一种提高SVM分类能力的同步优化算法

一种提高SVM分类能力的同步优化算法
一种提高SVM分类能力的同步优化算法

iSIGHT中优化算法分类

iSIGHT中优化方法种类 iSIGHT里面的优化方法大致可分为三类: 1 数值优化方法 数值优化方法通常假设设计空间是单峰值的,凸性的,连续的。iSIGHT中有以下几种: (1)外点罚函数法(EP): 外点罚函数法被广泛应用于约束优化问题。此方法非常很可靠,通常能够在有最小值的情况下,相对容易地找到真正的目标值。外点罚函数法可以通过使罚函数的值达到无穷值,把设计变量从不可行域拉回到可行域里,从而达到目标值。 (2)广义简约梯度法(LSGRG2): 通常用广义简约梯度算法来解决非线性约束问题。此算法同其他有效约束优化一样,可以在某方向微小位移下保持约束的有效性。 (3)广义虎克定律直接搜索法: 此方法适用于在初始设计点周围的设计空间进行局部寻优。它不要求目标函数的连续性。因为算法不必求导,函数不需要是可微的。另外,还提供收敛系数(rho),用来预计目标函数方程的数目,从而确保收敛性。 (4)可行方向法(CONMIN): 可行方向法是一个直接数值优化方法,它可以直接在非线性的设计空间进行搜索。它可以在搜索空间的某个方向上不断寻求最优解。用数学方程描述如下: Design i = Design i-1 + A * Search Direction i方程中,i表示循环变量,A表示在某个空间搜索时决定的常数。它的优点就是在保持解的可行性下降低了目标函数值。这种方法可以快速地达到目标值并可以处理不等式约束。缺点是目前还不能解决包含等式约束的优化问题。 (5)混合整型优化法(MOST): 混合整型优化法首先假定优化问题的设计变量是连续的,并用序列二次规划法得到一个初始的优化解。如果所有的设计变量是实型的,则优化过程停止。否则,如果一些设计变量为整型或是离散型,那么这个初始优化解不能满足这些限制条件,需要对每一个非实型参数寻找一个设计点,该点满足非实型参数的限制条件。这些限制条件被作为新的约束条件加入优化过程,重新优化产生一个新的优化解,迭代依次进行。在优化过程中,非实型变量为重点考虑的对象,直到所有的限制条件都得到满足,优化过程结束,得到最优解。 (6)序列线性规划法(SLP):序列线性规划法利用一系列的子优化方法来解决约束优化问题。此方法非常好实现,适用于许多工程实例问题。 (7)序列二次规划法(DONLP): 此方法对拉各朗日法的海森矩阵进行了微小的改动,进行变量的缩放,并且改善了armijo型步长算法。这种算法在设计空间中通过梯度投影法进行搜索。 (8)序列二次规划法(NLPQL): 这种算法假设目标函数是连续可微的。基本思想是将目标函数以二阶拉氏方程展开,并把约束条件线性化,使得转化为一个二次规划问题。二阶方程通过quasi-Newton公式得到了改进,而且加入了直线搜索提高了算法的稳定性。 (9)逐次逼近法(SAM): 逐次逼近法把非线性问题当做线性问题来处理。使用了稀疏矩阵法和单纯形法求解线性问题。如果某个变量被声明成整型,单纯形法通过重复大量的矩阵运算来达到预期的最优值。逐次逼近法是在M. Berkalaar和J.J. Dirks提出的二次线性算法。 2 探索优化方法 探索优化法避免了在局部出现最优解的情况。这种方法通常在整个设计空间中搜索全局最优值。iSIGHT中有以下两种: (1)多岛遗传算法(MIGA): 在多岛遗传算法中,和其他的遗传算法一样每个设计点都有一个适应度值,这个值是建立在目标函

