云南电网继电保护、安全稳定装置、低频低压减负荷装置及备用电源自投装置操作调度管理....

云南电网继电保护、安全稳定装置、低频低压减负荷装置及备用电源自投装置操作调度管理....
云南电网继电保护、安全稳定装置、低频低压减负荷装置及备用电源自投装置操作调度管理....

附件:

云南电网继电保护、安全稳定装置、

低频低压减负荷装置及备用电源自投装置操作

调度管理细则

1适用范围

本细则适用于云南电网中调、地调调管范围内涉及继电保护、电网安全稳定装置(以下简称“安稳装置”)、低频低压减负荷装置及备用电源自投装置(以下简称“备自投装置”)的操作管理,有关调度机构、发电厂、变电站的运行值班人员和新设备投运联系人均应执行本细则。县调相应操作可参照本细则执行。

对照学习点:《云南电网调度管理规程》附录一:云南电网调度术语1.2、1.3

2引用文件

《云南电网调度管理规程》

QG/YW-SJ-28-2008《云南电网公司调度操作指令票实施细则(修订)》QG/YW-SJ-27-2008《云南电网公司变电站电气操作票实施细则(修订)》

《关于明确设备状态变更时电气操作要求的通知》(南方电网生〔2010〕31号)

3继电保护的操作管理

3.1继电保护的操作按二次设备操作适应一次设备状态变化的原则进行,调度员对继电保护只下达功能性要求及设备状态指令,不对装置具体的连接片(压板)、切换开关(把手)、控制字修改等下令。所有由调度员直接下令操作的继电保护状态变更必须得到调度员的指令后方可进行。

3.1.1继电保护中的线路纵联保护、联跳保护、远跳保护、母线差动保护、短引线保护、断路器失灵保护、断路器充电保护、线路重合闸的操作由调度员直接下令。

对照学习点:《云南电网调度管理规程》第145、146、149、241条、《云南电网公司调度操作指令票实施细则(修订)》5.1.24

3.1.2线路重合闸的投入(退出),投检同期或检无压方式,以及3/2、角型和外桥接线方式下,线路重合闸所对应两个断路器的具体先(后)重合要求,由调度员直接下令。

对照学习点:《云南电网调度管理规程》第148条

3.1.3非电气量保护中重瓦斯保护的投入(退出)操作,由厂站运行值班人员向调度员申请,调度员许可后方可操作。

对照学习点:《云南电网调度管理规程》第164条

3.1.4一次设备处于运行状态,但需继电保护轮流退出更改保护定值;或因装置或通信设备等出现异常或故障,致使对应继电保护的状态需要变更的,由厂站运行值班人员向调度员申请,调度员直接下令。对照学习点:《云南电网调度管理规程》第141、159条

3.2除本细则第3.1条所列由调度员直接下令操作的保护外,其他继电保护的操作由厂站运行值班人员根据定值单要求和现场运行规程,配合并适应调度员下达的一次设备状态指令,进行对应的投入(退出)、切换和调整等操作,原则上调度员不再另行下达针对继电保护的指令。

继电保护与一次设备状态指令的配合要求如下:

对照学习点:《云南电网调度管理规程》附录一:云南电网调度术语2.9

3.2.1一次设备处于运行状态时,对应继电保护均须正常投入运行。继电保护的特殊运行状态必须经调度员同意或明确。

对照学习点:《云南电网调度管理规程》第142条

3.2.2调度员下令一次设备由运行转热备用状态时,不改变相应继电保护的运行状态(线路重合闸方式调整除外)。

3.2.3调度员下令一次设备由冷备用转热备用状态前,厂站运行值班人员负责将对应的继电保护按定值单要求及现场运行规程规定正确投入。

对照学习点:《云南电网调度管理规程》第143、145条、《云南电网公司变电站电气操作票实施细则(修订)》5.1.15、5.10.5

3.2.4一次设备处于冷备用状态且二次设备无工作时,除由调度员直接下令操作的继电保护外,不改变其他继电保护的运行状态;若继电保护装置或二次回路上有工作时,除由调度员直接下令操作的继电保护状态变更必须经调度员同意外,厂站运行值班人员不需要向调度申请,按现场工作要求退出(停用)该设备其他的继电保护,但开工和

完工需按规定向调度员汇报。

对照学习点:《云南电网公司变电站电气操作票实施细则(修订)》5.10.7

3.2.5调度员下令一次设备转检修状态时,除由调度员直接下令操作的继电保护按调度指令执行外,厂站运行值班人员不需要向调度申请,自行负责退出(停用)该设备其他的继电保护。

注:本条与《云南电网调度管理规程》第146条的差异按本细则执行,以适应南网新规定。

对照学习点:《关于明确设备状态变更时电气操作要求的通知》(南方电网生〔2010〕31号)

3.3继电保护专业人员在检修申请和新设备投运调度方案批复中,对继电保护提出特殊要求的,由调度员按要求下令操作。

4涉及上下级调度机构的继电保护操作管理

4.1变压器对应断路器的失灵保护和联跳母线的母联(分段)断路器保护的功能性投入(退出)指令,由管辖变压器本体的调度机构调度员负责下达。

4.2涉及上下级调度机构交叉管辖的3/2接线方式的中断路器,以及内桥接线方式的桥断路器相关继电保护操作,须由上下级调度机构协调明确后,调度员方可下令。

5安稳装置、低频低压减负荷装置及备自投装置的操作管理

5.1安稳装置的操作(投入、退出、投信号、投/退远方功能,投/退

就地功能,投/退通信通道),由调度员直接下达功能性要求及设备状态指令,厂站运行值班人员按现场运行规程进行相应操作,调度员不对装置具体的连接片(压板)、切换开关(把手)、控制字修改等下令。对照学习点:《云南电网公司变电站电气操作票实施细则(修订)》3.1.3

5.2当电网系统运行方式发生变更,需要调整安稳装置状态(或方式)以适应电网运行方式变更时,由调度员直接下令。

5.3安稳装置处于运行状态,但需轮流退出其中一套更改定值的,由厂站运行值班人员向调度员申请,调度员直接下令。

5.4线路低频低压减负荷功能的投入(退出),由管辖该线路的调度机构调度员下达功能性要求,厂站运行值班人员负责按定值单要求和现场运行规程进行投入(退出)操作。

5.5备自投装置的投入(退出)由调度员向现场明确当前电网运行方式后直接下令,厂站运行值班人员按调度指令和现场运行规程负责正确调整备自投装置,以适应当前运行方式。调度员不对装置具体的连接片(压板)、切换开关(把手)、控制字修改等下令。

