yantubbs-研究生教学用书_结构分析的有限元法与MATLAB程序设计-part3

yantubbs-研究生教学用书_结构分析的有限元法与MATLAB程序设计-part3
yantubbs-研究生教学用书_结构分析的有限元法与MATLAB程序设计-part3

等参数单元的形函数。

按几何关系式和式(

其中

记号

有如下关系式

规则,它们与式中

)求逆,得到

于是按式(

的元素写出为了用的显式,引入矢径及其偏导数的记号如下

的偏导数。根据复合函数求导的

和分别表示

,应变计算公式是

个子矩阵,典型的子矩阵是

单元刚度矩阵可以分成和)定义。

由式(其中常数应力的计算公式是

矩阵,形函数对

下面是计算单元刚度矩阵的函数,其中又调用了计算应变矩阵,

坐标的导数等子程序。为了方便阅读,这里一并列出。

等效结点力则采用

体积力设单位体积力是为

式中

和和

方向的等效结点力分量为零。表面力上作用表面力

设单元的某边界

的等效结点力为

的公式有

的面上进行积分,按照数学分析

的某个边界面上进行的。例如,对于式中曲面积分是在单元上作用分布力

,则在此面上各结点

分别是高斯积分的权系数和高斯点。另外两个

高斯积分法的单元自重的等效结点力为

的负方向,

分阶数时,可以得到多项式积分的精确值。设单元重力的方向为的符号运算功能得到。但是一般可以利用高斯积分法,因为取合适的积当体积力的形式比较简单,如为多项式时,则上式能积出显式,可以利用

,则移置到各结点上的等效结点力

之间的关系,因此

)写成

可以用

(,得到

表示该曲面的外法线

于是式()可以写成

这就是将原来的第一类曲面积分化为第二类曲面积分。例如,对于

面上,由坐标变换式(

,给出

来表示,通过计算和归纳,可以将式(

的面上,相应的计算公式只须在上式右端对

对于及和

将它代入式(,设若单元的某个面上只作用着沿外法线方向荷载方向,则有

同时进行轮换就可得到。

基于实际的考虑,式(

)和式(

)使用时并不方便,因为必须知道

作用在单元的哪一个面来确定积分变量,还需要考虑正负符号。其实根据形函数的特性,即不在某一个面上的结点的形函数在这个面上值为零,因此表面力只对作用面上的结点有贡献。设单元的某一个曲面上作用有分布表面力,

个空间结点组成,该曲面可以用参数方程写成

元的形函数。这里要注意的是,这式(

结点等参数单元的形函数,即由式(个结点也必须如图

等参数单元的结点顺序排列。则表面力

的等效结点力是

它由

式中个结点上

在这

结点

所示的

结点单

)定义,而不是)就是

是和个结点在整体坐标系下的坐标值,而

个结点上的分布力值。

分别是)

)是第一类曲面积分,而(式(是第二类曲面积分。当表面力的分

布形式已知时,就能对这两类曲面积分进行计算。一般情况下,表面力也可以用形函数插值表示,即

式中

和中的被积函数全部被表示成积分变量

和式(现在,式(的导数为

)对参考坐标而整体坐标()则化为

而式(式中

而分布法向力的等效结点力是

多项式时,可利用

此还是采用数值积分为宜。

下面是计算分布压力等效结点力的程序段。

变量

的高斯积分法。

是对应结点上的压力值。计算采用

是定义压力作用面的结点号,

函数,利用高斯积分公式可容易地得到表面力的等效结点力。当被积函数是

的符号运算功能得到结果,但是结果过于复杂,因

温度应力

起的等效结点力

结点等参

个角结点坐标,利用

结点的中间上结点选在边棱的中点或结点单元,则中间结点宜选在离角

计算应力的公式相应地修改为

我们也可以构造更高阶的等参数单元,如结点单元和空间结点的等参数单元,它在每

个棱边上有两个中间结点,在母单元中这两个结点分别安置在棱边长的三分之一处和三分之二处。实际使用时,划分单元应注意边棱的夹角不宜太锐或

太钝,还应使平面结点单元和空间

其邻近处;对于平面

点的三分之一边长处为好。

在实际划分单元时,经常出现棱边全部为直线或大部分为直线的单元,对于一条直线,只须两个端点坐标就能确定,也就是说,不需要中间结点就能确定该直线,特别是直棱折面的六面体,只需

)改

变换形函数,就能确定单元的几何形状。因此,在确定位移模式和确定几何形

状时,可以使用不同结点数的形函数,一般来说,只须把坐标变换式(

写成如下形式

也相应地减少,从而提高了效率。而超参数单元则可以在不增加单元数目的

矩阵的计算量减少,其他有关的计算量是涉及几何形状变换的计算,如,于

)中的即是式(,坐标变换中的形函数单元的几何形状,及

个角结点就可确定

单元,能提高计算效率。例如,对于直边折面的六面体,

。利用亚参数

时,称为超参数单元(

;当

时,称为亚参数单元

;当

时,称为等参数单元(当

是确定单元位移模式所用的结点,显然,不必要求

)中的式(

是相应的形函数。是确定单元几何形状所用的结点数;

