14-3-3proteins and the response toabiotic andbiotic stress

14-3-3proteins and the response toabiotic andbiotic stress
14-3-3proteins and the response toabiotic andbiotic stress

Plant Molecular Biology1031:1031–1039,2002.

?2002Kluwer Academic Publishers.Printed in the Netherlands.

1031 14-3-3proteins and the response to abiotic and biotic stress

Michael R.Roberts1,?,Julio Salinas2and David B.Collinge3

1Department of Biological Sciences,IENS,Lancaster University,Lancaster LA14YQ,UK(?author for correspon-dence;e-mail m.r.roberts@https://www.360docs.net/doc/0e6556909.html,);2Departamento de Biotecnolog′i a,Instituto Nacional de Investigaci′o n y Tecnolog′ia Agraria y Alimentaria(INIA),Carretera de la Coru?a,Km.7,28040Madrid,Spain;3Section for Plant Pathology,Department of Plant Biology,Royal Veterinary and Agricultural University,Thorvaldsensvej40, 1871Frederiksberg C,Copenhagen,Denmark

Received6September2001;accepted in revised form7June2002

Key words:14-3-3protein,abiotic stress,biotic stress,defence responses,plant pathogen,signalling

Abstract

14-3-3proteins function as regulators of a wide range of target proteins in all eukaryotes by effecting direct protein-protein interactions.Primarily,interactions between14-3-3proteins and their targets are mediated by phosphorylation at speci?c sites on the target protein.Hence,interactions with14-3-3s are subject to environmental control through signalling pathways which impact on14-3-3binding sites.Because14-3-3proteins regulate the activities of many proteins involved in signal transduction,there are multiple levels at which14-3-3proteins may play roles in stress responses in higher plants.In this article,we review evidence which implicates14-3-3proteins in responses to environmental,metabolic and nutritional stresses,as well as in defence responses to wounding and pathogen attack.This evidence includes stress-inducible changes in14-3-3gene expression, interactions between14-3-3proteins and signalling proteins and interactions between14-3-3proteins and proteins with defensive functions.

Abbreviations:ABA,abscisic acid;CDPK,calcium-dependent protein kinase/calmodulin domain protein kinase; FC,fusicoccin;H+-ATPase,plasma membrane proton pumping ATPase;HR,hypersensitive response;NR,nitrate reductase

Introduction

Plants growing in nature constantly sense their en-vironment and adapt to changes by using a range of biochemical and molecular mechanisms.They ex-hibit both long-term responses to the physical en-vironment in the form of modi?ed growth patterns and metabolism,and short-term defence responses to counter immediate threats such as pathogen attack.In each case,the appropriate response is the result of the perception of external information and the relay-ing of this information between and within plant cells. The molecular and genetic basis for stress response signalling in plants has been the subject of intensive research over the past decade or so,with major areas for focus including responses to light,temperature, water and salt stress,atmospheric pollutants such as ozone,wounding,herbivory and pathogen infection. Recent reviews of these areas can be found in Bray (1997),de Bruxelles and Roberts(2001),Collinge et al.(2001),Dangl and Jones(2001),Hasegawa et al. (2000),Mackerness(2000),Mullineaux et al.(2000), Srivastava(1999)and Thomashow(1999).

Intriguingly,though these stresses tend to elicit a speci?c?nal response,many of the signalling inter-mediates,such as plant hormones,reactive oxygen species,calcium,etc.,are common to many path-ways.In fact this is not entirely surprising,since the plant must integrate its response to a particular stress within the context of other environmental pressures.

1032

Furthermore,some disparate physical environmental conditions,such as drought,osmotic stress(high salin-ity)and cold,have overlapping physiological effects on the plant.The use of overlapping signalling path-ways allows for modulation of responses via cross-talk between pathways at points of intersection(Knight and Knight,2001).

