SPOT5卫星遥感影像数据基本参数

SPOT5卫星遥感影像数据基本参数
SPOT5卫星遥感影像数据基本参数

SPOT5遥感卫星基本参数

北京揽宇方圆信息技术有限公司

前言:

遥感传感器是获取遥感数据的关键设备,由于设计和获取数据的特点不同,传感器的种类也就繁多,就其基本结构原理来看,目前遥感中使用的传感器大体上可分为如下一些类型:(1)摄影类型的传感器;

(2)扫描成像类型的传感器;

(3)雷达成像类型的传感器;

(4)非图像类型的传感器。

无论哪种类型遥感传感器,它们都由如下图所示的基本部分组成:

1、收集器:收集地物辐射来的能量。具体的元件如透镜组、反射镜组、天线等。

2、探测器:将收集的辐射能转变成化学能或电能。具体的无器件如感光胶片、光电管、光敏和热敏探测元件、共振腔谐振器等。

3、处理器:对收集的信号进行处理。如显影、定影、信号放大、变换、校正和编码等。具体的处理器类型有摄影处理装置和电子处理装置。

4、输出器:输出获取的数据。输出器类型有扫描晒像仪、阴极射线管、电视显像管、磁带记录仪、XY彩色喷笔记录仪等等。

虽然不同卫星的基本组成部分是相同的,但是由于,各个组成部分的具体构造的精细度又是不同的,的,所以不同的卫星具有不同的分辨率。

一、法国SPOT卫星

法国SPOT-4卫星轨道参数:

轨道高度:832公里

轨道倾角:98.721o

轨道周期:101.469分/圈

重复周期:369圈/26天

降交点时间:上午10:30分

扫描带宽度:60 公里

两侧侧视:+/-27o 扫描带宽:950公里

波谱范围:

多光谱XI B1 0.50 – 0.59um

20米分辨率B2 0.61 – 0.68um

B3 0.78 – 0.89um

SWIR 1.58 – 1.75um

全色P10米 B2 0.61 –

0.68um

SPOT-5

立体成像装置

植被成像装置

遥感卫星影像镶嵌的基本原则

北京揽宇方圆信息技术有限公司 遥感卫星影像镶嵌的基本原则 遥感卫星影像镶嵌是指对一幅或若干幅图像通过几何镶嵌、色调调整、去重叠等处理,镶嵌到一幅大的背景图像中的影像处理方法。 基本原则 镶嵌时应对多景影像数据的重叠带进行严格配准,镶嵌误差不低于配准误差,镶嵌区应保证有10-15个像素的重叠带。影像镶嵌时除了要满足在镶嵌线上相邻影像几何特征一致性,还要求相邻影像的色调保持一致。镶嵌影像应保证色调均匀、反差适中,如果两幅或多幅相邻影像时相不同使得影像光谱特征反差较大时,应在保证影像上地物不失真的前提下进行匀色,尽量保证镶嵌区域相关影像色彩过渡自然平滑。 1、原则上,镶嵌只针对采样间隔相同影像。需在相邻数据重叠区域进行如下处理:首先,在相邻数据重叠区勾绘镶嵌线,镶嵌线勾绘尽量靠近采样间隔较小影像的外边缘,以保证其数据使用率最大化。然后对镶嵌线两侧影像进行裁切,裁掉重叠区域影像,为避免因坐标系转换导致接边处出现漏缝,对于采样间隔小的影像严格沿镶嵌线裁切,采样间隔大的影像应适当外扩一定范围,原则上不超过10个像素进行裁切。 2、镶嵌前进行重叠检查。景与景间重叠限差应符合要求。重叠误差超限时应立即查明原因,并进行必要的返工,使其符合规定的接边要求。采用

“拉窗帘”方式目视检查相邻影像间重叠区域的精度,若同名地物出现“抖动”或“错位”现象,则量测该处同名点误差,两者接边精度不超过1个像素。 3、镶嵌时应尽可能保留分辨率高、时相新、云雾量少、质量好的影像。 4、选取镶嵌线对DOM进行镶嵌,镶嵌处无地物错位、模糊、重影和晕边现象。 5、时相相同或相近的镶嵌影像纹理、色彩自然过渡;时相差距较大、地物特征差异明显的镶嵌影像,允许存在光谱差异,但同一地块内光谱特征尽量一致。 重叠精度检查 叠加相邻纠正单元,采用“拉窗帘”方式逐屏幕目视检查相邻纠正单元间重叠区域的精度,若同名地物出现“抖动”或“错位”现象,则量测该处同名点误差,两者相对精度应满足下表要求。 相邻影像采样间隔≤1米时,其相对误差限差满足表中规定。 相对误差限差表 地形类别 平地、丘陵(采样间 隔) 山地、高山地(采样间 隔) 相对误 差 2.0倍8.0倍 基础底图采样间隔>1米时,其相对误差限差满足表中规定。 相对误差限差表 地形类别 平地、丘陵(采 样间隔) 山地、高山地(采 样间隔) 相对误差 2.0倍 4.0倍 注:相对误差因侧视角超限、基础底图和高程数据等控制资料精度不足引起,且无法改正的特殊地区除外,但该区域周边不超限。 镶嵌步骤 1、镶嵌线选取

常见国产卫星遥感影像数据的简介

北京揽宇方圆信息技术有限公司 常见国产卫星遥感影像数据的简介 本文介绍了常见国产卫星数据的简介、数据时间、传感器类型、分辨率等情况。 中国资源卫星应用中心产品级别说明 ◆1A级和1C级产品均为相对辐射校正产品,只是不同卫星选用的生产参数不同。 ◆2级,2A级和2C级产品均为系统几何校正产品,只是不同卫星选用的生产参数不同。 其中: ■GF-1卫星和ZY3卫星归档产品为1A级,ZY1-02C卫星数据归档产品级别为1C级,其他卫星归档级别为2级! ◆归档产品是指:该类产品已经存在于系统中,仅需要从存储系统中迁移出来.即可供用户下载的数据。 ◆生产产品是指:该类产品不是已经存在的产品,需要对原始数据产品进行生产,然后再提供给用户下载的数据。

