数学奥林匹克专题讲座 第11讲 计数的方法与原理

数学奥林匹克专题讲座 第11讲 计数的方法与原理
数学奥林匹克专题讲座 第11讲 计数的方法与原理

数学奥林匹克专题讲座第11讲

计数的方法与原理

计数方法与原理是组合数学的主要课题之一,本讲介绍一些计数的基本方法及计数的基本原理。

一、枚举法

一位旅客要从武汉乘火车去北京,他要了解所有可供乘坐的车次共有多少,一个最易行的办法是找一张全国列车运行时刻表,将所有从武汉到北京的车次逐一挑出来,共有多少次车也就数出来了,这种计数方法就是枚举法。所谓枚举法,就是把所要求计数的所有对象一一列举出来,最后计算总数的方法。运用枚举法进行列举时,必须注意无一重复,也无一遗漏。

例1四个学生每人做了一张贺年片,放在桌子上,然后每人去拿一张,但不能拿自己做的一张。问:一共有多少种不同的方法?

解:设四个学生分别是A,B,C,D,他们做的贺年片分别是a,b,c,d。

先考虑A拿B做的贺年片b的情况(如下表),一共有3种方法。

同样,A拿C或D做的贺年片也有3种方法。

一共有3+3+3=9(种)不同的方法。

例2甲、乙二人打乒乓球,谁先连胜两局谁赢,若没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止。问:一共有多少种可能的情况?

解:如下图,我们先考虑甲胜第一局的情况:

图中打√的为胜者,一共有7种可能的情况。同理,乙胜第一局也有 7种可能的情况。一共有 7+7=14(种)可能的情况。

二、加法原理

如果完成一件事情有n类方法,而每一类方法中分别有m1,m2,…,mn种方法,而不论采用这些方法中的任何一种,都能单独地完成这件事情,那么要完成这件事情共有

N=m1+m2+…mn

种方法。

这是我们所熟知的加法原理,也是利用分类法计数的依据。

例3 一个自然数,如果它顺着数和倒着数都是一样的,则称这个数为“回文数”。例如1331,7,202都是回文数,而220则不是回文数。问:1到6位的回文数一共有多少个?按从小到大排,第2000个回文数是多少?

解:一位回文数有:1,2,…,9,共9个;

二位回文数有:11,22,…,99,共9个;

三位回文数有:101,111,…,999,共90个;

四位回文数有:1001,1111,…,9999,共90个;

五位回文数有:10001,10101,…,99999,共900个;

六位回文数有:100001,101101,…,999999,共900个。

到六位数为止,回文数共有

9+9+90+90+900+900=1998(个)。

第1999个回文数是1000001,第2000个回文数是1001001。

例4设有长度为1,2,…,9的线段各一条,现在要从这9条线段中选取若干条组成一个正方形,共有多少种不同的取法?这里规定当用2条或多条线段接成一条边时,除端点外,不许重叠。

解法1:因为

所以正方形的边长不大于11。

下面按正方形的边长分类枚举:

(1)边长为11:9+2=8+3=7+4=6+5,可得1种选法;

(2)边长为10:9+1=8+2=7+3=6+4,可得1种选法;

(3)边长为 9:9=8+1=7+2=6+3=5+4,可得5种选法;

(4)边长为8:8=7+1=6+2=5+3,可得1种选法;

(5)边长为7:7=6+1=5+2=4+3,可得1种选法;

(6)边长≤6时,无法选择。

综上计算,不同的取法共有

1+1+5+1+1=9(种)。

解法2:由于这些线段互不等长,故至少要用7条线段才能组成一个正方形。当恰取7条线段组成正方形时,正方形的3条边各用2条线相接,另一条边只用一条线段;当恰用8条线段时,只能每边各用2条线段相接(容易看出,其他情况不可能发生)。因为 1+2+…+9=45, 45不能被4整除,所以用9条线段,不可能组成正方形。由解法一知,拼出的正方形边长至多为11,又易知正方形的边长不可能为1,2,3,4,5,6。有了以上分析就容易计数了。

(1)取出7条线段,有以下7种:

7=1+6=2+5=3+4;

8=1+7=2+6=3+5;

9=1+8=2+7=3+6=4+5

(这个式子有5种);

(2)取出8条线段,有以下2种:

1+9=2+8=3+7=4+6;

2+9=3+8=4+7=5+6。

综上所述,不同的取法共有7+2=9(种)。

三、乘法原理

如果完成一件事必须分n个步骤,而每一个步骤分别有m1,m2,…,mn种方法,那么完成这件事共有

N=m1×m2×…×mn

种方法。

这就是乘法原理,它是分步法的依据。乘法原理和加法原理被称为是计数的基本原理。我们应注意它们的区别,也要注意二者的联合使用。

例5一台晚会上有6个演唱节目和4个舞蹈节目。求:

(1)当4个舞蹈节目要排在一起时,有多少不同的安排节目的顺序?

(2)当要求每2个舞蹈节目之间至少安排1个演唱节目时,一共有多少不同的安排节目的顺序?

解:(1)先将4个舞蹈节目看成1个节目,与6个演唱节目一起排,有 7!=7×6×5×4×3×2×1=5404(种)方法。

第二步再排4个舞蹈节目,有4!=4×3×2×1=24(种)方法。

根据乘法原理,一共有 5040×24=120960(种)方法。

(2)首先将6个演唱节目排成一列(如下图中的“□”),一共有6!=6×5×4×3×2 ×1=720(种)方法。

×□×□×□×□×□×□×

第二步,再将4个舞蹈节目排在一头一尾或2个演唱节目之间(即上图中“×”的位置),这相当于从7个“×”中选4个来排,一共有7×6×5×4=840(种)方法。

根据乘法原理,一共有720×840=604800(种)方法。

例6有8个队参加比赛,如果采用下面的淘汰制,那么在赛前抽签时,实际上可以得到多少种不同的安排表?

解:8个队要经过3轮比赛才能确定冠亚军。将第1轮的4组,自左至右记为1,2,3,4组,其中第1,2组为甲区,3,4组为乙区。8个队抽签即是在上图的8个位置排列,共有

8!=8×7×6×5×4×3×2×1=40320(种)

不同的方法。

但是,两种不同的排列不一定是实际上不同比赛的安排表。事实上,8队中的某4队都分在甲区或乙区,实际上是一样的;同区的4队中某2队在某一组或另一组,实际上也是一样的;同组中的2队,编号谁是奇数谁是偶数实际也是一样的。

由乘法原理知,在40320种排法中,与某一种排法实质上相同的排法有 2×22×24=27=128(种),故按实际不同比赛安排表的种数是

四、对应法

小孩子数苹果,往往掰着手指头,一个一个地掰,掰完左手掰右手,这种数苹果的方法就是对应法。小孩子把苹果与自己的手指头一对一,他掰了几个指头,也就数出了几个苹果。一般地,如果两类对象彼此有一对一的关系,那么我们可以通过对一类较易计数的对象计数,而得出具有相同数目的另一类难于计数的对象的个数。

例7在8×8的方格棋盘中,取出一个由 3个小方格组成的“L”形(如图1),一共有多少种不同的方法?