Because of their role in protein-protein interac-tions,the involvement of14-3-3proteins in plant stress responses has often been suggested,though few well de?ned examples exist.Such roles have been in-ferred from the potential of14-3-3s to regulate both signalling pathways and those proteins involved in the ?nal response.14-3-3proteins could operate in stress responses via one of several mechanisms for which precedents already exist.Most simply,they might di-rectly regulate the activity of individual proteins with either signalling or defensive functions.Alternatively, they could play roles in the formation of multi-protein complexes as a result of the ability of14-3-3s to act as adapters.They could also potentially regulate the expression of stress-inducible genes by regulat-ing the activity and or localisation of transcription factors(see Muslin and Xing,2000).Evidence from animal systems supports the concept of14-3-3pro-teins as regulators of stress responses.For example, the14-3-3σisoform is essential for cell cycle arrest to allow DNA repair after radiation-induced damage, (e.g.Chan et al.,1999)and changes in expression of the14-3-3σgene are associated with several human cancers(Ferguson et al.,2000;Iwata et al.,2000; Suzuki et al.,2000).14-3-3proteins are also known to have an anti-apoptotic function(reviewed by Fu et al., 2000).One important physiological consequence of this is that they are required to protect the heart from pressure overload(Xing et al.,2000).

Plant and animal14-3-3proteins are signi?cantly similar in amino acid sequence(commonly around 50%identity),especially in the conserved ligand-binding groove.Target sequences for14-3-3binding are equally well conserved,such that mammalian Raf-1and plant nitrate reductase for example,carry essentially identical14-3-3binding sites.It is there-fore reasonable to suggest that the biological functions of14-3-3protein-protein interactions might also be conserved between plants and animals.In the case of stress responses,support for such roles comes from observations of changes in14-3-3gene expression during stress responses and from the detection of inter-actions between14-3-3s and proteins with signalling or protective functions.

In this review,we summarise the evidence that plant14-3-3proteins are involved in biotic and abi-otic stress responses and suggest possible targets and mechanisms of action.

Targets for14-3-3proteins in stress regulation

A number of targets for14-3-3proteins have been characterized from eukaryotic systems.These include the motifs RSXpSXP(Muslin et al.,1996),RXSX-pSXP(Andrews et al.,1998),RXF/YpSXP(Yaffe et al.,1997)and YpTV(Fuglsang et al.,1999),where pS and pT represent phosphoserine and phosphothre-onine respectively.Finnie et al.(1999)used the GCG program FINDPATTERNS(Wisconsin Package,Ver-sion8.1-UNIX,Genetics Computer Group)to search for the?rst three of these motifs in SwissProt(Release 34.0:12/96)and NewSwissProt(3/3/99).This study revealed a number of potential target proteins with known or conceivable roles in stress responses and defence in addition to those proteins for which such an interactions have been demonstrated biochemically. The many potential targets for14-3-3proteins identi-?ed include both metabolic targets(e.g.,an enzyme of ethylene biosynthesis,a cytochrome P450,glutathione reductase)and more obvious regulatory targets(e.g., several protein kinases,phosphatase,phospholipase,a leucine zipper).Since14-3-3binding requires phos-phorylation of the target sequence,regulatory interac-tions are likely in many cases to be mediated by the activation of signalling pathways which result in pro-tein phosphorylation.Many stress-responsive protein kinases are known,and a challenge for the future will be to recognize which of their substrates are14-3-3 target sequences.

14-3-3proteins and abiotic stress

For the purposes of this review,we will treat the term abiotic stress in its broadest sense.Hence we will consider insults as severe as gross tissue loss or dam-age,through stresses like?uctuations in temperature or nutrient levels,down to transient metabolic per-turbations caused by,for example,changes in light quality.14-3-3proteins were?rst implicated in abiotic stress responses when their mRNAs were identi?ed in a number of screens for stress-regulated gene ex-pression.Since then,interactions with several14-3-3

1033

target proteins which are also associated with stress re-sponses have been identi?ed,strengthening the appar-ent link between14-3-3function and stress responses. Below,we discuss these examples in the context of speci?c abiotic and biotic challenges. Environmental stress

