飞机仪表和电子系统

飞机仪表和电子系统
飞机仪表和电子系统

1、航空仪表按功能分为哪三类?

飞机仪表、发动机仪表、其他系统仪表

2、航空仪表的T型布局:空速表姿态仪表高度表

航向仪表

3、飞行高度的定义

直升机的飞行高度指直升机的重心距某一个基准点的垂直距离绝对高度:直升机重心从空中到平均海平面的垂直距离。

相对高度:直升机重心从空中到某一既定机场场面的垂直距离。真实高度:直升机重心从空中到正下方最高点水平面垂直距离。标准气压高度:直升机从空中到标准气压海平面的垂直距离。

4、全静压系统高度表少指

静压管路升降速度表几乎无影响

在增压舱泄露空速表少指

高度表固定读数

静压管堵塞升降速度表指零

空速表不确定

5、气压式高度表的工作原理

传动机构

静压

真空膜盒

基本组成:真空膜盒、传动机构、指示机构

工作原理:当气压改变时,真空膜盒感受压力变化,压缩或膨胀,通过传动机构,将此变化转化成高度的变化,传到指针指示。6、升降速度表(开口膜盒、测量组件毛细管、指针)

工作原理:在地面或者平飞时,静压管路、膜盒内部气压等于表壳内气压,盒内外没有压差,仪表指针指零。直升机周围的气压随高度的改变而改变,盒内部可以随时探测到直升机周围空气的气压变化,但由于毛细管阻碍了气流,使表壳内气压的变化会以一定的速率延迟,这样就在膜盒内部与表壳之间产生了压差。膜盒的膨胀与收缩驱动指针只是出直升机的升降速度。

7、空速表

空速表(ASI)指示直升机在飞行中相对于气流的速度,它是一种压差表,通过比较全压和静压,利用动压指示出直升机的飞行速度。

指示空速:想对于标准大气压而说,敏感动压

真空速:是利用飞行高度的气压而得。动压与密度有关。

在标准海平面飞行时,指示空速=真空速

8、陀螺仪

陀螺仪分二自由度陀螺和三自由度陀螺(具有稳定性和进动性)三自由度陀螺摆作用:是自转地平仪修正系统轴平行于地平线

控制装置修正电机测量飞机的姿态角

控制装置——断开装置(修正系统)

地平仪和航向仪表利用三自由度陀螺;转弯侧滑仪和速度陀螺仪利用二自由度陀螺

转弯侧滑仪的控制装置在飞机进行机动飞行时(纵向加速、转弯)断开

转弯仪:精确测量转弯方向,但不能测量转弯速度。

9、直读磁罗盘的缺点:容易受飞机磁场影响,存在机械误差、动态误差、偏移。远读式罗盘:受直升机磁场干扰小。

磁罗盘系统尽管不可避免转弯误差和加速误差,不过在长时间的稳定飞行中确实能提供很精确的航向信息;而一个方位陀螺并不受直升机的姿态移动影响,不过在长时间飞行中会有漂移的问题。将两者结合起来,称为陀螺磁罗盘,它比较陀螺与磁探测器的输出,他们的误差信号用来带动陀螺的进动马达,使陀螺能够修正它的漂移误差。

10、无线电导航系统

直升机相对地面电台的相对方位角(BR)直升机到地面电台的相对方位角。

磁航向(MH)是以磁北为基准顺时针旋转到机头方向形成的角度。

VOR方位角(VORB)是以直升机所在位置的磁北为基准,顺时针转到直升机与VOR台连线之间的夹角。

磁差:磁力线与地球经线之间的夹角。

磁倾角:一个悬挂的磁铁主要受到两个方向上的的力的作用,一个水平方向上的,我们成为H分量,一个是竖直方向上的力的作用,我们称为Z分量,它们的合力称为T,合力T使得磁铁磁极指向和水平面形成一个角度,这个H和T之间的角度称为磁倾角。

罗差:直升机本身的磁场对罗盘的影响使得罗盘的指针的指向略微地偏离次北极;实际的磁北极与罗盘所指示的北极之间的差别称为罗差。

定位方式:ρ-?,?-?, ρ-ρ-ρ

所用设备:VOR机提供方位角?,DME(测距机)提供ρ。11、通信系统:①机内通话系统;②无线电通信系统;③事故调查设备。

机内通话系统:内话系统;旅客广播系统。

无线电通信系统:VHF通信系统;HF通信系统;选择呼叫系统。VHF用于地面电台或直升机间短距离通信(117.975-137MHz)HF用于长距离通信,天波传输,通信质量差。

选择呼叫系统用于供地面塔台通过高频或甚高频通信系统对指定直升机或一组直升机进行呼叫联系。

事故调查设备:驾驶舱话音记录器(CCVR)【模拟磁带记录器30min,数字式记录器120min】;紧急定位发射机(ELT):固定式,便携式。有电池供电,必须能提供48小时。VHF频段121.5mhz,UHF频段243mhz.

驾驶舱话音记录器工作于,从第一台发动机开始启动到最后一台发动机熄火5min。3个输入来自音频管理组件,1个输入来自区域话筒。

12、无线电高度表

作用:测量直升机到地面的垂直距离(0-2500ft)

原理:发射机产生一个雷达信号,通过天线发向地面。该信号的一部分经地面反射回来,反射信号由第二部天线接收。接收机计算发射信号与接收信号之间的时间延迟,并将其转换成高度信号输出到显示器上。

13、空中交通管制(ATC)三种询问模式:A模式发射机发送一个4位数字的直升机识别码。飞行员通过话音通信系统,在ATC 控制板上选择之后,接收地面管制中心分配给本机的数字和识别码;C模式,应答机将来自大气数据计算机的气压高度数据发射给地面台;S模式,可以对日益繁重的空中交通进行管制,此外交通警告与防撞系统的工作也需要S模式应答机,它可以对ATC 地面电台有选择性德询问给予应答,还可以单独对其他直升机询问给予应答。

14、一次雷达和二次雷达为什么要求同步?

确保一次雷达接收机接收的视频回波信号与二次雷达系统获得的直升机识别代码及高度信息是同一架直升机的。

15、仪表着陆系统:航向台;下滑台;指点信标系统。

90Hz信号幅度大,跑道中心在直升机的右边,150Hz信号幅度

大,跑道中心在直升机的左边。直升机接收到的信号90Hz信号幅度强,在下滑道的上方,000150Hz强,在下滑道的下方。16、指点信标灯三种颜色:直升机信标机上空时,在驾驶舱信标板上的蓝色灯亮,听到400Hz的Morse识别声音;中信标机位于离跑道约1000m处,发射信号1300Hz,在信标板上琥珀色灯亮,听到1300Hz的音调声;内信标机离跑道约300m处,信号3000Hz,信标板上白色等亮,并听到3000Hz的音调声。

17、气象雷达三种工作方式:①气象(WX)方式,连续地向飞行员提供航路及其两侧扇形区域的气象状况及其他障碍物的平面显示图;②湍流(TURB)方式,现代气象雷达典型工作方式,雷达监测出危险湍流区域,用明显的品红色图像显示;③地图(MAP)方式,观察直升机下方地表特征图形。