本细则由云南电力调度中心负责解释。

智能电网继电保护技术探讨 蔡立保

智能电网继电保护技术探讨蔡立保 发表时间:2019-01-16T10:04:45.770Z 来源:《电力设备》2018年第26期作者:蔡立保 [导读] 摘要:继电保护在电力系统中的重要性不言而喻,随着我国智能电网建设的快速发展,给电力系统的继电保护带来越来越多的挑战,因此,对智能电网继电保护的研究具有重要的现实意义。 (国网河北省电力公司沧州供电公司河北沧州 061000) 摘要:继电保护在电力系统中的重要性不言而喻,随着我国智能电网建设的快速发展,给电力系统的继电保护带来越来越多的挑战,因此,对智能电网继电保护的研究具有重要的现实意义。本文从智能电网中继电技术研究现状入手,结合关键技术的应用对智能电网的保护的影响,探讨智能电网对继电保护的作用,为相关电力工作者提供参考。 关键词:智能电网;继电保护;技术分析 引言:根据国家电网有关规划,以及智能变电站技术标准,需要对早期变电站进行改建并对新电站建设进行规划,以加强智能电网的建设脚步。由于常规变电站设备信息共享难、可操作性不强,系统受电磁干扰影响严重,所以难以支持现代化社会生产机社获得需求。智能电网的可靠性、稳定性及安全性能优势明显,能够达到安全经济的运行目标,所以现有变电站需要进行智能电网的改建。基于本地信息和小型化、微网运行、大量分布式电源、节能减排的发展趋势,利用计算机控制技术、时钟同步技术、光纤通信技术、新型传感技术、智能软件分析等,提高当地电网智能化的水平,改建电力发展的方向,优化电网资源配置,给继电保护的研究与应用提供了广阔的发展空间。 1电力系统继电保护的重要作用 随着经济的发展,电力需求的增加,电力供应开始紧张,不少地方出现电力危机现象,只能加大电力保障力度,提高电力供应的安全性和可靠性,使电力供应紧张情况得到缓解。同时,随着智能技术的不断应用,智能电网在政策和社会的需求下双重推动其得到了很大程度的发展,尤其在超特高压电网投运、大规模能源并网以及智能配用电等方面使用较广,因而在运行中也遇到了一些急需解决的问题。鉴于此,提高电力系统维护的安全性尤为重要,而在电力系统安全维护手段中,继电保护是影响电力系统安全和正常运行的主要因素之一,其原因是如果电力系统出现故障,继电保护可以在最短时间和最小范围内,由系统故障设备自动切除,并发出警告信号,由值班人员排除异常情况的根本原因,减少或避免邻近地区设备或电源的损坏。电力系统继电保护可同时运行,实时监测和分析现场电力系统是否存在异常,满足电力系统稳定性要求,提高电力系统安全运行水平。重视继电保护管理,为社会经济,社会稳定和人民生命财产做出了重要贡献。 2智能电网继电保护技术 智能电网的继电保护技术主要是智能感应技术、广域测量技术、大功率电力电子技术、模拟和控制决策技术、信息和通信技术、数字化变电站这六个技术,以支撑智能电网的运行以及继电保护措施的实施。 2.1智能感应技术 这主要为了实现智能电网的有效监控,智能电网系统复杂,为了实现有效控制需要进行全面化监控,一般是采用光纤传感器,无线传感器和智能传感器与网络进行链接,实现电站全面控制。智能变电站以电子变压器替代传统变压器,光纤替代电缆,二次设备代替传统智能设备,合并单元及智能借口增多,所以结构更为紧凑,面积占据两更小,用轻质纤维代替了有色金属,既节省了成本又满足环境保护国策。 2.2广域测量技术 这是利用全球定位系统进行P9高精度脉冲实现同步相量测量,是现在电力系统中较为常用的技术,系统使用时,电压和电流信号会与电力系统是实现精准的同步。 2.3大功率电力电子技术主要是在柔性交流输电,柔性直流输电,高压直流输电和定制供电应用,采用半导体开关进行电力快速、有效、经济、方便的转换,及补偿和控制。 2.4模拟和控制决策技术 这是为了实现电网运行的安全性、可靠性及经济性应用的,以实现智能电网的可视化,数字化和控制目的,掌控智能电网的实施状态,为决策和措施提供信息。 2.5信息和通信技术 按照现代通信技术和信息交互标准——IEC61850标准实现电网的智能化,利用光纤通信技术实现高效数据共享及资源共享,实现智能电网的高速通信管理,接轨数字智能化与现代技术。 2.6数字化变电站 主要是一次设备智能化、二次设备网络化的配置,用二次设备实现功能分散、信息共享以及相互操作,按照IEC61850标准进行变电站的建模和通信。数字化变电站的通信体系主要氛围三层,变电站层、间隔层和过程层,二次设备通过三个层次之间的信息转化及通信等通信操作,满足数字化变电站的建设要求。 3智能电网环境下继电保护的应用措施 3.1广域保护 关于保护是电网在智能运行中,对电网子集以继电保护为分析对象的运行单位,按照子集的运行情况选择适合的数据信息并合理分析,以此来掌握智能电网的整体运行情况。广域保护在具体运行中要把整个电网按照不同的区域进行划分,再按照划分好的区域进行继电保护。广域保护的主要组成部分是控制和保护,控制室在电网运行时相应的自愈方案,可以保证在运行的时候有效的实现自我保护,保护是对整个电网的运行状态,通过对信息进行分析,判断故障的原因并对此原因提出相应的解决措施,保护主要是对运行中出现较为复杂的问题检修保护作用,关于保护在整个继电保护中有着较为重要的作用,广域保护能确保智能电网的相互适应和融合,保障智能电网的稳定运行。 3.2保护重构 继电保护的作用需要和智能电网同步的时候才能发挥出较好的作用和效果,促进电网的运行安全可靠。重构技术在继电保护中的应用

220KV电网线路继电保护设计及整定计算

1.1 220KV 系统介绍 KV 220系统由水电站1W ,2W 和两个等值的KV 220系统1S 、2S 通过六条 KV 220线路构成一个整体。整个系统最大开机容量为MVA 29.1509,此时1W 、2W 水电厂所有机组、变压器均投入,1S 、2S 两个等值系统按最大容量发电,变压器均投入;最小开机容量位MVA 77,1007,此时1W 厂停MVA 302 机组,2W 厂停 MVA 5.77机组一台,1S 系统发电容量为MVA 300,2S 系统发电容量为MVA 240。 KV 220系统示意图如图1.1所示。 1.2 系统各元件主要参数 (1) 发电机参数如表1.1所示: 表1.1 发电机参数 电源 总容量(MVA ) 每台机额定功率 额定电压 额定功率 正序 图1.1 220kV 系统示意图