One of the?rst plant14-3-3genes isolated was iden-ti?ed as a transcript that accumulated in callus and seedlings of rice when exposed to high NaCl con-centration or low temperature(Kidou et al.,1993). Additional evidence connecting14-3-3to salt stress arose from a tobacco gene encoding a14-3-3pro-tein(T14-3-3)that was reported to be down-regulated during salinity adaptation(Chen et al.,1994).Interest-ingly,the levels of the corresponding transcripts were unaffected by direct treatment with NaCl,ABA or eth-ylene.The reduction of T14-3-3mRNA accumulation in salt-adapted tobacco cells was suggested to be part of an adjustment in the perception of the salt stress (Chen et al.,1994).Two genes from Arabidopsis en-coding14-3-3proteins have also been described to be regulated in response to low temperature(Jarillo et al., 1994).The expression of these genes,formerly named RCI1and RCI2(Jarillo et al.,1994)but renamed RCI1A and RCI1B,respectively(Abarca et al.,1999), is induced by cold in a development-independent way, but,in contrast to most cold-inducible genes charac-terized in plants,is not responsive to ABA,NaCl or water stress.The kinetics of RCI1A and RCI1B mRNA accumulation by low temperature is correlated with the increase in freezing tolerance that occurs during the cold acclimation process in Arabidopsis(Jarillo et al.,1994;Abarca et al.,1999),suggesting that these genes may have a role in this adaptive process. Experiments with transgenic plants containing RCI1A-promoter::reporter-gene fusions have shown that low temperature regulates the accumulation of RCI1A tran-scripts at the transcriptional level(López-Cobollo, Fernández-Calvin and Salinas,manuscript in prepa-ration).In Arabidopsis,there are at least10and as many as13genes that are known to be expressed and encode14-3-3isoforms(Wu et al.,1997;DeLille et al.,2001;Sehnke et al.,this issue).Of these genes, only RCI1A and RCI1B,which encode isoforms?and ?,respectively,seem to be induced in response to low temperature(Jarillo,Capel,Martínez-Zapater and Salinas,unpublished results)indicating that different isoforms are differentially regulated and can account for speci?c functions.Unfortunately,the functions of the14-3-3proteins described above,as well as their role in plant responses to cold and salt stresses,still remain unknown.

A redistribution of14-3-3proteins has been de-scribed in sugar beet cells exposed to cold or os-motic stress(Chelysheva et al.,1999;Babakov et al., 2000),constituting another demonstration that they have a role in abiotic stress responses.In both cases, there is an increase in14-3-3protein levels in the plasma membrane fraction,associated with an in-creased amount of H+-ATPase/14-3-3complexes and enhanced ATPase activity.It is now clear that14-3-3 proteins activate the H+-ATPase by interaction with its regulatory C-terminus in a phosphorylation-dependent manner(see Bunney et al.,this issue).Thus,it ap-pears that under low temperature and high osmolarity conditions,14-3-3proteins interact with the autoin-hibitory C-terminal domain of the plasma membrane H+-ATPase activating the proton pump that is crucial for the protective system plants have developed against external adverse in?uences(Serrano,1989).Although not strictly a stress response,the blue-light activa-tion of the plasma membrane H+-ATPase in stomatal guard cells is worthy of mention as a well charac-terised example of the regulation of plant physiology by14-3-3proteins.Work by Kinoshita and Shimazaki (1999)demonstrated blue-light-dependent phosphory-lation of the C-terminus of the H+-ATPase,resulting in14-3-3protein binding and proton pump activa-tion.The resulting membrane hyperpolarisation leads to K+in?ux,water uptake and thus stomatal opening. Interestingly,subsequent work has indicated that spe-ci?c14-3-3isoforms are responsible for this response in Vicia faba guard cells(Emi et al.,2001).

Outward-rectifying K+channels,which have been found in all plant cell types tested so far,constitute a second class of plasma membrane ion transport pro-tein potentially involved in abiotic stress responses that have been identi?ed as14-3-3binding proteins.In whole-cell patch-clamp experiments,the tomato14-3-3isoforms TFT4and TFT7were shown to modulate outward-rectifying K+channels in tomato suspension cells(Booij et al.,1999).As a consequence,the steady-state outward K+current increases two-fold in a cytoplasmic-ATP independent way.An essen-tial function of outward-rectifying K+channels is to reset the membrane potential,which is important, for instance,upon depolarisation of the membrane potential caused by changes in the external environ-ment.In fact,as we will discuss below,cold,drought and other environmental stresses open calcium chan-

1034

nels at the plasma membrane(Knight et al.,1991; Knight et al.,1997).The resulting inward calcium cur-rent depolarises the plasma membrane(Minorsky and Spanswick,1989)while also increasing cytoplasmic calcium concentration which furthers the depolarisa-tion(Lewis et al.,1997).The report by Booij et al. (1999)implies that in addition to H+-ATPase activa-tion,increases in cellular14-3-3concentration pro-duced in response to several abiotic stresses can also alter K+transport at the plasma membrane,restoring the membrane potential after stress situations.

