BP2836-M8836替代

BP2836-M8836替代
BP2836-M8836替代

M8836

概述

M8836是一款高精度降压型LED恒流驱动芯片。芯片工作在电感电流临界连续模式,适用于

85Vac~265Vac全范围输入电压的非隔离降压型LED恒流电源。

M8836芯片内部集成500V功率开关,采用专利的驱动和电流检测方式,芯片的工作电流极低,无需辅助绕组检测和供电,只需要很少的外围元件,即可实现优异的恒流特性,极大的节约了系统成本和体积。

M8836芯片内带有高精度的电流采样电路,同时采用了专利的恒流控制技术,实现高精度的LED 恒流输出和优异的线电压调整率。芯片工作在电感电流临界模式,输出电流不随电感量和LED工作电压的变化而变化,实现优异的负载调整率。

M8836具有多重保护功能,包括LED开路/短路保护,SEN电阻短路保护,欠压保护,芯片温度过热调节等。

M8836采用DIP-8封装。

典型应用特点

?电感电流临界连续模式?内部集成500V功率管

?无需辅助绕组检测和供电?芯片超低工作电流

?宽输入电压

?±3% LED输出电流精度?LED开路保护

?LED短路保护

?芯片供电欠压保护

?过热调节功能

?采用DIP-8封装

应用

?LED日光灯

?LED吸顶灯

?LED球泡灯

?其它LED照明

图1 M8836典型应用图

定购信息

管脚封装

图2管脚封装图管脚描述

极限参数(注1)

注1:最大极限值是指超出该工作范围,芯片有可能损坏。推荐工作范围是指在该范围内,器件功能正常,但并不完全保证满足个别性能指标。电气参数定义了器件在工作范围内并且在保证特定性能指标的测试条件下的直流和交流电参数规范。对于未给定上下限值的参数,该规范不予保证其精度,但其典型值合理反映了器件性能。

注2:温度升高最大功耗一定会减小,这也是由T JMAX,èJA,和环境温度T A所决定的。最大允许功耗为P DMAX=(T JMAX-T A)/èJA

或是极限范围给出的数字中比较低的那个值。

注3:人体模型,100pF电容通过1.5KΩ电阻放电。

推荐工作范围(注4)

注4:推荐的最大输出电流为未加填谷电路的应用场合。

电气参数(注5,6)(无特别说明情况下,V DD=15V,T A=25℃)

注5:典型参数值为25?C下测得的参数标准。

注6:规格书的最小、最大规范范围由测试保证,典型值由设计、测试或统计分析保证。

内部结构框图

应用信息图3M8836内部框图

M8836是一款专用于LED照明的恒流驱动芯片,应用于非隔离降压型LED驱动电源。采用专利的恒流架构和控制方法,芯片内部集成500V功率开关,只需要极少的外围组件就可以达到优异的恒值电压进行比较,当SEN电压达到内部检测阈值时,功率管关断。

电感峰值电流的计算公式为:

流特性。而且无需辅助绕组供电和检测,系统成本极低。I

PK

=

400

(mA)

R

SEN

启动

系统上电后,母线电压通过启动电阻对V DD电容充电,当V DD电压达到芯片开启阈值时,芯片内部控制电路开始工作。M8836内置17V稳压管,用于其中,R SEN为电流采样电阻阻值。

SEN比较器的输出还包括一个350ns前沿消隐时间。LED输出电流计算公式为:

钳位V DD电压。芯片正常工作时,需要的V DD电流极低,所以无需辅助绕组供电。I

LED

=

I

PK

2

恒流控制,输出电流设置

芯片逐周期检测电感的峰值电流,SEN端连接到内部的峰值电流比较器的输入端,与内部400mV 阈其中,I PK是电感的峰值电流。储能电感

V M8836工作在电感电流临界模式,当功率管导通 时,流过储能电感的电流从零开始上升,导通时间为:

Tovp ≈

L ?V SEN R SEN ?Vovp

t on = L ? I PK

V - V

其中,

VSEN 是SEN 关断阈值(400mV ) IN

LED

其中,L 是电感量;I PK 是电感电流的峰值;V IN 是经整流后的母线电压;V LED 是输出LED 上的电压。

Vovp 是需要设定的过压保护点

然后根据Tovp 时间来计算Rovp 的电阻值,公式如下:

当功率管关断时,流过储能电感的电流从峰值开始往下降,当电感电流下降到零时,芯片内部逻辑再次将功率管开通。功率管的关断时间为:

Rovp ≈ 5*Tovp *10

6

保护功能

(kohm )

V off == L ? I PK

M8836内置多种保护功能,包括LED 开路/短路

led

保护,SEN 电阻短路保护,V DD

欠压保护,芯片温度

储能电感的计算公式为:

L =

V LED ? (V IN - V LED )

f ? I PK ? V IN

其中,f 为系统工作频率。M8836的系统工作频率和输入电压成正比关系,设置M8836系统工作频率时,选择在输入电压最低时设置系统的最低工作频率,而当输入电压最高时,系统的工作频率也最高。

M8836设置了系统的最小退磁时间和最大退磁时

间,分别为3us 和240us 。由t OFF 的计算公式可知,如果电感量很小时,t OFF 很可能会小于芯片的最小退磁时间,系统就会进入电感电流断续模式, LED

输出电流会背离设计值;而当电感量很大时,t OFF

又可能会超出芯片的最大退磁时间,这时系统就会

进入电感电流连续模式,输出LED 电流同样也会背

离设计值。所以选择合适的电感值很重要。

过压保护电阻设置

开路保护电压可以通过ROVP 引脚电阻来设置,

ROVP 引脚电压为0.5V 。

当LED 开路时,输出电压逐渐上升,退磁时间变短。因此可以根据需要设定的开路保护电压,来计算退磁时间Tovp 。

过热调节等。当输出LED 开路时,系统会触发过 压保护逻辑并停止开关工作。

当LED 短路时,系统工作在5KHz 低频,SEN 关断阈 值降低到200mV ,所以功耗很低。当有些异常的情 况发生时,比如SEN 采样电阻短路或者变压器饱和, 芯片内部的快速探测电路会触发保护逻辑,系统马上停止开关工作。