18、GPS与DGPS

GPS收到至少4颗卫星的信号时,能计算出直升机所在位置的纬度、经度和高度。准确度15m。

DGPS在机场上建造一个已知精确位置数据的基准台,然后利用GPS计算该基准台的位置,讲已知位置数据与测量位置数据比较计算位置误差,产生位置误差信号,利用它修正GPS计算出的位置误差。准确度大约3m。

18、飞行管理系统(FMS):①横向导航,飞机从起飞机场到达目的地机场的的最佳飞行路线;②垂直导航,计算出最佳飞行剖面,也称性能计算。

19、自动飞行控制系统(AFCS):自动驾驶仪(A/P);飞行指引系统(F/D);自动配平系统。

飞机操控系统

飞机操纵系统发展历程和典型飞机操纵系统分析 学生: 学号: 摘要 本文简要的叙述了飞机操纵系统的发展,主要阐述了几个典型飞机操纵系统的产生和具体结构。早期的简单机械系统即可达到飞行的要求,但随着飞机速度和机动性要求的不断提高,飞机操纵系统的性能也不断完善。飞机操纵系统经历了简单机械系统、控制增稳系统、电传操纵系统和光传操纵系统这几个阶段。最后飞机操作系统的每一次改变都是航空发展史上的伟大进步。 关键词:机械操纵系统、控制增稳系统、电传操纵系统、光传操纵系统 Aircraft control system development process and typical aircraft control system analysis Student: Liu He Student ID: 11031182 Abstract This article briefly describes the development of aircraft control systems, mainly on the production and the specific structure of several typical aircraft control systems. Early flight can be achieved by a simple mechanical system, but with the constant increase in air speed and maneuverability, performance aircraft control systems are constantly

飞机仪表和电子系统

1、航空仪表按功能分为哪三类? 飞机仪表、发动机仪表、其他系统仪表 2、航空仪表的T型布局:空速表姿态仪表高度表 航向仪表 3、飞行高度的定义 直升机的飞行高度指直升机的重心距某一个基准点的垂直距离绝对高度:直升机重心从空中到平均海平面的垂直距离。 相对高度:直升机重心从空中到某一既定机场场面的垂直距离。真实高度:直升机重心从空中到正下方最高点水平面垂直距离。标准气压高度:直升机从空中到标准气压海平面的垂直距离。 4、全静压系统高度表少指 静压管路升降速度表几乎无影响 在增压舱泄露空速表少指 高度表固定读数 静压管堵塞升降速度表指零 空速表不确定 5、气压式高度表的工作原理 传动机构 静压 真空膜盒

基本组成:真空膜盒、传动机构、指示机构 工作原理:当气压改变时,真空膜盒感受压力变化,压缩或膨胀,通过传动机构,将此变化转化成高度的变化,传到指针指示。6、升降速度表(开口膜盒、测量组件毛细管、指针) 工作原理:在地面或者平飞时,静压管路、膜盒内部气压等于表壳内气压,盒内外没有压差,仪表指针指零。直升机周围的气压随高度的改变而改变,盒内部可以随时探测到直升机周围空气的气压变化,但由于毛细管阻碍了气流,使表壳内气压的变化会以一定的速率延迟,这样就在膜盒内部与表壳之间产生了压差。膜盒的膨胀与收缩驱动指针只是出直升机的升降速度。 7、空速表 空速表(ASI)指示直升机在飞行中相对于气流的速度,它是一种压差表,通过比较全压和静压,利用动压指示出直升机的飞行速度。 指示空速:想对于标准大气压而说,敏感动压 真空速:是利用飞行高度的气压而得。动压与密度有关。 在标准海平面飞行时,指示空速=真空速 8、陀螺仪 陀螺仪分二自由度陀螺和三自由度陀螺(具有稳定性和进动性)三自由度陀螺摆作用:是自转地平仪修正系统轴平行于地平线 控制装置修正电机测量飞机的姿态角

电子飞行仪表系统知识点..上课讲义

电子飞行仪表系统课程知识点 1、航空仪表担负着测量飞机飞行状态参数的重担,是操作飞机实现安全可靠飞行所必不可 少的重要设备。 2、众多飞机测量参数中,根据描述功能的不同分为两类:一类是用于描述飞机飞行状态的擦数(如:飞行字体参数、航向参数、大气数据参数、自动飞行系统的状态参数,用于测量这些参数的仪表称为飞行仪表或航行仪表);另一类用于描述飞机上各机载系统工作运转情况的参数(包括发动机状态参数、电源、氧气、增压等其他系统的监测参数及告警参数等,对应的仪表归类为发动机系统参数和告警仪表和其他机载设备(装置)仪表)。 3、航空仪表按功能分为三类:飞行仪表、发动机仪表、其他系统的监控仪表。按工作原理分为三类:测量 仪表、计算仪表、调节仪表。 测量仪表可以用来测量飞机的各种运行参数和机载系统状态参数,如发动机工作参数——压力比,飞行运行参数——空速等。 计算仪表指飞机上的一些领航(或称导航)和系统性能方面的计算仪表,如自动领航仪、惯性导航系统、飞行管理计算机系统等。 调节仪表是指机载的某些特定自动控制系统,在机务维修工作中仍由仪表或电子专业人员负责,如自动驾驶仪、马赫配平系统等。 4、以下一些飞行参数的定义:真航向:指真北(地球经线方向)沿顺时针方向与飞机纵轴在水平面的投影 之间的夹 角。 磁航向:指磁北(磁子午线北端方向)沿顺时针方向与飞机纵轴在水平面的投影之间的夹角。 真航迹角:真北与地速矢量VS 之间沿顺时针方向的夹角。 地速:是风速和空速VTAS 的矢量和,它是飞机相对地面的实际运动速度,它的方向是飞机的航迹方向。 空速:是飞机相对气流的运动速度。如果飞机有侧滑飞行,则空速与飞机纵轴在水平的夹角为侧滑角。 电台方位:以飞机所在位置为基准点观察地面电台时,飞机位置处真北顺时针量到飞机与电台连线的角度。飞机方位角则是以电台为基准观测飞机时,电台处真北顺时针量到电台与飞机连线之间的夹角。 相对方位:指的是飞机纵轴在水平面的投影顺时针转到飞机与电台连线的角度。偏流角:飞机纵轴与地速VS 之间的夹角,表明飞机航迹与航向的偏差。 预选航向:是人工在方式控制板(MCP)上选择的航向,也显示在EFIS的显示器上。 5、军机和民航机飞行仪表的发展,均可分成五代。 6、飞机仪表系统的四种配置:单管配置、四管配置、五管配置和六管配置。 7、飞机电子仪表系统同自动驾驶仪、飞行指引仪、飞行管理计算机等系统及一系列传感器组成的信号交连,采用标准数字数据传输总线ARINC429 和ARINC453 来接收标准信息格式的各种信息。EFIS-700 系统接口下的输入仪表源包括:DME ,VOR ,ILS ,IRS,