As well as ion transport proteins,other factors with potential roles in abiotic stress responses have also been identi?ed as targets of14-3-3proteins.A calcium-dependent protein kinase(CDPK)isoform from Arabidopsis,CPK-1,has been reported to be bound by Arabidopsis14-3-3isoformsω,ψand , its calcium-dependent activity being stimulated almost two-fold(Camoni et al.,1998).CDPKs constitute a unique family of plant kinases which are de?ned by a C-terminal calmodulin-like regulatory domain and have been shown to be involved in stress signalling. In fact,calcium is an important second messenger in multiple signal transduction pathways in plants, and transient increases in cytosolic concentration have been shown to occur in response to different abiotic stresses,including low temperature,drought or high salt(Knight et al.,1991,1997).To elicit responses, calcium transients need to be ef?ciently linked to a protein phosphorylation signalling cascade,which is usually directly done via CDPKs(Roberts and Har-mon,1992).The results obtained by Camoni and co-workers with CPK-1raise the possibility that increases in cellular14-3-3proteins such as may result from inducible gene expression under different adverse en-vironmental conditions can contribute to the activation of CDPK signal transduction pathways in plants and induce the corresponding adaptive responses.

Protein-protein interactions between14-3-3and two further Arabidopsis proteins involved in de-fence have been identi?ed using the yeast two-hybrid system(Zhang et al.,1997a;1997b).One of these,caffeic acid/5-hydroxyferulic acid O-methyltransferase(OMT1)is an enzyme of phenyl-propanoid metabolism.Products of this biosynthetic pathway are implicated in defense against wounding, pathogens and ultra violet light(Dixon and Paiva, 1995).The second two-hybrid interacting protein identi?ed was an ascorbate peroxidase,an enzyme involved in protection against oxidative stress.More recently,Bunney et al.(2001)demonstrated that14-3-3proteins regulate the activity of mitochondrial and chloroplast F0F1ATP synthases via an interaction with the F1β-subunit.Phosphorylation-dependent binding of14-3-3to these ATP synthase complexes results in inhibition of activity.The authors suggest that14-3-3s provide a mechanism for regulation of ATP synthase activity in response to light/dark transitions,anoxia in roots and changes in nutrient supply.

Metabolism/nutrient stress

Plant cell metabolism is an area where there is more comprehensive evidence for regulation by14-3-3pro-teins,including responses to environmental condi-tions.Powerful af?nity puri?cation techniques de-veloped by MacKintosh and co-workers,coupled to mass spectrometry,allowed the classi?cation of nu-merous14-3-3interacting proteins from plant cells (Moorhead et al.,1999;Cotelle et al.,2000).Inter-estingly,many of these proteins were identi?ed as key enzymes of primary metabolism,such as nitrate re-ductase(NR),sucrose phosphate synthase,glutamine synthase and glyceraldehyde-3-phosphate dehydroge-nase,along with regulators of these enzymes,such as a CDPK.The interaction between14-3-3and NR is well characterised,with14-3-3binding to and inactivating NR in a light-dependent manner(see Huber et al., this issue,for further details).Signi?cantly,the under-standing of the14-3-3/NR interaction and those with other proteins was extended by recent studies of the regulation of these interactions under nutrient stress (Cotelle et al.,2000).Using14-3-3overlay assays and immunodetection of individual target proteins,it was demonstrated that following sugar starvation,the ability of target proteins to bind14-3-3was lost and that as a consequence,they were subject to targeted proteolysis.The role of14-3-3protein interactions with metabolic enzymes thus appears to be to main-tain those enzymes in a particular(active)state in the healthy cell.The response to sugar starvation appears to be mediated by changes in the ATP/AMP ratio, which is an indicator of the energy status of the cell. 14-3-3proteins therefore appear to have the ability to co-ordinate cells metabolic responses to nutrient stress by regulating the activity of key enzymes. Herbivory and wound stress

Tissue damage caused by mechanical wounding or in-sect chewing is another stress which results in changes in14-3-3gene expression.14-3-3transcripts from