系统进入保护状态后,V DD 电压开始下降;当V DD 到达欠压保护阈值时,系统将重启。同时系统不断的检测负载状态,如果故障解除,系统会重新开始正常工作。

过温调节功能

M8836具有过热调节功能,在驱动电源过热时逐

渐减小输出电流,从而控制输出功率和温升,使

电源温度保持在设定值,以提高系统的可靠性。

芯片内部设定过热调节温度点为150℃。

PCB 设计

在设计M8836PCB 时,需要遵循以下指南:旁路电容

V DD 的旁路电容需要紧靠芯片V DD 和GND 引脚。ROVP 电阻 开路保护电压设置电阻需要尽量靠近芯片ROVP 引脚。

M8836 地线

电流采样电阻的功率地线尽可能短,且要和芯片

的地线及其它小信号的地线分头接到母线电容的

地端。

功率环路的面积减小功率环路的面积,如功率电感、

功率管、母线电容的环路面积,以及功率电感、续流

二极管、输出电容的环路面积,以减小EMI辐射。

NC引脚

NC引脚内部无连接,建议将其接到芯片地(Pin1),

加强ROVPPin抗干扰能力。

DRAIN引脚

增加DRAIN引脚的铺铜面积以提高芯片散热能力。

M8836 DIP-8封装信息丝印描述

戴维南定理实验报告

实验一戴维南定理 班级:17信息姓名:张晨瑞学号:20 一、实验目的 1.深刻理解和掌握戴维南定理。 2.掌握测量等效电路参数的方法。 3.初步掌握用Multisim软件绘制电路原理图的方法。 4.初步掌握Multisim软件中的Multimeter、Voltmeter、Ammeter等仪表的使用方法以及DC Operating Point、Parameter Sweep等SPICE仿真分析方法。 5.掌握电路板的焊接技术以及直流电源、万用表等仪器仪表的使用方法。 6.初步掌握Origin绘图软件的应用方法。 二、实验原理 一个含独立源、线性电阻的受控源的一端口网络,对外电路来说,可以用一个电压源和电子的床帘组合来等效置换,去等效电压源的电压等于该一端口网络的开路电压,其等效电阻等于该一端口网络中所有独立源都置为零后的输入电阻。这一定理成为戴维南定理。 三、实验方法 1.比较测量法 戴维南定理是一个等效定理,因此应想办法验证等效前后对其他电路的影响是否一致,即等效前后的外特性是否一致。 实验中首先测量原电路的外特性,在测量等效电路的外特性,最后比较两者是否一致,等效电路中的等效参数的获取,可通过测量得到,并同根据电路结构所推到计算出的结果相比较。 实验中期间的参数应使用实际测量值。实际值和期间的标称值是有差别的,所有的理论计算应基于器件的实际值。 2.等效参数的获取

等效电压Uoc:直接测量被测电路的开路电压,该电压就是等效电压。 等效电阻Ro:将电路中所有电压源短路,所有电流源开路,使用万用表阻挡测量。 3.测量点个数以及间距的选取 测试过程中测量的点个数以及间距的选取与测量特性和形状有关。对于直线特性,应使测量间距尽量平均,对于非线性特性应在变化陡峭处多测些点。测量的目的是为了用有限的点描述曲线的整体形状和细节特征。因此应注意测试过程中测量的点个数以及间距的选取。 为了比较完整地反映特性和形状,一般选取10个以上的测量点。 本实验中由于特性曲线是直线形状,因此测量点应均匀选取。为了办政策亮点分布合理,迎新测量特性的最大值和最小值,再根据点数合理选择测量间距。 4.电路的外特性测量方法 在输出端口上接可变负载(如电位器),改变负载(调节电位器)测量端口的电压和电流。 四、实验仪器与器件 1.计算机一台 2.通用电路板一块 3.万用表两只 4.直流稳压电源一台 5.电阻若干 五、实验内容 1.测量电阻的实际值,填表,并计算等效电源电压和等效电阻 2.Multisim仿真 (1)创建电路; (2)用万用表测量端口开路电压和短路电流,并计算等效电阻; (3)用万用表的Ω挡测量等效电阻,与(2)比较,将测量结果 填入表1中;

补充与替代医学

补充和替代医学 “补充和替代医学”的概念首先由西方国家提出,英文名称为Complementary and Alternative Medicine,简称CAM。它是美国国家卫生研究院(NIH)和政府机构确定的统 一认可的名称,它指的是本质上不同于西方主流医疗(即西医)系统的医学、卫生保健和 康复系统的多样性集合,简而言之,就是指西医以外的其他各种医学的统称。 目录 1、概述 2、类别 3、发展 4、指导纲领 5、主要医学体系 6、主要疗法 7、对癌症的意义 8、和主流对抗医学(西医)的区别 类别 目前,补充和替代医学(CAM)可分为两类,一类属于自身具有较完整的理论和实践体系,涵盖除现代常规主流医学体系(西医)以外的其他医疗、保健和治疗体系,比如中国 中医学、印度阿育吠陀医学、欧洲顺势医学等;另一类包括药物和非药物疗法,如草药、 菌类、动物和矿物,以及针刺、气功、热疗、瑜伽、祷告、艺术欣赏、音乐调节、有氧运 动等。 发展 补充和替代医学(CAM)曾长期被西方国家视为“非正统”、“不科学”甚至为“邪术”而受到主流医学(西医)的排斥。但近年来,随着疾病谱的改变、化学药品的毒副作用、 肿瘤、爱滋病等世纪顽疾压力日甚,导致病人对补充和替代医学(CAM)的需求明显增加,在此背景下,以美国为首的西方主流医学界也对补充和替代医学(CAM)进了重新评估和认识。据统计,1998年,48%的美国民众接受过至少一种以上的补充和替代医学(CAM)的 治疗。而在2000年,美国就有1亿5千8百万人服用包括中草药在内的补充和替代医学(CAM)产品,共花费70亿美元。 2000年3月,时任美国总统克林顿和国会应公众的强烈要求,决定成立“白宫补充和 替代医学政策委员会”,委员会委员由总统直接任命。该委员会的成立旨在就补充替代医 学(CAM)的政策方针进行研讨,并向白宫提交有关立法和行政管理上的建议和提案,以助修订有关现行医疗保健政策,利用并发掘补充和替代医学(CAM)的潜在价值。 现在,补充和替代医学(CAM)在欧美已然普及,并逐步在全球范围内扩展,更多病人、医疗机构、研究院所正投入大量人力、物力进行补充和替代医学(CAM)的科研。 指导纲领 补充和替代医学(CAM)的指导纲领主要有以下十条:

常用电力电子器件特性测试

实验二:常用电力电子器件特性测试 (一)实验目的 (1)掌握几种常用电力电子器件(SCR、GTO、MOSFET、IGBT)的工作特性;(2)掌握各器件的参数设置方法,以及对触发信号的要求。 (二)实验原理 图1.MATLAB电力电子器件模型 MATLAB电力电子器件模型使用的是简化的宏模型,只要求器件的外特性与实际器件特性基本相符。MATLAB电力电子器件模型主要仿真了电力电子器件的开关特性,并且不同电力电子器件模型都具有类似的模型结构。 模型中的电阻Ron和直流电压源Vf分别用来反映电力电子器件的导通电阻和导通时的门槛电压。串联电感限制了器件开关过程中的电流升降速度,模拟器件导通或关断时的动态过程。MATLAB电力电子器件模型一般都没有考虑器件关断时的漏电流。 在MATLAB电力电子器件模型中已经并联了简单的RC串联缓冲电路,在参数表中设置,名称分别为Rs和Cs。更复杂的缓冲电路则需要另外建立。对于MOSFET模型还反并联了二极管,在使用中要注意,需要设置体内二极管的正向压降Vf和等效电阻Rd。对于GTO和IGBT需要设置电流下降时间Tf和电流拖尾时间Tt。 MATLAB的电力电子器件必须连接在电路中使用,也就是要有电流的回路,

但是器件的驱动仅仅是取决于门极信号的有无,没有电压型和电流型驱动的区别,也不需要形成驱动的回路。尽管模型与实际器件工作有差异,但使MATLAB电力电子器件模型与控制连接的时候很方便。MATLAB的电力电子器件模型中含有电感,因此具有电流源的性质,所以在模块参数中还包含了IC即初始电流项。此外也不能开路工作。 含电力电子模型的电路或系统仿真时,仿真算法一般采用刚性积分算法,如ode23tb、ode15s。电力电子器件的模块上,一般都带有一个测量输出端口,通过输出端m可以观测器件的电压和电流。本实验将电力电子器件和负载电阻串联后接至直流电源的两端,给器件提供触发信号,使器件触发导通。 (三)实验内容 (1)在MATLAB/Simulink中构建仿真电路,设置相关参数。 (2)改变器件和触发脉冲的参数设置,观察器件的导通情况及负载端电压、器件电流的变化情况。 (四)实验过程与结果分析 1.仿真系统 Matlab平台 2.仿真参数 (1)Thyristor参数设置: 直流源和电阻参数:

戴维南定理实验报告

戴维南定理 学号:1128403019 姓名:魏海龙班级:传感网技术 一、实验目的: 1、深刻理解和掌握戴维南定理。 2、掌握测量等效电路参数的方法。 3、初步掌握用multisim软件绘制电路原理图。 4、初步掌握multisim软件中的multimeter、voltmeter、ammeter 等仪表的使用以及DC operating point、paramrter sweep等 SPICE仿真分析方法。 5、掌握电路板的焊接技术以及直流电源、万用表等仪器仪表的使 用。 6、初步掌握Origin绘图软件的应用。 二、实验器材: 计算机一台、通用电路板一块、万用表两只、直流稳压电源一台、电阻若干。 三、实验原理:一个含独立源、线性电阻和受控源的一端口网络,对 外电路来说,可以用一个电压源和电阻的串联组合来等效置 换,其等效电压源的电压等于该一端口网络的开路电压,其等 效电阻等于该一端口网络中所有独立源都置为零后的数日电 阻。 四、实验内容: 1、电路图:

2、元器件列表: 2、实验步骤: (1)理论分析: 计 算等效电压: 电桥平衡。∴=,331131R R R R Uoc=3 11 R R R +=2.6087V 。 计算等效电阻:R= ??? ??? ? ?+++ ??? ??? ? ?++3311111221 3111121 R R R R R R =250.355

(2)测量如下表中所列各电阻的实际值,并填入表格: 然后根据理论分析结果和表中世纪测量阻值计算出等效电源电压和等效电阻,如下所示: Uc=2.6087V R=250.355Ω (3)multisim仿真: a、按照下图所示在multisim软件中创建电路 b、用万用表测量端口的开路电压和短路电流,并计算等 效电阻,结果如下:Us= 2.609V I= 10.42mA R=250.38Ω

电力电子自我测试题2

方多系曲尤<200/200学年第学期考试题(卷)宀 子 签 审 任 主 ) 系 ( 室 研 教 师教题命 记 标 何 任 作 准 不 内 以 线 订订 名 姓 装 一号 学 一、选择填空题:下列各题每题有一个最优答案,任选10题,并在空格中填入答案序号多做按错的计分(每小题6分,共60分)0 1.普通晶闸管是 A. B . C. D. 一二极四层结构的 一三极三层结构的 一三极四层结构的 一五极四层结构的 PN型器件,它具有单向导电性。 PNP型器件,它具有双向导电性。 PNPN型器件,它具有单向导电性。 PNPNP型器件,它不具有双向导电性。 2.三相整流电路,共阳极组与共阴极组接法晶闸管的触发控制角 A.不同,相位相差120° C.有点区别,但差别不大 B.相同 a计算的起 点 D.不同,相位相差180° 3.单向桥式全控整流电路电阻负载时,输出直流电压Ud的计算公式 A. B . C . D . U d U d U d U d O.225U2(1 O.45U2(1 O.225U2(1 O.225U2(1 COS ),此时晶闸管导通角为 COS ),此时晶闸管导通角为 COS ),此时晶闸管导通角为2 。 COS ),此时晶闸管导通角为 4.三相半波可控整流电路,电阻负载下 A. a > 30o后电流不连续,此 时 B . 60o后电流不连续,此时 C . > 90°后电流不连续,此 时 D . a > 60°后电流不连续,此 时 O.675U2[1 COS(- 6 ) ] O.765U2[1 COS(- 6 )] O.655U2[1 COS(- 6 )] O.675U2[1 COS(- ) ] U d U d U d U d

大工14秋电力电子技术在线测试1答案

一、单选题(共 6 道试题,共 30 分。) V 1. 全控型器件在较高频率下工作,当器件关断时,因正向电流的迅速降低而由线路电感在器 件两端感应出的过电压称为()。 A. 操作过电压 B. 雷击过电压 C. 换相过电压 D. 关断过电压 满分:5 分 2. 电力电子器件采用的主要材料是()。 A. 铁 B. 钢 C. 银 D. 硅 满分:5 分 3. 使IGBT开通的栅射极间驱动电压一般取()V。 A. (-5)-(-15) B. 10-15 C. 15-20 D. 20-25 满分:5 分 4. ()是将电力MOSFET与晶闸管SCR组合而成的复合型器件。 A. MCT B. SIT C. SITH D. IGCT 满分:5 分 5. 电力二极管的最高工作结温通常在()℃之间。