飞机的仪表系统

飞机的仪表系统 飞机的电子仪表系统共分为三部分,飞行控制仪表系统、导航系统和通信系统。飞机的电子仪表系统是飞机感知和处理外部情况并控制飞行状态的核心,相当于人的大脑及神经系统,对保障飞行安全、改善飞行性能起着关键作用。 (一)飞行控制系统 飞行控制系统的基本功能是控制飞机气动操纵面,改变飞机的布局,增加飞机的稳定性、改善操纵品质、优化飞行性能。其具体功能有:保持飞机姿态和航向;控制空速及飞行轨迹;自动导航和自动着陆。该系统的作用是减轻飞行员工作负担,做到安全飞行,提高完成任务的效率和经济性。 飞行控制系统一般由传感器、计算机、伺服作动器、控制显示装置、检测装置及能源部分组成。 飞机的控制仪表系统通过提供飞机飞行中的各种信息和数据,使驾驶员及时了解飞行情况,从而对飞机进行控制以顺利完成飞行任务。早期的飞机飞行又低又慢,只装有温度计和气压计等简单仪表,其他信息主要是靠飞行员的感觉获得。现在的飞机则装备了大量仪表,并由计算机统一管理,用先进的显示技术直接显示出来,大大方便了驾驶员的工作。 飞行控制仪表包括以下几种类型。 (1)第一类是大气数据仪表,由气压高度表、飞行速度表、气温度表、大气数据计算机等组成; (2)第二类是飞行姿态指引仪表,该系统可提供一套精确的飞机姿态数据如位置、倾斜、航向、速度和加速度等,实现了飞机导航、控制及显示的一体化; (3)第三类是惯性基准系统,主要包括陀螺仪表。20世纪70年代以前是机械式陀螺,现代客机使用更先进的激光陀螺。 (二)电子综合仪表系统 20世纪60年代后,由于计算机的小型化及显像管的广泛应用,飞机飞行仪表产生了革命性变化,新一代电子综合仪表广泛应用。该仪表系统由两大部分组成,一是电子飞行仪表系统(包括电子水平状

飞机操纵系统发展史

飞机飞行操纵系统大作业 飞机飞行操纵系统发展史 班级: 100321 学号: 100311xx 姓名: 王尼玛 专业: 自动化 指导老师: 于黎明 二零一三年六月二十一日

飞机飞行操纵系统发展史 【摘要】 本文主要论述了的飞机飞行操纵系统的发展史,对飞机机械操纵、增稳操纵、控制增稳操纵、电传操纵、光传操纵做了详细的描述,并对未来飞机的操纵系统进行了展望。 关键词:飞机飞行操纵系统;机械操纵系统;增稳操纵系统;控制增稳操纵系统;电传操纵系统;光传操纵系统

目录 【摘要】 (1) 目录 (2) 第一章飞机操纵系统的发展历程 (3) 第二章机械操纵系统 (3) 第三章增稳操纵系统 (4) 第四章控制增稳操纵系统 (4) 第五章电传操纵系统 (4) 第六章光传操纵系统 (5) 第七章飞机操纵系统的发展趋势 (5) 参考文献 (6)

第一章飞机操纵系统的发展历程 最初的飞机操纵系统是由简单的钢索、滑轮、连杆和曲柄等机械部件组成,即我们所说的机械传动操纵系统。飞行员通过直接操纵机械传动系统来控制飞机的操纵舵面,实现对飞机姿态和飞行轨迹的控制,此时可不考虑系统本身的动特性,只需对摩擦,间隙和系统的弹性形变加以限制,便可获得满意的系统性能。随着飞机设计的发展和飞机速度的不断提高,即使使用看气动力补偿,飞行员的体力还不能适应作用于操纵舵面上的空气动力载荷,这时便产生了液压助力器,此系统实际上仍是一个除飞行员外开环的机液伺服系统。伴随着飞行包线的进一步扩大,飞机的稳定性与可操纵性之间的矛盾更加突出,相继出现了增稳操纵系统和控制增稳操纵系统,这时的系统已在局部使用了电传操纵技术,但操纵系统仍以机械通道为主控通道。为实现最佳气动布局的飞机设计,在电传操纵余度技术逐渐趋于成熟的条件下,操纵系统的机械通道有被电传通道完全取代的趋势,这便产生了现在以被广泛使用的电传操纵系统。但电传操纵系统难以克服自身易受干扰的缺陷,为了改善电传操纵系统的性能,克服自身的缺陷,在电传操纵系统内采用了新的信号传导材料——光纤。光纤作为信号传导材料与电传操纵系统相比,在抗电磁干扰、减轻重量、提高可靠性等方面有明显的优势。运用新的信号传导材料与电传操纵系统相结合所产生的操纵系统,这便是光传操纵系统的雏形。光传操纵系统对提高飞机的稳定性和满足日益提升的飞行性能产生了深远的影响。 第二章机械操纵系统 驾驶员通过机械传动装置直接偏转舵面。舵面上的气动铰链力矩通过机械联系使驾驶员获得力和位移的感觉。这种系统由两部分组成:①位于驾驶舱内的中央操纵机构;②构成中央操纵机构和舵面之间机械联系的传动装置。中央操纵机构由驾驶杆(或驾驶盘)和脚蹬组成。驾驶员前推或后拉驾驶杆可带动升降舵下偏或上偏,使飞机下俯或上仰。向左或向右压驾驶杆(或转动驾驶盘)则带动副翼偏转,使飞机向左侧或向右侧滚转。脚蹬连结着方向舵,驾驶员蹬左脚时,方向舵向左偏转,机头向左偏;反之,机头向右偏。对于各类飞机,中央操纵机构的尺寸、操纵行程和操纵力均有标准规定。通常在被操纵舵面(升降舵、副翼和方向舵)上,用气动补偿措施减少气动铰链力矩,把操纵力控制在规定范围内。机械传动装置直接带动舵面,有软式和硬式两种基本型式。软式传动装置由钢索和滑轮组成,特点是重量轻,容易绕过障碍,但是弹性变形和摩擦力较大。硬式传动装置由传动拉杆和摇臂组成,优点是刚度大,操纵灵活。软式和硬式可以混合使用。简单机械式操纵系统广泛用在亚音速飞机上。在大型高速飞机上,舵面上的气动铰链力矩很大,虽然用气动补偿的方法可以减小力矩,但很难在高低速范围内达到同样效果。40年代末出现了液压助力系统,舵面由液压助力器驱动,驾驶员通过中央操纵机构、机械传动装置控制助力器的伺服活门,间接地使舵面偏转。它同时通过杠杆系统把舵面一部分气动载荷传给中央操纵机构,使驾驶员