解:每一种取法,有一个点与之对应,这就是图1中的A点,它是棋盘上横线与竖线的交点,且不在棋盘边上。

从图2可以看出,棋盘内的每一个点对应着4个不同的取法(“L”形的“角”在2×2正方形的不同“角”上)。

由于在 8×8的棋盘上,内部有7×7=49(个)交叉点,故不同的取法共有

49×4=196(种)。

例8数3可以用4种方法表示为1个或几个正整数的和,如3,1+2,2+1,1+1+1。问:1999表示为1个或几个正整数的和的方法有多少种?

分析与解:我们将1999个1写成一行,它们之间留有1998个空隙,在这些空隙处,或者什么都不填,或者填上“+”号。例如对于数3,上述4种和的表达方法对应:

111,11+1,1+11,1+1+1。

显然,将1999表示成和的形式与填写1998个空隙处的方式之间一对一,而每一个空隙处都有填“+”号和不填“+”号2种可能,因此1999可以表示为正整数之和的不同方法有

五、容斥原理

在应用加法原理时,关键在于把所要计数的对象分为若干个不重不漏的类,使得每类便于计数。但是具体问题往往是复杂的,常常扭成一团,难以分为不重不漏的类,而要把条理分清楚就得用加法原理的推广——容斥原理。

为了表达方便,我们用A表示A类元素的个数,用B表示B类元素的个数,用 A ∪B表示是 A类或是 B类元素的个数,用A∩B表示既是A类又是B类元素的个数。A ∪B∩C,A∪B∩C的意义类似。

容斥原理1 如果被计数的事物有两类,那么

A∪B=A+B-A∩B。

容斥原理2 如果被计数的事物有三类,那么

A∪B∪C=A+B+C-A∩B-B∩C-A∩C+A∩B∩B。

容斥原理的实质在于包含与排除,或形象地称之为“多退少补”。容斥原理若用韦恩图进行分析和记忆,十分方便,留给读者研究。

例9在100名学生中,有10人既不会骑自行车又不会游泳,有65人会骑自行车,有73人会游泳,既会骑自行车又会游泳的有多少人?

解:从100名总人数中减去既不会骑自行车又不会游泳的10人,就是会骑自行车或会游泳的人数

100-10=90(人)。

既会骑自行车又会游泳的有(65+73)-90=48(人)。

例10在1至100的自然数中,不能被2整除,又不能被3整除,还不能被5整除的数,占这100个自然数的百分之几?

解:由容斥原理2知,1至100的自然数中,或能被2整除,或能被3整除,或能被5整除的自然数的个数是

=50+33+20-16-6+3=74。

所以,在1至100的自然数中,不能被2整除,又不能被3整除,还不能被5整除的自然数有100-74=26(个),占这100个自然数的26%。

六、归纳法

对于比较复杂的问题,可以先观察其简单情况,归纳出其中带规律性的东西,然后再来解决较复杂的问题。

例11 10个三角形最多将平面分成几个部分?

解。设n个三角形最多将平面分成an个部分。

n=1时,a1=2;

n=2时,第二个三角形的每一条边与第一个三角形最多有2个交点,三条边与第一个三角形最多有2×3=6(个)交点。这6个交点将第二个三角形的周边分成了6段,这6段中的每一段都将原来的每一个部分分成2个部分,从而平面也增加了6个部分,即a2=2+2×3。

n=3时,第三个三角形与前面两个三角形最多有4×3=12(个)交点,从而平面也增加了12个部分,即:

a3=2+2×3+4×3。

……

一般地,第n个三角形与前面(n-1)个三角形最多有2(n-1)×3个交点,从而平面也增加2(n-1)×3个部分,故

an=2+2×3+4×3+…+2(n-1)×3

=2+[2+4+…+2(n-1)]×3

=2+3n(n-1)=3n2-3n+2。

特别地,当n=10时,a10=3×102+3×10+2=272,即10个三角形最多把平面分成272个部分。

七、整体法

解答数学题,有时要“化整为零”,使问题变得简单;有时反而要从整体上来考虑,从全局、从整体来研究问题。

例12正方形ABCD的内部有1999个点,以正方形的4个顶点和内部的1999个点为顶点,将它剪成一些三角形。问:一共可以剪成多少个三角形?共需剪多少刀?

解:我们从整体来考虑,先计算所有三角形的内角和。汇聚在正方形内一点的诸角之和是360°,而正方形内角和也是360°,共有 360°×1999+360°,从而三角形的个数是

由于每个三角形有三条边,而正方形纸原来的4条边当然不用剪;其余的边,由于是两个三角形的公共边,剪一刀出两条边,所以共剪的刀数是

练习11

1.一只青蛙在A,B,C三点之间跳动,若青蛙从A点跳起,跳4次仍回到A点,则这只青蛙一共有多少种不同的跳法?

2.在国际象棋棋盘上放置两只“车”,如果它们彼此不构成威胁,那么一共有多少种不同的放法?

3.在8×8的棋盘上可以找到多少个形如右图所示的“凸”字形图形?

4.从19,20,21,…,97,98,99这81个数中,选取两个不同的数,使其和为偶数的选法总数是多少?

5.平面上有7个不在同一直线上的点,以这7个点作为顶点做三角形,使得任何两个三角形至多只有一个公共顶点。最多可做出多少个满足条件的三角形?

6.下图是一个道路图。A处有一大群孩子,这群孩子向东或向北走,在从A开始的每个路口,都有一半人向北走,另一半人向东走,如果先后有60个孩子到过路口B,那么先后共有多少个孩子到过路口C?

7.在1001,1002,…,2000这1000个自然数中,可以找到多少对相邻的自然数,使它们相加时不进位?

8.有10个箱子,编号为1,2,…,10,各配一把钥匙,10把各不相同,每个箱子放进一把钥匙锁好,先撬开1,2号箱子,取出钥匙去开别的箱子,如果最终能把所有箱子的锁都打开,则说是一种好的放钥匙的方法。求好的方法的总数。

练习11

1.6种。

解:如下图,第1步跳到B,4步回到A有3种方法;同样第1步到C的也有3种方法。共有6种方法。

2.3136种。

解:第一步,放第一只“车”,有64种方法;第二步,放第二只“车”,因不能和第一只同行,也不能同列,故有49种方法。由乘法原理,一共有64×49=3136(种)放法。

3.168个。

解:在每个2×3的长方形中可以找到2个“凸”字形图形,8×8方格棋盘中共有84个2×3的长方形,所以可以找到

84×2=168(个)。

4.1600种。

解:从19到99共计81个不同的整数,其中有41个奇数、40个偶数。

若选取两数之和为偶数,则必须且只须选取的两个数有相同的奇偶性,所以选取的方法数分为两类:第一类,选取两个不同偶数的方法数;第二类,选取两个不同奇数的方法数。依加法原理,这两类方法数的总和即为所求的方法数。

第一类是从40个偶数中选取两个不同偶数的方法数,先取第一个偶数有40种方法,从其余39个偶数中选择第2个有39种方法,依乘法原理,共有40×39种不同的方法,但注意选取第1个数比如30,选取第2个数比如32,与选第1个数32,再选第2个数30,是同一组。所以总的选法数应该折半,