支持向量机(SVM)算法推导及其分类的算法实现

支持向量机算法推导及其分类的算法实现 摘要:本文从线性分类问题开始逐步的叙述支持向量机思想的形成,并提供相应的推导过程。简述核函数的概念,以及kernel在SVM算法中的核心地位。介绍松弛变量引入的SVM算法原因,提出软间隔线性分类法。概括SVM分别在一对一和一对多分类问题中应用。基于SVM在一对多问题中的不足,提出SVM 的改进版本DAG SVM。 Abstract:This article begins with a linear classification problem, Gradually discuss formation of SVM, and their derivation. Description the concept of kernel function, and the core position in SVM algorithm. Describes the reasons for the introduction of slack variables, and propose soft-margin linear classification. Summary the application of SVM in one-to-one and one-to-many linear classification. Based on SVM shortage in one-to-many problems, an improved version which called DAG SVM was put forward. 关键字:SVM、线性分类、核函数、松弛变量、DAG SVM 1. SVM的简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力。 对于SVM的基本特点,小样本,并不是样本的绝对数量少,而是与问题的复杂度比起来,SVM算法要求的样本数是相对比较少的。非线性,是指SVM擅长处理样本数据线性不可分的情况,主要通过松弛变量和核函数实现,是SVM 的精髓。高维模式识别是指样本维数很高,通过SVM建立的分类器却很简洁,只包含落在边界上的支持向量。

基于局部优化的多类分类算法

2016年10月 控 制 工 程 Oct. 2016 第23卷第10期 Control Engineering of China V ol.23, No.10 文章编号:1671-7848(2016)10-1607-05 DOI: 10.14107/https://www.360docs.net/doc/0c5657073.html,ki.kzgc.150689 基于局部优化的多类分类算法 单瑾,刘明纲,罗侃 (成都工业学院 信息与计算科学系,成都 611730) 摘 要:为了解决传统多类分类问题中普遍出现的偏离性与不平衡性,依据互通信熵理 论与支持向量数据描述(SVDD )分类原理,设计出一种改进的局部性SVDD 多类分类算法,即EL-SVDD 算法。此算法首先以局部样本信息为载体,计算出互通信熵参数值;其次在多维度空间球体中以互通信熵参数值分类放置测试样本数据信息;最后综合分析测试样本大小与互通信熵参数值,重新诠释了SVDD 算法中的C 值。实验表明,EL-SVDD 算法不仅具有可行性,而且能够有效和稳定地提高多类分析精度。 关键词:SVDD; 互通信熵; 多类分类; C 值 中图分类号:TP181 文献标志码:A Multi-class Classification Algorithm Based on Local Optimization SHAN Jin, LIU Ming-gang, LUO Kan (Department of Information and Computing Science, Chengdu Technological University, Chengdu 611730, China) Abstract: In order to solve the blindness and imbalance that appeares commonly in the traditional multi-class classification, this paper designs an improved and localized multi-class classification algorithm based on mutual communication entropy and support vector data description (SVDD), which is known as EL-SVDD algorithm. Firstly, this algorithm calculates the mutual communication entropy with many local classes of samples. Secondly, one class is placed inside the ball based on the mutual communication entropy. Finally, according to the samples and mutual communication entropy, it reinterprets the C values of SVDD algorithm. Experiment results show that EL-SVDD algorithm not only has the feasibility, but also can effectively and stably improve the accuracy of many types of analysis. Key words: SVDD; mutual communication entropy; multi-class classification; C value 1 引 言 近年来,由于支持向量机理论原理的不断成熟发展,在人工智能、模式识别领域得到越来越多的应用与拓展。其中国内外研究学者为完善与扩展支持向量机知识体系做出了很多贡献,如文献[1]提出了支持向量数据描述(SVDD )的概念,并设计单类别分类SVDD 算法,达到了良好的性能效果;文献[2]在SVDD 理论知识的基础之上,扩展SVDD 样本容量,使得改进的SVDD 算法能够应用于两类别分类问题的求解;文献[3]进一步拓展,使得改进的SVDD 算法可以应用于多类别分类问题的求解;文献[4]通过模拟SVDD 操作性质(ROC )面积对SVDD 分类精度进行了优化分析等。文献[5]用支持向量描述训练求得包围各类样本的最小超球体,并使得分类间隔最大化。文献[6] 将相对密度扩展到核空间, 进而提出了一种基于 核空间相对密度的SVDD 多类分类算法。然而深入透析现有的SVDD 方面的各种研究成果,对于SVDD 传统的单多类别分类算法,均出现了正负类别样本数据信息偏离性问题,并且在SVDD 惩罚参数值(C 值)设定方面也存在一定的不平衡性问题。针对以上情况,本文在传统的SVDD 理论体系基础之上,依据互通信熵与局部性样本数据信息,设计出一种改进的局部性SVDD 多类别分类算法,即EL-SVDD 算法,此算法首先以互通信熵值对正负球体进行环绕式处理,对不同互通信熵值大小的类进行划分存储,然后通过互通信熵值与分布式局部样本信息重新诠释了SVDD 算法中的C 值。通过实验表明,EL-SVDD 算法不仅 收稿日期:2015-07-23;修回日期:2015-10-08 作者简介:单瑾(1980-),女,辽宁大连人,研究生,讲师,主要从事模式识别、数据挖掘和软件工程等方面的教学 和科研工作;刘明纲(1978-),男,四川成都人,研究生,讲师,主要从事人工智能和数据挖掘等方面的教学与科研工作;罗侃(1976-),男,四川蓬安人,研究生,副高级实验师,主要从事计算机应用和软件工程等方面的教学与科研工作。 万方数据