最大 最小 (MVA ) (kV ) 因数cos φ 电抗 W 1厂 295.29 235.29 235.29 15 0.85 0.35 2*30 11 0.83 0.25 W 2厂 310 232.5 4*77.5 13.8 0.84 0.3 S 1系统 476 300 115 0.5 S 2系统 428 240 115 0.5 对水电厂12 1.45X X =,对于等值系统12 1.22X X = (2) 变压器参数如表1.2所示: 表1.2 变压器参数 变电站 变压器容量(MVA ) 变比 短路电压(%) Ⅰ-Ⅱ Ⅰ-Ⅲ Ⅱ-Ⅲ A 变 20 220/35 10.5 B 变-1 240 220/15 12 B 变-2 60 220/11 12 C 变 3*120 220/115/35 17 10.5 6 D 变 4*90 220/11 12 E 变 2*120 220/115/35 17 10.5 6 (3) 输电线路参数 KM AB 60=,上端KM BC 250=,下端KM BC 230=,KM CD 185=, KM CE 30=,KM DE 170=;KM X X /41.021Ω==,103X X =,080=ΦL 。 (4) 互感器参数 所有电流互感器的变比为5/600,电压互感器的变比为100/220000。由动稳定计算结果,最大允许切除故障时间为S 2.0。 2 整定计算 2.1 发电机保护整定计算 2.1.1 纵联差动保护整定计算 (1)发电机一次额定电流的计算 式中 n P ——发电机额定容量; θ c o s ——发电机功率因数; n f U 1——发电机机端额定电压; (2)发电机二次额定电流的计算 式中 f L H n ——发电机机电流互感器变比; (3)差动电流启动定值cdqd I 的整定:

电力系统继电保护课程设计三段式距离保护

电力系统继电保护课程设计三段式距离保护集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

电力系统继电保护课程设计选题标号:三段式距离保护 班级: 14电气 姓名: 学号: 指导教师:谷宇航 日期: 2017年11月8日 天津理工大学 电力系统继电保护课程设计

天津理工大学 目录

一、选题背景 选题意义 随着电力系统的发展,出现了容量大,电压高,距离长,负荷重,结构复杂的网络,这时简单的电流,电压保护已不能满足电网对保护的要求。 在高压长距离重负荷线路上,线路的最大负荷电流有时可能接近于线路末端的短路电流,所以在这种线路上过电流保护是不能满足灵敏系数要求的。另外对于电流速断保护,其保护范围受电网运行方式改变的影响,保护范围不稳定,有时甚至没有保护区,过电流保护的动 作时限按阶梯原则来整定,往往具有较长时限,因此,满足不了系统快速切除故障的要求。对于多电源的复杂网络,方向过电流保护的动作时限往往不能按选择性要求来整定,而且动作时限长,不能满足电力系统对保护快速性的要求。 设计原始资料 ?=E ,112G Z =Ω、220G Z =Ω、315G Z =Ω,12125L L km ==、370L km =, 42B C L km -=,25C D L km -=,20D E L km -=,线路阻抗0.4/km Ω,' 1.2rel K = 、''''' 1.15rel rel K K ==,.max 150B C I A -= ,.max 250C D I A -=,.max 200D E I A -=, 1.5ss K = , 0.85re K =

智能电网环境下的继电保护 祝正双

智能电网环境下的继电保护祝正双 发表时间:2019-06-26T11:02:26.427Z 来源:《电力设备》2019年第1期作者:祝正双 [导读] 摘要:继电保护是电力系统安全稳定运行的重要保障,相比于传统电网,智能电网在发展的过程中要想拥有更高的发展质量,进行继电保护方面的工作,对于继电保护灵活性、可靠性水平的提升将会拥有着极大的促进作用,因此探究智能电网环境下的继电保护,对于电力系统安全稳定的运行拥有着十分必要的保障。 (江苏金智科技股份有限公司江苏省南京市 211100) 摘要:继电保护是电力系统安全稳定运行的重要保障,相比于传统电网,智能电网在发展的过程中要想拥有更高的发展质量,进行继电保护方面的工作,对于继电保护灵活性、可靠性水平的提升将会拥有着极大的促进作用,因此探究智能电网环境下的继电保护,对于电力系统安全稳定的运行拥有着十分必要的保障。本文主要对智能电网环境在建设过程中存在的问题,以及智能电网环境下继电保护技术的使用进行了深入的分析,从而通过这种方式,促使我国智能电网环境问题的改善。 关键词:智能电网;继电器保护;可靠性 引言 随着社会经济的发展与科学技术的发展,作为支撑经济发展的电力系统随着智能技术的发展而实现了智能化操作管理。电力传感测量技术、IEC61850标准的实施等都为智能化电网建设提供了基础。当前我国正处于智能电网建设的关键时期,提高智能化操作对于提高用户满意度具有积极意义。继电保护是电力系统的第一道防护,能够及时有效地对电力系统进行监测与保护,因此,基于智能电网建设步伐的加快,推动继电保护技术的创新与发展是当前电力改革建设的重要内容。 1 在智能电网环境下继电保护功能的实现 智能电网利用传感器可以完成发电、输电等设备监控,在此基础上利用网络系统收集监控信息,并将这些信息传递和存储,整合分析,以实现远程动态监测和校正。因此,智能电网对分布式发电、交互式供电、继电保护提出了更高的要求。继电保护技术应用于智能电网,可以安全地保护对象。这个保护装置能够准确地找到故障点,没有人工干预实现故障的自我修复能力,确保连续和完整的电力系统的电力供应。 2 我国智能电网建设中面临的问题分析 2.1难以对智能电网的超特高压环境进行适应 在智能电网环境中,最突出的一点特征就是在智能电网中存在着超/特高压,相比于一般的电压,超/特高压在运行的过程中只有在高质量的继电保护中才能有效运行,如果继电保护在使用的过程中存在着难以适应超/特高压环境方面的问题,就会导致智能电网在运行的过程中出现严重的故障,进而产生分量比较大的谐波,而且非周期分量也会随之受到削弱,继电保护工作的可靠性会逐渐地下降,不利于继电保护工作的持续开展。同时,在超/特高压环境下,继电保护在进行工作的过程中只有具有超高的可靠性以及安全性,才能保证智能电网的正常运行。 2.2配电网的实际发展滞后 配电网面向用户,需保证供电的质量水平,提升运行效率。我国所运用的电力供应消费模式是单向,用户以及电网间严重缺乏互动,造成负荷的峰谷有着非常大的差额,存在非常低的用电实际负荷率。建设智能配用电系统,增强电网和用户之间的双向互动,能有效调动用户的积极性,提升输电的实际效率,降低相关的投资,有效节约社会资源。很多分布式电源接入,相关配电网需要满足用户的送电能力,单电源模式向着多电源模式转变要适当调整配电保护和控制技术。 2.3新能源电力缺少就地平衡的互补电源 我国总体上缺少与新能源电力互补的可快速调节的电源,如水电站和燃气电站。新能源电力波动性大、难以稳定输出,如果缺少足够的就地互补电源,则会出现以下问题:已建成的新能源装机无法充分并网,风电弃风现象严重;新能源接入后为了达到电力供需平衡,燃煤机组需要频繁调整出力,运行工况变化大,造成设备老化加快和发电煤耗增加;此外新能源电力并网造成的系统调峰容量下降还会降低电网安全裕度。因此要尽量实现新能源电力的就地平衡,根据实际条件,应积极探索风、光、水、气、火、储组合的优化互补方案,以减少波动性输出对整个系统的影响。 3智能电网环境下继电保护的主要内容 3.1元件保护 单元件保护的对象包括发电机、变压器以及交直流线路等,主要是对传统元件保护的改良和新原理算法的研究。在发电机组的保护中要做好内部短路保护工作,尤其是在匝间短路保护工作上要给予足够的重视,并且还要对发电机组的保护设计、灵敏度检测、整定计算等方案进行精确地设计,进而满足匹配发电机组承压力、反时限过流、过激磁等后期保护判断上的需求,保证定转子一点接地保护的可靠度。在变压器保护方面,励磁涌流识别仍然是关注的焦点,因励磁涌流所存在的非线性、随机性、混淆性以及多样性特征,使得目前解决方案并非完美无缺,变压器内部故障分析计算和保护新原理仍是研究的重点。在交流线路的保护上,要做好保护原理、保护方法的进一步改进。这是因为在智能电网的实际运行过程中,高阻接地会受到距离保护功能的影响,当电网系统因振荡而发生短路问题时,不仅无法发挥保护职能,进而造成较大的故障测距误差。在直流线路保护方面,作为主保护的行波保护应用时仍然存在着受故障产生行波信号的不确定性、采样率限制以及过渡电阻影响等问题的制约。 3.2广域保护 目前,在实际广域保护中,我们可将其后备系统分为:广域集中式、IED分布式、站域集中与区域分布相配合,3种模式。其中,广域集中式其基本单元是被保护的电气设备,采用直接方法对电网内的全部信息进行整合,判断电网所发生的故障;IED分布式则是通过IED元件,将其分布在被保护设备之内后进行相关信息数据的采集,最终实现继电保护功能。 4继电保护面临的挑战和机遇 在智能电网快速发展的新形势下,继电保护作为保障电网安全运行的第一道防线,也同时面临着挑战和机遇。 4.1继电器保护面临的挑战 大电网对继电保护提出了高要求。在智能电网中,大电网的超/特高压互联非常重要,严重影响继电保护。特高压电网故障时谐波分量