第二类是从41个奇数中选取两个不同奇数的方法数,与上述方法相同,

5.7个。

2个三角

形至多有1个公共顶点,从而任意2个三角形没有公共边,故至多

另一方面,7个是可以达到的。设7个点依次为A1,A2,…,A7。如右图,△A1A2A3,△A1A4A5,△A1A6A7,△A2A4A6,△A2A5A7,△A3A4A7,△A3A5A6这7个三角形两两没有公共边。

故最多可以做7个三角形。

6.48人。

解:如下图,设A处有a个孩子,图中各个路口边上的数字表示到过该

又从下图看出,到过路口C的人数为

7.156个。

解:相邻两数相加不需进位的数对中,前一个数可分成四类:

(1)1999,1个;

由加法原理知,这样的数对共有

1+5+25+125=156(个)。

8.725760。

解:设第1,2,3,…,10号箱子中所放的钥匙号码依次为k1,k2,k3,…,k10。当箱子数为n(n≥2)时,好的放法的总数为a n。

当n=2时,显然a2=2(k1=1,k2=2或k1=2,k2=1)。

当n=3时,显然k3≠3,否则第3个箱子打不开,从而k1=3或k2=3,于是n=2时的每一组解对应n=3的2组解,这样就有a3=2a2=4。

当n=4时,也一定有k4≠4,否则第4个箱子打不开,从而k1=4或k2=4或k3=4,于是n=3时的每一组解,对应n=4时的3组解,这样就有a4=3a3=12。

依次类推,有

a10=9a9=9×8a8=…

=9×8×7×6×5×4×3×2a2 =2×9!=725760。

即好的方法总数为725760。

第31讲容斥原理

第31讲容斥原理 例题与方法 例1 在1~100的自然数中,不能被3也不能被5整除的数有多少个? 例2 某班有52人,其中会下棋的有48人,会画画的有37人,会跳舞的有39人,这三项都会的至少有几人? 例3 100名学生中,每人至少懂一种外语,其中75人懂法语,83人懂英语,65人懂日语,懂三种语言的有50人,懂两种外语的有多少人? 例4 在1~143这143个自然数中,与143互质的自然数共有多少个? 例5 某班学生参加语文、数学、英语三科考试,语文、数学、英语都得满分的分别有21人、19人、20人。语文、数学都得满分的有9人;数学、英语都得满分的有7人;语文、英语都得满分的有8人;另有5人三科都未得满分。这个班最多能有多少人? 思考与练习 1.某班有学生46名,其中爱好音乐的有17人,爱好美术的有14人,既爱好音乐又爱好美术的有5人。问:两样都不爱好的有多少人? 2.分母是105的最简真分数共有多少个? 3.一个家电维修站有80%工人精通修彩电,有70%的人精通修空调,10%的人两项不熟悉。问:两项都精通的人占白分之几? 4.在1~100的自然数中,既不能被5整除也不能被9整除的数的和是多少? 5.在1~200的自然数中,能被2整除,或能被3整除,或能被5整除的数共有多少个? 6.在100名学生中,爱好音乐的有56人,爱好体育的有75人,那么既爱好音乐又爱好体育的最少有多少人,最多有多少人? 7.64人订A、B、C三种杂志,订A杂志的有28人,订B杂志的有41人,订C杂志的有20人,订A、B两种杂志的有10人,订B、C两种杂志的有12人,订A、C两种杂志的有12人。三种杂志都订的有多少人? 8.有100位旅客,其中有10人既不懂英语又不懂俄语,有75人懂英语,有83人懂俄语,那么这100位旅客中既懂英语懂俄语的有多少人?

两个基本计数原理教案

第一章计数原理 第1节两个基本计数原理 教材分析 本节课《分类计数原理与分步计数原理》是苏教版普通高中课程标准试验教科书(选修2-3)第一章第一节的内容,是本章后续知识的基础,对后续内容的学习有着举足轻重的作用,另外本节课涉及的分步、分类的思想是解决实际问题的最有效武器,是人们思考问题的最根本方法. 学情分析 高二学生已具备一定的数学知识和方法,能很容易的接受两个原理的内容,并应用原理解决一些简单的实际问题,这些形成了学生思维的“最近发展区”.虽然学生已经具备了一定的归纳、类比能力,但在数学的应用意识与应用能力方面尚需进一步培养.另外,学生的求知欲强,参与意识,自主探索意识明显增强,对能够引起认知冲突,表现自身价值的学习素材特别感兴趣。但在合作交流意识欠缺,有待加强. 目标分析 ⑴知识与技能 ①掌握分类计数原理与分步计数原理的内容 ②能根据具体问题的特征选择分类计数原理与分步计数原理解决一些简单实际问题. ⑵过程与方法 ①通过具体问题情境总结出两个计数原理,并通过实际事例学生感悟两个原理的应用并最终学会应用 ②通过“学生自主探究、合作探究,师生共究”更深刻的理解分类计数与分步计数原理,并应用它们解决实际问题 ⑶情感、态度、价值观 树立学生积极合作的意识,增强数学应用意识,激发学生学习数学的热情和兴趣. 教学重难点分析 教学重点:分类计数原理与分步计数原理的掌握 教学难点:根据具体问题特征选择分类计数原理与分步计数原理解决实际问题. 教法、学法分析 教法分析: ①启发探究法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。 ②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。 学法分析:本节课要求学生自主探究,学会用类比的思想解决问题,树立学生的合作交流意识. 教学过程 一、创设情境:对于分类计数原理设计如下情境(看多媒体): 该情境是原教材上情境经过加工设计的,比原教材情境更加贴近学生生活,能够增强学生的有意注意,激发学生的兴趣,调动学生的主动性和积极性,从而进入思维情境接着是对情境的处理:在情境处理过程中要启发学生由特殊情形归纳出一般原理,遵循由简单到复杂的认知规律,我处理情境的办法是: 第一步在解决问题时首先让学生尝试分析,然后由学生代表分析解答,教师及时给出评价,并由老师给出解题过程,在这里由老师按分类计数原理给出解题过程,为学生顺利总结概括出原理做好铺垫. 第二步对原问题加以引申:若当天有4次航班,则有多少种不同方法? 设计的意图是让学生更清楚的认识到总方法数是各类方法数之和. 第三步提出问题:你能否尽可能简练的总结出问题1中的计数规律? 接着由学生分组讨论、总结问题1中计数规律,这样由学生总结归纳,并通过讨论准确叙述出分类计数原理,可以提高学生的数学表达意识,激发合作意识和竞争意识,体验获得成功的喜悦,也就完成了情感目标.