■当用户需要的产品级别是上述归档的级别,直接选择相应的产品级别,然后查询即可! ■当用户需要的产品级别不是上述归档的级别,就需要进行生产.本系统提供GF-1卫星和ZY3卫星2A级的生产产品,ZY1-02C卫星2C级的生产产品,在选择需要的级别查询后,无论有没有数据,在查询结果页上方有一个“查询0级景”按钮,点击此按钮后,进行数据查询,如果有数据,选择需要的产品直接订购,即可选择需要的产品级别。 国产卫星 一、GF-3(高分3号) 1.简介 2016年8月10日6时55分,高分三号卫星在太原卫星发射中心用长征四号丙运载火箭成功发射升空。 高分三号卫星是中国高分专项工程的一颗遥感卫星,为1米分辨率雷达遥感卫星,也是中国首颗分辨率达到1米的C频段多极化合成孔径雷达(SAR)成像卫星,由中国航天科技集团公司研制。 2.数据时间 2016年8月10日-现在 3.传感器 SAR:1米 二、ZY3-02(资源三号02星) 1.简介 资源三号02星(ZY3-02)于2016年5月30日11时17分,在我国在太原卫星发射中心用长征四号乙运载火箭成功将资源三号02星发射升空。这将是我国首次实现自主民用立体测绘双星组网运行,形成业务观测星座,

长江中下游遥感影像数据库

长江中下游遥感影像数据库文档 1.引言 1.1数据库名 长江中下游遥感影像数据库 1.2 编写目的 为了便于本数据库的方便查询与高效使用,特编写了本文档。1.3 定义 TM影像是指美国陆地卫星4~5号专题制图仪(thematic mapper)所获取的多波段扫描影像。有7个波段,其波谱范围:TM-1为0.45~0.52微米,TM-2为0.52~0.60微米,TM-3为0.63~0.69微米,以上为可见光波段;TM-4为0.76~0.90微米,为近红外波段;TM-5为1.55~1.75微米,TM-7为2.08~2.35微米,为中红外波段;TM-6为10.40~12.50微米,为热红外波段。影像空间分辨率除热红外波段为120米外,其余均为30米,像幅185×185公里2。每波段像元数达61662个(TM-6为15422个)。一景TM影像总信息量为230兆字节),约相当于MSS影像的7倍。因TM影像具较高空间分辨率、波谱分辨率、极为丰富的信息量和较高定位精度,成为20世纪80年代中后期得到世界各国广泛应用的重要的地球资源与环境遥感数据源。能满足有关农、林、水、土、地质、地理、测绘、区域规划、环境监测等专题分析和编制1∶10万或更大比例尺专题图,修测中小比例尺地图的要求。 2.数据库内容说明 2.1数据库内容一般描述(限200字) 该数据集包括长江中下游地区TM和MSS影像,包括长江三角洲Landsat MSS合成JPG影像、江苏及长江三角洲MSS镶嵌影像(合成JPG)、长江三角洲LandsatTM、ETM数据以及江苏及长江三角洲TM影像(合成JPG)。该数据主要分三个时期,分别为1980年、1990年和2000年,数据格式为JPG格式,数据量为14.4G。 2.2字段(要素)名称解释

SPOT卫星遥感影像数据基本参数

SPOT5遥感卫星基本参数 北京揽宇方圆信息技术有限公司 前言: 遥感传感器是获取遥感数据的关键设备,由于设计和获取数据的特点不同,传感器的种类也就繁多,就其基本结构原理来看,目前遥感中使用的传感器大体上可分为如下一些类型:(1)摄影类型的传感器; (2)扫描成像类型的传感器; (3)雷达成像类型的传感器; (4)非图像类型的传感器。 无论哪种类型遥感传感器,它们都由如下图所示的基本部分组成: 1、收集器:收集地物辐射来的能量。具体的元件如透镜组、反射镜组、天线等。 2、探测器:将收集的辐射能转变成化学能或电能。具体的无器件如感光胶片、光电管、光敏和热敏探测元件、共振腔谐振器等。 3、处理器:对收集的信号进行处理。如显影、定影、信号放大、变换、校正和编码等。具体的处理器类型有摄影处理装置和电子处理装置。 4、输出器:输出获取的数据。输出器类型有扫描晒像仪、阴极射线管、电视显像管、磁带记录仪、XY彩色喷笔记录仪等等。 虽然不同卫星的基本组成部分是相同的,但是由于,各个组成部分的具体构造的精细度又是不同的,的,所以不同的卫星具有不同的分辨率。 一、法国SPOT卫星 法国SPOT-4卫星轨道参数: 轨道高度:832公里 轨道倾角:98.721o 轨道周期:101.469分/圈 重复周期:369圈/26天 降交点时间:上午10:30分 扫描带宽度:60 公里 两侧侧视:+/-27o 扫描带宽:950公里 波谱范围: 多光谱XI B1 0.50 – 0.59um 20米分辨率B2 0.61 – 0.68um B3 0.78 – 0.89um SWIR 1.58 – 1.75um

高分辨率卫星影像数据报价

GeoEye-1/IKONOS卫星影像数据价格表 说明: 1. 所有影像未经镶嵌处理。 2. 存档与编程: A. 存档数据:3个月前采集的Geo Ortho Kit数据 B. 编程数据:未采集的数据和3个月以内新采集的数据 3. 标准交付期: A. 存档数据:合同签订后5-10个工作日 B. 编程数据:数据接收成功后10-15个工作日 4. 起订面积: A. 存档数据:49km22 (最短边长不小于5公里) B. 编程数据:100km22 (最短边长不小于5公里)

5. 编程费用:标准编程免收编程费,如需加急编程,每个工作区收取38000 元编程费。 6. 运保费:人民币500元。 7. 含云量规定:实际含云量面积低于20%的影像为合格产品,若要求云量覆 盖在10%以内的影像每平方公里加价25%,要求云量覆盖在5%以内的影像每平方公里加价50%。 8. 目标仰角规定:标准拍摄目标仰角在60°- 90°之间。若要求拍摄目标仰 角在72°-90°之间,每平方公里需加收10%的附加费。 QuickBird/WorldView-1/WorldView-2影像数据价格表一、真彩色\彩红外\全色\4波段多光谱(MS1): 二、4波段捆绑(Pan+MS1)\ 4波段融合数据: 三、立体像对(基础产品):