电力系统继电保护配置原则

电力系统继电保护配置原则 一、概述 电力系统是指由发电、送电、变电、配电和用电等各个环节(一次设备)所构成的有机整体,也包括相应的通信、继电保护(含安全自动装置)、调度自动化等设施(二次设备)。 电力系统安全运行是指运行中所有电力设备必须在不超过它们所允许的电流、电压、频率及时间限额内运行(强调充裕性)。不安全的后果可能导致电力设备的损坏,大面积停电。 2003年8月14日下午,美国纽约、底特律和克利夫兰以及加拿大多伦多、渥太华等城市均发生停电事故。事故原因俄亥俄州阿克伦城的第一能源公司的两根高压电线其中一根因树枝生长碰至线路后跳闸,另外一条线路因安全自动装置误动,导致第二条线路跳闸,最终导致各个子电网潮流不能平衡,最终系统解列。 可见,要保证电力的安全稳定运行,必须配置安全可靠的继电保护装置和安全自动装置。继电保护顾名思义在系统发生故障时及时隔离故障点保护一次设备,同时能够让电力系统继续安全稳定运行。 二、基本要求 继电保护配置方式要满足电力网结构和厂站的主接线的要求,并考虑电力网和厂站的运行方式的灵活性。所配置的继电保护装置应能满足可靠性、选择性、灵敏性和速动性的要求。

1)要根据保护对象的故障特征来配置。 继电保护装置是通过提取保护对象表征其运行状况的故障量,来判断保护对象是否存在故障或异常工况并米取相应的措施的自动装置。用于继电保护状态判别的故障量,随被保护对象而异,也随电力系统周围条件而异。使用最普遍的工频电气量,而最基本的是通过电力元件的电流和所在母线的电压以及由这些量演绎出来的其它量,如功率、序相量、阻抗、频率等,从而构成电流保护、电压保护、方向保护、阻抗保护、差动保护等。 2)根据保护对象的电压等级和重要性。 不同电压等级的电网的保护配置要求不同。在高压电网中由于系统稳定对故障切除时间要求比较高,往往强调主保护,淡化后备保 护。220kV及以上设备要配置双重化的两套主保护。所谓主保护即设备发生故障时可以无延时跳闸,此外还要考虑断路器失灵保护。对电压等级低的系统则可以采用远后备的方式,在故障设备本身的保护装置无法正确动作时相邻设备的保护装置延时跳闸。 3)在满足安全可靠性的前提下要尽量简化二次回路。 继电保护系统是继电保护装置和二次回路构成的有机整体,缺一不可。二次回路虽然不是主体,但它在保证电力生产的安全,保证继电保护装置正确工作发挥重要的作用。但复杂的二次回路可能导致保护装置不能正确感受系统的实际工作状态而不正确动作。因此在选择保护装置是,在可能条件下尽量简化接线。 4)要注意相邻设备保护装置的死区问题

继电保护定值整定计算公式大全(最新)

继电保护定值整定计算公式大全 1、负荷计算(移变选择): cos de N ca wm k P S ?∑= (4-1) 式中 S ca --一组用电设备的计算负荷,kVA ; ∑P N --具有相同需用系数K de 的一组用电设备额定功率之和,kW 。 综采工作面用电设备的需用系数K de 可按下式计算 N de P P k ∑+=max 6 .04.0 (4-2) 式中 P max --最大一台电动机额定功率,kW ; wm ?cos --一组用电设备的加权平均功率因数 2、高压电缆选择: (1)向一台移动变电站供电时,取变电站一次侧额定电流,即 N N N ca U S I I 13 1310?= = (4-13) 式中 N S —移动变电站额定容量,kV ?A ; N U 1—移动变电站一次侧额定电压,V ; N I 1—移动变电站一次侧额定电流,A 。 (2)向两台移动变电站供电时,最大长时负荷电流ca I 为两台移动变电站一次侧额定电流之和,即 3 1112ca N N I I I =+= (4-14) (3)向3台及以上移动变电站供电时,最大长时负荷电流ca I 为 3 ca I = (4-15) 式中 ca I —最大长时负荷电流,A ; N P ∑—由移动变电站供电的各用电设备额定容量总和,kW ;