高中数学选修2-3两个基本计数原理

两个基本计数原理 教学目标: 1、准确理解分类加法计数原理和分步乘法计数原理概念和步骤 2、会运用分类加法计数原理和分步乘法计数原理分析和解决一些简单的问题 要点扫描: 1、(1)分类计数原理(加法原理): (2)分步计数原理(乘法原理): 2、分类计数原理和分步计数原理的区别和联系 分类计数原理和分步计数原理,回答的都是有关做一件事的不同方法总数的问题,其区别在于:分类计数原理针对的是___问题,其中各种方法____,用其中任何一种方法都可以做完这件事;分步计数原理针对的是___问题,各个步骤中的方法____,只有各个步骤都完成之后才算做完这件事。 例题讲解: 例1、(1)一个学生要从5本不同的文史类书,4本不同的理科类书及3本不同的艺术类书中任选一本书阅读,有多少种不同的选法? (2)一个学生要从5本不同的文史类书,4本不同的理科类书及3本不同的艺术类书中各选一本书阅读,有多少种不同的选法? 例2、从1到200的自然数中,各个数位上都不含数字8的有多少个? 例3、3名学生报名参加4个不同学科的比赛,每名学生只能参赛一项,有多少种不同的报名方法?若有4项冠军在3人中产生,每项冠军只能有一人获得,有多少种不同的夺冠方法? 例4、电视台在“欢乐大本营”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封,现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?

例5、在区间[400,800]上,(1)有多少个能被5整除且数字允许重复的整数?(2)有多少 个能被5整除且数字不允许重复的整数? 当堂反馈: 1、某人要将4封信投入3个信箱中,不同的投寄方法有 ( ) A 、12种 B 、7种 C 、43种 D 、34种 2、从0,1,2,3,4,5,7七个数中任取两个数相乘,使所得积为偶数,这样的偶数共有 ( ) A 、18个 B 、9个 C 、12个 D 、10个 3、有三个车队分别有5辆,6辆,7辆车,现欲从其中两个车队各抽调一辆车外出执行任务, 设不同的抽调方案数为n ,则n 的值为 ( ) A 、107 B 、210 C 、36、 D 、77 4、已知集合A={},102,≤≤-∈x z x x A n m ∈,,方程12 2=+n y m x 表示焦点在x 轴上的椭圆,则这样的椭圆共有 ( ) A 、45个 B 、55个 C 、78个 D 、91个 作业:课课练 课时1,2

第八讲-组合数学

第八讲 组合数学 组合数学是中学数学竞赛的“重头戏”,具有形式多样,内容广泛的特点.本讲主要围绕组合计数,组合恒等式及组合最值展开 例1.圆周上有800个点,依顺时针方向标号为1,2,…,800它们将圆周分成800个间隙.今选定某一点染成红色,然后按如下规则,逐次染红其余的一些点:若第k 号点染成了红色,则可依顺时针方向转过k 个间隙,将所到达的点染成红色,试求圆周上最多可以得到多少个红点? 解:易见,第k 号点能被染红的充要条件是 ?j ∈N *?{0},使得a 0?2j ≡k (mod800),1≤k ≤800 ① 这里a 0是最初染的点的号码,为求最大值,不妨令a 0=1.即2j ≡k (mod25×52). 当j=0,1,2,3,4时,k 分别为1,2,4,8,16,又由于2模25的阶20)2(25=δ,因此,当j ≥5时 2j+20-2j =2j (220-1)≡0(mod 800), 而对?k<20,k ∈N *,及j ≥5,j ∈N *,由于25+(2k -1),所以 2j+k -2j =2j (2k -1)不为800的倍数. 所以,共存在5+20=25个k ,满足①式。 注:本题解法不止一种,但利用些同余理论,可使解法简洁许多. 例2.集合X 的覆盖是指X 的一族互不相同的非空子集A 1、A 2、…、A k ,它们的并集A 1∪A 2∪…∪A k =X ,现有集合X={1,2,…,n},若不考虑A 1, A 2,…, A k 的顺序,试求X 的覆盖有多少个? 解:首先,X 的非空子集共有2n -1个,它们共组成了n 2 1 2--1个非空子集族.其次, 这些子集族中,不合某一元素i 的非空子集组成的非空子集族有( ) n 121 21---个;不含两 个元素的子集组成的族有( ) n 2 2 1 21---个;依次类推,则由容斥原理,X 的覆盖共有 ()() --+--------)12 ()12 ()12 (1 22 1 21 1 221n n n n n =())12()1(1 2 1 ---=-∑n n j n j j 个. 注:有些组合计数问题直接计数较难,但从反面考虑简洁明了.

初一数学竞赛系列讲座容斥原理

初一数学竞赛系列讲座 容斥原理 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

初一数学竞赛系列讲座(15) 容斥原理 一、 知识要点 1、容斥原理 在计数时,常常遇到这样的情况,作合并运算时会把重复的部分多算,需要减去;作排除运算时会把重复部分多减,需要加上,这就是容斥原理。它的基本形式是: 记A 、B 是两个集合,属于集合A 的东西有A 个,属于集合B 的东西有B 个,既属于集合A 又属于集合B 的东西记为B A ,有B A 个;属于集合A 或属于集合B 的东西记为B A ,有B A 个,则有:B A =A +B -B A 容斥原理可以用一个直观的图形来解释。 如图, 左圆表示集合A ,右圆表示集合B ,两圆的公共部分表示B A ,两圆合起来的部分表示B A , 由图可知:B A =A +B -B A 容斥原理又被称作包含排除原理或逐步淘汰原则。 二、 例题精讲 例1 在1到200的整数中,既不能被2整除,又不能被3整除的整数有多少个 分析:根据容斥原理,应是200减去能被2整除的整数个数,减去能被3整除的整数个数,还要加上既能被2整除又能被3整除,即能被6整除的整数个数。 解:在1到200的整数中,能被2整除的整数个数为:2?1,2?2,…,2?100,共100个; 在1到200的整数中,能被3整除的整数个数为:3?1,3?2,…,3?66,共66个; 在1到200的整数中,既能被2整除又能被3整除,即能被6整除的整数个数为: 6?1, 6?2,…,6?33,共33个; 所以,在1到200的整数中,既不能被2整除,又不能被3整除的整数个数为:

北师大高三数学一轮复习练习:第十一章 计数原理概率随机变量及其分布 第讲 含解析

基础巩固题组 (建议用时:40分钟) 一、选择题 1.某射手射击所得环数X 的分布列为 A.0.28 B.0.88 C.0.79 D.0.51 解析 P (X >7)=P (X =8)+P (X =9)+P (X =10) =0.28+0.29+0.22=0.79. 答案 C 2.设X 是一个离散型随机变量,其分布列为: 则q 的值为( ) A.1 B.32±336 C.32-336 D.32+336 解析 由分布列的性质知?????2-3q ≥0,q 2 ≥0, 13+2-3q +q 2 =1, 解得q =32-33 6. 答案 C 3.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于( ) A.0 B.12 C.13 D.23

解析由已知得X的所有可能取值为0,1, 且P(X=1)=2P(X=0),由P(X=1)+P(X=0)=1, 得P(X=0)=1 3. 答案 C 4.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示“放回5个红球”事件的是() A.ξ=4 B.ξ=5 C.ξ=6 D.ξ≤5 解析“放回五个红球”表示前五次摸到黑球,第六次摸到红球,故ξ=6. 答案 C 5.从装有3个白球、4个红球的箱子中,随机取出了3个球,恰好是2个白球、1个红球的概率是() A.4 35 B. 6 35 C. 12 35 D. 36 343 解析如果将白球视为合格品,红球视为不合格品,则这是一个超几何分布问 题,故所求概率为P=C23C14 C37=12 35. 答案 C 二、填空题 6.设离散型随机变量X的分布列为 若随机变量Y=|X 解析由分布列的性质,知 0.2+0.1+0.1+0.3+m=1,∴m=0.3. 由Y=2,即|X-2|=2,得X=4或X=0,∴P(Y=2)=P(X=4或X=0)