A. 0-100 B. 50-125 C. 100-175 D. 125-175 满分:5 分 6. 电力场效应晶体管的英文表示为()。 A. GTO B. GTR C. 电力MOSFET D. IGBT 满分:5 分 二、多选题(共 6 道试题,共30 分。) V 1. GTR的主要特性是()。 A. 耐压低 B. 耐压高 C. 电流大 D. 电流小 满分:5 分 2. 下列哪些是对触发脉冲和脉冲触发电路的要求?() A. 触发脉冲有足够的幅值 B. 触发脉冲波形有一定的宽度 C. 触发脉冲功率足够 D. 触发电路有良好的抗干扰性能 满分:5 分 3. 下列属于晶闸管的派生器件的是()。 A. 快速晶闸管

B. 双向晶闸管 C. 逆导晶闸管 D. 光控晶闸管 满分:5 分 4. 晶闸管门极说法正确的是()。 A. 可以控制其导通 B. 可以控制其关断 C. 不能控制其导通 D. 不能控制其关断 满分:5 分 5. 下列是常用的过电流保护措施的是()。 A. 快速熔断器 B. 直流快速断路器 C. 过电流继电器 D. 以上都不正确 满分:5 分 6. 下列不是电力电子器件并联均流措施的是()。 A. 尽量采用特性一致的元器件进行并联 B. 尽量采用特性不一致的元器件进行并联 C. 安装时尽量使各并联器件具有对称的位置 D. 安装时不能使各并联器件具有对称的位置 满分:5 分 三、判断 1~8 ABBAABBB

戴维南定理和顿定理的验证实验+数据

戴维南定理和诺顿定理的验证 一、实验目的 1、掌握有源二端网络代维南等效电路参数的测定方法。 2、验证戴维南定理、诺顿定理和置换定理的正确性。 3、进一步学习常用直流仪器仪表的使用方法。 二、原理说明 1、任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源二端网络)。 2、戴维南定理:任何一个线性有源网络,总可以用一个理想电压源与一个电阻的串联支路来等效代替,此电压源的电压等于该有源二端网络的开路电压U0C,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短路,理想电流源视为开路)时的等效电阻。这一串联电路称为该网络的代维南等效电路。 3、诺顿定理:任何一个线性有源网络,总可以用一个理想电流源与一个电阻的并联组合来等效代替,此电流源的电流等于该有源二端网络的短路电流I SC,其等效内阻R0定义与戴维南定理的相同。 4、有源二端网络等效参数的测量方法 U0C、I SC和R0称为有源二端网络的等效电路参数,可由实验测得。 (一)开路电压U OC的测量方法 (1)可直接用电压表测量。 (2)零示法测U OC 在测量具有高内阻有源二端网络的开路电压时,用电压表直接测量会造成较大的误差。为了消除电压表内阻的影响,往往采用零示测量法,如图3-1所示。 零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”。然后将电路断开,测量此时稳压电源的输出电压,即为被测有源二端网络的开路电压。 图3-1 图3-2 (二)等效电阻R0的测量方法 (1)开路电压、短路电流法测R0

数理统计作业二__用数学实验的方法验证大数定理和中心极限定理

验证大数定理: 1、实验原理: 证明大数定理即证明样本均值趋近于总体均值。 2、实验步骤: ①在excel中,用公式 =RAND( )*9+1 生成2000个1到10之间的随机数。 ②选择样本的前50个,前100个,前150个…前2000个,分别求出均值。 ③利用excel作出上述求出值的样本均值折线图(图一)和总体均值折线图(图二): 图一 图二 从图一和图二中可以看出样本均值最终趋于水平,即趋于总体均值,大数定理得证。

验证中心极限定理: 1、实验原理: 证明中心极限定理即证明N个独立同分布的随机变量和的极限分布为正态分布。本次实验采用独立同分布于0-1分布B(1,0.5)的随机变量序列E k,k=1,2,3······来验证中心极限定理。因为E k, k=1,2,3······之间是独立同分布,所以 )5.0, ( ~ E n 1 k k n B ∑ =。由中心极 限定理可知,当n的取值足够大时,∑ = n 1 k k E 这一随机变量的分布与正太分 布具有很好的近似,下面用MATLAB软件分别画出n取不同值时∑ = n 1 k k E 的分 布及对应的正太分布的图像,通过对比这两条曲线的相似度来验证中心极限定理。 2、实验步骤: ①当n=10时,对应正态分布为N(5,2.5)。 MATLAB结果图:

MATLAB源程序: MATLAB结果图:

MATLAB源程序: MATLAB结果图:

MATLAB源程序: MATLAB结果图:

MATLAB源程序: ⑤观察得出,当N足够大时,其密度函数服从正态分布,即满足 中心极限定理。

电力电子器件特性和驱动实验一

实验三 常用电力电子器件的特性和驱动实验 一、实验目的 (1) 掌握常用电力电子器件的工作特性。 (2) 掌握常用器件对触发MOSFET 、信号的要求。 (3) 理解各种自关断器件对驱动电路的要求。 (4) 掌握各种自关断器件驱动电路的结构及特点。 (5) 掌握由自关断器件构成的PWM 直流斩波电路原理与方法。 二、预习内容 (1) 了解SCR 、GTO 、GTR 、MOSFET 、IGBT 的结构和工作原理。 (2) 了解SCR 、GTO 、GTR 、MOSFET 、IGBT 有哪些主要参数。 (3) 了解SCR 、GTO 、GTR 、MOSFET 、IGBT 的静态和动态特性。 (4)阅读实验指导书关于GTO 、GTR 、MOSFET 、IGBT 的驱动原理。 三、实验所需设备及挂件 四、实验电路原理图 1、SCR 、GTO 、MOSFET 、GTR 、IGBT 五种特性实验原理电路如下图X-1所示: 图 X-1特性实验原理电路图 X-2虚框中五种器件的1、2、3标号连接示意图 三相电网电压