N U —移动变电站一次侧额定电压,V ; sc K —变压器的变比; wm ?cos 、η wm —加权平均功率因数和加权平均效率。 (4)对向单台或两台高压电动机供电的电缆,一般取电动机的额定电流之和;对向一个采区供电的电缆,应取采区最大电流;而对并列运行的电缆线路,则应按一路故障情况加以考虑。 3、 低压电缆主芯线截面的选择 1)按长时最大工作电流选择电缆主截面 (1)流过电缆的实际工作电流计算 ① 支线。所谓支线是指1条电缆控制1台电动机。流过电缆的长时最大工作电流即为电动机的额定电流。 N N N N N ca U P I I η?cos 3103?= = (4-19) 式中 ca I —长时最大工作电流,A ; N I —电动机的额定电流,A ; N U —电动机的额定电压,V ; N P —电动机的额定功率,kW ; N ?cos —电动机功率因数; N η—电动机的额定效率。 ② 干线。干线是指控制2台及以上电动机的总电缆。 向2台电动机供电时,长时最大工作电流ca I ,取2台电动机额定电流之和,即 21N N ca I I I += (4-20) 向三台及以上电动机供电的电缆,长时最大工作电流ca I ,用下式计算 wm N N de ca U P K I ?cos 3103?∑= (4-21) 式中 ca I —干线电缆长时最大工作电流,A ; N P ∑—由干线所带电动机额定功率之和,kW ; N U —额定电压,V ;

智能电网环境下的继电保护 郝苗苗

智能电网环境下的继电保护郝苗苗 发表时间:2018-06-19T15:43:42.400Z 来源:《电力设备》2018年第5期作者:郝苗苗 [导读] 摘要:随着智能电网建设规模的日益扩大,智能电网已经成为我国电力技术发展的主要趋势。 (国网太原供电公司山西太原 030009) 摘要:随着智能电网建设规模的日益扩大,智能电网已经成为我国电力技术发展的主要趋势。继电保护作为电力系统的第一道防线,在智能电网发展趋势影响下继电保护技术也在不断地发展与创新。本文基于智能电网视角分析继电保护技术,以期为构建安全可靠的继电保护体系提供建议对策。 关键词:智能电网;继电保护;可靠性 随着社会经济的发展与科技技术的发展,作为支撑经济发展的电力系统随着智能技术的发展而实现了智能化操作管理。例如:电力传感测量技术、IEC61850标准的实施等都为智能化电网建设提供了基础。当前我国正处于智能电网建设的关键时期,提高智能化操作对于提高用户满意度具有积极意义。继电保护是电力系统的第一道防护,能够及时有效地对电力系统进行监测与保护,因此,基于智能电网建设步伐的加快,推动继电保护技术的创新与发展是当前电力改革建设的重要内容。 1智能电网环境下继电保护的意义 随着城市建设步伐的加快以及电力行业供给侧结构性改革的实施,电力企业面临的用电压力越来越大,因此,如何构建安全高效的电力网络体系是当前电力企业深化改革的重要内容。随着互联网技术、大数据技术以及计算机技术在电力系统的应用,我国电力智能化水平越来越高,实践证明智能电网的建设无论对于电力系统的安全运行还是优化配置电力资源配置都具有重要的意义。继电保护作为电力系统安全的第一道防线,强化继电保护具有重要的意义是,首先,继电保护可以有效保证电力系统的安全与稳定。虽然智能电网发生故障的几率越来越小,但是其仍然存在故障,而且随着电网规模的不断扩大,电网故障的隐蔽性也越来越突出,而继电保护则是及时发现故障与解决故障的重要技术手段;其次,继电保护有助于降低电网损失。在电力系统出现故障之后如果没有及时做出相应的判断就会造成巨大的经济损失,而继电保护的功能就是第一时间根据故障做出准确的动作,以此降低损失。总之,继电保护的最大作用就是保证电力网络安全运行。 2智能电网环境下继电保护的构建体系 随着智能电网模式的发展,继电保护也随着智能电网技术的发展而不断进步,例如:传统的集成电路型继电保护模式已经被淘汰,取而代之的是微机型继电保护,而且此种模式在大数据技术下也在不断创新与发展,由于智能电网的发展,传统的继电保护模式已经难以满足实际工作需要,因此,构建继电保护体系是强化对继电保护的可靠性的评估。基于实践经验,继电保护在不同的电网环境下所测得到的数据具有高度的离散性,如果采取平均值计算则会削弱继电保护的可靠性,因此,需要基于大数据技术而构建具有实时监测的继电保护体系。在智能电网环境下,智能变电站的结构发生了变化,实现了“三层两网”,过程层、间隔层和站控层,通过利用互联网平台实现对各个层面的实时控制,通过对智能变电站结构的变化可以看出传统继电保护与智能化继电保护的差别,传统的继电保护采样值主要是由传感器直接传递到保护装置上,而智能继电保护则是将采集的信息通过合并单元汇集后交由交换机传递给保护装置,这样消除了二次电缆的故障因素,提高了信息传递的效率。综合考虑智能电网的发展对于继电保护会产生以下影响:①智能电网系统中的元件增多,尤其是元件的精密度、科技含量越来越高,这样对于继电保护系统而言带来了优势,与此同时也增加了继电保护的难度,尤其是提高了继电保护的可靠性。 ②继电保护的结构将更加复杂。传统的继电保护是以点对点的连接方式,而智能电网的普及则实现了以太网连接,这样一来拓扑结构存在较大的可塑性,因此,要求继电保护结构要更加灵活。③自动装置功能要求提高。例如:在智能电网中的PMU和WAMS网络可以为电力系统提供防御和紧急控制,从而实现智能电网的控制目的。但是由于智能电网建设的过程中还必须要考虑与传统电网模式的衔接问题,同样继电保护也要考虑与传统继电保护的配合问题,因此,具体可以采取以下方式,例如:在线路采取差动保护时,线路一侧使用电磁式电流互感器,而另一侧线路则要采取电子互感器,这样可以避免出现保护误动。 3智能电网环境下继电保护技术的发展策略 智能电网建设是我国电力发展的主要趋势,根据实践调查我国智能电网建设还存在以下问题:用电负荷不集中,远距离、交直流混合输电模式容易发生电力安全事故,尤其是远距离的输电体系为重大停电事故埋下隐患;电网接纳能力不足影响电力系统的稳定运行。例如:新能源电力的应用虽然有助于实现供给侧结构,但是新能源电力具有间歇性、随机性的特点,此种特点会给当前电力系统的运行造成冲击;配电网发展滞后等。正是基于我国智能电网建设中所存在的诸多问题,加强继电保护建设就显得格外重要。综合考虑继电保护需要重点做好以下工作:①发电机保护。发电机是继电保护装置的重要保护内容,需要关注内部短路。②变压器保护。③直流线路保护以及交流线路保护。距离保护易受高阻接地影响,一旦在系统振荡中发生短路的情况,以我国相关工作人员的技术水平,很难进行应对,因此相关人员就必须注意到其应用于同杆并架双回线时,受所利用电气量范围的限制的问题,同时也要注意交流电路的跨线故障和零序互感等因素的相关影响,对于问题必须要保持高度的警惕。 3.1广域保护技术 所谓广域继电保护技术,指的是以子域作为分析单位,对子域内继电保护信息进行有效采集,并对其进行域内和域外的综合判定。广域保护技术的主要优势在于其能实现自动化控制,在确保智能电网运行安全性上有着巨大的优势。同时,广域继电保护技术极大加快了保护动作实施时间,且显著提升了其与电网的保护配合,使得继电保护效率大大提升。该技术较强的自适应判断能力和保护能力,使得其在电网诊断和恢复上更加智能和高效。 3.2保护重构技术 保护重构技术的主要作用是对继电保护系统进行在线配置和重组,确保其与电网结构相符合,大大优化了继电保护效果。同时,保护重构技术能够对继电保护系统元件进行实时监测和诊断,及时发现存在的隐性问题和故障,并在发现失灵故障后自动进行替代,以恢复继电保护系统的运行,达到自我发现和自愈功能。这样一来,有效避免了继电保护故障问题导致智能电网故障,大大提高智能电网运行的稳定性。 3.3集中式后备保护 对于集中后备保护而言,其决策主机主要位于系统某中心站,而覆盖范围则包括了整个区域电网,其所包含的厂站甚至能够达到数十