计数原理基本知识点

计数原理基本知识点 1.分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++种不同的方法 2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =??? 种不同的方法 3.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....4.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫 做从n 个元素中取出m 元素的排列数,用符号m n A 表示 5.排列数公式:(1)(2)(1)m n A n n n n m =---+(,,m n N m n *∈≤) 6 阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘规定0!1=. 7.排列数的另一个计算公式:m n A =!()!n n m - 8 组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合 9.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从 n 个不同元素中取出m 个元素的组合数... .用符号m n C 表示. 10.组合数公式:(1)(2)(1)!m m n n m m A n n n n m C A m ---+== 或)! (!!m n m n C m n -=,,(n m N m n ≤∈*且 11 组合数的性质1:m n n m n C C -=.规定:10=n C ; 12.组合数的性质2:m n C 1+=m n C +1-m n C

第十讲 容斥原理小学五年级奥数

點算的奧秘:容斥原理基本公式 「容斥原理」(Principle of Inclusion and Exclusion)(亦作「排容原理」)是「點算組合學」中的一條重要原理。但凡略為複雜、包含多種限制條件的點算問題,都要用到這條原理。現在首先從一個點算問題說起。 例題1:設某班每名學生都要選修至少一種外語,其中選修英語的學生人數為25,選修法語的學生人數為18,選修德語的學生人數為20,同時選修英語和法語的學生人數為8,同時選修英語和德語的學生人數為13 ,同時選修法語和德語的學生人數為6,而同時選修上述三種外語的學生人數則為3,問該班共有多少名學生? 答1:我們可以把上述問題表達為下圖: 其中紅色、綠色和藍色圓圈分別代表選修英語、法語和德語的學生。根據三個圓圈之間的交叉關係,可把上圖分為七個區域,分別標以A至G七個字母。如果我們用這七個字母分別代表各字母所在區域的學生人數,那麼根據題意,我們有以下七條等式:(1) A+D+E+G = 25;(2) B+D+F+G = 18;(3) C+E+F+G = 20;(4) D+G = 8; (5) E+G = 13;(6) F+G = 6;(7) G = 3。現在我們要求的是A+B+C+D+E+F+G。如何利用以上資料求得答案? 把頭三條等式加起來,我們得到A+B+C+2D+2E+2F+3G = 63。可是這結果包含了多餘的D、E、F和G,必須設法把多餘的部分減去。由於等式(4)-(6)各有一個D、E和F,若從上述結果減去這三條等式,便可以把多餘的D、E和 F減去,得A+B+C+D+E+F = 36。可是這麼一來,本來重覆重現的G卻變被完全減去了,所以最後還得把等式(7)加上去,得最終結果為A+B+C+D+E+F+G = 39,即該班共有39名學生。□ 在以上例題中,給定的資料是三個集合的元素個數以及這些集合之間的交集的元素個數。在該題的解答中,我們交替加上及減去這些給定的資料。如果我們用 S 1、S 2 和S 3 分別代表選修英語、法語和德語學生的集合,那麼我們要求的答案就 是|S 1∪ S 2 ∪ S 3 |,而該題的解答則可以重新表達為

2021年高考数学大一轮总复习 第十一章 计数原理同步训练 理

2021年高考数学大一轮总复习第十一章计数原理同步训练理 A级训练 (完成时间:10分钟) 1.某城市的电话号码,由六位升为七位(首位数字均不为零),则该城市可增加的电话部数是( ) A.9×8×7×6×5×4×3 B.8×96 C.9×106 D.81×105 2.从a、b、c、d、e五人中选1名班长,1名副班长,1名学习委员,1名纪律委员,1名文娱委员,但a不能当班长,b不能当副班长.则不同选法总数为( ) A.78 B.54 C.24 D.20 3.某生产过程有4道工序,每道工序需要安排一人照看,现从甲乙丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲乙两工人中安排1人,第四道工序只能从甲丙两工人中安排1人,则不同的安排方案有( ) A.24种 B.36种 C.48种 D.72种

4.五名旅客在三家旅店投宿的方法有243 种. 5.72的正约数(包括1和72)共有12 个. 6.4张卡片的正、反面分别写有0与1,2与3,4与5,6与7,将其中3张卡片排放在一起,可组成多少个不同的三位数? B级训练 (完成时间:20分钟) 1.[限时2分钟,达标是( )否( )] 已知复数a+b i,其中a,b为0,1,2,…,9这10个数字中的两个不同的数,则不同的虚数的个数为( ) A.36 B.72 C.81 D.90 2.[限时2分钟,达标是( )否( )] 已知集合M∈{1,-2,3},N∈{-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数是( ) A.18 B.10

C.16 D.14 3.[限时2分钟,达标是( )否( )] 如图是某汽车维修公司的维修点环形分布图.公司在年初分配给A,B,C,D 四个维修点某种配件各50件.在使用前发现需将A,B,C,D四个维修点的这批配件分别调整为40,45,54,61件,但调整只能在相邻维修点之间进行,那么要完成上述调整,最少的调动件次(n件配件从一个维修点调整到相邻维修点的调动件次为n)为( ) A.15 B.16 C.17 D.18 4.[限时3分钟,达标是( )否( )] 如图,正五边形ABCDE中,若把顶点A、B、C、D、E染上红、黄、绿三种颜色中的一种,使得相邻顶点所染颜色不相同,则不同的染色方法共有30 种. 5.[限时3分钟,达标是( )否( )] 用n种不同的颜色为下列两块广告牌着色(如图甲、乙),要求在①②③④四个区域中相邻(有公共边界)的区域不用同一颜色. (1)若n=6,则为甲图着色的不同方法共有480 种; (2)若为乙图着色时共有120种不同方法,则n= 5 . 6.[限时4分钟,达标是( )否( )]

1.1 两个基本计数原理(2)

教学内容 §1.1 两个基本计数原理(2) 教学目标要求(1)掌握分类计数原理与分步计数原理,并能根据具体问题的特征,选择分类加法原理或分步乘法原理解决一些简单的实际问题; (2)通过对分类计数原理与分步计数原理的理解和运用,提高学生分析问题和解 决问题的能力,开发学生的逻辑思维能力. 教学重点分类计数原理与分步计数原理的区别和综合应用. 教学难点分类计数原理与分步计数原理的区别和综合应用. 教学方法和教具 教师主导活动学生主体活动一.问题情境 复习回顾:1.两个基本计数原理; 2.练习: (1)从2,3,5,7,11中每次选出两个不同的数作为分数的分子、 分母,则可产生不同的分数的个数是,其中真分数的 个数是. (2)①用0,1,2,……,9可以组成多少个8位号码; ②用0,1,2,……,9可以组成多少个8位整数; ③用0,1,2,……,9可以组成多少个无重复数字的4位整数; ④用0,1,2,……,9可以组成多少个有重复数字的4位整数; ⑤用0,1,2,……,9可以组成多少个无重复数字的4位奇数. 二.数学运用 1.例题: 例1 用4种不同颜色给如图所示的地图上色,要求相邻两块涂不同 的颜色,共有多少种不同的涂法? 分析完成这件事可分四个步骤,不妨 设①、②、③、④的次序填涂. 解:第一步,填涂①,有4种不同颜色 可选用; 第二步,填涂②,除①所用过的颜色外, 还有3种不同颜 色可选用; 第三步,填涂③,除①、②用过的2种 颜色外,还有2种 不同颜色可选用; 第四步,填涂④,除②、③用过的2种颜色外,还有2种不同颜色可 选用. ???=种不同的方法,即填涂这张 所以,完成这件事共有432248 地图共有48种方法. 答共有48种不同的涂法. 思考:如果按①、②、④、③的次序填涂,怎样解决这个问题?