SVM分类器原理(分享借鉴)

SVM分类器原理 SVM定义 ?SVM是一种基于统计学习理论的机器学习方法,它是由Boser,Guyon, Vapnik在 COLT-92上首次提出,从此迅速发展起来。 ?Vapnik V N. 1995. The Nature of Statistical Learning Theory. Springer-Verlag, New York. ?Vapnik V N. 1998. Statistical Learning Theory. Wiley-Interscience Publication, John Wiley&Sons, Inc. ?SVM在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势,并能够 推广应用到函数拟合等其他机器学习问题中.目前已经在许多智能信息获取与处理领域都取得了成功的应用。 SVM方法的特点 ?SVM 的最终决策函数只由少数的支持向量所确定,计算的复杂性取决于支持向量的 数目,而不是样本空间的维数,这在某种意义上避免了“维数灾难”。 ?少数支持向量决定了最终结果,这不但可以帮助我们抓住关键样本、“剔除”大量冗余 样本,而且注定了该方法不但算法简单,而且具有较好的“鲁棒”性。这种“鲁棒”性主要体现在: ?①增、删非支持向量样本对模型没有影响; ?②支持向量样本集具有一定的鲁棒性; ?③有些成功的应用中,SVM 方法对核的选取不敏感。 SVM 应用 ?近年来SVM 方法已经在图像识别、信号处理和基因图谱识别等方面得到了成功的 应用,显示了它的优势。 ?SVM 通过核函数实现到高维空间的非线性映射,所以适合于解决本质上非线性的分 类、回归和密度函数估计等问题。 ?支持向量方法也为样本分析、因子筛选、信息压缩、知识挖掘和数据修复等提供了 新工具。 SVM训练算法 ?传统的利用标准二次型优化技术解决对偶问题的方法,是SVM训练算法慢及 受到训练样本集规模制约的主要原因。 ?目前已提出了许多解决方法和改进算法,主要是从如何处理大规模样本集的