飞机电子仪表系统

飞机电子仪表系统复习 1.真航向:指真北(地球经线方向)沿顺时针方向与飞机纵轴在水平面的投影之间的夹角。 2.磁航向:指磁北(磁子午线北端方向)沿顺时针方向与飞机纵轴在水平面的投影之间的夹角。 3.真航迹角:真北与地速矢量V S之间沿顺时针方向的夹角。 4.地速:是风速和空速V TAS的矢量和,它是飞机相对地面的实际运动速度,它的方向是飞机的航迹方向。 5.空速:是飞机相对气流的运动速度。如果飞机有侧滑飞行,则空速与飞机纵轴在水平的夹角为侧滑角。 6.电台方位:以飞机所在位置为基准点观察地面电台时,飞机位置处真北顺时针量到飞机与电台连线的角度。飞机方位角则是以电台为基准观测飞机时,电台处真 北顺时针量到电台与飞机连线之间的夹角。 7.相对方位:指的是飞机纵轴在水平面的投影顺时针转到飞机与电台连线的角度。 8.偏流角:飞机纵轴与地速V S之间的夹角,表明飞机航迹与航向的偏差。 9.预选航向:是人工在方式控制板(MCP)上选择的航向,也显示在EFIS的显示器上。 10.飞机电子仪表系统同自动驾驶仪、飞行指引仪、飞行管理计算机等系统及一系列传感器组成的信号交连,采用标准数字数据传输总线ARINC429和ARINC453来接 收标准信息格式的各种信息。EFIS-700系统接口下的输入仪表源包括:测距机(DME),甚高频全向信标系统(VOR),仪表着陆系统(ILS),惯性基准系统(IRS),大气数据计算机(ADC),低量程无线电高度表(LRRA),气象雷达(WR),飞行控制计算机(FCC),飞行管理计算机(FMC),推力计算机(TMC),比较系统(数据比较器),离散量输入装置,自动定向仪(ADF),飞机增稳计算机(FAC),飞行控制组件(FCU)。 11.飞机电子仪表系统的特点:增强了显示的综合性;易理解性或是逻辑性和条理性的增加;增加了可靠性;增加显示的柔顺性;整套系统的价格便宜;可扩展性及 可适应性。 12.CRT(Cathode Ray Tube)显像管的基本原理:使用电子枪发射高速电子,经过聚焦后,在经过垂直偏转线圈和水平偏转线圈控制高速电子的偏转角度,最后高速电 子击打屏幕上的磷光物质使其发光,通过电压来调节电子束的功率,就会在屏幕上形成明暗不同的光点,从而形成各种图案和文字。 13.CRT电子枪产生的电子束应满足下列条件:足够的电流强度;电子流的大小和有无必须是可控的;电子流必须具有很高的速度;电子束在荧光屏上应能聚成很小 的光点,以保证显示器具有足够的分辨率。 14.CRT电子束的聚焦原理:在阴极射线管中,由阴极发出的电子流通过电子枪时会聚成直径很细的电子束,这称为电子束的聚焦。 15.像素(pixel或pel,是picture element):是指组成图像的最小单位,也即上面提到的发光点。分辨率指屏幕上像素的数目。 16.彩色成像的原理:利用电子束去轰击能发出不同颜色辉光的荧光质,屏上各处均应布满包括多种荧光质的荧光质点组,设法在彩色显像管的电子枪中产生三条聚 焦电子束,并使这些电子束只能轰击各自对应的荧光质,而不会轰击同一组中的其他荧光质点,则可以确定图像颜色。因此,只要利用信号电路来控制由哪一个电子束或哪几个电子束来轰击对应的荧光质,就能达到控制图像颜色的目的。 17.液晶显示器(LCD)的显像原理:将液晶置于两片导电玻璃之间,靠两个电极间电场的驱动引起液晶分子扭曲向列的电场效应,以控制光源透射或遮蔽功能,在电 源关/开之间产生明暗而将影像显示出来,若加上彩色滤光片,则可显示彩色影像。 18.LCD液晶显示器主要技术指标:电光响应特性——反映显示器的显示信息容量和对比度;对比度——是指液晶显示器的显示状态(有显示内容)和非显示状态(底 色)相对透光率的比较,常代表图像的清晰度;视角——是液晶显示器区别于其他显示器的主要特点;响应时间;功耗——液晶显示器工作时所消耗的能量;温度特性。 19.等离子显示器PDP(Plasma Display Panel)又称电浆显示器:指所有利用气体放电而发光的平板显示器件的总称。它是用许多小氖气灯泡构成的平板阵列,利 用加在阴极和阳极间的一定电压,使气体产生辉光放电,单色PDP通常直接利用气体放电时发出的可见光来实现单色显示;彩色PDP通过惰性气体(Ne,He,Xe 等)放电发射的真空紫外线照射红、绿、蓝三基色荧光粉,使荧光粉发光来实现彩色显示。 20.随机扫描是用随机定位方式来控制电子束的运动的。在随机扫描显示中,电子束的运动完全是按实现存放在刷新存储器中的显示指令进行的,没有确定的规律, 完全是程序编制者任意规定的,也就是说是随机显示。 21.字符发生器功能:把显示指令(指字符指令)中以字符编码形式表示的字符(包括英文字母、数字、专用符号及汉字等)变化为字符的图形,即控制电子束在显

电子飞行仪表系统

天津市高等教育自学考试课程考试大纲 课程名称:电子飞行仪表系统课程代码:0843 第一部分课程性质与目标 一、课程性质与特点 本课程是机电维修工程管理专业本科的一门专业课。电子飞行仪表系统是飞机机载导航监控参数和图形的显示系统,是飞机的人机界面,也是飞机机载电子设备先进程度的重大衡量指标之一。本课程的重点就是对该系统的工作原理结构组成,维护实践等内容进行全面介绍。在满足民航生产实践对人才培养要求的总目标下,本课程的重点是对系统的硬件进行论述,详细说明系统内部各组件的结构、原理和特性,以适应内场维护及研究工作。 二、课程目标与基本要求 使学生在掌握系统显示内容的基础上,进一步熟悉本系统与其它航线可更换部件之间的信号传递关系。由此达到建立民航电子设备维护的初步思路之目的,以适应外场维护及管理工作。 三、与本专业其它课程的关系 本课程是机电维修工程管理专业本科的一门专业课。它与机电维修工程管理专业的《航空无线电导航与雷达系统》等课程有着密切的关系。 第二部分课程内容与考核目标 第一章飞行仪表基础知识 一、学习目的与要求 通过本章学习,正确掌握航空仪表,飞行参数,飞行仪表,飞行仪表发展历史,电子飞行仪表的使用,组成、显示等相关概念。 二、考核知识点与考核目标 (一)航空仪表,飞行参数,飞行仪表,飞行仪表发展历史。(次重点) 理解:建立飞行仪表的概念及在航空仪表中所占的位置。 (二)电子飞行仪表的使用,组成、显示等相关概念。 理解:电子飞行仪表的配置,显示内容、显示特点及使用。(重点) 第二章电子显示组件 一、学习目的与要求 通过本章学习,能够从单色显像管显示原理入手,系统地阐述彩显CRT原理,显示组件工作电路原理。 二、考核知识点与考核目标 (一)从单色显像管显示原理入手,系统地阐述彩显CRT原理,显示组件工作电路原理。 理解:彩色显像管(CRT)工作原理和会聚视频处理电路原理。(重点) 应用:分析CRT的显示原理及显示过程。 (二)其它电子束显示器件的显示原理及显示特点。(一般) 识记:了解常用的显示器件的特点。 理解:其它显示器件的工作原理。