卫星编程级别说明: 1.S级:优先级别最低的编程订单,适用于对影像获取时间要求不严格的客户,以及订单竞争不激烈的地区。优点是单价比较低,客户可以自己设定采集开始和截止时间, 或接受DG提供的采集周期;缺点是获取时间比较长.云量覆盖率不大于15% 。 2.S+级:优先级别比S级订单高,适用于急于获取合格影像的客户,以及订单竞争一般激烈的地区。优点是客户可以自己设定采集开始和截止时间,或接受DG提供的采集周期,单价相对较低,可以保证获取影像的质量。云量覆盖率不大于15% 。 3.AS级:优先级别较高,适用于急于获取合格影像的客户,以及订单竞争激烈的地区。客户必须接受DG提供的采集周期,并接受分批交付。优点是订单优先级别高,如果在DG提供的采集周期内没有完成采集,客户可以选择用DG现有的其他存档数据免费填充未完成的区域,或继续延长订单的采集周期。如果客户选择取消编程订单的未完成部分 并用免费存档数据填充未完成区域,应在原AS级订单取消后180天进行免费数据的申请;如果客户选择延长采集周期,DG会重新评估并给出新的采集周期,客户必须接受这个新的采集周期。云量覆盖率不大于15% 。 4.SS级:优先级别最高的编程订单,目标区域宽度要求小于13.5 公里,南北长度小于165 公里。DG会在未来2周的时间内,指定一个日期进行单次接收,客户可以提前48 小时确认订单,订单一旦确认,不能取消,无论云量多少均收全款。适用于灾害分析、

遥感卫星影像数据质量如何检查

遥感卫星影像数据质量如何检查 原始影像质量检查 取得原始影像数据后,首先要对数据源质量进行全面检查。主要检查内容和要求如下: 1、原始数据检查以景为单位,应用遥感图像处理软件打开影像数据,采用人工目视检查的方法,对每景数据进行质量检查,并进行文字记录。 2、检查相邻景影像之间的重叠是否在4%以上,特殊情况下不少于2%。 3、检查原始影像信息是否丰富,是否存在噪声、斑点和坏线。 4、检查影像云、雪覆盖情况,是否满足云、雪覆盖量小于10%,且不能覆盖城乡结合部等重点地区之规定。 5、检查侧视角是否满足规程之规定:一般小于15°,平原地区不超过25°,山区不超过20°。 6、对检查结果中不符合以上质量要求的数据信息及时反馈全国调查办,申请替换。 3.1.2原始影像质量常见问题

根据以往的影像处理经验,除常见的云雪覆盖量较大和侧视角超限等问题外,在原始影像的检查中常见质量问题如下: 1、掉线,如图3-1所示: 图3-1:掉线现象 2、条带现象,如图3-2所示: 图3-2条带现象 3、增溢过度现象,如图3-3所示:

图3-3影像增溢过度 3.1.3原始影像分析 原始影像数据质量检查合格后,根据各景影像的头文件信息,通过GIS软件生成落图矢量文件(WGS84坐标),内容包含数据源类型、景号、时相、侧视角等属性字段。将落图矢量文件与项目区范围在GIS软件中进行叠加,全面检查数据覆盖是否完整,并对重叠较小的区域进行反复确认,将缺漏数据情况及时反馈全国调查办。同时,在满足重叠要求和项目区覆盖完整的前提下,尽量排除不需要生产的数据以提高工作效率和保障项目进度。 在确定好需生产数据的数量和分布后,以分带区为单元,将同一投影带内的原始数据以所在带号为名称的文件夹分别存放,对跨分带线的数据以面积较大区域所在投影带为准,以备下一环节的使用。 3.1.4原始影像预处理 由于卫星具有侧视观测地面的功能,获取完整监测区的数据时段不同、空中云雾干扰以及地面光线不均匀等原因,会造成一景图像内部、景与景之间的感光程度存在差别,采用专业图像处理软件,对项目区全色与多光谱影像分别进行预处理。同时,可对同源同时相同轨道的部分影像进行拼接处理,以保证项目区影像内部接边精度,提高工作效率。 3.1. 4.1全色影像色调调整 对全色影像的明暗度、对比度、均匀度等进行调整处理,一方面提高地物的亮度,另一方面增加地物的对比度,使地物边界更清晰。通过预处理,使整幅图像色彩真实均匀、明暗程度适中、