2、GTO、MOSFET、GTR、IGBT四种驱动实验原理电路框图如下图X-3所示: 图X-3 GTO、MOSFET、GTR、IGBT四种驱动实验原理电路框图 3、GTO、MOSFET、GTR、IGBT四种驱动实验的流程框图如图X-4 图X-4 GTO、MOSFET、GTR、IGBT四种驱动实验的流程框图 五、实验内容 1、SCR、GTO、MOSFET、GTR、IGBT 五种器件特性的测试 2、GTO、MOSFET、GTR、IGBT驱动电路的研究。 六、注意事项 (1)注意示波器使用的共地问题。 (2)每种器件的实验开始前,必须先加上器件的控制电压,然后再加主回路的电源;实验结束时,必须先切断主回路电源,然后再切断控制电源。 (3)驱动实验中,连接驱动电路时必须注意各器件不同的接地方式。 (4)不同的器件驱动电路需接不同的控制电压,接线时应注意正确选择。 七、实验方法与步骤 1、SCR、GTO、MOSFET、GTR、IGBT 五种器件特性的测试 1)关闭总电源,按图X-5的框图接主电路 图X-5实验接线框图

补充与替代医学

补充与替代医学 “补充与替代医学”的概念首先由西方国家提出,英文名称为Complementary and Alternative Medicine,简称CAM。它是美国国家卫生研究院(NIH)和政府机构确定的统 一认可的名称,它指的是本质上不同于西方主流医疗(即西医)系统的医学、卫生保健和 康复系统的多样性集合,简而言之,就是指西医以外的其他各种医学的统称。 目录 1、概述 2、类别 3、发展 4、指导纲领 5、主要医学体系 6、主要疗法 7、对癌症的意义 8、与主流对抗医学(西医)的区别 类别 目前,补充与替代医学(CAM)可分为两类,一类属于自身具有较完整的理论和实践体系,涵盖除现代常规主流医学体系(西医)以外的其他医疗、保健和治疗体系,比如中国 中医学、印度阿育吠陀医学、欧洲顺势医学等;另一类包括药物和非药物疗法,如草药、 菌类、动物和矿物,以及针刺、气功、热疗、瑜伽、祷告、艺术欣赏、音乐调节、有氧运 动等。 发展 补充与替代医学(CAM)曾长期被西方国家视为“非正统”、“不科学”甚至为“邪术”而受到主流医学(西医)的排斥。但近年来,随着疾病谱的改变、化学药品的毒副作用、 肿瘤、爱滋病等世纪顽疾压力日甚,导致病人对补充与替代医学(CAM)的需求明显增加,在此背景下,以美国为首的西方主流医学界也对补充与替代医学(CAM)进了重新评估和认

识。据统计,1998年,48%的美国民众接受过至少一种以上的补充与替代医学(CAM)的 治疗。而在2000年,美国就有1亿5千8百万人服用包括中草药在内的补充与替代医学(CAM)产品,共花费70亿美元。 2000年3月,时任美国总统克林顿和国会应公众的强烈要求,决定成立“白宫补充与 替代医学政策委员会”,委员会委员由总统直接任命。该委员会的成立旨在就补充替代医 学(CAM)的政策方针进行研讨,并向白宫提交有关立法和行政管理上的建议和提案,以助修订有关现行医疗保健政策,利用并发掘补充与替代医学(CAM)的潜在价值。 现在,补充与替代医学(CAM)在欧美已然普及,并逐步在全球范围内扩展,更多病人、医疗机构、研究院所正投入大量人力、物力进行补充与替代医学(CAM)的科研。 指导纲领 补充与替代医学(CAM)的指导纲领主要有以下十条: 1、高质量的健保系统应当是把人作为一个整体来看待,包括身、心健康均纳入保健的完整理念之中。 2、用科学方法研究和评定各种补充与替代医学(CAM)疗法和产品的安全性及有效性。 3、承认并重视人体本身所具有的自我康复能力。 4、尊重病人的特点,因人而异地选择适当的治疗。 5、病人有权选择适合自己的疗法。 6、强调促进健康和自我保健。 7、不同专业医师之间要互相尊重,共同创造理想的协作气氛。 8、加强疾病预防和推广健康生活方式的普及教育。 9、对公众要加强全面最新的信息传播。 10、公众要参与政府健保方针决策的制定,并应优先研究公众最需求的项目。 主要医学体系 补充与替代医学(CAM)包含的主要医学体系有以下五大医学体系: 1.中国传统医学(中医) 2.印度传统医学 3.美国传统整脊医学 4.欧洲传统顺势医学

电力电子模拟测试试卷(附答案)

一、填空题(本题共8小题,每空1分,共20分) 1、电子技术包括_信息电子技术__和电力电子技术两大分支,通常所说的模拟电子技术和数字电子技术就属于前者。 2、为减少自身损耗,提高效率,电力电子器件一般都工作在―开关 _______ 状态。当器件的工作频率较高时,__ 开关______损耗会成为主要的损耗。 3、在PWM控制电路中,载波频率与调制信号频率之比称为___________ 载波比__________ ,当它为常数时的调制方式称 为—同步________ 调制。在逆变电路的输出频率范围划分成若干频段,每个频段内载波频率与调制信号频率之 比为桓定的调制方式称为_______ 分段同步_________ 调制。 4、面积等效原理指的是,—冲量________ 相等而—形状—不同的窄脉冲加在具有惯性的环节上时,其效果基本相 同。 5、在GTR、GTO、IGBT与MOSFET中,开关速度最快的是___________ M OSFET________ ,单管输出功 率最大的是___ GTO _______________ 应用最为广泛的是_______ IGBT __________ 。 6设三相电源的相电压为U2,三相半波可控整流电路接电阻负载时,晶闸管可能承受的最大反向电压为电源线电压的峰值,即—■' ■亠 ____________ ,其承受的最大正向电压为: I _ ■ 7、逆变电路的负载如果接到电源,则称为________ 有源____ 逆变,如果接到负载,则称为_______ 无源—逆变。 &如下图,指岀单相半桥电压型逆变电路工作过程中各时间段电流流经的通路(用V1,VD1,V2,VD2 表示)。 (1) 0~t1时间段内,电流的通路为—VD1 __________ ; (2) t1~t2时间段内,电流的通路为—V1 _________ ; (3) t2~t3时间段内,电流的通路为—VD2 _________ ; (4) t3~t4时间段内,电流的通路为—V2 _________ ; (5) t4~t5 时间段内,电流的通路为—VD1 ________ ;