式中

曾提出过一个点的积分公情况下更精确地模拟复杂的结构形状。

对于六面体等参数单元的数值积分,

高斯积分同样的精度,该积分公式直接写成一次求和的形式,能达到

式,

所示,定义局部坐

方向的位移为零,在另一条半径边界上,是它的法向位移为零,即所谓的“斜支撑”。如图的边界上

的处理。根据对称性,在受内压的旋转圆简及其有限元模型

图所示。这里要特别强调的是边界条件

块进行有限元分析,单元划分如图

的两个径向剖面从圆筒中划出一

根据问题的对称性,可以取夹角等于密度

。现计算该圆筒的位移和应力分布。

,泊松比

绕中心轴旋转。材料的弹性模量,并以角速度

,承受内压,外径为设厚壁圆筒的内径为

受内压的旋转厚壁圆筒

算例

式中

是第而法,把原来的有限元方程化成式中

由于矩阵转换

章中处理杆件

表示在局部坐标

,它们与整体坐标系的夹角为和标系

。为了处理这种斜约

。设

下的位移分量,则这条边界上的约束条件为束,可以把定义这种斜约束的结点位移进行坐标变换,这与第

系统的局部坐标与整体坐标进行变换的过程非常相似。不同在于杆件系统中对所有结点进行坐标变换,而这里仅对定义斜约束的结点进行坐标变换。设

处定义有斜约束,则可设整体坐标系下和部分局部坐标下的结点位

在结点移列阵

章杆件系统中同样的方

是分块意义上的对角阵,上式可以简写为

个结点斜约束的倾斜角度,则可以用第式中

则有下列转换关系成立

式中

式中和

)时,第分别是原刚度矩阵和结点力列阵的子矩阵。这样,在求解方程(

个结点在斜约束方向的位移分量已经显式地出现在位移列阵

中,因此对它们的约束处理完全可以按照普通的边界条件处理。最后,要注意的是,如果要知道在整体坐标系下的位移,或者计算应力应变时,应使用式(

把位移转换整体坐标系下

下面是处理斜约束的程序段。

个单元就能得到非常精确的结果。表只用

和表

表给出了圆筒的径向位移,并列出了解析解。从表中可以发现给出了径向应力和

周向应力,计算方法是直接用结点的局部坐标代入计算,并取单元平均。从表中可以发现应力的精度比位移的精度要差,尤其在自由表面应力为零处。

圆筒的径向位移(

圆筒的周向应力(圆筒的径向应力(表

给出了横截面(该截面的轴向坐标表

点的为零。在固定端,个方向的位移均为零。程序中采用积分公式计算刚度矩阵,结点应力采用绕结点平均法。

的结果做了

,即距离自由端

)上轴向正应力和竖向剪应力的分布情况,并与解析解

比较。从表上可以看出,有限元的计算精度还是很高的,正应力的精度要高于剪应力,这是因为正应力沿梁高度是线性分布的,而剪应力沿梁宽度是二次抛

物线分布的,后者要求更高阶的位移插值函数。

端部受剪力的圆截面悬臂梁的有限元网格

图方向的位移

的平面上,方向的位移为零,而在的平面上,称性,在所示。根据对

计算,采用根据对称性,取结点空间单元,网格如图,泊松比

,弹性模量,长度设圆形截面直径为图端部受剪力的圆截面悬臂梁

所示,试计算梁的变形和应力。

设有一圆形截面悬臂梁,在自由端圆心处作用一集中剪力

,如

端部受剪力的圆截面悬臂梁

杭州:浙江大学出版社,弹性力学谢贻权,林钟祥,丁皓,

北京:人民教育出版社

版弹性力学(上册)徐芝纶

北京:科学出版社,

微积分和数学分析引论(第二卷)约翰柯朗,

王勖成北京:清华大学出版社,

有限单元法参考文献

轴向正应力和竖向剪应力的分布表

matlab实验十七__牛顿迭代法(可打印修改)

实验十七牛顿迭代法 【实验目的】 1.了解牛顿迭代法的基本概念。 2.了解牛顿迭代法的收敛性和收敛速度。 3.学习、掌握MATLAB软件的有关命令。 【实验内容】 用牛顿迭代法求方程的近似根,误差不超过。 3210 ++-=3 10- x x x 【实验准备】 1.牛顿迭代法原理 2.牛顿迭代法的几何解析 3.牛顿迭代法的收敛性 4.牛顿迭代法的收敛速度 5.迭代过程的加速 6.迭代的MATLAB命令 MATLAB中主要用for,while等控制流命令实现迭代。 【实验重点】 1.牛顿迭代法的算法实现 2.牛顿迭代法收敛性和收敛速度 【实验难点】 1.牛顿迭代法收敛性和收敛速度 【实验方法与步骤】 练习1用牛顿迭代法求方程在x=0.5附近的近似 3210 ++-= x x x

根,误差不超过。 310-牛顿迭代法的迭代函数为 322()1()()321 f x x x x g x x x f x x x ++-=-=-'++相应的MATLAB 代码为 >>clear; >>x=0.5; >>for i=1:3 >>x=x-(x^3+x^2+x-1)/(3*x^2+2*x+1) >>end 可算的迭代数列的前3项0.5455,0.5437,0.5437。经三次迭代,就大大超过了精度要求。 练习2 用牛顿迭代法求方程的近似正实根,由此建2(0)x a a =>立一种求平方根的计算方法。 由计算可知,迭代格式为,在实验12的练习4中1()()2a g x x x =+已经进行了讨论。 【练习与思考】 1.用牛顿迭代法求方程的近似根。 ln 1x x =2.为求出方程的根,在区间[1,2]内使用迭代函数进行310x x --=迭代,纪录迭代数据,问迭代是否收敛?对迭代进行加速,对比加速前的数据,比较加速效果。 3.使用在不动点的泰勒公式,证明牛顿迭代法收敛原理。*x