遥感卫星影像数据采购知识要素

北京揽宇方圆信息技术有限公司 (一)遥感卫星数据类型有哪些? 北京揽宇方圆卫星公司可提供多种遥感数据类型供用户选择,目前来说是国内遥感数据最多的遥感数据中心,分辨率从0.3米到30米的光学卫星影像,还有各种极化方式的雷达卫星影像,高光谱卫星影像,还有解密的1960年至1980年的锁眼卫星影像,根据自己的情况来定,也可以把自己的卫星数据需求告诉我们,给您推荐合适的卫星数据类型。如果您想获取高程信息DEM、DLG等信息,需要购买的就是卫星影像立体像对数据,并不是所有卫星都有立体像对哦。 (二)遥感卫星数据影像有哪些级别? 卫星公司北京揽宇方圆销售的都是1A级别原始卫星影像,光学卫星影像原始数据都是以全色+多光谱捆绑形式提供,卫星影像一般可以经过一定的处理,形成各级别的影像数据,不同的级别可以针对不同的用户需求,在订购时需特别注意。 *名词(全色就是黑白数据,多光谱是指红绿蓝近红外) (三)遥感卫星数据影有没有最小数量起订的说法? 北京揽宇方圆提醒您在购买卫星影像时,都要确认购买面积大小或景数。对于高分辨率影像来说,一般是按面积大小来计算,单位为平方公里。但是往往有个最小购买面积,例如,WorldView影像的存档数据最低起购面积为25平方公里,且需要满足四边形两边相距大于等于5公里;而中低分辨率影像则往往按景数来计算,景是一幅卫星影像的通俗讲法,例如,一景高分一号卫星影像,范围大小为32.5×32.5公里。 (四)遥感卫星存档数据是指什么? 北京揽宇方圆详解遥感卫星存档数据:是指先前卫星已经拍摄过的某区域的影像数据,已存档在数据库中,是现成品。该种影像的购买价格相对较低,订购时间较快。但是订购前需要对既定需求区域做出确认,即确认所需区域是否有卫星影像数据存档、卫星影像存档数据的拍摄时间、拍摄质量(包含了云量、拍摄倾角等因素)等。 (五)遥感卫星编程数据是什么意思? 北京揽宇方圆遥感公司对遥感卫星编程数据的解释是指地面编程控制卫星对需求区域拍摄最新的影像,可以让用户得到需求区域最新的影像。但是编程影像的拍摄周期通常较长,订购初期需要先向卫星运营公司申请拍摄区域的拍摄周期,然后由卫星公司反馈计划拍摄周期。在这个拍摄周期中,并不能够保证拍摄成功,这与所拍摄地的天气情况、拍摄数据的优先级权重以及需求数据范围有关。 (六)遥感卫星影像数据价格如何一般是多少? 目前市面上的商业遥感卫星数量较多,北京揽宇方圆是国内遥感数据资源最多的公司,不同的行业根据自己的遥感项目业务要求,对各卫星影像的分辨率、波段数量、质量以及影像拍摄的时间要求各异,而卫星

高分辨率遥感卫星介绍

北京揽宇方圆信息技术有限公司 高分辨率遥感卫星有哪些 高分辨率遥感可以以米级甚至亚米级空间分辨率精细观测地球,所获取的高空间分辨率遥感影像可以清楚地表达地物目标的空间结构与表层纹理特征,分辨出地物内部更为精细的组成,地物边缘信息也更加清晰,为有效的地学解译分析提供了条件和基础。随着高分辨率遥感影像资源日益丰富,高分辨率遥感在测绘制图、城市规划、交通、水利、农业、林业、环境资源监测等领域得到了飞速发展。 北京揽宇方圆信息技术有限公司是国内的领先遥感卫星数据机构,而且是整合全球的遥感卫星数据资源,分发不同性能、技术应用上可以互补的多种卫星影像,包括光学、雷达卫星影像、历史遥感影像等各种卫星数据服务,各种专业应用目的的图像处理、解译、顾问服务以及基于卫星影像的各种解决方案等。遥感卫星影像数据贯穿中国1960年至今的所有卫星影像数据,是中国遥感卫星数据资源最多的专业遥感卫星数据服务机构,提供多尺度、多分辨率、全覆盖的遥感卫星影像数据服务,最大限度的保证了遥感影像数据获取的及时性和完整性。 一、卫星类型 (1)光学卫星:worldview1、worldview2、worldview3、worldview4、quickbird、geoeye、ikonos、pleiades、deimos、spot1、kompsat系例、spot2、spot3、spot4、spot5、spot6、spot7、landsat5(tm)、Sentinel-卫星、landsat(etm)、rapideye、alos、kompsat系例卫星、planet卫星、北京二号、高景一号、资源三号、高分一号、高分二号、环境卫星。 (2)雷达卫星:terrasar-x、radarsat-2、alos雷达卫星、高分三号卫星、哨兵卫星 (3)侦查卫星:美国锁眼卫星全系例(1960-1980) 二、卫星分辨率 (1)0.3米:worldview3、worldview4 (2)0.4米:worldview3、worldview2、geoeye、kompsat-3A (3)0.5米:worldview3、worldview2、geoeye、worldview1、pleiades

遥感影像数据下载

1.MODIS L1B 1km: https://www.360docs.net/doc/034475838.html,/data/d ... _Level_1/index.html 免费注册,免费下载,daily data 2.https://www.360docs.net/doc/034475838.html,/pub/imswelcome/ 3. https://www.360docs.net/doc/034475838.html,/ https://www.360docs.net/doc/034475838.html,ndsat etm+ and tm images for free https://www.360docs.net/doc/034475838.html,/ortho/index.htm 5.EarthEtc ER MAPPER公司示范网站 https://www.360docs.net/doc/034475838.html,/imagery.aspx该网站上可以欣赏世界各地的高清晰度卫星照片,以及覆盖全球的1990年版LANDSAT卫星拼图(NASA命名为Circa 1990)。该网站不提供文件下载,只能通过浏览器观看。 6.NASA已经将中国地区的卫星图像发表在其网站上,免费供公众下载。 https://https://www.360docs.net/doc/034475838.html,/mrsid/mrsid.pl 7.ENVISAT ASAR数据 https://www.360docs.net/doc/034475838.html,或者https://www.360docs.net/doc/034475838.html, ENVISAT卫星是欧空局迄今为止研制的最大的环境监测卫星,其高级合成孔径雷达(ASAR)在C波段具有多极化、可变观测角度、宽幅成像等特性。其数据可以广泛应用于自然灾害监测、资源环境调查、雷达遥感教学与科研等领域。 8.美国航天飞机SRTM 高程数据 SRTM高程数据由NASA航天飞机上的雷达在2000年2月搜集,覆盖南纬56度到北纬60度之间的陆地区域。该数据分辨率为30米,但NASA出于“安全性”考虑将美国以外的地区缩减为90米分辨率。数据格式为HGT格式,采用ZIP压缩,文件名以经纬度网格的左上角点命名。该系列数据是“未完成”数据,里面有很多地方有数据空洞存在。 ftp://https://www.360docs.net/doc/034475838.html,/srtm/Eurasia/ https://www.360docs.net/doc/034475838.html,gs,gov/data/obtainingdata.html(“unfinished”Grade) https://www.360docs.net/doc/034475838.html,gs,gov/products/elevation.html(“finished”Grade) Easy Download Site—GLCF ftp://https://www.360docs.net/doc/034475838.html,/gl ... 0/SRTM_u03_n040e116 上述数据覆盖范围1*1度n040—北纬40度e116—东经116度 9.国家基础地理信息系统全国1:400万数据库