中国民航飞行员航班飞行流程知识讲解

中国民航飞行员航班 飞行流程

中国民航飞行员航班飞行流程--------转自carnoc 让我们用波音757来模拟一个北京到上海浦东的航班,来揭开飞行那神秘的面纱。 飞行前地面准备 飞行前一日准备 在接到飞行任务后,机长和副驾驶在飞行前一天的下午来到飞行情报室进行飞行前的准备。主要是熟悉所飞航线的导航数据、降落及备降机场的使用细则、飞行程序,并且在准备结束后与机组其他成员一起就明日的飞行做出详细分工安排。 取得放行许可 清晨,机长按照航班时刻,提前1小时来到飞机上,副驾驶已将飞机里加入所需的航油。民航班机在出港前需由空管部门给予放行许可ATC Clearanc e,其中应包括:目的地、使用跑道、航路飞行规则、标准离场程序SID、航路巡航高度、应答机编码,如有必要还应该包括:起始高度、离场频率、特殊要求等。 地面活动和起飞(塔台) 推出开车 得到放行许可后,飞机开始做起飞前准备,包括上客、装货、机务人员检查完毕签署文件放行飞机、地面商务值机人员与机组共同核对人员、飞机装舱单正确等。副驾驶完成驾驶舱的初步准备工作,包括在飞行管理计算机(FM S)里输入今日飞行的主要数据,等待机长进行检查;乘务员们也来到飞机上,机上共有8名乘务员,她们在乘务长的安排下对客舱、旅客餐食、机上供应品进行准备;大约在起飞前25分钟时,旅客们开始登机。机长和副驾驶各自坐在驾驶舱的左右驾驶座上。机长打开了“系好安全带”的信号,设置了飞机停留刹车,开始对飞行管理计算机的内容进行检查。飞行管理计算机里存储了航空公司所飞航班的大部分信息,飞行员仅需要输入相应代码即可,计算机会自动生成航路。今天共有178名乘客,飞机的起飞重量为102吨,副驾驶根据舱单(客货装载表)在计算机里输入了起飞速度。打开航行灯光(左红、右绿、尾白),皮托管开关、防冰开关(如需要)等。数分钟后,机长确认了准备工作已完成,在驾驶舱的显示器上已表明所有舱门都已关好,乘务长报告客舱准备完毕。所有准备完成后,机组要请求推出许可,在得到许可后,方可启动发动机,叫做推出开车。机长示意副驾驶向塔台请示开车,同意后飞机在五分钟后启动好发动机。 地面滑行 飞机由停机位推出开车后,开始向塔台地面管制申请滑行的放行许可,滑行许可中应包括:使用滑行道,将滑行所到达的跑道号及必要时的特殊规定,如:“CCA197,经过滑行道Z3,Z2,L,36L,在 L 稍等。”在得到同意后开始

飞机电子仪表系统复习

飞机电子仪表系统复习 1.航空仪表担负着测量飞机飞行状态参数的重担, 是操作飞机实现安全可靠飞行所必不可少的重要 设备。 2.众多飞机测量参数中,根据描述功能的不同分为 两类:一类是用于描述飞机飞行状态的擦数(如:飞行字体参数、航向参数、大气数据参数、自动 飞行系统的状态参数,用于测量这些参数的仪表 称为飞行仪表或航行仪表);另一类用于描述飞机 上各机载系统工作运转情况的参数(包括发动机 状态参数、电源、氧气、增压等其他系统的监测 参数及告警参数等,对应的仪表归类为发动机系 统参数和告警仪表和其他机载设备(装置)仪表)。 3.航空仪表按功能分为三类:飞行仪表、发动机仪 表、其他系统的监控仪表。 按工作原理分为三类:测量仪表、计算仪表、调 节仪表。 测量仪表可以用来测量飞机的各种运行参数和机 载系统状态参数,如发动机工作参数——压力比,飞行运行参数——空速等。 计算仪表指飞机上的一些领航(或称导航)和系 统性能方面的计算仪表,如自动领航仪、惯性导 航系统、飞行管理计算机系统等。 调节仪表是指机载的某些特定自动控制系统,在 机务维修工作中仍由仪表或电子专业人员负责, 如自动驾驶仪、马赫配平系统等。 4.真航向:指真北(地球经线方向)沿顺时针方向 与飞机纵轴在水平面的投影之间的夹角。 5.磁航向:指磁北(磁子午线北端方向)沿顺时针 方向与飞机纵轴在水平面的投影之间的夹角。 6.真航迹角:真北与地速矢量V S 之间沿顺时针方向的夹角。 7.地速:是风速和空速V TAS 的矢量和,它是飞机相对地面的实际运动速度,它的方向是飞机的航迹方 向。 8.空速:是飞机相对气流的运动速度。如果飞机有 侧滑飞行,则空速与飞机纵轴在水平的夹角为侧 滑角。 9.电台方位:以飞机所在位置为基准点观察地面电 台时,飞机位置处真北顺时针量到飞机与电台连 线的角度。飞机方位角则是以电台为基准观测飞 机时,电台处真北顺时针量到电台与飞机连线之 间的夹角。 10.相对方位:指的是飞机纵轴在水平面的投影顺时 针转到飞机与电台连线的角度。 11.偏流角:飞机纵轴与地速V S 之间的夹角,表明飞机航迹与航向的偏差。 12.预选航向:是人工在方式控制板(MCP)上选择的航 向,也显示在EFIS的显示器上。 13.军机和民航机飞行仪表的发展,均可分成五代。 14.飞机仪表系统的四种配置:单管配置、四管配置、 五管配置和六管配置。 15.飞机电子仪表系统同自动驾驶仪、飞行指引仪、 飞行管理计算机等系统及一系列传感器组成的信 号交连,采用标准数字数据传输总线ARINC429和 ARINC453来接收标准信息格式的各种信息。 EFIS-700系统接口下的输入仪表源包括:DME, VOR,ILS,IRS,ADC,LRRA低量程无线电高度表,WR,FCC,FMC,TMC推力计算机,比较系统(数据 比较器),离散量输入装置,ADF,FAC飞机增稳计 算机,FCU飞行控制组件。 16.飞机电子仪表系统的特点:增强了显示的综合性; 易理解性或是逻辑性和条理性的增加;增加了可 靠性;增加显示的柔顺性;整套系统的价格便宜; 可扩展性及可适应性。 17.CRT(Cathode Ray Tube)显像管的基本原理:使用 电子枪发射高速电子,经过聚焦后,在经过垂直 偏转线圈和水平偏转线圈控制高速电子的偏转角 度,最后高速电子击打屏幕上的磷光物质使其发 光,通过电压来调节电子束的功率,就会在屏幕 上形成明暗不同的光点,从而形成各种图案和文 字。 18.CRT电子枪产生的电子束应满足下列条件:足够的 电流强度;电子流的大小和有无必须是可控的; 电子流必须具有很高的速度;电子束在荧光屏上 应能聚成很小的光点,以保证显示器具有足够的 分辨率。 19.热电子发射:若对金属加热,则金属内部质点运 动加剧,一部分自由电子因为动能加大,速度提 高,便可逸出金属表面,这类现象称为热电子发 射。CRT就是利用“热电子发射”的原理产生自由 电子的。 20.CRT电子束的聚焦原理:在阴极射线管中,由阴极 发出的电子流通过电子枪时会聚成直径很细的电 子束,这称为电子束的聚焦。 21.实现电子束聚焦的方式:静电聚焦和磁聚焦。静 电聚焦:是通过管内电子枪各电极间所产生的不 均匀电场实现对电子流的聚焦;磁聚焦则是依靠 套在管颈上的聚焦线圈所产生的聚焦磁场来实现 聚焦的。 22.为了在荧光屏上相应的位置显示图形及字符,必 须使电子束偏转,偏转有静电偏转和磁偏转两种 方式。 23.像素(pixel或pel,是picture element):是 指组成图像的最小单位,也即上面提到的发光点。 分辨率指屏幕上像素的数目。 24.形成彩色图像的方法,可以是相加混色法,也可 以是相减混色法。 25.彩色成像的原理:利用电子束去轰击能发出不同 颜色辉光的荧光质,屏上各处均应布满包括多种 荧光质的荧光质点组,设法在彩色显像管的电子 枪中产生三条聚焦电子束,并使这些电子束只能 轰击各自对应的荧光质,而不会轰击同一组中的 其他荧光质点,则可以确定图像颜色。因此,只 要利用信号电路来控制由哪一个电子束或哪几个 电子束来轰击对应的荧光质,就能达到控制图像 颜色的目的。 26.阴罩是彩色显像管的关键部件,主要起选色作用。