SVM分类器设计

SVM分类器设计 1.引言 支撑矢量机(SVM)是90年代中期发展起来的基于统计学习理论的一种机器学习方法,通过寻求结构化风险最小来提高学习机泛化能力,实现经验风险和置信范围的最小化,从而达到在统计样本量较少的情况下,亦能获得良好统计规律的目的。SVM分类器在推广性和经验误差两方面能达到平衡,是目前比较盛行的分类器。 1.1 什么是SVM分类器 所谓支持向量机,顾名思义,分为两个部分了解,一什么是支持向量,简单来说,就是支持或者是支撑平面上把两类类别划分开来的超平面的向量点;二这里的“机”是什么意思。“机(machine,机器)”便是一个算法。在机器学习领域,常把一些算法看做是一个机器,如分类机(当然,也叫做分类器),而支持向量机本身便是一种监督式学习的方法它广泛的应用于统计分类以及回归分析中。 SVM的主要思想可以概括为两点:⑴它是针对线性可分情况进行分析;(2)对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能。 1.2 SVM分类器的优点和缺点 优点: (1)由于核函数隐含一个复杂映射,经验误差小,因此针对小样本数据利用支持向量能够完成线性或非线性规划问题;推广性和经验误差平衡。 (2)SVM 的最终决策函数只由靠近边界的少数的支持向量所确定,计算的复杂性取决于支持向量的数目,而不是样本空间的维数,这在某种意义上避免了“维数灾难”。 (3)少数支持向量决定了最终结果,这不但可以帮助我们抓住关键样本、“剔除”大量冗余样本,而且注定了该方法不但算法简单,而且具有较好的“鲁棒”性。这种“鲁棒”性主要体现在:①增、删非支持向量样本对模型没有影响;②支持向量样本集具有一定的鲁棒性; ③有些成功的应用中,SVM 方法对核的选取不敏感 缺点: (1)在训练分类器时 ,SVM的着眼点在于两类的交界部分 ,那些混杂在另一类中的点往往无助于提高分类器的性能 ,反而会大大增加训练器的计算负担 ,同时它们的存在还可能造成过学习 ,使泛化能力减弱 .为了改善支持向量机的泛化能力。 (2)SVM算法对大规模训练样本难以实施。由于SVM是借助二次规划来求解支持向量,而求解二次规划将涉及m阶矩阵的计算(m为样本的个数),当m数目很大时该矩阵的存储和计算将耗费大量的机器内存和运算时间。 (3)用SVM解决多分类问题存在困难。经典的支持向量机算法只给出了二类分类的算法,而在数据挖掘的实际应用中,一般要解决多类的分类问题。可以通过多个二类支持向量机的组合来解决。主要有一对多组合模式、一对一组合模式和SVM决策树;再就是通过构造多个分类器的组合来解决。主要原理是克服SVM固有的缺点,结合其他算法的优势,解决多类问题的分类精度。如:与粗集理论结合,形成一种优势互补的多类问题的组合分类器1.3 SVM分类器当前研究热点 (1)针对大样本数据训练难度问题,对SVM算法的改进。例如J.Platt的SMO算法、T.Joachims的SVM、C.J.C.Burges等的PCGC、张学工的CSVM以及O.L.Mangasarian等的SOR算法。 (2)如何降低边界混杂点(即所谓统计误差导致的“不干净”点)导致的不必要的训练计算负担,增强泛化能力。这种思路聚焦于样本数据预处理的探索,例如NN-SVM。 (3)分类器设计思想之间的融合以及取长补短。例如[2]采样支撑矢量机和最近邻分类相

支持向量机SVM分类算法

支持向量机SVM分类算法 SVM的简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]。 支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力[14](或称泛化能力)。 以上是经常被有关SVM 的学术文献引用的介绍,我来逐一分解并解释一下。 Vapnik是统计机器学习的大牛,这想必都不用说,他出版的《Statistical Learning Theory》是一本完整阐述统计机器学习思想的名著。在该书中详细的论证了统计机器学习之所以区别于传统机器学习的本质,就在于统计机器学习能够精确的给出学习效果,能够解答需要的样本数等等一系列问题。与统计机器学习的精密思维相比,传统的机器学习基本上属于摸着石头过河,用传统的机器学习方法构造分类系统完全成了一种技巧,一个人做的结果可能很好,另一个人差不多的方法做出来却很差,缺乏指导和原则。所谓VC维是对函数类的一种度量,可以简单的理解为问题的复杂程度,VC维越高,一个问题就越复杂。正是因为SVM关注的是VC维,后面我们可以看到,SVM解决问题的时候,和样本的维数是无关的(甚至样本是上万维的都可以,这使得SVM很适合用来解决文本分类的问题,当然,有这样的能力也因为引入了核函数)。 结构风险最小听上去文绉绉,其实说的也无非是下面这回事。 机器学习本质上就是一种对问题真实模型的逼近(我们选择一个我们认为比较好的近似模型,这个近似模型就叫做一个假设),但毫无疑问,真实模型一定是不知道的(如果知道了,我们干吗还要机器学习?直接用真实模型解决问题不就可以了?对吧,哈哈)既然真实模型不知道,那么我们选择的假设与问题真实解之间究竟有多大差距,我们就没法得知。比如说我们认为宇宙诞生于150亿年前的一场大爆炸,这个假设能够描述很多我们观察到的现象,但它与真实的宇宙模型之间还相差多少?谁也说不清,因为我们压根就不知道真实的宇宙模型到底是什么。 这个与问题真实解之间的误差,就叫做风险(更严格的说,误差的累积叫做风险)。我们选择了一个假设之后(更直观点说,我们得到了一个分类器以后),真实误差无从得知,但我们可以用某些可以掌握的量来逼近它。最直观的想法就是使用分类器在样本数据上的分类的结果与真实结果(因为样本是已经标注过的数据,是准确的数据)之间的差值来表示。这个差值叫做经验风险Remp(w)。以前的机器学习方法都把经验风险最小化作为努力的目标,但后来发现很多分类函数能够在样本集上轻易达到100%的正确率,在真实分类时却一塌糊涂(即所谓的推广能力差,或泛化能力差)。此时的情况便是选择了一个足够复杂的分类函数(它的VC维很高),能够精确的记住每一个样本,但对样本之外的数据一律分类错误。回头看看经验风险最小化原则我们就会发现,此原则适用的大前提是经验风险要确实能够逼近真实风险才行(行话叫一致),但实际上能逼近么?答案是不能,因为样本数相对于现实世界要分类的文本数来说简直九牛