常用的遥感卫星影像数据有哪些

北京揽宇方圆信息技术有限公司 常用的遥感卫星影像数据有哪些 公司拥有WorldView、QuickBird、IKONOS、GeoEye、SPOT、高分一号、资源三号等卫星的代理权,与国内多家遥感影像一级代理商长期合作,能够为客户提供全天候、全覆盖、多分辨率、多尺度的影像产品 WorldView,分辨率0.5米 WorldView卫星系统由两颗(WorldView-I和WorldView-II)卫星组成。WorldView-I全色成像系统每天能够拍摄多达50万平方公里的0.5米分辨率图像,并具备现代化的地理定位精度能力和极佳的响应能力,能够快速瞄准要拍摄的目标和有效地进行同轨立体成像。WorldView-II多光谱遥感器具有8个波段,平均重访周期为一天,每天采集能力达到97.5万平方公里。

QuickBird,分辨率0.61米 QuickBird具有较高的地理定位精度,每年能采集7500万平方公里的卫星影像数据,在中国境内每天至少有2至3个过境轨道,有存档数据约500万平方公里,重访周期为1-6天,每天采集能力达到21万平方公里。 IKONOS,分辨率0.8米 IKONOS卫星是世界上第一颗高分辨率卫星,开启了商业高分辨率卫星的新时代,同时也创立了全新的商业化卫星影像标准。全色影像分辨率达到了0.8米,多光谱影像分辨率4米,平均重访周期3天。

Geoeye,分辨率0.41米 GeoEye-1卫星具有分辨率最高、测图能力极强、重返周期极短的特点。全色影像分辨率达到了0.41米,多光谱影像分辨率1.65米,定位精度达到3米,重访周期2-3天,每天采集能力70万平方公里。

卫星影像数据库遥感卫星影像数据库

卫星影像---北京揽宇方圆信息技术有限公司高分遥感影你5折起. 北京揽宇方圆信息技术有限公司立足于国际,代理了国际主流高分卫星 1.美国Digital Globe公司的quickbird卫星worldview123卫星geoeye卫星ikonos卫星,worldview3全球最高高分辨率卫星数据0.3米的遥感数据产品,其中quickbird worldview geoeye是全球高分辨率卫星数据0.5米的遥感数据产品,IKONOS 1米高分辨率卫星数据。公司的销售服务网络向国内客户提供更及时、保障度更高的高分辨率遥感数据。 2.法国SPOT公司,SOPT1-SPOT6全系例遥感卫星影像数据,其中SOPT1-SOPT5,分辨率2.5到20米,时间是1986年至今,SPOT6卫星是1.5米分辨率卫星数据,2012年SPOT 公司又发射了pleiades卫星,这颗卫星是0.5米分辨率. 3.德国Rapideye卫星星座数据产品:由5颗相同的对地观测卫星组成的RapidEye卫星星座,空间分辨率5米,为全球首个能够提供“红边”波段的商业卫星,可通过5个光谱波段获取影像,这种获取方式可以监测植被变化情况,为植被分类以及植被生长状态监测提供有效信息。 4.美国军方解密锁眼卫星数据系例:锁眼(keyHole)卫星系列,即KH—1至KH—12型照相侦察卫星,锁眼卫星在世界先进的侦察卫星中可谓是大名鼎鼎,它们曾在在“海湾战争”和“科索沃战争”中立下汗马功劳。美国国家侦察局解密锁眼(keyHole)卫星系列遥感数据,目前解密年代的数据为1980年以前的历史数据。全色分辨率0.6米-10米。 5.日本的ALOS卫星数据,分辨率全色2.5米-多光谱10米,这颗卫星2011年4月停止运行了。 6.国内的高分卫星:资源3号和高分一号 7.智能化的遥感影像数据处理:-,融合匀色拼接等,二,地物地貌处理,三,生成正射影像,四,遥感解译等遥感技术应用服务。

遥感卫星图像处理方法

北京揽宇方圆信息技术有限公司 遥感卫星图像处理方法 随着遥感技术的快速发展,获得了大量的遥感影像数据,如何从这些影像中提取人们感兴趣的对象已成为人们越来越关注的问题。但是传统的方法不能满足人们已有获取手段的需要,另外GIS的快速发展为人们提供了强大的地理数据管理平台,GIS数据库包括了大量空间数据和属性数据,以及未被人们发现的存在于这些数据中的知识。将GIS技术引入遥感图像的分类过程,用来辅助进行遥感图像分类,可进一步提高了图像处理的精度和效率。如何从GIS数据库中挖掘这些数据并加以充分利用是人们最关心的问题。GIS支持下的遥感图像分析特别强调RS和GIS的集成,引进空间数据挖掘和知识发现(SDM&KDD)技术,支持遥感影像的分类,达到较好的结果,专家系统表明了该方法是高效的手段。 遥感图像的边缘特征提取观察一幅图像首先感受到的是图像的总体边缘特征,它是构成图像形状的基本要素,是图像性质的重要表现形式之一,是图像特征的重要组成部分。提取和检测边缘特征是图像特征提取的重要一环,也是解决图像处理中许多复杂问题的一条重要的途径。遥感图像的边缘特征提取是对遥感图像上的明显地物边缘特征进行提取与识别的处理过程。目前解决图像特征检测/定位问题的技术还不是很完善,从图像结构的观点来看,主要是要解决三个问题:①要找出重要的图像灰度特征;②要抑制不必要的细节和噪声;③要保证定位精度图。遥感图像的边缘特征提取的算子很多,最常用的算子如Sobel算子、Log算子、Canny算子等。 1)图像精校正 由于卫星成像时受采样角度、成像高度及卫星姿态等客观因素的影响,造成原始图像非线性变形,必须经过几何精校正,才能满足工作精度要求一般采用几何模型配合常规控制点法对进行几何校正。 在校正时利用地面控制点(GCP),通过坐标转换函数,把各控制点从地理空间投影到图像空间上去。几何校正的精度直接取决于地面控制点选取的精度、分布和数量。因此,地面控制点的选择必须满足一定的条件,即:地面控制点应当均匀地分布在图像内;地面控制点应当在图像上有明显的、精确的定位识别标志,如公路、铁路交叉点、河流叉口、农田界线等,以保证空间配准的精度;地面控制点要有一定的数量保证。地面控制点选好后,再选择不同的校正算子和插值法进行计算,同时,还对地面控制点(GCPS)进行误差分析,使得其精度满足要求为止。最后将校正好的图像与地形图进行对比,考察校正效果。 2)波段组合及融合 对卫星数据的全色及多光谱波段进行融合。包括选取最佳波段,从多种分辨率融合方法中选取最佳方法进行全色波段和多光谱波段融合,使得图像既有高的空间分辨率和纹理特性,又有丰富的光谱信息,从而达到影像地图信息丰富、视觉效果好、质量高的目的。 3)图像镶嵌