1035

Figure1.Northern blot analysis demonstrating differential expres-sion of tomato14-3-3genes during abiotic and biotic stress re-sponses.A.Response to wounding.RNA was extracted at the times shown after crushing wounds to leaves and blots probed to show mRNA levels for isoforms TFT4and TFT10,which are induced and repressed respectively.B.Pathogen resistance response.RNA was extracted from leaves of plants carrying the Cf9resistance gene at the times shown after elicitation with Cladosporium fulvum Avr9 peptide.Blots were probed to show mRNA levels of isoforms TFT1, TFT4and TFT6(Roberts and Bowles,1999).Expression of TFT4 is maximal early in the response,coinciding with the end of the oxidative burst(OX).TFT6is expressed during the middle of the time course,coinciding with the period of ethylene and salicylic acid biosynthesis(C2H4&SA).TFT1is expressed maximally to-wards the end of the time course,coinciding with the appearance of a visible hypersensitive response(HR).

white spruce and hybrid poplar trees have been iden-ti?ed which are up-regulated after wounding or by treatment with chitosan or jasmonic acid,elicitors of wound-responsive gene expression(Lapointe et al., 2001a,b).In tomato,different members of the14-3-3 gene family display differing responses to wound-ing.While most genes are unaffected by mechanical wounding,some genes are down-regulated whilst oth-ers show increased mRNA levels(e.g.Figure1;G.de Bruxelles and M.R.Roberts,unpublished data).These observations suggest possible roles for speci?c14-3-3protein isoforms in wound response signalling or the regulation of defensive proteins.

As described above,the regulation of the plasma membrane H+-ATPase is one area which seems to be a target for regulation by14-3-3proteins dur-ing stress.In relation to wound stress,some years ago it was found that application of fusicoccin(FC) to tomato plants ef?ciently inhibited the induction of wound responsive gene expression(Doherty and Bowles,1990).It is now known that as a result of its ability to activate the H+-ATPase and hyper-polarize the plasma membrane,FC inhibits wound gene expression in response to wounding,oligosac-charides and the peptide systemin,which all cause plasma membrane depolarisation in the absence of FC(Messiaen and Van Cutsem,1994;Schaller and Oecking,1999;Schaller and Frasson,2001; D.J. Bowles,personal communication).Furthermore,in-hibition of the H+-ATPase by pharmacological agents induces the expression of wound-responsive genes in the absence of wounding or elicitors(Schaller and Oecking,1999;Schaller and Frasson,2001).On the basis of these data,the authors suggested that the H+-ATPase might be an important early component of wound signalling.However,the same logic cannot be applied to pathogen response signalling,since FC ac-tually enhances the expression of pathogen-responsive genes upon elicitor treatments which also normally result in plasma membrane depolarisation(Roberts and Bowles,1999),and is able to induce PR gene expression when applied alone(Roberts and Bowles, 1999;Schaller and Oecking,1999).Hence two dif-ferent responses which are both associated with initial plasma membrane depolarisations are affected by FC in opposing ways.

Plant-pathogen interactions

The defences of plants against pathogens are particu-larly complex since they do not re?ect an adaptation to physical stress alone but the result of aeons of co-evolution of many diverse types of pathogenic or-ganisms with their hosts.The nature and regulation of these stresses has been reviewed regularly(see, for example,Collinge et al.(2001)and Dangl and Jones(2001)for recent reviews).One of the earli-est reports of a14-3-3protein in a plant resulted from a subtractive cDNA library screen for transcripts accumulating in barley leaves after inoculation with the non-host powdery mildew fungus,Blumeria(syn.

1036

Erysiphe)graminis f.sp.tritici(Smedegaard-Petersen et al.,1992;Brandt et al.,1992;Thordal-Christensen et al.,1992).The transcript for the14-3-3protein was seen to accumulate early,though weakly,in the de-fence response concomitantly with a number of other defence-related transcripts(encoding pathogenesis-related proteins and peroxidase among others).In contrast to other interactions,no difference in the ac-cumulation of14-3-3transcripts was noted between compatible and incompatible interactions with the bar-ley powdery mildew fungus(Blumeria graminis f.sp hordei).This suggests that the transcript accumula-tion is associated with the penetration stage.Transcript and protein accumulation was most marked in the epidermis of the infected leaves,and levels in the mes-ophyll were essentially unaffected(Gregersen et al., 1997;Finnie et al.2002).Several observations sug-gest that14-3-3proteins have a role in this defence response through regulating the proton pump(H+-ATPase)to activate the hypersensitive response:the pH drops under epidermal tissue undergoing a hy-persensitive response(HR),the HR is stimulated by fusicoccin and treatment with acidic buffer and is sup-pressed by more alkaline buffer(Zhou et al.,2000). Furthermore,fusicoccin-binding activity of an epi-dermal microsomal fraction increases upon pathogen attack,and a100kDa protein which co-migrates with the H+-ATPase accumulates and binds14-3-3proteins (Finnie et al.,2002).

