为海洋研究所。1952年厦门大学海洋系理化部北迁青岛,与山东大学海洋研究所合并成立了山东大学海洋系。1959年在青岛建立山东海洋学院,1988年更名为青岛海洋大学。1964年建立了国家海洋局。此后,特别

是80年代以来,又陆续建立了一大批海洋科学研究机构,分别隶属于中国科学院、教育部、海洋局等,业已形成了强有力的科研技术队伍。目前国内主要研究方向有海洋科学基础理论和应用研究,海洋资源调查、勘探和开发技术研究,海洋仪器设备研制和技术开发研究,海洋工程技术研究,海洋环境科学研究与服务,海水养殖与渔业研究等等。在物理海洋学、海洋地质学、海洋生物学、海洋化学、海洋工程、海洋环境保护及预报、海洋调查、海洋遥感与卫星海洋学等方面,都取得了巨大的进步,不仅缩短了与发达国家的差距,而且在某些方面已跻身于世界先进之列。 课外:随着国际国内海洋科学技术一些大计划的推出和国内对于海洋科技方面需求的日益增长,我国海洋科学技术得到了长足发展,并已成为建设海洋强国的主要内容。《国家中长期科学和技术发展规划纲要(2006—2020)》全面部署了科学技术工作,并将海洋技术列入前沿技术,将海水淡化、海洋资源高效开发利用,海洋生态与环境保护,大型海洋工程与技术装备,列入重点领域的优先主题,这些都为海洋科学技术的进一步发展展示了美好的前景并提供了坚强的政策支撑。我们相信,在广大海洋科技工作者的不懈努力下,中国海洋科学技术一定能够尽快缩短与国际先进水平的差距,一定能够在自主创新和科学发展上取得新的进展,也一定能够为夺取全面建设小康社会新胜利作出更大的贡献。 第二章地球系统与海底科学 3.说明全球海陆分布特点以及海洋的划分。 全球海陆分布极不均衡,陆地面积为1.49×108km2,占地表总面积的29.2%;海洋面积为3.61×108km2,占地表总面积的70.8%。海陆面积之比为2.5:1,地表大部分为海水所覆盖。北半球海洋和陆地的比例分别为60.7%和39.3%,南半球海陆比例分别是80.9%和19.1%。从全球来看,地球上的海洋是相互连通的,构成统一的世界海洋;而陆地是相互分离的,没有统一的世界大陆。在地球表面,是海洋包围、分割所有的陆地,而不是陆地分割海洋。根据海洋要素特点及形态特征,可将其分为主要部分和附属部分。主要部分为洋,附属部分为海、海湾和海峡。洋

海洋科学导论

海洋科学导论课后作业 1.中国海洋科学发展的前景如何? 答:海洋科学目前国内主要研究方向有海洋科学基础理论和应用研究,海洋资源调查、勘探和开发技术研究,海洋仪器设备研制和技术开发研究,海洋工程技术研究,海洋环境科学研究与服务,海水养殖与渔业研究等等。在物理海洋学、海洋地质学、海洋生物学、海洋化学、洋工程、海洋环境保护及预报、海洋调查、海洋遥感与卫星海洋学等方面,都取得了巨大的进步,不仅缩短了与发达国家的差距,而且在某些方面已跻身于世界先进之列。继“七五”,“八五”之后,在“九五”国家科技攻关计划中。也列入了海洋高科技研究开发的项目。国家委以重任,人民寄以热望,发展海洋科学,繁荣海洋经济,保护海洋环境,造福子孙后代,任重而道远,前程似锦。可见我国海洋科学的发展前景还是非常好的,当然也需要我们的努力。 2.根据板块构造原理说明大洋盆地和边缘海盆地的形成与演化? 答:板块构造学说认为,大洋盆地的形成和演化与岩石圈板块的分离和汇聚运动密切相关,将大洋盆地的和构造演化归纳为六个阶段。演化胚胎期地幔物质上升导致岩石圈拱升并呈穹形隆起,岩石圈拉长减薄,进而穹窿顶部断裂陷落,形成典型的半地堑。幼年期,大陆岩石圈在拉张力作用下完全裂开,地幔物质上涌冷凝形成新洋壳,形成陆间裂谷,两侧陆块分离做相背运动。成年期,相背漂移越来越远,洋底不断展宽,形成大洋中脊体系和开阔的深海盆底。衰退期,