飞机操纵系统方式

飞机操纵系统方式 飞机操纵系统方式 -简单机械操纵系统- 机械操纵系统,由钢索的软式操纵,发展为拉杆的硬式操纵。驾驶杆及脚蹬的动作经过钢索或拉杆的传递直接带动舵面运动。驾驶 员在操纵过程中必须克服舵面上所承受的气动力。 -助力操纵系统- 随着飞机尺寸、质量及飞行速度的不断增加,舵面铰链力矩的增大,驾驶员难以直接通过钢索或拉杆来操纵舵面。20世纪40年代 末出现了液压助力器,将其安装在操纵系统中,作为一种辅助装置 来增大施加在舵面上的作用力,以发挥飞机的全部机动能力。这就 是飞机的助力操纵系统。 不可逆助力操纵系统 -全助力操纵系统- 当超音速飞机出现后,飞机超音速飞行时需要相当大的操纵力矩才能满足飞机的机动操纵要求。此外,由于尾翼上出现了超音速区,升降舵操纵效率大为降低,而不得不采用全动平尾。全动平尾铰链 力矩大,而且数值的变化范围较宽,非线性特性影响严重,驾驶员 无法直接承受舵面上的铰链力矩。在这个时候,出现了全助力操纵 系统。 全助力操纵系统中,切断了舵面与驾驶杆的直接联系,驾驶员的'操纵指令直接控制助力器上的分油活门,从而通过助力器改变舵面 的偏转并承受舵面的铰链力矩。此时,驾驶杆上所承受的杆力仅用 于克服传动机构中的摩擦力,驾驶员无法从杆力的大小来感受飞机

飞行状态的变化。因此,在系统中增加了人感装置,通过弹簧、缓 冲器及配重等构成的系统,来提供驾驶杆上所受的人工感力。 -增稳系统- 从20世纪50年代中期以来,随着飞机向高空高速方向发展,飞行包线不断延长,飞机的气动外形很难既满足低空、低速的要求, 又满足高空、高速的要求,常会出现飞机在高空、高速飞行时稳定 性增加而阻尼不足,但在低速飞行时稳定性又不够的现象。为了提 高飞机的稳定性和改善飞机的阻尼特性,第一次将人工操纵系统与 自动控制结合起来,将增稳系统引入到人工操纵系统中,从而形成 了具有稳定功能的全助力系统。 在这个系统中,增稳系统和驾驶杆是相互独立的,增稳系统并不影响驾驶员的操纵。由于舵面既受驾驶杆机械传动指令控制,又受 增稳系统产生的指令控制,为了操纵安全起见,增稳系统对舵面的 操纵权限受到限制,一般仅为舵面全权限的3%~6%。 -控制增稳系统- 增稳系统在增大飞机的阻尼和改善稳定性的同时,在一定程度上降低了飞机操纵反应的灵敏性,从而使飞机的操纵性变坏。为了克 服这个缺点,在增稳系统的基础上,进一步发展成为控制增稳系统。它与增稳系统的主要区别在于:在控制增稳系统中,将驾驶员操纵 驾驶杆的指令信号变换为电信号,经过一定处理后,引入到增稳系 统中。控制增稳系统较好地解决了稳定新与操纵性之间的矛盾,驾 驶员还可通过该系统直接控制舵面,因此控制增稳系统的权限可以 增大到全权限的30%以上。 -电传操纵系统- 传统的机械操纵系统以及带增稳或控制增稳的机械操纵系统都存在一些缺点:在大型飞机上操纵系统越来越笨重,尺寸也大;不可避 免地存在一些非线性,如摩擦力和传动间隙等,造成操纵迟滞和系 统自振;机械操纵系统直接固定在机体上,易传递飞机的弹性振动, 引起驾驶杆偏移,有时造成人机诱发振荡等;由于控制增稳系统权限 有限,无法解决现在高性能飞机操纵与稳定中的许多问题。

航空仪表基本知识汇总

概述——航空仪表的分类:发动机仪表、大气数据仪表、陀螺仪表。 第一章压力测量仪表. 压力表……测量飞机上气体或液体压力的仪表,叫做压力表。按动作原理分:机械式、电动机械式和电动式;按仪表供电的电源形式分为直流压力表和交流压力表。 2BYY-1A 功能:用来测量歼八飞机助力液压系统和收放液压(又叫主液压)系统的液压油压力。组成:两个GYY-1传感器、两个完全相同装在一个表壳的2ZYY-1A指示器,测量范围0-250公斤/厘米2。原理:测量压力时,弹簧管在压力作用下自由端产生位移、压力越大、位移量越大、当自由端向外移动时,经过曲臂连杆和活动摇臂改变电位器电刷在电阻上的位置从而改变指示器中两线框的电流比值,使指针在刻度盘上指出相应的压力数值。当仪表不通电时,指针轴上的小磁铁受拉回磁铁的作用,使指针停在刻度以下的限制柱处。 弹簧管……由于弹簧管的横截面为椭圆形,所以弹簧管受流体压力作用后,压力沿短轴b方向的作用面积大于沿a方向作用的总面积,因而沿短轴方向的作用力也就大于沿长轴方向的作用力。流体压力对弹簧管横截面积作用的结果,使长轴变短,短轴变短,即横截面由椭圆形向圆形转化。在弹簧管的横截面由椭圆向圆形转化的过程中,弹簧管外管壁受到

拉伸,内管壁受到压缩,因而外管壁产生反抗拉伸的拉应力,内管壁产生反抗压缩的压应力,这两个应力在自由端形成一对力偶,使弹簧管伸直变形,在自由端产生位移。 第二章温度测量仪表. 热电极:一般把组成热电偶的两种金属导体又叫做热电极,所产生的电势叫热电势。热端:热电偶温度高的一端叫热端或测量端。冷端:温度低的一端叫冷端或参考端。 几种常用的热电偶①铂铑-铂热电偶……属于贵重金属热电偶,分度号为LB-3热电性能稳定,测量温度范围大,精度高,可以在氧化性或中性介质中长期使用。由于这种热电偶电势率较低,金属材料价格昂贵,故一般只用这种热电偶作为标准热电偶使用。②镍镉-镍铜热电偶……这种热电偶属于廉价金属热电偶,其分度号为EA。这种热电偶的热电特性近似线性,热点率较高,价格便宜。缺点:有寄生热电势和冷端温度误差。③镍钴-镍铝锰热点偶——属于高温廉价金属热电偶,其分度号为GL。这种热电偶在300℃以下,其热电势很小,可以不进行冷端温度误差补偿,在300℃以上,其热电特性近似线性。缺点:热电特性不稳定重复性较差,故在实际应用中,应根据成型热电偶电势大小对热电偶进行分组,并与显示仪表配套使用。 2BWP-2喷气温度表……功用:测量歼八飞机、左右机涡轮后燃气均温度。组成:2ZWP-2指示器,八个GR-10热电偶和两