牛顿插值法原理及应用

牛顿插值法 插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。当插值节点增减时全部插值基函数均要随之变化,这在实际计算中很不方便。为了克服这一缺点,提出了牛顿插值。牛顿插值通过求各阶差商,递推得到的一个公式: f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0 )...(x-xn-1)+Rn(x)。 插值函数 插值函数的概念及相关性质[1] 定义:设连续函数y-f(x) 在区间[a,b]上有定义,已知在n+1个互异的点 x0,x1,…xn上取值分别为y0,y1,…yn (设a≤ x1≤x2……≤xn≤b)。若在函数类中存在以简单函数P(x) ,使得P(xi)=yi,则称P(x) 为f(x)的插值函数. 称x1,x2,…xn 为插值节点,称[a,b]为插值区间。 定理:n次代数插值问题的解存在且唯一。

牛顿插值法C程序 程序框图#include void main() { float x[11],y[11][11],xx,temp,newton; int i,j,n; printf("Newton插值:\n请输入要运算的值:x="); scanf("%f",&xx); printf("请输入插值的次数(n<11):n="); scanf("%d",&n); printf("请输入%d组值:\n",n+1); for(i=0;i

matlab有限元分析实例

MATLAB: MATLAB是美国MathWorks公司出品的商业数学软件,用于数据分析、无线通信、深度学习、图像处理与计算机视觉、信号处理、量化金融与风险管理、机器人,控制系统等领域。 MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室),软件主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式。 MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等。MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。 MATLAB有限元分析与应用:

《MATLAB有限元分析与应用》是2004年4月清华大学出版社出版的图书,作者是卡坦,译者是韩来彬。 内容简介: 《MATLAB有限元分析与应用》特别强调对MATLAB的交互应用,书中的每个示例都以交互的方式求解,使读者很容易就能把MATLAB用于有限分析和应用。另外,《MATLAB有限元分析与应用》还提供了大量免费资源。 《MATLAB有限元分析与应用》采用当今在工程和工程教育方面非常流行的数学软件MATLAB来进行有限元的分析和应用。《MATLAB有限元分析与应用》由简单到复杂,循序渐进地介绍了各种有限元及其分析与应用方法。书中提供了大量取自机械工程、土木工程、航空航天工程和材料科学的示例和习题,具有很高的工程应用价值。

MATLAB代码 解线性方程组的迭代法

解线性方程组的迭代法 1.rs里查森迭代法求线性方程组Ax=b的解 function[x,n]=rs(A,b,x0,eps,M) if(nargin==3) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值elseif(nargin==4) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-A)*x0+b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 2.crs里查森参数迭代法求线性方程组Ax=b的解 function[x,n]=crs(A,b,x0,w,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-w*A)*x0+w*b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x;

if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 3.grs里查森迭代法求线性方程组Ax=b的解 function[x,n]=grs(A,b,x0,W,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1;%前后两次迭代结果误差 %迭代过程 while(tol>eps) x=(I-W*A)*x0+W*b;%迭代公式 n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 4.jacobi雅可比迭代法求线性方程组Ax=b的解 function[x,n]=jacobi(A,b,x0,eps,varargin) if nargin==3 eps=1.0e-6; M=200; elseif nargin<3 error return elseif nargin==5 M=varargin{1}; end D=diag(diag(A));%求A的对角矩阵 L=-tril(A,-1);%求A的下三角阵

matlab实现数值分析报告插值及积分

Matlab实现数值分析插值及积分 摘要: 数值分析(numerical analysis)是研究分析用计算机求解数学计算问题的数值计算方法及其理论的学科,是数学的一个分支,它以数字计算机求解数学问题的理论和方法为研究对象。在实际生产实践中,常常将实际问题转化为数学模型来解决,这个过程就是数学建模。学习数值分析这门课程可以让我们学到很多的数学建模方法。 分别运用matlab数学软件编程来解决插值问题和数值积分问题。题目中的要求是计算差值和积分,对于问题一,可以分别利用朗格朗日插值公式,牛顿插值公式,埃特金逐次线性插值公式来进行编程求解,具体matlab代码见正文。编程求解出来的结果为:=+。 其中Aitken插值计算的结果图如下: 对于问题二,可以分别利用复化梯形公式,复化的辛卜生公式,复化的柯特斯公式编写程序来进行求解,具体matlab代码见正文。编程求解出来的结果为: 0.6932 其中复化梯形公式计算的结果图如下:

问题重述 问题一:已知列表函数 表格 1 分别用拉格朗日,牛顿,埃特金插值方法计算。 问题二:用复化的梯形公式,复化的辛卜生公式,复化的柯特斯公式计算积分,使精度小于5。 问题解决 问题一:插值方法 对于问题一,用三种差值方法:拉格朗日,牛顿,埃特金差值方法来解决。 一、拉格朗日插值法: 拉格朗日插值多项式如下: 首先构造1+n 个插值节点n x x x ,,,10 上的n 插值基函数,对任一点i x 所对应的插值基函数 )(x l i ,由于在所有),,1,1,,1,0(n i i j x j +-=取零值,因此)(x l i 有因子 )())(()(110n i i x x x x x x x x ----+- 。又因)(x l i 是一个次数不超过n 的多项式,所以只 可能相差一个常数因子,固)(x l i 可表示成: )())(()()(110n i i i x x x x x x x x A x l ----=+- 利用1)(=i i x l 得:

高斯-赛德尔迭代法matlab程序

disp('划分为M*M个正方形') M=5 %每行的方格数,改变M可以方便地改变剖分的点数 u=zeros(M+1);%得到一个(M+1)*(M+1)的矩阵 disp('对每个剖分点赋初值,因为迭代次数很高,所以如何赋初值并不重要,故采用对列线性赋值。') disp('对边界内的点赋初值并使用边界条件对边界赋值:') for j=1:M-1 for i=1:M-1 u(i+1,j+1)=100*sin(pi/M*j)/M*(M-i);%对矩阵(即每个刨分点)赋初值 end end for i=1:M+1 u(1,i)=100*sin(pi*(i-1)/M);%使用边界条件对边界赋值 u(1,M+1)=0; end u tic %获取运行时间的起点 disp('迭代次数为N') N=6 %迭代次数,改变N可以方便地改变迭代次数 disp('n为当前迭代次数,u为当前值,结果如下:') for n=1:N for p=2:M i=M+2-p; for j=2:M u(i,j)=0.25*(u(i,j-1)+u(i+1,j)+u(i-1,j)+u(i,j+1));%赛德尔迭代法 end end n %输出n u %输出u end disp('所用的时间:') t=toc %获取算法运行需要的时间 [x,y]=meshgrid(0:1/M:1,0:1/M:1); z=u(1,:); for a=2:M+1 z=[z;u(a,:)];%获取最终迭代的结果,幅值给z,z的值代表该点的点位值 end mesh(x,y,z)%绘制三维视图以便清楚地显示结果 mesh(x,y,z,'FaceColor','white','EdgeColor','black') %绘制三维视图以便清楚地显示结果

lu分解法、列主元高斯法、jacobi迭代法、gaussseidel法的原理及matlab程序

一、实验目的及题目 1.1 实验目的: (1)学会用高斯列主元消去法,LU 分解法,Jacobi 迭代法和Gauss-Seidel 迭代法解线性方程组。 (2)学会用Matlab 编写各种方法求解线性方程组的程序。 1.2 实验题目: 1. 用列主元消去法解方程组: 1241234 123412343421233234x x x x x x x x x x x x x x x ++=??+-+=??--+=-??-++-=? 2. 用LU 分解法解方程组,Ax b =其中 4824012242412120620266216A --?? ?- ?= ? ?-??,4422b ?? ? ?= ?- ?-?? 3. 分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解方程组: 123234 1231234102118311210631125x x x x x x x x x x x x x -+=-??-+=-??-+=??-+-+ =? 二、实验原理、程序框图、程序代码等 2.1实验原理 2.1.1高斯列主元消去法的原理 Gauss 消去法的基本思想是一次用前面的方程消去后面的未知数,从而将方程组化为等价形式: 1111221122222n n n n nn n n b x b x b x g b x b x g b x g +++=??++=????= ? 这个过程就是消元,然后再回代就好了。具体过程如下: 对于1,2, ,1k n =-,若() 0,k kk a ≠依次计算

()() (1)()()(1)()()/,,1, ,k k ik ik kk k k k ij ij ik kj k k k i i ik k m a a a a m a b b m b i j k n ++==-=-=+ 然后将其回代得到: ()() ()()()1/()/,1,2,,1 n n n n nn n k k k k k kj j kk j k x b a x b a x a k n n =+?=??=-=--? ? ∑ 以上是高斯消去。 但是高斯消去法在消元的过程中有可能会出现() 0k kk a =的情况,这时消元就无法进行了,即使主元数() 0,k kk a ≠但是很小时,其做除数,也会导致其他元素数量级的严重增长和舍入误差的扩散。因此,为了减少误差,每次消元选取系数矩阵的某列中绝对值最大的元素作为主元素。然后换行使之变到主元位置上,再进行销元计算。即高斯列主元消去法。 2.1.2直接三角分解法(LU 分解)的原理 先将矩阵A 直接分解为A LU =则求解方程组的问题就等价于求解两个三角形方程组。 直接利用矩阵乘法,得到矩阵的三角分解计算公式为: 1111111 11 1,1,2,,/,2,,,,,1,,,2,3, ()/,1,2, ,i i i i k kj kj km mj m k ik ik im mk kk m u a i n l a u i n u a l u j k k n k n l a l u u i k k n k n -=-===?? ==?? =-=+??=??=-=++≠?? ∑∑且 由上面的式子得到矩阵A 的LU 分解后,求解Ux=y 的计算公式为 11 111,2,3,/()/,1,2, ,1 i i i ij j j n n nn n i i ij j ii j i y b y b l y i n x y u x y u x u i n n -==+=??? =-=?? =??? =-=--?? ∑∑ 以上为LU 分解法。

有限元的MATLAB解法

有限元的MATLAB解法 1.打开MATLAB。 2.输入“pdetool”再回车,会跳出PDE Toolbox的窗口(PDE意为偏微分方程,是partial differential equations的缩写),需要的话可点击Options菜单下Grid命令,打开栅格。 3.完成平面几何模型:在PDE Toolbox的窗口中,点击工具栏下的矩形几何模型进行制作模型,可画矩形R,椭圆E,圆C,然后在Set formula栏进行编辑并(如双脊波导R1+R2+R3改为RI-R2-R3,设定a、b、s/a、d/b的值从而方便下步设定坐标) 用算术运算符将图形对象名称连接起来,若还需要,可进行储存,形成M文件。 4.用左键双击矩形进行坐标设置:将大的矩形left和bottom都设为0,width是矩形波导的X轴的长度,height是矩形波导的y轴的长度,以大的矩形左下角点为原点坐标为参考设置其他矩形坐标。 5.进行边界设置:点击“Boundary”中的“Boundary Mode”,再点击