(完整版)分类计数原理和分步计数原理练习题

1、一个学生从3本不同的科技书、4本不同的文艺书、5本不同的外语书中任选一本阅读,不同的选法有_________________种。 2、一个乒乓球队里有男队员5人,女队员4人,从中选出男、女队员各一名组成混合双打,共有_________________种不同的选法。 3、一商场有3个大门,商场内有2个楼梯,顾客从商场外到二楼的走法有 __________种。 4、从分别写有1,2,3,…,9九张数字的卡片中,抽出两张数字和为奇数的卡片,共有_________________种不同的抽法。 5、某国际科研合作项目成员由11个美国人,4个法国人和5个中国人组成,(1)从中选出1人担任组长,有多少种不同选法? (2)从中选出两位不同国家的人作为成果发布人,有多少种不同选法? 6、(1)3名同学报名参加4个不同学科的比赛,每名学生只能参赛一项,问有多少种不同的报名方案? (2)若有4项冠军在3个人中产生,每项冠军只能有一人获得,问有多少种不同的夺冠方案? 7、用五种不同颜色给图中四个区域涂色,每个区域涂一种颜色, (1)共有多少种不同的涂色方法? (2)若要求相邻(有公共边)的区域不同色,那么共有多少种不同的涂色方法? 8、从甲地到乙地有两种走法,从乙地到丙地有4种走法,从甲地不经过乙地到丙地有3种走法,则从甲地到丙地共有_________________种不同的走法。 9、某电话局的电话号码为,若后面的五位数字是由6或8组成的,则这样的电话号码一共有_________________个。 10、从0,1,2,…,9这十个数字中,任取两个不同的数字相加,其和为偶数的不同取法有_________________种。

升第八讲容斥原理之重叠问题

第八讲:容斥原理之重叠问题 导入 文氏图■■■■■■■■■■■■■■■ 文氏图,也叫维恩图”是由英国著名数学家Venn发明的. 维恩(公元1834 年8月4日「公元1923 年4月4日)十九世纪英国著名的数学家和哲学家,生于英国赫尔.他1883 年获得理学博士学位,同年被选为英国皇家学会会员. 维恩最主要的成就是系统解释并发展了几何表示的方法,也就是发明了文氏图.■他作出一系列 ? 简单闭曲线(圆或更复杂的图形),将平面分为许多间隔.利用这种图表,维恩阐明了演绎推理的基本原 理.为了进一步明确起见,他还引入了一些数学难题作为实例.虽然在维恩之前, 莱布尼茨(Leibniz )已系统地运用过这类逻辑图,但今天这种逻辑图仍称作维恩图”另外, 维 恩在概率论和逻辑学方面也有很大贡献,他的著作一一《机会逻辑》和《符号逻辑》,在19 世纪末20 世纪初曾享有很高的声誉. 除了数学以外,维恩还有一项较为特别的技能一一制作机器.他曾制作过一部板球发球机, 当澳洲板球队在1909 年到访剑桥大学时,维恩的机器依然运作正常,并使他们其中一位成员打空四次. 什么是容斥原理? 这一讲我们主要学习和“包含”与“排除”有关的问题,这样的问题在生活中就有不少,比如吃瓜子.我们说吃掉了一斤瓜子,指的是带壳的瓜子,并非真的吃到肚子里一斤,因为这一斤中还“包含”着瓜子壳.如果要计算到底吃了多少,最简单的方法就是称一称瓜子壳,用原来的一斤“排除”掉瓜子壳的重量.瓜子的例子相对简单,一斤瓜子里一部分是瓜子仁,另一部分就是瓜子壳,两者各不相关.但本讲要学习的包含与排除问题要复杂一些,各部分之间会有重叠. 比如一个办公室中每个人都至少爱喝茶或咖啡中的一种,已知有7个人爱喝茶,10个人爱喝咖啡,那能不能就说办公室里有17 个人呢?显然不能,因为可能有一些人既爱喝茶也爱 喝咖啡,如果直接将喝茶的人数和喝咖啡的人数相加,会把既爱喝茶又爱喝咖啡的人计算2 次,计算人数的时候要把这一部分减去才行. 比如,如果有3个人既爱喝茶又爱喝咖啡,那总的人数就应该是7 + 10 - 3 = 14 人.

数学一轮复习(文科)人教B配套多媒体实用课件第十一章计数原理第1讲合情推理与演绎推理

第1讲合情推理与演绎推理(乞夯基释疑〕

I.判断正误(在括号内打“厂或“ X ”) ⑴归纳推理得到的结论不一定正确,类比推理得到的结论一定正确? (X) (2)由平面三角形的性质推测空间四面体的性质,这是一种合情推 理.(°) (3)在类比时,平面中的三角形与空间中的平行六面体作为类 比对象较为合适?(X) (4)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.(X) 丿

考点突破考点一归纳推理 【例1J (2014-海口调研)如图是按一定规律排列的三角形等式表,现将等式从左至右,从上到下依次编上序号,即第一个等式为2°+2x=3,第二个等式为2°+22=5,第三个等式为21+22=6,第四个等式为2°+23=9,第五个等式为21+23=10,……,依此类推,则第99个等式为() ,依此类推, 2°+21=3 2°+22 = 5 21+22 =6 2°+23=9 2】+23=10 22+23=12 2°+24=17 2】+24=18 22+24=20 23+24=24 A.27+213=8 320 B. 27+214=16 512 C. 2+14=16 640 D. 2+13=8 448

2°+21=3 2°+22=5 2°+23=9 2°+24=17 解需麻题意,用(/, [鎗一行为3(0, |第二行为5(0, 第三行为9(0, I 第四行为 17(0, 4), 18(1, 4), 20(2, 4), 24(3, 4); 又因为 99=(1+2+3+…+ 13)+8, 因 此第99个等式应位于第14行的从左到右的第8个位置, 即是27 +214=16 512,故选B ? 规律:1、第〃行就有〃个等式,n 行共有l+2+3+...+n 个 2、第"行第一个等式2°+2" = 1+2" 第加个等式2曲+2〃 = 考点突破 考点一归纳推理 21+22 =6 21+23 = 10 22+23=12 2X +24 = 18 22+24=20 23+24 =24 巧表示2『+2〃,题中的等式的规律为: 1); 2), 6(1, 2); 3), 10(1, 3), 12(2, 3);