A different functional role for14-3-3proteins during plant pathogen resistance reponses was indi-cated following characterisation of the Arabidopsis AKR2gene(Yan et al.,2002).The AKR2protein was initially identi?ed in a yeast two-hybrid screen as a14-3-3-interacting protein.Subsequently,an-tisense expression in transgenic plants showed that AKR2negatively regulates a number of pathogen re-sistance responses.Antisense AKR2plants developed spontaneous HR-like lesions and exhibited increased H2O2generation and expression of defence-related transcripts.These phenomena were associated with in-creased resistance to a bacterial pathogen.As yet,the role of the AKR2/14-3-3interaction is not understood.

As compared with the situation in the bar-ley/powdery mildew interaction,a more complex pat-tern of14-3-3gene expression has been observed in a model pathogen resistance response in tomato. Roberts and Bowles(1999)examined the expression of ten14-3-3genes from tomato after challenge of re-sistant or susceptible plants with the avirulence elicitor Avr9from the fungal pathogen Cladosporium fulvum.Of the ten genes examined,three showed increased expression during an incompatible response elicited by Avr9,each with a different temporal pro?le of transcript accumulation(Roberts and Bowles,1999). These results are summarized in Figure1,where the temporal pattern of mRNA levels are related to the ma-jor events occurring as part of the resistance response. The patterns of14-3-3gene expression in the intact pathosystem have not yet been assessed.As yet,there is no evidence for differential expression of barley14-3-3isoforms in response to powdery mildew infection (C.H.Andersen,C.S.Finnie,P.L.Gregersen and D.B. Collinge,unpublished).

The accumulation of a14-3-3transcript is also in-duced during a race-speci?c HR of soybean(Glycine max)inoculated with Pseudomonas syringae pv. glycinea(Seehaus and Tenhaken,1998)and in cot-ton(Gossypium hirsutum)roots inoculated with the wilt pathogen Verticillium dahliae(Hill et al.,1999). In both studies,14-3-3transcripts were identi?ed along with other defence-related transcripts.In soy-bean,chalcone isomerase,ubiquitin,‘enhancer of rudimentary’(a protein implicated in protein-protein interactions;Gelsthorpe et al.,1997),glucose-6-phosphate dehydrogenase and a putative NBS-LRR resistance gene were identi?ed by differential display and their induction con?rmed by northern blotting in tissue undergoing HR.In cotton,differential screening of a cDNA library yielded ten classes of transcript, and northern analysis con?rmed their accumulation following infection.Some of these(e.g.,phenylala-nine ammonia-lyase and PR-10)represent well-known defence-related genes.Others have not previously been associated with defence pathogen attack but may be induced by pathogen as part of the pathogenicity process(e.g.,glucose-6-phosphate/phosphate translo-cator,dTDP-glucose4-6-dehydratase).As with the barley-powdery mildew study,the amount of tran-script accumulating in these interactions is not greatly elevated compared to uninoculated tissues.This is not unusual for regulatory defence-related transcripts.For instance,the Npr1transcript only accumulates about two-fold in Arabidopsis after pathogen attack,yet a two-fold constitutive elevation of the transcript results in the up-regulation of a number of antimicrobial pro-teins and enhanced resistance to several pathogens (Cao et al.,1998).

Interestingly,a region of chromosome4AL of wheat(Triticum aestivum)containing14-3-3and ox-alate oxidase genes is associated with a quantitative resistance marker(QTL)against two fungal diseases,

1037

tan spot(Pyrenophora tritici-repentis)and leaf rust (Puccinia recondita f.sp.tritici)(Faris et al.,1999). The signi?cance of this remains unknown.