“Boundary”中的“Specify Boundary Conditions”,选择符合的边界条件,Neumann为诺曼条件,Dirichlet为狄利克雷条件,边界颜色显示为红色。 6.进入PDE模式:点击"PDE"菜单下“PDE Mode”命令,进入PDE 模式,单击“PDE Specification”,设置方程类型,“Elliptic”为椭圆型,“Parabolic”为抛物型,“Hyperbolic”为双曲型,“Eigenmodes”为特征值问题。 7.对模型进行剖分:点击“Mesh”中“Initialize Mesh”进行初次剖分,若要剖的更细,再点击“Refine Mesh”进行网格加密。 8.进行计算:点击“Solve”中“Solve PDE”,解偏微分方程并显示图形解,u值即为Hz或者Ez。 9.单击“Plot”菜单下“Parameters”选项,打开“Plot Selection”对话框。选中Color,Height(3-D plot)和Show mesh三项,然后单击“Plot”按钮,显示三维图形解。 10.如果要画等值线图和矢量场图,单击“Plot”菜单下“Parameters”选项,打开“Plot Selection”对话框。选中Contour和Arrows两项,然后单击Plot按钮,可显示解的等值线图和矢量场图。 11.将计算结果条件和边界导入MATLAB中:点击“Export Solution”,再点击“Mesh”中“Export Mesh”。

MATLAB样例之雅克比迭代法

要求: 下面分别使用雅克比迭代法和高斯-赛德尔迭代法求一个方程组的近似解用的线性方程组是按实验要求给的: 7*x1+x2+2*x3=10 x1+8*x2+2*x3=8 2*x1+2*x2+9*x3=6 雅克比迭代法的matlab代码:(老师写的) A=[7,1,2;1,8,2;2,2,9]; b=[10;8;6]; if(any(diag(A))==0) error('error,pause') end eps=input('误差限eps='); N=input('迭代次数N='); D=diag(diag(A)); B=inv(D)*(D-A); f=inv(D)*b; K=0; x0=zeros(size(b)); while 1 x1=B*x0+f K=K+1; fprintf('第-次迭代的近似解为',K) disp(x1'); if norm(x1-x0,inf)N fprintf('迭代超限') end x0=x1; end 高斯-赛德尔迭代法matlab代码:(自己改的)

A=[7,1,2;1,8,2;2,2,9]; b=[10;8;6]; if(all(diag(A))==0) error('error,pause') end eps=input('误差限eps='); N=input('迭代次数N='); D=diag(diag(A)); B=inv(D)*(D-A); f=inv(D)*b; K=0; x0=zeros(size(b)); x00=x0; while 1 x11=B*x0+f; x00(1,1)=x11(1,1); x12=B*x00+f; x00(2,1)=x12(2,1); x13=B*x00+f; x00(3,1)=x13(3,1); x1=x00 K=K+1; fprintf('第-次迭代的近似解为',K) disp(x1'); if norm(x1-x0,inf)N fprintf('迭代超限') end x0=x1; end

基于Matlab语言的按平面三角形单元划分的结构有限元程序设计模板

基于Matlab语言的按平面三角形单元划分的结构有限元程序设计 专业:建筑与土木工程 班级:建工研12-2 姓名:韩志强 学号: 471220580

基于Matlab语言的按平面三角形单元划分 结构有限元程序设计 一、有限单元发及Matlab语言概述 1. 有限单元法 随着现代工业、生产技术的发展,不断要求设计高质量、高水平的大型、复杂和精密的机械及工程结构。为此目的,人们必须预先通过有效的计算手段,确切的预测即将诞生的机械和工程结构,在未来工作时所发生的应力、应变和位移因此,需要寻求一种简单而又精确的数值分析方法。有限单元法正是适应这种要求而产生和发展起来的一种十分有效的数值计算方法。 有限元法把一个复杂的结构分解成相对简单的“单元”,各单元之间通过结点相互连接。单元内的物理量由单元结点上的物理量按一定的假设内插得到,这样就把一个复杂结构从无限多个自由度简化为有限个单元组成的结构。我们只要分析每个单元的力学特性,然后按照有限元法的规则把这些单元“拼装”成整体,就能够得到整体结构的力学特性。 有限单元法基本步骤如下: (1)结构离散:结构离散就是建立结构的有限元模型,又称为网格划分或单元划分,即将结构离散为由有限个单元组成的有限元模型。在该步骤中,需要根据结构的几何特性、载荷情况等确定单元体内任意一点的位移插值函数。 (2)单元分析:根据弹性力学的几何方程以及物理方程确定单元的刚度矩阵。 (3)整体分析:把各个单元按原来的结构重新连接起来,并在单元刚度矩阵的基础上确定结构的总刚度矩阵,形成如下式所示的整体有限元线性方程: {}[]{}δ F=① K 式中,{}F是载荷矩阵,[]K是整体结构的刚度矩阵,{}δ是节点位移矩阵。 (4)载荷移置:根据静力等效原理,将载荷移置到相应的节点上,形成节点载荷矩阵。 (5)边界条件处理:对式①所示的有限元线性方程进行边界条件处理。 (6)求解线性方程:求解式①所示的有限元线性方程,得到节点的位移。在该步骤中,若有限元模型的节点越多,则线性方程的数量就越多,随之有限元分析的计算量也将越大。 (7)求解单元应力及应变根据求出的节点位移求解单元的应力和应变。