4升5-8第八讲:容斥原理之重叠问题

第八讲:容斥原理之重叠问题 一、导入 文氏图 文氏图,也叫“维恩图”,是由英国著名数学家 Venn 发明的. 维恩(公元 1834 年 8 月 4 日─公元 1923 年 4 月 4 日)十九世纪英国著名的数学家和哲学家,生于英国赫尔.他 1883 年获得理学博士学位,同年被选为英国皇家学会会员. 维恩最主要的成就是系统解释并发展了几何表示的方法,也就是发明了文氏图.他作出一系列简单闭曲线(圆或更复杂的图形),将平面分为许多间隔.利用这种图表,维恩阐明了演绎推理的基本原理.为了进一步明确起见,他还引入了一些数学难题作为实例.虽然在维恩之前, 莱布尼茨(Leibniz)已系统地运用过这类逻辑图,但今天这种逻辑图仍称作“维恩图”另外,维恩在概率论和逻辑学方面也有很大贡献,他的著作——《机会逻辑》和《符号逻辑》,在 19 世纪末 20 世纪初曾享有很高的声誉. 除了数学以外,维恩还有一项较为特别的技能——制作机器.他曾制作过一部板球发球机,当澳洲板球队在 1909 年到访剑桥大学时,维恩的机器依然运作正常,并使他们其中一位成员打空四次. 什么是容斥原理? 这一讲我们主要学习和“包含”与“排除”有关的问题,这样的问题在生活中就有不少, 比如吃瓜子.我们说吃掉了一斤瓜子,指的是带壳的瓜子,并非真的吃到肚子里一斤,因为这一斤中还“包含”着瓜子壳.如果要计算到底吃了多少,最简单的方法就是称一称瓜子壳,用原来的一斤“排除”掉瓜子壳的重量.瓜子的例子相对简单,一斤瓜子里一部分是瓜子仁,另一部分就是瓜子壳,两者各不相关.但本讲要学习的包含与排除问题要复杂一些,各部分之间会有重叠. 比如一个办公室中每个人都至少爱喝茶或咖啡中的一种,已知有 7 个人爱喝茶,10 个人爱喝咖啡,那能不能就说办公室里有 17 个人呢?显然不能,因为可能有一些人既爱喝茶也爱喝咖啡,如果直接将喝茶的人数和喝咖啡的人数相加,会把既爱喝茶又爱喝咖啡的人计算 2 次,计算人数的时候要把这一部分减去才行. 比如,如果有 3 个人既爱喝茶又爱喝咖啡,那总的人数就应该是 7 + 10 ? 3 = 14 人.

第6讲 容斥原理

第六讲 容斥原理 在一些计数问题中,经常遇到有关集合元素个数的计算。我们用|A |表示有限集A 的元素的个数。在两个集合的研究中,已经知道,求两个集合并集的元素个数,不能简单地把两个集合的元素个数相加,而要从两根集合的个数之中减去重复计算的元素个数,用式子可以表示成 |A ∪B |=|A |+|B |–|A ∩B |。 我们称这一公式为包含与排除原理,简称为容斥原理。 包含与排除原理|告诉我们,要计算两个集合A 、B 的并集A ∪B 的元素个数,可以分一下两步进行: 第一步:分别计算集合A 、B 的元素个数,然后加起来。即先求|A |+|B |(意思是把A 、B 的一切元素都“包含”进来,加在一起); 第二步“从上面的和中减去交集的元素的个数,即减去|A ∩B |(意思是“排除”了重复计算的元素的个数)。 例1.求不超过20的正整数中是2的倍数或3的倍数的数共有多少? 解:设I ={1、2、3、…、19、20},A ={I 中2的倍数},B ={I 中3的倍数}。 显然题目中要求计算并集A ∪B 的元素个数,即求|A ∪B |。 我们知道A ={2、4、6、……、20},所以|A |=10, B ={3、6、9、12、15、18},|B |=6。 A ∩ B ={I 中既是2的倍数又是3的倍数}={6、12、18},所以|A ∩B |=3, 根据容斥原理有|A ∪B |=|A |+|B |–|A ∩B |=10+6–3=13. 答:所求的数共有13个。 此题可以直观地用图表示如下: 例2.某班统计考试成绩,数学得90分以上的有25人,语文得90分以上的有21人,两科中至少有一科在90分以上的有38人,问两科都在90分以上的有多少人? 解:设A ={数学在90分以上的学生},B ={语文在90分以上的学生}, 由题意知|A |=25,|B |=21。 A ∪ B ={数学、语文至少一科在90分以上的学生},|A ∪B |=38。 A ∩B ={数学、语文都在90分以上的学生}, 由容斥原理知|A ∪B |=|A |+|B |–|A ∩B |, 所以|A ∩B |=|A |+|B |–|A ∪B |=25+21–38=8。 答:两科都在90分以上的有8人。 画图分析一下: 15 9320 18 16141210 8 642B A

基本计数原理

基本计数原理 一、主要内容 一般计数原理部分的考试,分为两种,一是排列组合二项式定理单独出题,二是在概率中需要用到排列组合二项式定理。 1、基本计数原理 2、排列和组合 3、常用方法 二、知识梳理 1、基本计数原理 (1)分类加法计数原理 从甲地到乙地,可乘坐三类交通工具:可以乘火车,可以坐汽车,还可以乘轮船,假定火车每日1班,汽车每日3班,轮船每日2班,那么一天中从甲地到乙地有多少种不同的走法?(1+3+2=6种) 做一件事,完成它有n 类办法,在第一类办法中,有1m 种不同的方法,在第二类办法中,有2m 种不同的方法,以此类推,在第n 类办法中,有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法。 (2)分步乘法计数原理。 某中学的阅览室有50本不同的科技书,80本不同的文艺书,现在张三同学想借1本科技书和1本文艺书,共有多少种借法?(50*80=4000) 做一件事,完成它需要分成n 个步骤,做第一个步骤有 1m 种不同的方法,做第二个步骤有2m 种不同的方法,以此类推,做第n 个步骤有n m 种不同的方法,那么完成这件事共有n m m m N ???=...21种不同的方法。 以上两个基本计数原理是解决计数问题最基本的理论依据。他们分别给出了两种不同方式完成一件事的方法总数的不同计算方法。 注意:分类要“不重不漏”,每类的每一种方法都能独立完成事件; 分步要“步骤完整”,每一步不能完成事件,只有各步依次都完成,才能完成事件。