基于小生境遗传算法的分类优化方法

基于小生境遗传算法的分类优化方法 李隽颖;楼晓俊 【期刊名称】《计算机应用研究》 【年(卷),期】2012(029)005 【摘要】对于多分类问题,大多是经二分类器组合进行训练的,在分类类别多、特征维数高时,存在识别准确率不高和训练速度较慢的问题.将超球支持向量机应用到多类问题,为每个类建立一个超球体模型,通过多个超球体划分样本空间.采用改进的基于排挤的小生境遗传算法(improved crowding niche genetic algorithm,ICNGA)进行特征选择,为不同的目标类别寻找最优的特征子集,优化超球支持向量机的输入.利用UCI标准数据集的数值实验表明,在分类数据类别较多、特征维数较高时,经过ICNGA特征选择之后的多超球支持向量机的识别准确度更好,非常适合解决类别数多、特征维数高的分类问题.%According to multi-classify problem, the multi-classes classifier constructed by binary classes classifier are usually very slow to be trained. When a large number of categories of data are to be classified, the training work could be very difficult. Hyper-sphere support vector machine (HSSVM) can be extended to solve this multi-classification problem. Each category data trains only one HSSVM, the sample space is divided by multiple optimal hyper-spheres. In order to improve the performance of classifier, this paper used improved crowding niche genetic algorithm (ICNGA) to select features, chose optimal feature subset for different target classes. Using UCI data set of numerical experiment shows that

20.ENVI4.3 支持向量机分类原理、操作及实例分析

ENVI4.3 支持向量机分类原理、操作及实例分析 一、支持向量机算法介绍 1.支持向量机算法的理论背景 支持向量机分类(Support Vector Machine或SVM)是一种建立在统计学习理论(Statistical Learning Theory或SLT)基础上的机器学习方法。 与传统统计学相比,统计学习理论(SLT)是一种专门研究小样本情况下及其学习规律的理论。该理论是建立在一套较坚实的理论基础之上的,为解决有限样本学习问题提供了一个统一的框架。它能将许多现有方法纳入其中,有望帮助解决许多原来难以解决的问题,如神经网络结构选择问题、局部极小点问题等;同时,在这一理论基础上发展了一种新的通用学习方法——支持向量机(SVM),已初步表现出很多优于已有方法的性能。一些学者认为,SLT和SVM正在成为继神经网络研究之后新的研究热点,并将推动机器学习理论和技术的重大发展。 支持向量机方法是建立在统计学习理论的VC维(VC Dimension)理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力。 支持向量机的几个主要优点有: (1)它是专门针对有限样本情况的,其目标是得到现有信息下的最优解而不仅仅是样本数趋于无穷大时的最优值; (2)算法最终将转化成为一个二次型寻优问题,从理论上说,得到的将是全局最优点,解决了在神经网络方法中无法避免的局部极值问题; (3)算法将实际问题通过非线性变换转换到高维的特征空间(Feature Space),在高维空间中构造线性判别函数来实现原空间中的非线性判别函数,特殊性质能保证机器有较 好的推广能力,同时它巧妙地解决了维数问题,其算法复杂度与样本维数无关; 2.支持向量机算法简介 通过学习算法,SVM可以自动寻找那些对分类有较大区分能力的支持向量,由此构造出分类器,可以将类与类之间的间隔最大化,因而有较好的推广性和较高的分类准确率。 最优分类面(超平面)和支持向量