matlab牛顿插值法例题与程序

题目一:多项式插值 某气象观测站在8:00(AM )开始每隔10分钟对天气作如下观测,用三次多项式插值函数(Newton )逼近如下曲线,插值节点数据如上表,并求出9点30分该地区的温度(x=10)。 二、数学原理 假设有n+1个不同的节点及函数在节点上的值(x 0,y 0),……(x n ,y n ),插值多项式有如下形式: )() )(()()()(n 10n 102010n x -x )(x -x x -x x P x x x x x x -??-+??+-++=αααα (1) 其中系数i α(i=0,1,2……n )为特定系数,可由插值样条i i n y x P =) ((i=0,1,2……n )确定。 根据均差的定义,把x 看成[a,b]上的一点,可得 f(x)= f (0x )+f[10x x ,](0x -x ) f[x, 0x ]= f[10x x ,]+f[x,10x x ,] (1x -x ) …… f[x, 0x ,…x 1-n ]= f[x, 0x ,…x n ]+ f[x, 0x ,…x n ](x-x n ) 综合以上式子,把后一式代入前一式,可得到: f(x)= f[0x ]+f[10x x ,](0x -x )+ f[210x x x ,,](0x -x )(1x -x )+ …+ f[x, 0x ,…x n ](0x -x )…(x-x 1-n )+ f[x, 0x ,…x n ,x ]) (x 1n +ω= N n (x )+) (x n R 其中

N n (x )= f[0x ]+f[10x x ,](0x -x )+ f[210x x x ,,](0x -x )(1x -x )+ …+ f[x, 0x ,…x n ](0x -x )…(x-x 1-n ) (2) )(x n R = f(x)- N n (x )= f[x, 0x , (x) n ,x ]) (x 1n +ω (3) ) (x 1n +ω=(0x -x )…(x-x n ) Newton 插值的系数i α(i=0,1,2……n )可以用差商表示。一般有 f k =α[k 10x x x ??,] (k=0,1,2,……,n ) (4) 把(4)代入(1)得到满足插值条件N )() (i i n x f x =(i=0,1,2,……n )的n 次Newton 插值多项式 N n (x )=f (0x )+f[10x x ,](1x -x )+f[210x x x ,,](1x -x )(2x -x )+……+f[n 10x x x ??,](1x -x )(2x -x )…(1-n x -x ). 其中插值余项为: ) ()! () ()()()(x 1n f x N -x f x R 1n 1 n n +++==ωξ ξ介于k 10x x x ??,之间。 三、程序设计 function [y,A,C,L]=newdscg(X,Y,x,M) % y 为对应x 的值,A 为差商表,C 为多项式系数,L 为多项式 % X 为给定节点,Y 为节点值,x 为待求节点 n=length(X); m=length(x); % n 为X 的长度 for t=1:m

二分法、简单迭代法的matlab代码实现

实验一非线性方程的数值解法(一) 信息与计算科学金融崔振威201002034031一、实验目的: 熟悉二分法和简单迭代法的算法实现。 二、实验内容: 教材P40 2.1.5 三、实验要求 1根据实验内容编写二分法和简单迭代法的算法实现 2简单比较分析两种算法的误差 3试构造不同的迭代格式,分析比较其收敛性 (一)、二分法程序: function ef=bisect(fx,xa,xb ,n, delta) % fx是由方程转化的关于x的函数,有fx=0。 % xa解区间上限 % xb解区间下限 % n最多循环步数,防止死循环。 %delta为允许误差 x=xa;fa=eval(fx); x=xb;fb=eval(fx); disp(' [ n xa xb xc fc ]'); for i=1: n xc=(xa+xb)/2;x=xc;fc=eval(fx); X=[i,xa,xb,xc,fc]; disp(X), if fc*fa<0 xb=xc; else xa=xc; end if (xb-xa)

k=0; while abs(x-xO)>eps & k> fplot('[x A5-3*x A3-2*x A2+2]',[-3,3]);grid 得下图: 由上图可得知:方程在[-3,3]区间有根。 (2 )、二分法输出结果 >> f='xA5-3*xA3-2*xA2+2' f = X A5-3*X A3-2*X A2+2 >> bisect(f,-3,3,20,10A(-12)) 2.0000 - 3.0000 0 -1.5000 0.0313

牛顿插值MATLAB算法

MATLAB程序设计期中作业 ——编程实现牛顿插值 成员:刘川(P091712797)签名_____ 汤意(P091712817)签名_____ 王功贺(P091712799)签名_____ 班级:2009信息与计算科学 学院:数学与计算机科学学院 日期:2012年05月02日

牛顿插值的算法描述及程序实现 一:问题说明 在我们的实际应用中,通常需要解决这样的问题,通过一些已知的点及其对应的值,去估算另外一些点的值,这些数据之间近似服从一定的规律,于是,这就引入了插值法的思想。 插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。利用插值基函数很容易得到拉格朗日插值多项式,公式结构紧凑,在理论分析中甚为方便,但当插值节点增减时全部插值基函数均要随之变化,整个公式也将发生变化,这在实际计算中是很不方便的,为了克服这一缺点,提出了牛顿插值。 二:算法分析 newton 插值多项式的表达式如下: 010011()()()()()n n n N x c c x x c x x x x x x -=+-+???+--???- 其中每一项的系数c i 的表达式如下: 12011010 [,,,][,,,] [,,,]i i i i i f x x x f x x x c f x x x x x -???-???=???= - 即为f (x)在点01,,,i x x x ???处的i 阶差商,([]()i i f x f x =,1,2,,i n = ),由差商01[,,,]i f x x x ???的性质可知: () 010 1 [,,,]()i i i j j k j k k j f x x x f x x x ==≠???=-∑∏ 牛顿插值的程序实现方法: 第一步:计算[][][][]001012012,,,,,,,n f x f x x f x x x f x x x x 、、、 、。 第二步:计算牛顿插值多项式中01[,,,]i f x x x ???011()()()i x x x x x x ---???-,1,2,,i n = ,得到n 个多项式。