2、排列与组合 (1)排列 有红球、白球、黄球各一个,现从这三个小球中任取两个,分别放入甲、乙盒子里,有多少种不同的方法?(3*2=6) 我们把被取的对象叫做元素。取出的元素按照已知的顺序排成一列,我们称它为该问题的一个排列。 一般地,从n 个不同元素中任取出)(n m m ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。 两个排列相同,则组成排列的元素相同,并且元素的排列顺序也相同。 从n 个不同元素中取出)(n m m ≤个元素的所有排列的个数,叫做从n 个不同元素中取出 m 个元素的排列数,用符号m n A 表示。 根据分步乘法计数原理,得到公式)1()2)(1(+---=m n n n n A m n 这里+∈N m n ,,并且n m ≤,这个公式叫做排列数公式。 一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列,这时n m =,则有123)2()1(????-?-?= n n n A m n ,这个公式是由1到n 。我们把正整数1到n 的连 乘积,叫做n 的阶乘,用!n 表示。所以n 个不同元素的全排列数公式可以写成!n A n n = 排列数的公式还有下面的另一种形式:)! (!m n n A m n -=,我们规定1!0=。 (2)组合 有红球、黄球、白球各一个,从这三个小球中,任意取出两个小球,共有多少种不同的取法?(与顺序无关,共3种) 一般地,从n 个不同元素中,任意取出)(n m m ≤个元素并成一组,叫做从n 个不同元素中任取m 个元素的一个组合。 从n 个不同元素中,任意取出)(n m m ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号m n C 表示。 一般地,从n 个不同元素中,任取m 个元素的排列,可以分两步完成:

1.1两个基本计数原理(二)教案

备课时间年月日[来源:学科网][来源:学#科#网 Z#X#X#K] 编写: 上课时间[来源:https://www.360docs.net/doc/064756379.html,] 第周周月日[来 源:Z_xx_https://www.360docs.net/doc/064756379.html,][来源:学科网] 班级节次 课题 1.1两个基本计数原理(二)总课时数第节 教学目标1、能根据具体问题的特征,选择运用分类计数原理、分步计数原理; 2、能综合运用两个原理解决一些简单的实际问题; 3、会用列举法解一些简单问题,并体会两个原理的作用. 重难 点 综合运用两个基本原理解决一些简单的实际问题;准确选用两种基本原理.教学 参考 教材、教参 授课方法合作探究、讲授 教学辅助手段 多媒体 专用教室 教学教学二次备课

过程设计复习回顾: 分类计数原理: 分步计数原理: 分类计数原理与分步计数原理的区别与联系 问题 1. 某电脑用户计划使用不超过500元的 资金购买单价分别为60元、70元的单片软件 和盒装磁盘,根据需要,软件至少买3盒,磁 盘至少买2盒,问有多少种不同的选购方式? 问题 2.等腰三角形的三边均为正整数,且其 周长不大于10,这样不同形状的三角形的种数 为多少? 问题 3.将3种作物种植在如图所示的5块试 验田里,每块种植一种作物,且相邻的试验田 不能种植同一种作物,不同的种植方法共有多 少种? 当堂检测 1、某巡洋舰上有一 排四根信号旗杆,每 根旗杆上可以挂红 色、绿色、黄色三种 信号旗中的一面(每 根旗杆必须挂一 面),则这排信号旗 杆所发出的信号种 数为. 2、有三个车队分别 有5辆、6辆、7辆 车,现欲从其中两个 车队各抽掉一辆车 外出执行任务,设不 同的抽调方案数为 n,则n的值为 . 3、某同学逛书店, 发现三本喜欢的书, 决定至少买其中一 本,则购买方案有 种

第八讲容斥原理

第八讲容斥原理 在一些计数问题中,经常遇到有关集合元素个数的计算。我们用|A|表示有限集A的元素个数。在并集的讨论中,已经知道,求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成 |A∪B|=|A|+|B|-|A∩B| 我们称这一公式为包含与排除原理,简称容斥原理。 包含与排除原理告诉我们,要计算两个集合A、B的并集A∪B的元素的个数,可分以下两步进行: 第一步分别计算集合A、B的元素个数,然后加起来,即先求|A|+|B|(意思是把A、B的一切元素都“包含”进来,加在一起); 第二步从上面的和中减去交集的元素个数,即减去|A∩B|(意思是“排除”了重复计算的元素个数)。 例1 求不超过20的正整数中是2的数倍或3的倍数的数共有多少个。分析与解:设I={1,2,3,…,19,20},A={I中2的倍数},B={I 中3的倍数}。 显然,题目要求计算并集|A∪B|的元素个数,即求|A∪B|。 易知, A={2,4,6,…,18,20}, 共有10个元素,即|A|=10, B={3,6,9,12,15,18}, 共有6个元素,即|B|=6。 A∩B={I中既是2的倍数又是3的倍数} ={6,12,18} 共有3个元素,即|A∩B|=3,所以 |A∪B|=|A|+|B|-|A∩B| =10+6-3=13 答:所求的数共有13个。 此题可直观地图示如下: 图8-1中,A表示不超过20的正整数中2的倍数的集合。B表示不超过20的正整数中3的倍数的集合。在不超过20的正整数中既是2的倍数又是3的倍数的数有6,12,18,即A∩B中的数。 例2 某班统计考试成绩,数学得90分上的有25人;语文得90分以上的有21人;两科中至少有一科在90以上有38人。问两科都在90分以上的有多少人?(1985年初一迎春杯数学竞赛试题) 解:设A={数学成绩90分以上的学生), B={语文成绩90分以上的学生}。

2021-2022年高考数学一轮总复习第十一章计数原理11.1排列组合专用题组理新人教B版

2021年高考数学一轮总复习第十一章计数原理11.1排列组合专用题 组理新人教B版 考点排列、组合 18.(xx安徽,10,5分)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为( ) A.1或3 B.1或4 C.2或3 D.2或4 答案 D 由题意及=15知只需少交换2次.记6位同学为A1、A2、A3、A4、A5、A6,不妨讨论①A1少交换2次,如A1未与A2、A3交换,则收到4份纪念品的同学仅为A2、A32人;②A1、A2各少交换1次,如A1与A3未交换,A2与A4未交换,则收到4份纪念品的同学有4人,为A1、A2、A3、A4.故选D. 评析本题考查了计数原理等知识,考查学生应用数学知识,分类讨论思想,利用符号标记具体分析是顺利解题的关键. 19.(xx陕西,8,5分)两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有( ) A.10种 B.15种 C.20种 D.30种 答案 C 按比赛局数分类:3局时有2种,4局时有2种,5局时有2种,故共有2+2+2=20种,选C. 评析本题考查了排列组合的实际应用,考查了分类讨论的思想方法.

20.(xx北京,13,5分)把5件不同产品摆成一排.若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有种. 答案36 解析记5件产品为A、B、C、D、E,A、B相邻视为一个元素,先与D、E排列,有种方法;再将C插入,仅有3个空位可选,共有=2×6×3=36种不同的摆法. 21.(xx浙江,14,4分)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有种(用数字作答). 答案480 解析从左往右看,若C排在第1位,共有排法=120种;若C排在第2位,共有排法·=72种;若C排在第3位,则A、B可排在C的左侧或右侧,共有排法·+·=48种;若C排在第4,5,6位时,其排法数与排在第3,2,1位相同,故共有排法2×(120+72+48)=480种. 22.(xx北京,12,5分)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张.如果分给同一人的2张参观券连号,那么不同的分法种数是. 答案96 解析5张参观券分成4份,1份2张,另外3份各1张,且2张参观券连号,则有4种分法,把这4份参观券分给4人,则不同的分法种数是4=96. 评析本题主要考查排列组合问题,“5张参观券分成4份,且2张参观券连号的分法有4种”是解题的关键,审题不清楚是学生失分的主要原因. 23.(xx北京,12,5分)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位

相关文档
最新文档