两侧大陆相向漂移运动,大洋收缩。终了期,洋壳不再增生,只有俯冲消亡,两缘陆地靠拢,海盆缩小。遗痕期,大洋闭合,两侧陆块拼合,碰撞,海盆完全复合,海水全部退出,大洋消亡。 边缘海盆地是指沟-弧体系陆侧具有洋壳结构的深水盆地,因其位于岛弧后方,又称弧后盆地。边缘海盆的地壳结构与其周缘陆壳常以突变形式呈陡崖或断层阶梯状接触,向海盆方向往往有正断层发育,有些海盆底也发育有正断层或拉张力形成的构造。 3.简述世界大洋中温度,盐度和密度的空间分布基本特征。 答:从宏观上看,世界大洋中温、盐、密度场的基本特征是:在表层大致沿纬向呈带状分布,即东—西方向上量值的差异相对很小;而在经向,即南—北方向上的变化却十分显著。在铅直方向上,基本呈层化状态,且随深度的增加其水平差异逐渐缩小,至深层其温、盐、密的分布均匀。它们在铅直方向上的变化相对水平方向上要大得多,因为大洋的水平尺度比其深度要大几百倍至几千倍。 4.海洋污染如何防治? 答:1)建立健全海洋法律体系与管理体制。国务院及国家有关部门制定了一系列行政法规和部门规章。这些涉海法律法规的颁布和实施,对促进我国海洋管理和环境保护起到了重要的作用。 2)防止和控制沿海工业污染物污染海域环境。一是通过调整产业结构和产品结构,转变经济增长方式,发展循环经济。二是加强重点工业污染源的治理,推行全过程清洁生产。三是按照“谁污染,谁

材料化学导论课程论文

材料化学是从化学的角度研究材料的设计、制备、组成、结构、表征、性质和应用的一门科学。它既是材料科学的一个重要分支,又是化学学科的一个组成部分,具有明显的交叉学科、边缘学科的性质。它的内涵在于(2)……随着国民经济的迅速发展以及材料科学和化学科学领域的不断进展,作为新兴学科的材料化学发展日新月异。 本专业的设立目标在于培养较系统地掌握材料科学的基本理论与技 术,具备材料化学相关的基本知识和基本技能,能在材料科学与工程及其 相关的领域从事研究、教学、科技开发及相关管理工作的材料化学高级专 门人才。它要求本专业学生主要学习材料科学方面的基本理论、基本知识 和基本技能,受到科学思维与科学实验方面的基本训练,具有运用化学和 材料化学的基础理论、基本知识和实验技能进材料研究和技术开发的基本 能力。本专业毕业生应掌握数学、物理、化学等方面的基本理论和基本知 识;掌握材料制备(或合成)、材料加工、材料结构与性能测定等方面的 基础知识、基本原理和基本实验技能;了解相近专业的一般原理和知识; 熟悉国家关于材料科学与工程研究、科技开发及相关产业的政策,国内外 知识产权等方面的法律法规;了解材料化学的理论前沿、应用前景和最新 发展动态,以及材料科学与工程产业的发展状况;掌握中外文资料查询、 文献检索以及运用现代信息技术获取相关信息的基本方法。具有一定的实 验设计,创造实验条件,归纳、整理、分析实验结果,撰写论文,参与学 术交流的能力。 应用化学专业的学生无须像以上所述的那样去严格要求自己,但是, 若在学好自己的专业课程之余还有精力去进一步了解材料化学的话,那也 是多多益善的,毕竟各学科之间是有交集的。(3)…… (4)…… (5)…… 其一高分子材料 高分子材料已经和金属材料、无机非金属材料并驾齐驱,在国际上被列为一级学科。 从化学角度来定义,高分子是由分子量很大的长链分子所组成,而每个分子链都是由共价键联结的成百上千的一种或多种小分子构造而成。高分子的分类有多种,按来源可分为天然高分子、天然高分子衍生物、合成高分子;据用途可分为结构高分子和功能高分子;据工业产量和价格还可分为通用高分子、中间高分子、工程塑料以及特种高分子等等。 高分子材料的功能很多且应用十分广泛。就结构高分子而言,大家知道最多的当属塑料、橡胶和纤维。其中塑料产量最大,主要用于包装材料、结构材料、建筑材料以及交通运输材料;橡胶主要用于制造轮胎;纤维主