220kv电网继电保护设计

220kv电网继电保护设计

目录 一、题目 (1) 二、系统中各元件的主要参数 (2) 三、正序、负序、零序等值阻抗图 (4) 四、继电保护方式的选择与整定计算 (6) (A)单电源辐射线路(AB)的整定计算 (6) (B)双回线路BC和环网线路主保护的整定计算 11 (C)双回线路CE、ED、CD主保护的整定计算(选做)12 (D)双回线路和环网线路后备保护的整定计算(选做) 14 五、220kV电网中输电线路继电保护配置图 (22)

一、题目 选择图1所示电力系统220kV线路的继电保护方式并进行整定计算。图1所示系统由水电站W、R和两个等值的110kV系统S、N,通过六条220kV线路构成一个整体。整个系统的最大开机总容量为1509.29MVA,最小开机总容量为1007.79 MVA,两种情况下各电源的开机容量如表1所示。各发电机、变压器容量和连接方式已在图1中示出。 表1 系统各电源的开机情况

图1 220kV系统接线图 二、系统中各元件的主要参数 计算系统各元件的参数标么值时,取基准功率S b=60MVA,基准电压U b=220kV,基准电流I b=3 b b S U=0.157kA,基准电抗x b = 806.67。 (一)发电机及等值系统的参数 用基准值计算所得的发电机及等值系统元件的标么值参数见表2所列。 表2 发电机及等值系统的参数 发电机或系统发电机及系统的总 容量MVA 每台机额定 功率MVA 每台机额 定电压 额定功 率因数 正序电抗负序电抗

cos 注:系统需要计算最大、最小方式下的电抗值;水电厂发电机2 1.45d x x '=,系统2 1.22d x x '=。 (二) 变压器的参数 变压器的参数如表3所列。 表3 变压器参数

电力系统继电保护课后部分习题答案

1 绪论 1.1电力系统如果没有配备完善的继电保护系统,想象一下会出现什么情景? 答:现代的电力系统离开完善的继电保护系统是不能运行的。当电力系统发生故障时,电源至故障点之间的电力设备中将流过很大的短路电流,若没有完善的继电保护系统将故障快速切除,则会引起故障元件和流过故障电流的其他电气设备的损坏;当电力系统发生故障时,发电机端电压降低造成发电机的输入机械功率和输出电磁功率的不平衡,可能引起电力系统稳定性的破坏,甚至引起电网的崩溃、造成人身伤亡。如果电力系统没有配备完善的继电保护系统,则当电力系统出现不正常运行时,不能及时地发出信号通知值班人员进行合理的处理。 1.2继电保护装置在电力系统中所起的作用是什么? 答:继电保护装置就是指能反应电力系统中设备发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种自动装置.它的作用包括:1.电力系统正常运行时不动作;2.电力系统部正常运行时发报警信号,通知值班人员处理,使电力系统尽快恢复正常运行;3.电力系统故障时,甄别出发生故障的电力设备,并向故障点与电源点之间、最靠近故障点断路器发出跳闸指令,将故障部分与电网的其他部分隔离。 1.3继电保护装置通过哪些主要环节完成预定的保护功能,各环节的作用是什么? 答:继电保护装置一般通过测量比较、逻辑判断和执行输出三个部分完成预定的保护功能。测量比较环节是册来那个被保护电器元件的物理参量,并与给定的值进行比较,根据比较的结果,给出“是”、“非”、“0”或“1”性质的一组逻辑信号,从而判别保护装置是否应该启动。逻辑判断环节是根据测量环节输出的逻辑信号,使保护装置按一定的逻辑关系判定故障的类型和范围,最后确定是否应该使断路器跳闸。执行输出环节是根据逻辑部分传来的指令,发出跳开断路器的跳闸脉冲及相应的动作信息、发出警报或不动作。 1.4 依据电力元件正常工作、不正常工作和短路状态下的电气量复制差异,已经构成哪些原理的保护,这些保护单靠保护整定值能求出保护范围内任意点的故障吗? 答:利用流过被保护元件电流幅值的增大,构成了过电流保护;利用短路时电压幅值的降低,构成了低电压保护;利用电压幅值的异常升高,构成了过电压保护;利用测量阻抗的降低和阻抗角的变大,构成了低阻抗保护。单靠保护增大值不能切除保护范围内任意点的故障,因为当故障发生在本线路末端与下级线路的首端出口时,本线路首端的电气量差别不大。所以,为了保证本线路短路时能快速切除而下级线路短路时不动作,这种单靠整定值得保护只能保护线路的一部分。 1.5依据电力元件两端电气量在正常工作和短路状态下的差异,可以构成哪些原理的保护? 答:利用电力元件两端电流的差别,可以构成电流差动保护;利用电力元件两端电流相位的差别可以构成电流相位差动保护;利两侧功率方向的差别,可以构成纵联方向比较式保护;利用两侧测量阻抗的大小和方向的差别,可以构成纵联距离保护。 1.6 如图1-1所示,线路上装设两组电流互感器,线路保护和母线保护应各接哪组互感器? 答:线路保护应接TA1,母线保护应接TA2。因为母线保护和线路保护的保护区必须重叠,使得任意点的故障都处于保护区内。 母线 线路 TA1TA2 图1-1 电流互感器选用示意图 1.7 结合电力系统分析课程的知识,说明加快继电保护的动作时间,为什么可以提高电力系统的稳定性? 答:由电力系统分析知识可知,故障发生时发电机输出的电磁功率减小二机械功率基本不变,从而使发电机产生加速的不平衡功率。继电保护的动作时间越快,发电机加速时间越短,功率角摆开幅度就越小,月有利于系统的稳定。 由分析暂态稳定性的等面积理论可知,继电保护的动作速度越快,故障持续的时间就越短,发电机的加速面积就约小,减速面积就越大,发电机失去稳定性的可能性就越小,即稳定性得到了提高。 1.8后备保护的作用是什么?阐述远后备保护和近后备保护的优缺点。 答:后备保护的作用是在主保护因保护装置拒动、保护回路中的其他环节损坏、断路器拒动等原因不能快速切除故障的情况下,迅速启动来切除故障。 远后备保护的优点是:保护范围覆盖所有下级电力元件的主保护范围,它能解决远后备保护范围内所有故障元件由任何原因造成的不能切除问题。 远后备保护的缺点是:(1)当多个电源向该电力元件供电时,需要在所有的电源侧的上级元件处配置远后备保护;(2)动作将切除所有上级电源测的断路器,造成事故扩大;(3)在高压电网中难以满足灵敏度的要求。近后备保护的优点是:(1)与主保护安装在同一断路器处,在主保护拒动时近后备保护动作;(2)动作时只能切除主保护要跳开的断路器,不造成事故的扩大;(3)在高压电网中能满足灵敏度的要求。 近后备保护的缺点是:变电所直流系统故障时可能与主保护同时失去作用,无法起到“后备”的作用;断路器失灵时无法切除故障,不能起到保护作用。 - 1 -