matlab 迭代法[精品]

matlab 迭代法[精品] 1. 矩阵 122,211,,,,,,,,,A,111A,222, 11,,,,,,,,221,,112,,,, 证明:求解以为系数矩阵线性方程组的Jacobi迭代式收敛的,而A1 Gauss-Seidel方法是发散的;求解以为系数矩阵线性方程组的A2实验名称Gauss-Seidel是收敛的,而Jacobi方法是发散的. 2. 矩阵 1aa,,,,Aaa,1 ,,,,aa1,, (a) 参数取什么值时,矩阵是正定的. a (b) 取什么值时,求以为系数矩阵线性方程组的Jacobi迭代式收aa 敛的. 1、根据迭代收敛性的充分必要条件来判断Jacobi迭代式与Gauss-Seide 迭代式的收敛性,迭代收敛性仅与方程组系数矩阵有关,与右端无关;而且不依赖于初值的选取。实验目的 2、根据矩阵的判断定理求得矩阵元素a的取值,同时根据矩阵线性方程组的Jacobi迭代式收敛的充分条件(严格对角占优)来求a得取值。 1、(1)检验线性方程组的Jacobi迭代式的收敛性: function jacobi(A) D=zeros(3); for i=1:3 D(i,i)=A(i,i); 实验内容end (算法、程B=D^(-1)*(D-A); 序、步骤和k=max(abs(eig(B))) 方法) if k<1

'该线性方程组的Jacobi迭代式是收敛的' else k>=1 '该线性方程组的Jacobi迭代式是发散的' end (2)检验线性方程组的Gauss-Seide迭代式的收敛性: function Gauss(A) D=zeros(3); L=zeros(3); U=zeros(3); for i=1:3 D(i,i)=A(i,i); end L(2:3,1)=A(2:3,1); L(3,2)=A(3,2); U(1,2:3)=A(1,2:3); U(2,3)=A(2,3); B=-(D+L)^(-1)*U; k=max(abs(eig(B))) if k<1 '该线性方程组的Gauss-Seidel迭代式是收敛的' else k>=1 '该线性方程组的Gauss-Seidel迭代式是发散的' end 2、(1)参数取什么值时,矩阵是正定的.(矩阵的特征值全为正) a >> syms a >> A=[1 a a;a 1 a;a a 1]; >> eig(A) ans = 2*a+1 1-a

牛顿插值法的MATLAB综合程序

6.3.5 牛顿插值法的MATLAB 综合程序 求牛顿插值多项式、差商、插值及其误差估计的MATLAB 主程序 function [y,R,A,C,L]=newdscg(X,Y,x,M) n=length(X); m=length(x); for t=1:m z=x(t); A=zeros(n,n);A(:,1)=Y'; s=0.0; p=1.0; q1=1.0; c1=1.0; for j=2:n for i=j:n A(i,j)=(A(i,j-1)- A(i-1,j-1))/(X(i)-X(i-j+1)); end q1=abs(q1*(z-X(j-1)));c1=c1*j; end C=A(n,n);q1=abs(q1*(z-X(n))); for k=(n-1):-1:1 C=conv(C,poly(X(k))); d=length(C);C(d)=C(d)+A(k,k); end y(k)= polyval(C, z); end R=M*q1/c1;L(k,:)=poly2sym(C); 例6.3.6 给出节点数据00.27)00.4(=-f ,00.1)00.0(=f ,00.2)00.1(=f ,00.17)00.2(=f ,作三阶牛顿插值多项式,计算)345.2(-f ,并估计其误差. 解 首先将名为newdscg.m 的程序保存为M 文件,然后在MATLAB 工作窗口输入程序 >> syms M,X=[-4,0,1,2]; Y =[27,1,2,17]; x=-2.345; [y,R,A,C,P]=newdscg(X,Y,x,M) 运行后输出插值y )345.2(-≈f 及其误差限公式R ,三阶牛顿插值多项式P 及其系数向量C ,差商的矩阵A 如下 y = 22.3211 R = 65133/562949953421312*M (即R =2.3503*M ) A= 27.0000 0 0 0 1.0000 -6.5000 0 0 2.0000 1.0000 1.5000 0 17.0000 15.0000 7.0000 0.9167 C = 0.9167 4.2500 -4.1667 1.0000 P = 11/12*x^3+17/4*x^2-25/6*x+1

Matlab-PDE工具箱有限元法求解偏微分方程

在科学技术各领域中,有很多问题都可以归结为偏微分方程问题。在物理专业的力学、热学、电学、光学、近代物理课程中都可遇见偏微分方程。 偏微分方程,再加上边界条件、初始条件构成的数学模型,只有在很特殊情况下才可求得解析解。随着计算机技术的发展,采用数值计算方法,可以得到其数值解。 偏微分方程基本形式 而以上的偏微分方程都能利用PDE工具箱求解。 PDE工具箱 PDE工具箱的使用步骤体现了有限元法求解问题的基本思路,包括如下基本步骤: 1) 建立几何模型 2) 定义边界条件 3) 定义PDE类型和PDE系数 4) 三角形网格划分

5) 有限元求解 6) 解的图形表达 以上步骤充分体现在PDE工具箱的菜单栏和工具栏顺序上,如下 具体实现如下。 打开工具箱 输入pdetool可以打开偏微分方程求解工具箱,如下 首先需要选择应用模式,工具箱根据实际问题的不同提供了很多应用模式,用户可以基于适