戴维南定理验证试验

南京信息工程大学 实验(实习)报告 1.实验目的: 熟悉和掌握多功能电表(万用表)、电流表、电压表的使用方法和测量方法。 2.实验内容: 通过试验验证戴维南定理的正确性,并借助多功能电表(万用表)测量等效电阻、戴维南等效电压。 3.实验步骤: (1)完成上述连线后,启动电源开关,并记录电流表和电压表的读数 U= 2.371V ,I= 5.045mA (2) 求A 、B 两端开路电压th E 和等效电阻th R 。首先将L R 电阻两端开路,用万用表电压挡测量A 、B 两端的开路电压 th E ;在L R 电阻两端开路的同时,再将电池短路,用万用表欧姆挡测量A 、B 两端等效电阻th R th E = 3.8095V ,th R =285.1

(3)得到上述测量值th E 、th R 后,将电阻L R 和th E 、th R 、电流表、电压表重新连线,画出下图电路,启动电源开关,记录电流表和电压表的读数 U=2.371 V ,I= 5.045mA 4.实验分析和总结 由上述实验步骤可以证明戴维南定理的正确性,戴维南原理正确,即任何有缘二端口网络均可等效为一个电压源和一个电阻串联组合,其中电压源U 大小就是有源二端电路的开路电压Uo ;电阻R 大小是有源二端电路除去电源的等效电阻R0。 该实验很好的反映了戴维南定理的实际应用,EWB 是较好电路仿真工具,软件能很方便的进行很多原理的仿真,这对我们今后的工作有很大的帮助。通过一节课的上机实验练习及本次报告的书写,我深深的发现了自身的不足,需要继续健身了解该软件,并不断练习巩固,不断总结经验,在一次次试验中得出模拟数据,能够更好地用于实际电路中。

电力电子技术期末复习考试题及其答案

第一章复习题 1.使晶闸管导通的条件是什么? 答:当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管才能导通。 2.维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断? 答:(1)维持晶闸管导通的条件是使晶闸管的电流大于能保持晶闸管导通的最小电流,即维持电流。 (2)若要使已导通的晶闸管关断,只能利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下,即降到维持电流以下,便可使导通的晶闸管关断。 3.GTO和普通晶闸管同为PNPN结构,为什么GTO能够自关断,而普通晶闸管不能? 答:(1)GTO在设计时,a2较大,这样晶体管v2控制灵敏,易于GTO关断; (2)GTO导通时a1+a2的更接近于1,普通晶闸管a1+a2≥1.5,而GTO则为约等于1.05,GTO的饱和程度不深,接近于临界饱和,这样为门极控制提供了有利条件; (3)多元集成结构每个GTO元阴极面积很小,门极和阴极间的距离大为缩短,使得p2极区所谓的横向电阻很小,从而使从门极抽出较大的电流成为可能。 4.如何防止电力MOSFET因静电感应引起的损坏? 答:(1)一般在不用时将其三个电极短接; (2)装配时人体,工作台,电烙铁必须接地,测试时所有仪器外壳必须接地; (3)电路中,栅,源极间常并联齐纳二极管以防止电压过高。 (4)漏,源极间也要采取缓冲电路等措施吸收过电压。 5.IGBT,GTR,GTO和电力MOSFET的驱动电路各有什么特点? 答:IGBT驱动电路的特点是:驱动电路具有较小的输出电阻,IGBT是电压驱动型器件,IGBT 的驱动多采用专用的混合集成驱动器。 GTR驱动电路的特点是:驱动电路提供的驱动电流有足够陡的前沿,并有一定的过冲,这样可加速开通过程,减小开通损耗,关断时,驱动电路能提供幅值足够大的反向基极驱动电流,并加反偏截止电压,以加速关断速度。 GTO驱动电路的特点是:GTO要求其驱动电路提供的驱动电流的前沿应有足够的幅值和陡度,且一般需要在整个导通期间施加正门极电流,关断需施加负门极电流,幅值和陡度要求更高,其驱动电路通常包括开通驱动电路,关断驱动电路和门极反偏电路三部分。 电力MOSFET驱动电路的特点:要求驱动电路具有较小的输入电阻,驱动功率小且电路简单。 6.全控型器件的缓冲电路的主要作用是什么?试分析RCD缓冲电路中各元件的作用。 答:全控型器件缓冲电路的主要作用是抑制器件的内因过电压,du/dt或过电流和di/dt,

戴维南定理实验报告

实验四戴维南定理 一、实验目的 1、验证戴维南定理 2、测定线性有源一端口网络的外特性和戴维南等效电路的外特性。 二、实验原理 戴维南定理指出:任何一个线性有源一端口网络,对于外电路而言,总可以用一个理想电压源和电阻的串联形式来代替,理想电压源的电玉等于原一端口的开路电压Uoc,其电阻(又称等效内阻)等于网络中所有独立源置零时的入端等效电阻Req,见图4-1。 图4- 1 图4- 2 1、开路电压的测量方法 方法一:直接测量法。当有源二端网络的等效内阻Req与电压表的内阻Rv相比可以忽略不计时,可以直接用电压表测量开路电压。 方法二:补偿法。其测量电路如图4-2所示,E为高精度的标准电压源,R为标准分压电阻箱,G为高灵敏度的检流计。调节电阻箱的分压比,c、d两端的电压随之改变,当Ucd=Uab 时,流过检流计G的电流为零,因此

Uab=Ucd =[R2/(R1+ R2)]E=KE 式中K= R2/(R1+ R2)为电阻箱的分压比。根据标准电压E 和分压比Κ就可求得开路电压Uab,因为电路平衡时I G= 0,不消耗电能,所以此法测量精度较高。 2、等效电阻Req的测量方法 对于已知的线性有源一端口网络,其入端等效电Req可以从原网络计算得出,也可以通过实验测出,下面介绍几种测量方法: 方法一:将有源二端网络中的独立源都去掉,在ab端外加一已知电压U, 测量一端口的总电流I总则等效电阻 Req= U/I总 实际的电压源和电流源具有一定的内阻,它并不能与电源本身分开,因此在去掉电源的同时,也把电源的内阻去掉了,无法将电源内阻保留下来,这将影响测量精度,因而这种方法只适用于电压源内阻较小和电流源内阻较大的情况。 方法二:测量ab端的开路电压Uoc及短路电流Isc则等效电阻 Req= Uoc/Isc 这种方法适用于ab端等效电阻Req较大,而短路电流不超过额定值的情形,否则有损坏电源的危险。 图4 – 3 图4-4 方法三:两次电压测量法 测量电路如图4-3所示,第一次测量ab端的开路Uoc,第二次在ab端接一已知电阻RL (负载电阻),测量此时a、b端的负载电压U,则a、b端的等效电阻Req为:

数理统计作业二--用数学实验的方法验证大数定理和中心极限定理(精编文档).doc

【最新整理,下载后即可编辑】 验证大数定理: 1、实验原理: 证明大数定理即证明样本均值趋近于总体均值。 2、实验步骤: ①在excel中,用公式=RAND( )*9+1 生成2000个1到10之间的随机数。 ②选择样本的前50个,前100个,前150个…前2000个,分别求出均值。 ③利用excel作出上述求出值的样本均值折线图(图一)和总体均值折线图(图二): 图一 图二 从图一和图二中可以看出样本均值最终趋于水平,即趋于总体均值,大数定理得证。

验证中心极限定理: 1、实验原理: 证明中心极限定理即证明N 个独立同分布的随机变量和的极限分布为正态分布。本次实验采用独立同分布于0-1分布B(1,0.5)的随机变量序列E k ,k=1,2,3······来验证中心极限定理。因为E k ,k=1,2,3······之间是独立同分布,所以)5.0,(~E n 1k k n B ∑=。由中心极限定理可知,当n 的取值足够大时,∑=n 1k k E 这一随机变量的分布与正太分布具有很好的近似,下面用MATLAB 软件分别画出n 取不同值时∑=n 1k k E 的分布及对应的正太分布的图像,通过对比这两条曲线的相似度来验证中心极限定理。 2、实验步骤: ①当n=10时,对应正态分布为N (5,2.5)。 MATLAB 结果图: MATLAB 源程序:

②当n=20时,对应正态分布为N(10,5)。MATLAB结果图: MATLAB源程序:

③当n=30时,对应正态分布为N(15,7.5)。MATLAB结果图: MATLAB源程序:

④当n=40时,对应正态分布为N(20,10)。MATLAB结果图: MATLAB源程序:

戴维南定理实验报告

戴维南定理 班级:14电信学号:1428403003 姓名:王舒成绩:一实验原理及思路 一个含独立源,线性电阻和受控源的二端网络,其对外作用可以用一个电压源串联电阻的. 等效电源代替,其等效电压源的电压等于该二端网络的开路电压,其等效内阻是将该二端网络中所有的独立源都置为零后从从外端口看进去的等效电阻。这一定理称为戴维南定理。 本实验采用如下所示的实验电路图a: 等效后的电路图如下b: 测它们等效前后的外特性,然后验证等效前后对电路的影响。 二实验内容及结果 ⒈计算等效电压和电阻

计算等效电压:电桥平衡。∴=,33 11 31R R R R Uoc=311R R R +=2.609V 。 计算等效电阻:R= ??? ??? ? ?+++ ??? ??? ? ?++3311111221 3111121 R R R R R R =250.355 ⒉用Multisim 软件测量等效电压和等效电阻 测量等效电阻是将V1短路,开关断开如下图所示: -+ Ro=250.335O Ω 测量等效电压是将滑动变阻器短路如下图 V120 V R11.8kΩ R2220Ω R112.2kΩ R22270Ω R33330ΩR3270Ω RL 4.7kΩ Key=A 50% 2 4 J1Key = A XMM1 XMM2 6 a 1 7 Uo=2.609V ⒊用Multisim 仿真验证戴维南定理 仿真数据 等效电压Uoc=2.609V 等效电阻Ro=250.355Ω

原电路数据 电压/V 2.6 09 2.4 08 2.3 87 2.3 62 2.3 31 2.2 9 2.2 36 2.1 58 2.0 41 1.8 41 1.4 22 电流/mA 0 0.8 03 0.8 85 0.9 84 1.1 1 1.2 72 1.4 9 1.7 99 2.2 68 3.0 68 4.7 4 等效电路数据 电压/V 2.6 09 2.4 08 2.3 87 2.3 63 2.3 3 2.2 91 2.2 36 2.1 58 2.0 41 1.8 41 1.4 22 电流/mA 0 0.8 03 0.8 85 0.9 85 1.1 1 1.2 72 1.4 9 1.7 99 2.2 68 3.0 68 4.7 5

常用电力电子元器件的测试和判断

部分电子器件的测试和判断方法 1、二极管和桥堆 二极管的检测是用万用表的二极管档测PN结的压降,二极管的正极是PN结的正端,负极是PN结的负端。PN结的正向压降约为0.3—0.8V,反向为∞。桥堆的检测和二极管一样,分别测四个二极管的好坏,若其中有一个坏的,则桥堆是坏的。 2、三极管 三极管有NPN型和PNP型,用万用表的二极管档测两个PN结的压降,可粗略判断三极管的好坏,PN结的正向压降约为0.2—0.7V,反向为∞。也可以测三极管的放大倍数,数值为0或∞的管子一般是坏的。三极管的损坏形式一般是b-e结击穿,严重时连c-b结也击穿。 3、MOS管 场效应管(常用MOS管)有N沟道型和P沟道型,测试时用万用表的二极管档,栅极(G)对源极(S)和漏极(D)是双向绝缘的(数值为∞);S对D相当于一个PN结(P沟道型为D对S),测试时可参照PN结的测试。MOS管的损坏形式一般是D-S结击穿,严重时连G-S绝缘也击穿。 4、IGBT IGBT模块可通过测量G-E间的结电容来判断,模块的G-E结电容与它的耐流值有关,一般好的100A以下模块G-E结电容在4~20nF间,100A以上模块的G-E结电容可能超过20nF。我们也可以通过测量模块G-E、G-C、C-E的电阻来判断,常见模块的损坏形式是G-E击穿或C-E击穿。 5、变压器 变压器的损坏一般是匝间短路或开路。开路的情况可以用万用表测量;对于短路情况,我们可以在它的高压端加交流市电,然后测它的空载损耗和或副边电压来判断它的好坏。对于小变压器而言,损坏较多的情况还是原边开路。 6、电容 温度升高而形成恶性循环,继而膨胀、失效。有些损坏的电容可从外观上来判断, 膨胀、变形或出现漏液的电容一般是坏的。电容也可以万用表来测量,对于容值较小的,可 以用万用表的电容档测其容值,偏差不大的电容是好的;对于容值较大的电容,可用万用表