常见的资源卫星影像数据区别

一.遥感数据基础知识: 太阳辐射经过大气层到达地面,一部分与地面发生作用后反射,再次经过大气层,到达传感器。传感器将这部分能量记录下来,传回地面,即为遥感数据。目前用于遥感的电磁波段有紫外线、可见光、红外线和微波。航空与航天飞行器运行快、周期短,可获得多时相数据。以美国陆地卫星5号(Landsat 5 )为例,Landsat 5每天环绕地球14.5圈,覆盖地球一遍所需时间仅16天,而气象卫星的周期更短(1天或半天)。由于探测距离远,传感器所获得的地面影像覆盖的空间范围较大。它距离地表的高度是705.3 km,对地球表面的扫描宽度是185 km,一幅TM 图像可以全部覆盖我国海南岛大小的面积。不同的卫星传感器获得的同一地区的数据以及同一传感器在不同时间获得的同一地区的数据,均具有可比性. (1)遥感平台 遥感平台是装载传感器的运载工具,按高度分为: 地面平台:为航空和航天遥感作校准和辅助工作。 航空平台:80 km以下的平台,包括飞机和气球。 航天平台:80 km以上的平台,包括高空探测火箭、人造地球卫星、宇宙飞船、航天飞机。 人造地球卫星的类型: 低高度、短寿命卫星:150~350 km,用于军事。 中高度、长寿命卫星:350~1800 km,地球资源。 高高度、长寿命卫星:约3600 km,通信和气象。 (2)遥感数据类型 按平台分 地面遥感、航空遥感、航天遥感数据。 按电磁波段分 可见光遥感、红外遥感、微波遥感、紫外遥感数据等。 按传感器的工作方式分 主动遥感、被动遥感数据。 (3)遥感数据获取原理; (4)传感器

a.传感器定义:传感器是收集、探测、记录地物电磁波辐射信息的工具。它的性能决定遥感的能力,即传感器对电磁波段的响应能力、传感器的空间分辨率及图像的几何特征、传感器获取地物信息量的大小和可靠程度。 b.传感器的分类 按工作方式分为: 主动方式传感器:侧视雷达、激光雷达、微波辐射计。 被动方式传感器:航空摄影机、多光谱扫描仪(MSS)、TM、ETM(1,2)、HRV、红外扫描仪等。 c.传感器的组成 收集器:收集来自地物目标镜、天线。 探测器:将收集的辐射能转变成化学能或电能。 处理器:将探测后的化学能或电能等信号进行处理。 输出:将获取的数据输出。 传感器一般由信息收集、探测系统、信息处理和信息输出4部分组成。 d.传感器的工作原理 是收集、量测和记录来自地面目标地物的电磁波信息的仪器,是遥感技术的核心部分。 根据传感器的工作方式分为:主动式和被动式两种。 主动式:人工辐射源向目标物发射辐射能量,然后接收目标物反射回来的能量,如雷达。 被动式:接收地物反射的太阳辐射或地物本身的热辐射能量,如摄影机、多光谱扫描仪(MSS、TM、ETM、HRV)。 (5)遥感应用的电磁波波谱段 紫外线:波长范围为0.01~0.38μm,太阳光谱中,只有0.3~0.38μm波长的光到达地面,对油污染敏感,但探测高度在2000 m以下。 可见光:波长范围:0.38~0.76μm,人眼对可见光有敏锐的感觉,是遥感技术应用中的重要波段。 红外线:波长范围为0.76~1000μm,根据性质分为近红外、中红外、远红外和超远红外。 微波:波长范围为1 mm~1 m,穿透性好,不受云雾的影响。

IKONOS卫星 遥感影像解译数据 的 波段简介

IKONOS卫星遥感影像解译数据的波段 IKONOS卫星影像

IKONOS卫星简介 IKONOS为美国DigitalGlobe公司的高分辨率遥感卫星,于1999年09月24日发射,其影像分辨率达0.82米,为全球首颗提供1米以下分辨率的商用光学卫星,揭开了高分辨率卫星影像的时代。 IKONOS卫星基本参数 卫星遥感数据分类: 一、卫星分辨率 1.0.3米:worldview3、worldview4 2.0.4米:worldview3、worldview2、geoeye、kompsat-3A