SVM算法推导及其分类的算法实现

SVM算法推导及其分类的算法实现 摘要:本文从线性分类问题开始逐步的叙述支持向量机思想的形成,并提供相应的推导过程。简述核函数的概念,以及kernel在SVM算法中的核心地位。介绍松弛变量引入的SVM算法原因,提出软间隔线性分类法。概括SVM分别在一对一和一对多分类问题中应用。基于SVM在一对多问题中的不足,提出SVM 的改进版本DAG SVM。 Abstract:This article begins with a linear classification problem, Gradually discuss formation of SVM, and their derivation. Description the concept of kernel function, and the core position in SVM algorithm. Describes the reasons for the introduction of slack variables, and propose soft-margin linear classification. Summary the application of SVM in one-to-one and one-to-many linear classification. Based on SVM shortage in one-to-many problems, an improved version which called DAG SVM was put forward. 关键字:SVM、线性分类、核函数、松弛变量、DAG SVM 1. SVM的简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力。 对于SVM的基本特点,小样本,并不是样本的绝对数量少,而是与问题的复杂度比起来,SVM算法要求的样本数是相对比较少的。非线性,是指SVM擅长处理样本数据线性不可分的情况,主要通过松弛变量和核函数实现,是SVM 的精髓。高维模式识别是指样本维数很高,通过SVM建立的分类器却很简洁,只包含落在边界上的支持向量。

电子科技大学DSP作业SVM分类器设计

SVM分类器设计 (控制工程XXXXXXXX) 一、问题表述 对“data3.m”数据,用其中一半的数据采用非线性SVM算法设计分类器并画出决策面,另一半数据用于测试分类器性能。比较不同核函数的结果。(注意讨论算法中参数设置的影响。) 二、方法描述 SVM方法是通过一个非线性映射p,把样本空间映射到一个高维乃至无穷维的特征空间中(Hilbert空间),使得在原来的样本空间中非线性可分的问题转化为在特征空间中的线性可分的问题.简单地说,就是升维和线性化.升维,就是把样本向高维空间做映射,一般情况下这会增加计算的复杂性,甚至会引起“维数灾难”,因而人们很少问津.但是作为分类、回归等问题来说,很可能在低维样本空间无法线性处理的样本集,在高维特征空间中却可以通过一个线性超平面实现线性划分(或回归).一般的升维都会带来计算的复杂化,SVM方法巧妙地解决了这个难题:应用核函数的展开定理,就不需要知道非线性映射的显式表达式;由于是在高维特征空间中建立线性学习机,所以与线性模型相比,不但几乎不增加计算的复杂性,而且在某种程度上避免了“维数灾难这一切要归功于核函数的展开和计算理论. 选择不同的核函数,可以生成不同的SVM,常用的核函数有以下4种: ⑴线性核函数K(x,y)=x·y; ⑵多项式核函数K(x,y)=[(x·y)+1]^d; ⑶径向基函数K(x,y)=exp(-|x-y|^2/d^2) ⑷二层神经网络核函数K(x,y)=tanh(a(x·y)+b). SVM的主要思想可以概括为两点:⑴它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能;Vapnik等人在多年研究统计学习理论基础上对线性分类器提出了另一种设计最佳准则。其原理也从线性可分说起,然后扩展到线性不可分的情况。甚至扩展到使用非线性函数中去,这种分类器被称为支持向量机(Support Vector Machine,简称SVM)。支持向量机的提出有很深的理论背景。 三、算法实现 X =load('data.txt'); n = length(X);%总样本数量 y = X(:,4);%类别标志 X = X(:,1:3); TOL = 0.0001;%精度要求 C = 1;%参数,对损失函数的权重 b = 0;%初始设置截距b Wold = 0;%未更新a时的W(a) Wnew = 0;%更新a后的W(a) for i = 1 : 50%设置类别标志为1或者-1 y(i) = -1;