电力系统继电保护计算题精编版

三、分析计算题 3在图1所示网络中的AB 、BC 、BD 、DE 上均装设了三段式电流保护;保护均采用了三相完全星形接法;线路 AB 的最大负荷电流为200A ,负荷自启动系数 1.5ss K =, 1.25I rel K =, 1.15II rel K =, 1.2III rel K =,0.85re K =,0.5t s ?=; 变压器采用了无时限差动保护;其它参数如图所示。图中各电抗值均已归算至115kV 。试计算AB 线路各段保护的启动电流和动作时限,并校验II 、III 段的灵敏度。 X X 1s = 图1 系统接线图 图2系统接线图 3答:(1)短路电流计算。选取图 3中的1K 、2K 、3K 点作为计算点。 2 K 3 图3 三相短路计算结果如表1所示。 表1 三相短路计算结果 (2)电流保护I 段 (3).1 1.max 1.25 1.795 2.244(kA)I I set rel K I K I ==?,10()I t s = (3)电流保护II 段 (3).3 2.max 1.25 1.253 1.566(kA)I I set rel K I K I ==?,.1.3 1.15 1.566 1.801(kA)II II I set rel set I K I ==? 灵敏度校验:(2) (3)1.min 1.min 1.438(kA)K K I =,(2)1.min .1.1 1.4380.7981.801II K sen II set I K I ==,不满足要求。 与保护3的II 段相配合:保护3的II 段按可伸入变压器而不伸出变压器整定。 (3) .3 3.max 1.150.499 0.574(kA)II II set rel K I K I ==?,.1.3 1.150.574 0.660(kA)II II II set rel set I K I ==? 灵敏度校验:(2)1.min .1 .1 1.438 2.1790.660II K sen II set I K I ==,满足要求。