3.0.5米:worldview3、worldview2、geoeye、worldview1、pleiades、高景一号 4.0.6米:quickbird、锁眼卫星 5.1米:ikonos、高分二号、kompsat、deimos、北京二号 6.1.5米:spot6、spot7、锁眼卫星 7.2.5米:spot5、alos、资源三号、高分一号(4颗)、高分六号、锁眼卫星 8.5米:spot5、rapideye、锁眼卫星、planet卫星4米 9.10米:spot5、spot4、spot3、spot2、spot1、Sentinel-卫星 10.15米:landsat5(tm)、landsat(etm)、landsat8、高分一号16米 二、卫星类型 1.光学卫星:spot2、spot3、spot4、spot5、spot6、spot7、worldview1、worldview2、worldview3、worldview4、quickbird、geoeye、ikonos、pleiades、deimos、spot1、kompsat系例、landsat5(tm)、Sentinel-卫星、landsat(etm)、rapideye、alos、kompsat系例卫星、planet卫星、高分一号、高分二号、高分六号、北京二号、高景一号、资源三号、环境卫星。 2.雷达卫星:terrasar-x、radarsat-2、alos雷达卫星、高分三号卫星、哨兵卫星 3.侦查卫星:美国锁眼卫星全系例(1960-1980) 4.高光谱类卫星:高分五号、环境小卫星、ASTER卫星、EO-1卫星 三、卫星国籍 1.美国:worldview1、worldview2、worldview3、quickbird、geoeye、ikonos、landsat5(tm)、landsat(etm)、锁眼卫星、planet卫星 2.法国:pleiades、spot1、spot2、spot3、spot4、spot5、spot6 3.中国:高分一号、高分二号、高分六号、高景卫星、北京二号、资源三号等 4.德国:terrasar-x、rapideye 5.加拿大:radarsat-2 四、卫星发射年份 1.1960-1980年:锁眼卫星(0.6米分辨率至10米) 2.1980-1990年:landsat5(tm)、spot1 3.1990-2000年:spot2、spot3、spot4、landsat(etm)、ikonos 4.2000-2010年:quickbird、worldview1、worldview2、spot5、rapideye、radarsat-2、alos 5.2010-至今:高分一号、高分二号、高分三、高分四、高分五、高分六号、高分七、spot6、spot7、资源三号、worldview3、worldview4、pleiades、高景卫星、planet卫星

遥感影像数据预处理

北京揽宇方圆信息技术有限公司热线:4006019091 遥感影像数据预处理 影像融合不同传感器的数据具有不同的时间、空间和光谱分辨率以及不同的极 化方式。单一传感器获取的影像信息量有限,往往难以满足应用需要, 通过影像融合可以从不同的遥感影像中获得更多的有用信息,补充单一 传感器的不足。全色图影像一般具有较高空间分辨率,多光谱影像光谱 信息较丰富。为提高多光谱影像的空间分辨率,可以将全色影像融合进 多光谱图像,通过融合既提高多光谱影像空间分辨率,又保留其多光谱 特性。对卫星数据的全色及多光谱波段进行融合。包括选取最佳波段, 从多种分辨率融合方法中选取最佳方法进行全色波段和多光谱波段融 合,使得图像既有高的空间分辨率和纹理特性,又有丰富的光谱信息, 从而达到影像地图信息丰富、视觉效果好、质量高的目的。 影像匀色相邻的遥感图像,由于成像日期、季节、天气、环境等因素可能有差异, 不仅存在几何畸变问题,而且还存在辐射水平差异导致同名地物在相 邻图像上的色彩亮度值不一致。如不进行色调调整就把这种图像镶嵌起 来,即使几何配准的精度很高,重叠区复合得很好,但镶嵌后两边的影 像色调差异明显,接缝线十分突出,既不美观,也影响对地物影像与专 业信息的分析与识别,降低应用效果。要求镶嵌完的数据色调基本无差 异,美观。遥感影像匀色后保证影像整体色彩一致性。 影像镶嵌将不同的图像文件合在一起形成一幅完整的包含感兴趣区域的图像,通 过镶嵌处理,可以获得更大范围的地面图像。参与镶嵌的图像可以是不 同时间同一传感器获取的,也可以是不同时间不同传感器获取的图像, 但同时要求镶嵌的图像之间要有一定的重叠度。 影像去云雾影像数据常常有云雾覆盖,针对有云雾覆盖的影像,可以通过后期技术 处理去除薄云雾,达到影像最佳效果。 影像纠正依据控制点,利用相应软件模块对数据进行几何精校正,这一步骤包括 利用地面控制点(GCPs)找出实际地形,计算配准中控制点的误差,利 用DEM消除地形起伏引起的位移,然后对图像进行重采样等。形成符合 某种地图投影或图形表达要求的新影像。 即插即用无使用门槛,可与各类GIS软件系统无缝衔接 第1页

卫星遥感数据的正射影像图的制作

卫星遥感数据的正射影像图的制作 【摘要】卫星遥感是一种采用人们通过航空技术发射在地球外层空间的人造卫星对地球地面、地面以上的空间以及外层太空天体进行综合性观测的技术。而卫星遥感所得数据在正射影像图的制作上应用价值广泛,本文通过阐述卫星遥感数据以及卫星影响图的来源以及所具有的特征,并分析了卫星遥感数据用于制作正射影图过程中出现的纠错、配准以及最后统一融合的方法及原理,简要介绍了正射影像图的构型、调色以及去重叠等数据信息处理的方式和过程。 【关键词】卫星遥感技术;数据;信息;正射影像图;制作 引言 21世纪信息科技时代的到来,卫星遥感技术也在不断的更新、完善之中。目前的卫星遥感技术在用于制作正射影像图方面效果显著,并且成图的精准度越来越高,远远超过比例尺地形图的精准度。卫星遥感技术在城市建设、城市规划以及了解环境状况和资源状况方面具有强大的支撑作用。采用卫星遥感技术制作的城市影像图具有目标辨认难度小、内容清晰、比例尺大以及转释较容易的优势,这项技术已经广泛应用于社会生产和发展的各个层面。该项技术还有助于治理生态环境、搜集专业信息、监测工程项目以及防止各种自然灾害等工作的开展。 1.国内外普遍流行的卫星影像图收集方式 随着新科技革命的不断深入,卫星遥感技术日新月异,目前国际上较为早期出现的卫星遥感技术是来自美国的Earth watch 卫星数据资源库的QuickBird卫星影像,这款卫星影像的地面全色分辨率达到0.61m,成像款幅度达到16.5×16.5/km2,随后美国相继推出了Space imaging Ikonos和Land sat TM卫星遥感影像,这宽两款卫星遥感较Earth watch的QuickBird的影像效果以及成像款幅度都有所提升。俄罗斯生产了一款Spin-2卫星影像,这款卫星影像在地面分辨率方面虽然不及美国的Land sat TM卫星遥感,但是其成像款幅度可以达到200×300/km2却与美国的三种卫星影响有明显的优势。 2.卫星影像图的纠错、配准以及统一融合 2.1 数字纠错 光学纠错仪是一款用于将航拍模拟摄影片转化为平面图的工具,主要适用于传统的框架模幅式的航拍摄像画面的数字影像[1]。现阶段出现了许多新鲜的卫星数字遥感技术,这些技术的影响数据采用传统的光学纠错仪就不能很好地转化。因此,数字微分纠错技术由此诞生。这是一项通过地面的有效参数以及数字地面的基本雏形,在设置适当的构想公式,并依据适当的数学模型控制范围和控制点将航拍摄像画面的数字影像转化为正射影像图的。这种技术不仅简单、方便,而且适用范围较广,已经成为国内外普遍使用的数字纠错技术。