实验四 戴维南定理的验证实验

实验四 戴维宁定理的验证实验 一、实验目的 1、通过实验验证戴维宁定理。 2、加深对等效电路概念的理解。 二、实验原理 戴维宁定理:在任何一个线性有源电路中,如果只研究其中一个支路电压、电流时,可将电路的其余部分看作是一个有源二端网络如图4-1(a) 所示。任何有源二端网络对外的作 (a ) (b ) 图4 -1 有源二端网络等效电路 用可用一个为U es 的理想电压源和内阻R 0串联的电源来等效代替见图4-1(b)。等效电源的理想电压源U es 就是有源二端网络的开路电压U OC ,即将负载断开后a 、b 两端之间的电压。等效电源的内阻R 0等于有源二端网络中所有电源均除去(将各个理想电压源短路,即其电压为零;将各个理想电流源开路,其电流为零)后所得到的无源网络的内阻。这个定理称为戴维宁定理。 三、实验内容及步骤 如图4-2所示,端子a ,b 左侧部分为一个有源二端网络,R L 是外部负载。依据戴维宁定理,测得a ,b 两端的开路电压U OC 和等效内阻R 0以后将数据代入图4-1(b )内,如果两个电路在负载R L 上产生的电流I 相等,即可验证戴维宁定理。本次实验中,负载R L 以可变电阻代替,可以通过测量多组数据验证定理的正确性。 图4-2 戴维宁定理验证电路图 实验步骤如下: (1) 打开EWB 软件,选中主菜单Circuit/Schematic Options/Grid 选项中的Show grid ,使得 绘图区域中出现均匀的网格线,并将绘图尺寸调节到最佳。 (2) 在Sources 元器件库中调出1个Ground (接地点)和1个Battery (直流电压源)器件, 从Basic 元器件库中调出5个Resistor (电阻)、1个Potentiometer (可变电阻)、5个Switch (开关)器件,从Indicators 元器件库中调出1个V oltmeter (电压表)、1个Ammeter (电流表)器件,最后从Instruments 元器件库中调出1个Multimeter (多用表)器件,按图4-3所示排列好。 (3) 将各元器件的标号、参数值亦改变成与图4-3所示一致。 R L R L R U +- 5 4 R L I

份测验电力电子技术第一次作业

份测验电力电子技术第一次作业

————————————————————————————————作者:————————————————————————————————日期:

2014年9月份考试电力电子技术第一次作业 一、单项选择题(本大题共100分,共 40 小题,每小题 2.5 分) 1. 晶闸管从阻断转为导通,必须同时具备的两个条件是()。 A. A、阳极正向电压和门极反向电流 B.阳极反向电压和门极反向电流 C. C、阳极反向电压和门极正向电流 D、阳极正向电压和门极正向电流 2. 利用附加的换流电路对晶闸管施加反向电压或反向电流的换流方式,称为()。 A.电网换流 B.强迫换流 C.负载换流 D.器件换流 3. 无源逆变指的是()。 A. 将直流电能转变为某一频率或频率可调的交流电能,送给负载 B. 将直流电能转变为某一频率或频率可调的交流电能,送给电网 C. 将交流电能转变为某一频率或频率可调的交流电能,送给负载 D. 将交流电能转变为某一频率或频率可调的交流电能,送给电网 4. 晶闸管的额定电流是用一定条件下流过的最大工频正弦半波()来确定。 A. 电流有效值 B. 电流峰值 C. 电流瞬时值 D. 电流平均值 5. 晶闸管工作过程中,管子本身的损耗等于管子两端的电压乘以()。 A. 阳极电流 B. 门极电流 C. 阳极电流与门极电流之差 D. 阳极电流与门极电流之和 6. 晶闸管导通后,要使晶闸管关断,必须() A. 在门极施加负脉冲信号 B. 使控制角应该大于90度 C. 使阳极电流小于维持电流 D. 使控制角小于90度 7. 单相桥式全控整流电路带反电势负载,串联电感L,工作在有源逆变状态,的工作范围 是() A. B. C. D. 8. 三相半波带电阻性负载时, 为()度时,可控整流输出的电压波形处于连续和断续的临界状态。 A. 0 B. 60 C. 30 D. 120 9. 逆变角β值的大小等于()。 A. B. C. D. 10. 题目:以下正确的叙述是()。 A. A、晶闸管只存在动态损耗,而不存在静态损耗 B. B、晶闸管只存在静态损耗,而不存在动态损耗 C. C、晶闸管既不存在动态损耗,也不存在静态损耗 D. D、晶闸管既存在动态损耗,也存在静态损耗 11. 三相半波可控整流电路的自然换相点是( )。 A. 交流相电压的过零点 B. 本相相电压与相邻相电压正半周的交点处 C. 比三相不控整流电路的自然换相点超前30° D. 比三相不控整流电路的自然换相点滞后60°

实验5 戴维南定理的验证

实验5 戴维南定理的验证 一、实训目的 1. 验证戴维南定理的正确性,加深对该定理的理解。 2. 掌握测量有源二端网络等效参数的一般方法。 二、原理说明 1. 任何具有两个出线端的部分电路称为二端网络。若网络中含有电源称为有源二端网络,否则称为无源二端网络。 戴维南定理:任何一个线性有源二端网络,对外电路来说,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us 等于这个有源二端网络的开路电压Uoc , 其等效内阻R 0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。 诺顿南理指出:任何一个线性有源网络,总可以用一个电流源与一个电阻的并联组合来等效代替,此电流源的电流Is 等于这个有源二端网络的短路电流I SC ,其等效内阻R 0定义同戴维南定理。 Uoc (Us )和R 0或者I SC (I S )和R 0称为有源二端网络的等效参数。 2. 有源二端网络等效参数的测量方法 (1) 开路电压、短路电流法测R 0 在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压Uoc ,然后再将其输出端短路,用电流表测其短路电流Isc ,则等效内阻为 Uoc R 0= ── Isc 如果二端网络的内阻很小,若将其输出端口短路 则易损坏其内部元件,因此不宜用此法。 (2) 伏安法测R 0 图5-1有源二端网络外特性曲线 用电压表、电流表测出有源二端网 络的外特性曲线,如图5-1所示。 根据 外特性曲线求出斜率tg φ,则内阻 △U U oc R 0=tg φ= ──=── △I Isc 也可以先测量开路电压Uoc , 图5-2半电压法测R 0电路 再测量电流为额定值I N 时的输出 U oc -U N 端电压值U N ,则内阻为 R 0=──── I N (3) 半电压法测R 0 如图5-2所示,当负载电压为被测网络开 U I A B I U O ΔU ΔI φ sc oc c /2

相关文档
最新文档