航空仪表

航空仪表 1.航空仪表按功用分:(1)飞行仪表(驾驶领航仪表)(2)发动机仪表(3)其他仪表系统(辅助仪表) 2.标准海平面大气的参数:(1)气压Po=1.013hPa (760mmHg 或29,921inHg)(2)气温To=+15℃(3)密度3 /kg 125.00m =ρ 3.高度表能测量的参数:相对高度、绝对高度、标准气压高度 (1)绝对高度:飞机在空中到海平面的距离 绝对高度=相对高度+机场标高 =真实高度+地点标高 (2)相对高度:飞机从空中到某一既定机场地面的垂直距离。 (3)标准气压高度:(航线上使用)飞机从空中到标准气压海平面(即大气动力等于760mmHg )的垂直距离。 标准气压高度=相对高度+机场标准气压高度 标准大气条件下:海压高=绝对高度 场压高=相对高度 4.气压式高度表的工作原理:气压式高度表是根据标准大气条件下高度与静压的对应关系,利用真空膜盒测静压,从而表示飞行高度。 5.气压式高度表的组成:感受元件、传送元件、指示元件、调整元件。 调整机构的作用:①选择高度基准面②测量不同种类的高度③修正气压方法误差 6.高度表误差:(1)机械误差(2)方法误差:当实际大气条件下不符合标准大气条件时指示将出现误差。 方法误差包括:气压误差和气温误差 7. 高气压→低气压 多指 高温度→低温度 多指 8.指示空速(IAS)仅与动压有关;指示空速表的敏感元件是开口膜合 概念:空速表按海平面标准大气条件下动压与空速的关系得到的空速。(反映了动压的大小即反映了作用在飞机上的空气动力的情况。) 9.真空速(TAS )(与静压、动压、温度有关) 概念:飞机相对与空气运动的真实速度。 10.全静压系统的使用要求: (1)飞行前:①取下护套和堵塞并检查是否有脏物堵塞②全压管、静压孔、全静压管通电加温进行检查时间不超过1~2min ③全静压转换开关应放在正常位 (2)飞行中:①大中型飞机在起飞前接通电加温开关,小型飞机在可能结冰的条件下,飞行时或飞行中接通加温。②全静压源失效时,首先检查电加温是否正常,若不正常,应设法恢复正常;如果正常,全静压仍不有效工作,将转换开关放到备用位。③全静压系统被堵塞而又没有备用系统时,要综合应用其他仪表保证飞行安全。 11.全静压系统的组成:静压管,全压管,静压孔,备用静压源,转换开关,加温装置,全静压导管。 12.影响陀螺进动性大小的因素(1)转子自转角速度(自转角速度越大,稳定性越高,进动性越小)(2)转子对自转轴的转动(惯性越大,稳定性越高,进动性越小)(3)干扰力

电子飞行仪表系统知识点

电子飞行仪表系统知识 点 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

电子飞行仪表系统课程知识点1、航空仪表担负着测量飞机飞行状态参数的重担,是操作飞机实现安全可靠飞行所必不可少的重要设备。 2、众多飞机测量参数中,根据描述功能的不同分为两类:一类是用于描述飞机飞行状态的擦数(如:飞行字体参数、航向参数、大气数据参数、自动飞行系统的状态参数,用于测量这些参数的仪表称为飞行仪表或航行仪表);另一类用于描述飞机上各机载系统工作运转情况的参数(包括发动机状态参数、电源、氧气、增压等其他系统的监测参数及告警参数等,对应的仪表归类为发动机系统参数和告警仪表和其他机载设备(装置)仪表)。 3、航空仪表按功能分为三类:飞行仪表、发动机仪表、其他系统的监控仪表。 按工作原理分为三类:测量仪表、计算仪表、调节仪表。 测量仪表可以用来测量飞机的各种运行参数和机载系统状态参数,如发动机工作参数——压力比,飞行运行参数——空速等。 计算仪表指飞机上的一些领航(或称导航)和系统性能方面的计算仪表,如自动领航仪、惯性导航系统、飞行管理计算机系统等。 调节仪表是指机载的某些特定自动控制系统,在机务维修工作中仍由仪表或电子专业人员负责,如自动驾驶仪、马赫配平系统等。 4、以下一些飞行参数的定义:

真航向:指真北(地球经线方向)沿顺时针方向与飞机纵轴在水平面的投影之间的夹角。 磁航向:指磁北(磁子午线北端方向)沿顺时针方向与飞机纵轴在水平面的投影之间的夹角。 真航迹角:真北与地速矢量VS之间沿顺时针方向的夹角。 地速:是风速和空速VTAS的矢量和,它是飞机相对地面的实际运动速度,它的方向是飞机的航迹方向。 空速:是飞机相对气流的运动速度。如果飞机有侧滑飞行,则空速与飞机纵轴在水平的夹角为侧滑角。 电台方位:以飞机所在位置为基准点观察地面电台时,飞机位置处真北顺时针量到飞机与电台连线的角度。飞机方位角则是以电台为基准观测飞机时,电台处真北顺时针量到电台与飞机连线之间的夹角。 相对方位:指的是飞机纵轴在水平面的投影顺时针转到飞机与电台连线的角度。 偏流角:飞机纵轴与地速VS之间的夹角,表明飞机航迹与航向的偏差。 预选航向:是人工在方式控制板(MCP)上选择的航向,也显示在EFIS的显示器上。 5、军机和民航机飞行仪表的发展,均可分成五代。 6、飞机仪表系统的四种配置:单管配置、四管配置、五管配置和六管配置。

电子飞行仪表的显示系统

第30卷第2期1998年4月  南 京 航 空 航 天 大 学 学 报 Journal of Nanjing University of Aeronautics&Astronautics  Vol.30No.2  Apr.1998电子飞行仪表的显示系统Ξ 杜海涛 经亚枝 张焕春 (南京航空航天大学测试工程系 南京,210016) 摘要 电子飞行仪表系统的显示系统,要求速度快,图形质量高,并有特殊性。本文分别从硬件和 软件两方面,介绍选用AMLCD和图形处理器TMS34010构成并采用了一些特殊算法的座舱图 形显示系统。这种系统具有图形处理简单、图形更新快、分辨率高、开放性强的特点。 关键词:图形显示系统;仪表装置;图形处理器;调色板 中图分类号:TP39114 1 课题背景 30年前,随着CRT进入飞机座舱,舱内图形显示开始取代某些机电仪表,图形显示方式的介入,一方面减轻了座舱的拥挤,另一方面使得一些复杂飞行状况变得一目了然,显得更为灵活、方便、直观,推动了一代座舱革命。近年来,飞机的性能得到迅速发展,飞机上的信息来源也更加多样化、复杂化,为了给飞行员最直观地显示繁杂的信息,舱内图形显示占据着越来越重要的位置,飞机座舱仪表朝着玻璃化、大屏幕的方向发展。1994年,F222率先使用6个不同尺寸的AMLCD(Active matrix liquid crystal display),代替了所有的机电仪表, B2777也使用了6个AMLCD。模拟机上做统计表明,在运用高分辨率显示器改进后的飞机座舱里,飞行员的空战命中率提高了45%,座舱仪表的图形化已成为飞机座舱发展的必然趋势。 飞机上的动态参数或信息有上百个甚至更多,必须从中挑出当前最有用的一些呈现在屏幕上,比如,起落架状态在飞机起飞和降落时屏幕上应有它的信息,飞行中间时则不用显示,但飞行员可以查看,这是分时显示;对单个屏幕来说,往往同时显示多种数据,需要分区显示,而且每一参数都实时变化,要达到不引起闪烁的更新频率,需要强而快速的作图能力。另一方面,飞机的信息来源广,机载传感器、地面指挥站、海上导航台、卫星、友机甚至敌机等都是信息来源,有的图形要求叠加,如电子地图、摄像机背景、空中目标等,故要求图形显示系统开放性强。 飞机座舱首先要求可靠,能耐恶劣的环境,这就意味常规的民品是不适宜的,必须设计 Ξ收稿日期:1997205214;修改稿收到日期:1997209215 第一作者 杜海涛 男,博士生,1971年6月生。