天绘一号卫星影像数据

天绘一号卫星影像数据 天绘一号是中国第一代传输型立体测绘卫星主要用于科学研究国土资源普查地图测绘等领域的科学试验任务,由航天东方红卫星有限公司研制,采用了CAST 2000卫星平台,一体化集成了三线阵CCD相机、2米高分辨率全色相机和多光谱相机等3类5个相机载荷,是当时中国有效载荷比最高的高分辨率遥感卫星。天绘一号实现了中国测绘卫星从返回式胶片型到CCD传输型的跨越式发展,在中国首次实现了影像数据经过地面系统处理,无地面控制点条件下与美国SRTM相对精度12m/6m(平面/高程1σ)同等的技术水平。 天绘一号还形成了中国第一个完全自主产权和国产化的集数据接收、运控管理、产品生产和应用服务为一体的地面应用系统。 截止2014年已经成功发射天绘一号01星、天绘一号02星,两颗卫星在轨组网运行稳定,对地球陆地有效覆盖59.35%,约8843.2万平方公里,对中国陆地有效覆盖97.2%,约933.3万平方公里,已具备规模化数据保障能力。 产品介绍 1A级:原始数据经过相对辐射校正后得到的卫星影像产品,包括影像数据、元数据和浏览图。 2级:1A级数据产品利用系统参数经过几何校正后得到的卫星影像产品,包括影像数据、元数据和浏览图。 1B级:1A级数据产品经过摄影测量处理后得到的卫星影像产品,包括影像数据、元数据、RPC参数和浏览图。 3A级:1A级数据产品利用系统参数和地面控制点经过几何校正后得到的卫星影像产品,包括影像数据、元数据和浏览图。 正射影像(DOM):1B级数据产品经过摄影测量纠正处理形成的卫星影像产品,包括影像数据、元数据和浏览图。 数字高程模型(DEM):1B级三线阵数据产品经过摄影测量匹配与编辑处理形成的描述地球表面起伏的格网数据产品,包括栅格数据、元数据和浏览图。

WorldView卫星影像命名规则

WorldView卫星影像命名规则 WorldView-2于2009年10月6日发射升空,运行在770Km高的太阳同步轨道上。更高的轨道带来了更短的重访周期和更好的拍摄机动性。作为Digital Globe公司当时先进的遥感卫星,它同样使用了控制力矩陀螺技术。这项高性能技术可以提供多达10倍以上的加速度的姿态控制操作,从而可以更精确的瞄准和扫描目标。卫星的旋转速度可从QuickBird的60秒减少至9秒,星下摆动距离达200km。所以,WorldView-2在太空中的角色就像一个神奇的画笔,能灵活的前后扫描、拍摄大面积的区域,能在单次操作中完成多频谱影像的扫描。除了更快速的采集和更高的精度,WorldView-2还是第一颗具有八波段多光谱的高分辨率遥感卫星,它不但具有传统遥感卫星的四个多光谱波段,还新增加了海岸线、黄、红边和近红外2波段。 一般情况下,我们订购的影像都是分块存储的,上图就是一幅分块影像的所有文件。 (1)*.ATT——姿态文件:存储第一个数据点的时间、数据点数目、点和姿态信息间隔。 (2)*.EPH——星历文件:存储第一个数据点获取的时间、数据点数目、点和星历信息之间的间隔。 (3)*.GEO——几何定标文件:虚拟相机的标注摄影测量参数,是基础产品的相机和光学系统之间的关系。

(4)*.IMD——影像元数据文件:存储影像关键信息,包括产品级别、角点坐标、投影信息、获取时间、分辨率、视线高度、方位角、云覆盖率等。对后期数据处理分析有很大帮助。 (5)*.RPB——RPC参数文件:包含影像的RPC参数,是影像物方空间坐标与像方空间坐标之间的数学映射。这是我们做卫星影像立体成图RPC空三的关键参数。 (6)*.STE——立体文件:包含构成立体的影像列表,重叠区域等。 (7)*.TIF——影像文件:原始影像格式为非标准16bit,普通看图软件无法打开显示,可将其转换成8bit后再打开。或者使用ArcGIS、ERdas等专业软件打开。 (8)*.TIL——影像分块文件:产品分块情况及各部分位置关系。 (9)*.XML——影像索引文件:包含索引、许可、影像元数据、分块、rpc 文件的索引信息。 (10)*README.TXT——高级影像索引文件:产品文件列表和辅助数据文件以及产品版本信息。 备注说明: 北京揽宇方圆200多颗遥感卫星数据资源,各卫星都有详细的价格体系表,不同行业根据自己遥感项目业务要求,对各卫星影像的分辨率、波段数量、质量以及影像拍摄的时间要求各异,而卫星影像的价格则主要由以上参数决定。 北京揽宇方圆信息技术有限公司是国内的领先遥感卫星数据机构,遥感行业的国家高新技术企业,整合全球200多颗遥感卫星数据资源,遥感卫星影像数据贯穿中国1960年至今的所有商业卫星影像数据,是中国遥感卫星数据资源最多的专业遥感卫星数据服务机构,提供多尺度、多分辨率、全覆盖的遥感卫

相关文档
最新文档