12年海洋科学导论复习题答案

1、海洋学研究意义何在? 面海而兴,背海而衰。⑴全球海洋总面积约占地表总面积的71%,海洋与人类生存环境关系密切,是蛋白质的主要来源,海洋的一举一动影响着全球的气候环境,并且各种海洋灾害污染也影响着人类的生活。⑵海洋蕴藏着丰富的资源,包括生物资源(海洋药物制品,丰富多彩的生物)、化学资源、动力资源(发电)、矿产资源(油气、锰结核等)⑶军事、航运、港工、油气开发。 2、地球外部圈层与内部圈层是怎样划分的?说明他们之间的内在联系和区别。 地球是一个具有同心圈层结构的非匀质体,以地球固体表面为界分为内圈和外圈。地球外圈根据物质性状可以分为大气圈、水圈、生物圈。地球内部圈层被莫霍面和古登堡面分为地壳、地幔、地核,地幔又分为上地幔和下地幔,地核又分为外核和内核。 水圈既独立存在,又渗透于大气圈、岩石圈和生物圈中,并在其间不断循环。生物圈中生物通过呼吸或光合作用在大气中进行着必不可少的氧与二氧化碳的交换,水圈和岩石圈为生物提供着必需的水分和矿物养料,这样,在岩石圈上部、大气圈下部和水圈全部到处都有了生命的踪迹,生物所导致的或以生物活动为中心的物质循环不仅是地球各圈层间物质循环的主要内容,还是各圈层相互联系的重要纽带。大气圈、生物圈、水圈、岩石圈在地表附近相互渗透、相互交错、相互重叠,又使地球上形成了独特的自然环境和表层物质结构,在地球表层,通过水、生物以及其它各种物质循环进行着彼此间复杂的能量和物质交换。地球外圈通过岩石圈和地球内圈联系在一起。 地球内部情况主要是通过地震波的记录间接地获得的。地震时,地球内部物质受到强烈冲击而产生波动,称为地震波。它主要分为纵波和横波。由于地球内部物质不均一,地震波在不同弹性、不同密度的介质中,其传播速度和通过的状况也就不一样。例如,纵波在固体、液体和气体介质中都可以传播,速度也较快;横波只能在固体介质中传播,速度比较慢。地震波在地球深处传播时,如果传播速度突然发生变化,这突然发生变化所在的面,称为不连续面。 3、全球海陆分布的特点?

材料化学导论论文

材料化学导论作业 ————未来超新型材料我认为,在未来,随着科学的进步,在材料的合成手段上必定是我们现在科学手段无法达到的,因此,未来的化学材料合成技术可以统一称为:完全炼金术。 (名词讲解: 完全炼金术:使用某种机器(例如原子构造共振器),通过影响组成原子的夸克的运动或着夸克与夸克之间作用的,影响原子性质,使不同种类原子之间能发生相互作用力,形成一种特殊的键,这种方法既不破坏原有原子的结构也不容易被破坏。最大限度的保留主要构成原子的特性。) 因为在未来合金的过程中我们对原子的利用是接近百分之百的,因此可以称之为“完全”,而此时的科学技术对于现在的我们就如同我们现在的科学技术对于古人的神秘性一样,都是属于未知的方法,因此可以将之称为未来的“炼金术”。 在此,我提出在未来可能出现的合金种类,命其名为:超硅钛合金,也可以称为“意识合金”。介绍如下 材料名称:超硅钛合金; 材料属性:合金; 材料主要成分:超硅(超硅能增加合金硬度,同时也能作为信息传导材料)、超钛金属(超钛金属是未来可能发现的相对原子量大的钛族金属,具有钛的性质和与同族原子电磁波共振的性质,而且能记忆金属初次变化后的形状); 材料合成方式:完全炼金术; 材料特点:高耐性,高强度,耐腐蚀,能进行信息的传递与储存,有金属光泽(加入不同原子种类或者成分光泽不同),难熔,比一般合金轻,有一定的可塑性,可以对其进行回收再利用,减少资源浪费; 材料缺点:质脆,不适合用做大型建筑材料; 材料用途:多用途。 材料说明:这种材料在未来能发挥相当大的作用,比如说可以制作成未来的计算机终端。未来的计算机已经不再是现在的一芯片+其他东西,而是芯片与机体合为一体。只需要对这种合金进行改造,使合金内部的超硅成为传递信息和储存信息的芯片,使超钛金属具有导线和主板的功能,同时可以利用超钛金属的延展性制作成各种形状和样式的计算机外型,使用者需要在手臂上植入一枚小小的超硅钛合金芯片,就能通过芯片与这种“计算机”电磁波的共振读取储存在机体里的信息。同时使用者也能通过这种形式对计算机“发号施令”,对以超硅钛合金为材料的物体进行结构上的影响和调整。例如用一块合金便能自己制作成一张凳子或者一把刀,并且可以对形状进行稍微的调整,但并不能进行大的改变(比如说再变成桌子或着勺子之类)。也就是说,在未来的世界里,

相关文档
最新文档