飞行四个阶段工作流程

1、目的 2、适用范围 3、依据 4、流程和责任 飞行四个阶段工作流程 飞行四个阶段工作是飞行分部各中队核心业务,各中队需根据相关法规、规章在“保证安全第一,争取飞行正常”的基础上,结合各中队实际工作,制定飞行四个阶段的工作流程和飞行过程有效监控管理措施,以确保飞行安全,顺利完成公司航班生产任务。 本流程适用于执行飞行过程的飞行员。 《中国民用航空飞行规则》 《最低设备放行清单》 《机场运行最低标准的制定与实施规定》《中国民用航空 空中交通管制工作规则》 咨询通告AC-121-23《关于规范航空承运人飞行前准备的咨询通告》 《正确掌握“八该一反对”确保飞行安全的暂行规定》 1)周飞行机组航班计划上网发布 (1)综合业务分部于每周五17:00前将下周计划上网发布,机组人员在飞行准备系统中查找自己的飞行计划。 (2)若48小时内的飞行机组航班计划发生变化,由综合业务分部负责通知相关机组人员。若48小时以外的飞行机组航班计划发生变化,由机组人员自己上网查阅。 2)飞行预先准备阶段 (1)时间:每日14:00—22:00。 (2)地点:上网准备,地点不限。 (3)参加人员 第二天参加飞行航班的全体机组成员。如连续飞行,需在连续 1/7

飞行前的休息日将连续飞行几天的内容一并进行准备;若来不及进行预先准备的(如:临时、紧 急任务等),可与飞行直接准备合并进行。 (4)预先准备流程 机组人员登陆飞行准备系统后按照准备流程进行准备,机组人员应该严格按照准备流程,仔细阅 读每项内容,确保准备质量。 对于公司启动的重要包机航班以及新开的复杂机场航班,执行航班的飞行员必须于前一天的15: 00在直接准备室进行预先准备,准备内容除网上准备的所有信息外还包括和乘务组协调工 作。 3)机组人员直接准备阶段 (1)机组成员执勤签到 所有参加飞行的机组成员必须按“出勤规定”中的有关要求执行。 参加飞行运行的每一位机组成员都应严格遵守公司的值勤签到时间。A飞行机组 a签到并领取飞行资料包、任务书。 预计起飞时间前:国内90分钟。 b出勤前体检(高高原运行必需) 预计起飞时间前:国内80-85分钟。 c与飞行签派员协同、办理放行手续。 预计起飞时间前:国内70-80分钟。 d到达停机位。 预计起飞时间前:国内60分钟. B飞行乘务组及航空安全员 a出勤前体检(高高原运行必需) 预计起飞时间前:国内80-85分钟。 b与飞行机组协同。 预计起飞时间前:国内70-80分钟 c到达停机位。 预计起飞时间前:国内60分钟。(2)飞行机组直 接准备阶段 飞行直接准备是在起飞前进行的飞行准备工作。在任何情况下,机组(包 2/7

中国民航飞行员航班飞行流程

中国民航飞行员航班飞行流程--------转自carnoc 让我们用波音757来模拟一个北京到上海浦东的航班,来揭开飞行那神秘的面纱。 飞行前地面准备 飞行前一日准备 在接到飞行任务后,机长和副驾驶在飞行前一天的下午来到飞行情报室进行飞行前的准备。主要是熟悉所飞航线的导航数据、降落及备降机场的使用细则、飞行程序,并且在准备结束后与机组其他成员一起就明日的飞行做出详细分工安排。 取得放行许可 清晨,机长按照航班时刻,提前1小时来到飞机上,副驾驶已将飞机里加入所需的航油。民航班机在出港前需由空管部门给予放行许可ATC Clearance,其中应包括:目的地、使用跑道、航路飞行规则、标准离场程序SID、航路巡航高度、应答机编码,如有必要还应该包括:起始高度、离场频率、特殊要求等。 地面活动和起飞(塔台) 推出开车 得到放行许可后,飞机开始做起飞前准备,包括上客、装货、机务人员检查完毕签署文件放行飞机、地面商务值机人员与机组共同核对人员、飞机装舱单正确等。副驾驶完成驾驶舱的初步准备工作,包括在飞行管理计算机(FMS)里输入今日飞行的主要数据,等待机长进行检查;乘务员们也来到飞机上,机上共有8名乘务员,她们在乘务长的安排下对客舱、旅客餐食、机上供应品进行准备;大约在起飞前25分钟时,旅客们开始登机。机长和副驾驶各自坐在驾驶舱的左右驾驶座上。机长打开了“系好安全带”的信号,设置了飞机停留刹车,开始对飞行管理计算机的内容进行检查。飞行管理计算机里存储了航空公司所飞航班的大部分信息,飞行员仅需要输入相应代码即可,计算机会自动生成航路。今天共有178名乘客,飞机的起飞重量为102吨,副驾驶根据舱单(客货装载表)在计算机里输入了起飞速度。打开航行灯光(左红、右绿、尾白),皮托管开关、防冰开关(如需要)等。数分钟后,机长确认了准备工作已完成,在驾驶舱的显示器上已表明所有舱门都已关好,乘务长报告客舱准备完毕。所有准备完成后,机组要请求推出许可,在得到许可后,方可启动发动机,叫做推出开车。机长示意副驾驶向塔台请示开车,同意后飞机在五分钟后启动好发动机。 地面滑行 飞机由停机位推出开车后,开始向塔台地面管制申请滑行的放行许可,滑行许可中应包括:使用滑行道,将滑行所到达的跑道号及必要时的特殊规定,如:“CCA197,经过滑行道Z3,Z2,L,36L,在L 稍等。”在得到同意后开始滑行,这时乘务员正在对旅客进行航空安全的广播和示范,逐一检查旅客系安全带的情况。 进入跑道 当滑行到跑道外时,应该在跑道外标记的等待位置等待,待得到进入跑道的放行许可后,方可进入跑道,严格禁止没有允许进入跑道!进入跑道许可中的指令有固定含义,如:“跑道外等待”应该将飞机停止在跑道联络道以外。“进跑道等待”则为允许进入跑道,但需要在

相关文档
最新文档