当的模式进行建模和分析。 在Options菜单的Application菜单项下可以做选择,如下 或者直接在工具栏上选择,如下 列表框中各应用模式的意义为: ① Generic Scalar:一般标量模式(为默认选项)。 ② Generic System:一般系统模式。 ③ Structural Mech.,Plane Stress:结构力学平面应力。 ④ Structural Mech.,Plane Strain:结构力学平面应变。

⑤ Electrostatics:静电学。 ⑥ Magnetostatics:电磁学。 ⑦ Ac Power Electromagnetics:交流电电磁学。 ⑧ Conductive Media DC:直流导电介质。 ⑨ Heat Tranfer:热传导。 ⑩ Diffusion:扩散。 可以根据自己的具体问题做相应的选择,这里要求解偏微分方程,故使用默认值。此外,对于其他具体的工程应用模式,此工具箱已经发展到了Comsol Multiphysics软件,它提供了更强大的建模、求解功能。 另外,可以在菜单Options下做一些全局的设置,如下 l Grid:显示网格 l Grid Spacing…:控制网格的显示位置 l Snap:建模时捕捉网格节点,建模时可以打开 l Axes Limits…:设置坐标系围 l Axes Equal:同Matlab的命令axes equal命令 建立几何模型 使用菜单Draw的命令或使用工具箱命令可以实现简单几何模型的建立,如下 各项代表的意义分别为

matlab迭代法代码

matlab 迭代法代码 1、%用不动点迭代法求方程x-e A x+4=0的正根与负根,误差限是 10A-6% disp(' 不动点迭代法 '); n0=100; p0=-5; for i=1:n0 p=exp(p0)-4; if abs(p-p0)<=10(6) if p<0 disp('|p-p0|=') disp(abs(p-p0)) disp(' 不动点迭代法求得方程的负根为 :') disp(p); break; else disp(' 不动点迭代法无法求出方程的负根 .') end else p0=p; end end

if i==n0 disp(n0) disp(' 次不动点迭代后无法求出方程的负根') end p1=1.7; for i=1:n0 pp=exp(p1)-4; if abs(pp-p1)<=10(6) if pp>0 disp('|p-p1|=') disp(abs(pp-p1)) disp(' 用不动点迭代法求得方程的正根为 ') disp(pp); else disp(' 用不动点迭代法无法求出方程的正根 '); end break; else p1=pp; end end if i==n0

disp(n0) disp(' 次不动点迭代后无法求出方程的正根 ') end 2、%用牛顿法求方程x-e A x+4=0的正根与负根,误差限是disp(' 牛顿法') n0=80; p0=1; for i=1:n0 p=p0-(p0-exp(p0)+4)/(1-exp(p0)); if abs(p-p0)<=10(6) disp('|p-p0|=') disp(abs(p-p0)) disp(' 用牛顿法求得方程的正根为 ') disp(p); break; else p0=p; end end if i==n0 disp(n0) disp(' 次牛顿迭代后无法求出方程的解 p1=-3; for i=1:n0 p=p1-(p1-exp(p1)+4)/(1-exp(p1)); 10A-6 ') end

均差牛顿插值MATLAB,M文件

%均差牛顿插值 function [ f y f0 ] = newton1( X,Y,x0 ) if nargin<3 error('Requires at least three input arguments.'); end if length(X)==length(Y) n=length(X); else error('length must equal') end syms x s=Y(1); l=1.0; y=zeros(n); y(1:n,1)=Y'; for i=2:n for j=2:i y(i,j)=(y(i,j-1)-y(j-1,j-1))/(X(i)-X(j-1)); if i==j l=l*(x-X(i-1)); s=s+y(i,i)*l; end end end f=simple(s); f0=subs(f,x0); function [ f f0 y] = newton2( X,Y,x0 ) if nargin<3 error('Requires at least three input arguments.'); end if length(X)==length(Y) n=length(X); else error('length must equal') end syms x s=Y(1); l=1.0; y=zeros(n) y(1:n,1)=Y'; for i=2:n for j=2:i y(i,j)=(y(i,j-1)-y(i-1,j-1))/(X(i)-X(i-j+1)); if i==j l=l*(x-X(i-1)); s=s+y(i,i)*l; end end end f=simple(s); f0=subs(f,x0);

【良心出品】不动点迭代法matlab程序

实验四 姓名:木拉丁。尼则木丁班级:信计08-2 学号:20080803405 实验地点:新大机房 实验目的:通过本实验学习利用MATLAB不动点迭代法,抛物线法,斯特芬森迭代法解非线性方程组,及其编程实现,培养编程与上机调试能力。 实验要求:①上机前充分准备,复习有关内容,写出计算步骤,查对程序; ②完成实验后写出完整的实验报告,内容应该包括:所用的算法语言, 算法步骤陈述,变量说明,程序清单,输出计算结果,结果分析等等; ③用编好的程序在Matlab环境中执行。 迭代法 MATLAB程序: function pwxff(f,x0,x1,x2,d,n) f=inline(f); x(1)=x0; x(2)=x1; x(3)=x2; w1=(f(x(2))-f(x(3)))/(x(2)-x(3)); t1=(f(x(1))-f(x(3)))/(x(1)-x(3)); t2=(f(x(1))-f(x(2)))/(x(1)-x(2)); w2=1/(x(1)-x(2))*(t1-t2); w=w1+w2*(x(3)-x(2));

for k=3:n x(k+1)=x(k)-2*f(x(k))/(w+sqrt(w^2-4*f(x(k))*w2)); if abs(x(k+1)-x(k))

相关文档
最新文档