智能电网环境下的继电保护分析

智能电网环境下的继电保护分析 发表时间:2018-09-12T10:43:12.840Z 来源:《电力设备》2018年第14期作者:桑甜毕宏达 [导读] 摘要:继电保护作为电力系统中的关键部分,比传统电网具有更高的灵活性和可靠性要求,因此加强电网环境下的继电保护分析具有较高重要价值。本文从智能电网继电保护现状进行了分析,提出其重要价值、继电保护功能等要素,针对其未来发展策略等进行了深入分析,旨在为实践操作提供一定的理论借鉴价值。 (国网黑龙江省电力有限公司大庆供电公司 163458) 摘要:继电保护作为电力系统中的关键部分,比传统电网具有更高的灵活性和可靠性要求,因此加强电网环境下的继电保护分析具有较高重要价值。本文从智能电网继电保护现状进行了分析,提出其重要价值、继电保护功能等要素,针对其未来发展策略等进行了深入分析,旨在为实践操作提供一定的理论借鉴价值。 关键词:继电保护;智能电网;发展趋势;故障 1智能电网下继电保护不足分析 1.1 保护范围不明确 目前智能电网在我国的普及度不够,许多地区依然沿用传统电网?因此,电网中的继电保护无法针对有效范围开展保护工作?针对智能电网的过度发电问题无法起到有效监控,而且混淆了许多保护信息?在智能电网中继电保护会出现延迟,甚至是对电网故障的判断出现错误,更难以实现对智能电网的有效保护?虽然这种缺点本质上属于智能电网系统普及中的根本性问题,但是在未来继电保护中,应该不断进行创新,满足日益进步的智能电网保护需要? 1.2 缺乏保护力度 随着我国电网建设工作的不断推进,各种新技术也随之推广应用?但是在新技术推广的过程中,也会出现许多问题?首先是新技术尚未成熟,没有广泛的使用经验,因此在新技术使用过程中必须与智能电网的运行环境相适应,防止因新技术的使用而产生运行问题?例如在我国许多电网建设过程中,继电保护系统依然沿用传统方式,包括保护系统的设备?装置和技术等,无法满足电网智能化需求?在电网运行过程中,会由于继电保护与智能电网的不匹配导致出现运行故障?最为严重的是传感信息的丢失,会导致继电保护中丧失发现和评价故障的信息依据,甚至引发严重的安全运行故障? 1.3 保护设备不完善 电网中使用继电保护设备的目的在于保障电网的安全稳定运行,因此继电保护设备要根据智能电网的发展情况,针对性地开展继电保护技术创新?但是在生产实践中,由于智能电网对继电保护技术与装备的要求较高,而电力企业在继电保护设备采购中无法满足智能电网的需要,导致智能电网的继电保护出现设备不完善的问题?因此电力企业在继电保护中,要更加深入地研究智能电网运行环境,不断创新继电保护技术和设备,防止继电保护技术发展与智能电网发展不同步? 2 智能电网继电保护建设策略 智能电网的健康发展需要匹配继电保护技术的支持?因此针对智能电网建设进度,有针对性地进行继电保护建设策略,有利于智能电网的稳定运行?具体来说,可以包含以下几个方面? 2.1 构建信息平台 构建高效稳定信息平台,借助智能电网的信息化特点,在运行中更精确地收集和传递状态数据,为智能电网评估提供更可靠的信息支持?具体来说,智能电网下构建继电保护平台,必须要以智能电网运行状态为基础,保障继电设备的信息化发展?在信息平台支持下继电保护更加及时准确地获取智能电网信息,实现了同步监控与保护?但是目前信息平台建设尚未成熟,因此在技术支持下,要提升信息平台建设速度,以促进智能电网的快速发展? 2.2 强化信息传输 随着电网覆盖面积的不断增加,电网建设范围以及电力传输距离也不断增加,在长距离传输过程中,很容易导致信息信号的衰弱,影响信息传输质量?因此要提高继电保护的作用,就必须提高信息传输质量?具体来说,可以通过技术创新和增加投入来创设高质量的传输环境,实现电网的分级?分层保护,进而为电网信息传输提供更高质量的保护,使其有利于实现继电保护的信息共享,满足智能电网环境的需求? 2.3 完善继电保护系统建设 针对电网继电保护系统存在的问题,可以充分发挥智能传感器的作用,来获得更加精确的运行数据,并将之作为实现继电保护的主要参考依据,进而提高继电保护设备切除故障的效率?但是在实际运行中,受到自然环境的影响,变压器中的振动传感器会将自然振动判断为故障?因此完善继电保护系统建设,可以通过完善人工智能分析系统的建设工作,在故障判断中融合周围湿度与温度因素,将之作为故障判断的重要依据,实现更加精确的判断? 3 智能电网环境下继电保护的变革与发展 智能电网是在物理电网的基础上,利用先进的传感/测量技术?控制方法?决策支持系统以及应用技术先进的设备,实现电网的安全?智能?经济?高效等性能?智能电网的发展对于继电保护技术带来了以下几个方面的影响与变革: 3.1 数字化 目前,数字化是智能电网最大的特点,其主要表现在以下2个方面:(1)测量手段数字化,其主要通过各种数字接口与电子互感器实现;(2)信息传输数字化,传统电网通过电缆传输状态量和模拟量信息,而智能电网则通过光纤网络传输数字信息?电子互感器体积小?绝缘性好,主要是利用光电转换技术进行测量,这就拓宽了信号传输频带,增强了暂态性能,并且消除了传统互感器的测量误差,保障了测量的准确性,同时降低了互感器的故障发生率?未来继电保护发展过程中,应进一步简化其辅助功能,利用数字化传感器提高继电保护水平,以便更好地与智能电网的进一步建设和发展相配合? 3.2 网络化 随着我国数字化变电站大规模建设与广泛应用,智能电网环境下的继电保护也正朝网络化方向发展,出现了巨大的变革与进步?主要体现在:(1)实现了信息共享?变电站的网络化促进了继电保护信息的共享,变电站所有设备都紧密相连,使得继电保护范围大大拓展?(2)信息传递更

110KV电网继电保护设计

黑龙江交通职业技术学院毕业设计(论文)题目110KV电网继电保护设计 专业班级: 姓名: 学号:

2017年月日

摘要 这次课程设计以最常见的110KV电网线路保护设计为例进行分析设计,要求对整个电力系统及其自动化专业方面的课程有综合的了解。特别是对继电保护、电力系统、电路、发电厂的电气部分有一定的研究。重点进行了电路的化简,短路电流的求法,继电保护中电流保护、距离保护的具体计算。中国的电力工业作为国家最重要的能源工业,一直处于优先发展的地位,电力企业的发展也是令人瞩目的。电力系统的飞速发展对继电保护不断提出新的要求,也使得继电保护得以飞速的发展。电力系统继电保护是电力系统的重要组成部分,没有继电保护的电力系统是不能运行的。电力系统继电保护的设计电网直接影响到电力系统的安全稳定运行。如果设计与配置不当,继电保护将不能正确动作,从而会扩大事故的停电范围。因此,要求继电保护有可靠性、选择性、快速性和灵敏性四项基本性能,需要整定人员针对不同的使用条件,分别进行协调。 本次设计以对110kV单电源环形网络的继电保护配置,整定计算。设计内容包括:系统主要元件的参数,短路电流的计算,中性点接地的选择,距离保护方式选择和整定计算,零序电流保护方式配置与整定计算,及主变压器保护的设计。 关键词:110kV继电保护;短路电流计算;变压器保护

目录 第1章绪论 (1) 1.1什么是继电保护 (1) 1.2 继电保护整定计算的目的及基本任务 (1) 1.2.1整定计算的目的 (1) 1.2.2 整定计算的基本任务 (1) 第2章电力系统继电保护概论 (3) 2.1 电力系统继电保护的作用 (3) 2.2电力系统继电保护的基本要求 (3) 2.3 继电保护的发展现状 (4) 第3章线路保护的整定计算 (6) 3.1 110kV线路保护的配置 (6) 3.1.1 110~220kV线路保护的配置原则 (6) 3.2 相间距离保护 (6) 3.2.1 距离保护的基本概念和特点 (6) 3.2.2 相间距离保护整定计算 (7) 3.2.3 相间距离保护II段整定计算 (8) 3.2.4 相间距离保护III段整定计算 (9) 3.2.3 线路A-BD2,B-BD2 相间距离保护整定计算结果: (10) 3.2.4相间距离保护装置定值配合的原则 (11) 3.3 零序电流保护方式配置 (12) 3.3.1 110中性点直接接地电网中线路零序电流保护的配置原则 (12) 3.4 零序电流保护整定计算的运行方式分析 (12) 3.4.1 接地短路电流、电压的特点 (12) 3.4.2 接地短路计算的运行方式选择 (12) 3.4.3 流过保护最大零序电流的运行方式选择 (13) 3.4.4 最大分支系数的运行方式和短路点位置的选择 (13) 3.4.5 零序电流保护的整定计算 (13) 3.4.6零序电流保护整定计算结果表 (16) 第4章线路保护整定 (17) 4.1电力系统短路计算的目的及步骤 (17) 4.1.1 短路计算的目的 (17) 4.1.2 计算短路电流的基本步骤 (17) 4.2 运行方式的确定 (18) 4.2.1 最大运行方式 (18) 4.2.2 最小运行方式 (18) 第5章主变压器保护的设计 (19) 5.1 主变压器保护的配置原则 (19) 5.2 本设计的主变保护的配置及说明 (19) 5.3 纵差保护的整定计算 (20)

相关文档
最新文档