SVM分类器的原理及应用

SVM分类器的原理及应用 姓名:苏刚学号:1515063004学院:数学与计算机学院 一、SVM分类器的原理 SVM法即支持向量机(Support Vector Machine)法,由Vapnik等人于1995年提出,具 有相对优良的性能指标。该方法是建立在统计学习理论基础上的机器学习方法。通过学习算法,SVM可以自动寻找出那些对分类有较好区分能力的支持向量,由此构造出的分类器可以 最大化类与类的间隔,因而有较好的适应能力和较高的分准率。该方法只需要由各类域的边 界样本的类别来决定最后的分类结果。支持向量机算法的目的在于寻找一个超平面H(d),该 超平面可以将训练集中的数据分开,且与类域边界的沿垂直于该超平面方向的距离最大,故SVM法亦被称为最大边缘(maximum margin)算法。待分样本集中的大部分样本不是支持向量,移去或者减少这些样本对分类结果没有影响,SVM法对小样本情况下的自动分类有着较好的 分类结果. SVM方法是通过一个非线性映射p,把样本空间映射到一个高维乃至无穷维的特征空间中(Hilbert空间),使得在原来的样本空间中非线性可分的问题转化为在特征空间中的线性 可分的问题。简单地说,就是升维和线性化。升维,就是把样本向高维空间做映射,一般情 况下这会增加计算的复杂性,甚至会引起“维数灾难”,因而人们很少问津。但是作为分类、回归等问题来说,很可能在低维样本空间无法线性处理的样本集,在高维特征空间中却可以 通过一个线性超平面实现线性划分(或回归)。一般的升维都会带来计算的复杂化,SVM方 法巧妙地解决了这个难题:应用核函数的展开定理,就不需要知道非线性映射的显式表达式;由于是在高维特征空间中建立线性学习机,所以与线性模型相比,不但几乎不增加计算的复 杂性,而且在某种程度上避免了“维数灾难”。这一切要归功于核函数的展开和计算理论。 选择不同的核函数,可以生成不同的SVM,常用的核函数有以下4种: ⑴线性核函数K(x,y)=x·y; ⑵多项式核函数K(x,y)=[(x·y)+1]^d; ⑶径向基函数K(x,y)=exp(-|x-y|^2/d^2); ⑷二层神经网络核函数K(x,y)=tanh(a(x·y)+b);

SVM分类原理

SVM 的分类原理 SVM 的主要思想可以概括为两点: (1) 它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能; (2) 它基于结构风险最小化理论之上在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界。支持向量机的目标就是要根据结构风险最小化原理,构造一个目标函数将两类模式尽可能地区分开来,通常分为两类情况来讨论, (1) 线性可分,(2) 线性不可分。 1. 1 线性可分情况 在线性可分的情况下,就会存在一个超平面使得训练样本完全分开,该超平面可描述为: w ·x + b = 0 (1) 其中,“·”是点积, w 是n 维向量, b 为偏移量。 最优超平面是使得每一类数据与超平面距离最近的向量与超平面之间的距离最大的这样的平面. 最优超平面可以通过解下面的二次优化问题来获得: 满足约束条件: , i = 1 ,2 ,3 ,......, n. (3) 在特征数目特别大的情况,可以将此二次规划问题转化为其对偶问题: (4) (5) (6)

满足约束条件: (7) 这里是Lagrange 乘子, 是最优超平面的法向量, 是最优超 平面的偏移量,在这类优化问题的求解与分析中, KKT条件将起到很重要的作用,在(7) 式中,其解必须满足: (8) 从式(5) 可知,那些 = 0 的样本对分类没有任何作用,只有那些 > 0 的样本才对分类起作用,这些样本称为支持向量,故最终的分类函数为: (9) 根据f ( x) 的符号来确定X 的归属。 1. 2 线性不可分的情况 对于线性不可分的情况,可以把样本X 映射到一个高维特征空间H,并在此空间中运用原空间的函数来实现内积运算,这样将非线性问题转换成另一空间的线性问题来获得一个样本的归属. 根据泛函的有关理论,只要一种核函数满足Mercer 条件,它就对应某一空间中的内积,因此只要在最优分类面上采用适当的内积函数就可以实现这种线性不可分的分类问题. 此时的目标函数为: (10) 其相应的分类函数为: (11) 1. 3 内积核函数 目前有三类用的较多的内积核函数:第一类是 (12)

相关文档
最新文档