Our understanding of the signi?cance of14-3-3 proteins in the regulation of the defence response or indeed in the pathogenicity process is still in its in-fancy.It is now clear that14-3-3proteins accumulate in interactions with bacteria and both biotrophic and necrotrophic fungal pathogens.In the case of bacteria, the accumulation has as yet only been observed in an incompatible interaction where a successful defence (as a hypersensitive response has been observed.In the case of fungi,14-3-3proteins accumulate in both susceptible and resistant plants.In the barley-powdery mildew system,it is clear that14-3-3proteins have more than one target and it is highly probable that the H+-ATPase is stimulated in the defence response by 14-3-3proteins.

In the pathogen response as in other stress re-sponses,many targets for14-3-3proteins undoubtedly remain to be identi?ed.Furthermore,it is notable that very few binding motifs have been identi?ed in target proteins from plants compared with work in animal systems.Importantly,the biological signi?cance of the regulation by14-3-3proteins of targets known and as yet unknown remains to be determined in the vast ma-jority of cases.How this will be achieved will prove to be the key challenge for future investigations because of the existence of multiple14-3-3isoforms and the even greater numbers of target proteins present in plant cells at any one time.The study of plants in which individual14-3-3isoforms have been suppressed or over-expressed may be helpful(e.g.see Wilczynski et al.,1998;Sehnke et al.,2001).However,it is more likely that for each individual case,it will be neces-sary to map the precise sites of14-3-3interaction and manipulate these sites in individual target proteins in order to fully understand the functional signi?cance of this ubiquitous class of protein-protein interaction. Acknowledgements

M.R.R.is grateful to the Royal Society and the EC 4th Framework programme for?nancial support for his research on14-3-3proteins.Funding in J.S.’s lab-oratory comes from the Comisión Interministerial de Ciencia y Tecnología,Spain(grant BIO98-0189)and the EC(grant QLK3-CT-2000-00328).14-3-3work in D.B.C.’s laboratory has been supported by the EC4th Framework CRAFTT(Central Role in Adaptation of Fourteen Three Three proteins)project BIO4-CT97-2275DG12-SSMI,several KVL PhD stipends and a Frame Programme grant‘Molecular Whole-Plant Physiology’from the Danish Veterinary and Agricul-tural Research Council,S.J.V.F.

References

Abarca,D.,Madueno,F.,Martinez-Zapater,J.M.and Salinas,J.

1999.Dimerization of Arabidopsis14-3-3proteins:structural re-quirements within the N-terminal domain and effect of calcium.

FEBS Lett.462:377–382.

Andrews,R.K.,Harris,S.J.,McNally,T.and Berndt,M.C.

1998.Binding of puri?ed14-3-3signaling protein to discrete amino acid sequences within the cytoplasmic domain of the platelet membrane glycoprotein Ib-IX-V complex.Biochemistry 37:638–647.

Babakov, A.V.,Chelysheva,V.V.,Klychnikov,O.I.,Zorinyanz, S.E.,Tro?mova,M.S.and de Boer,A.H.2000.Involvement of 14-3-3proteins in the osmotic regulation of H+-ATPase in plant plasma membranes.Planta211:446–448.

Booij,P.P.,Roberts,M.R.,V ogelzang,S.A.,Kraayenhof,R.and de Boer,A.H.1999.14-3-3proteins double the number of outward-rectifying K+channels available for activation in tomato cells.

Plant J.20:673–683.

Brandt,J.,Thordal-Christensen,H.,Vad,K.,Gregersen,P.L.and Collinge,D.B.1992.A pathogen-induced gene of barley encodes

a protein showing high similarity to a protein kinase regulator.

Plant J.2:815–820.

Bray,E.A.1997.Plant responses to water de?cit.Trends Plant Sci.

2:48–54.

Bunney,T.D.,van Walraven,H.S.and de Boer,A.H.2001.14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP https://www.360docs.net/doc/0e6556909.html,A98:4249–4254. Camoni,L.,Harper,J.F.and Palmgren,M.G.1998.14-3-3pro-teins activate a plant calcium-dependent protein kinase(CDPK).

FEBS Lett.430:381–384.

Cao,H.,Li,X.and Dong,X.N.1998.Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired https://www.360docs.net/doc/0e6556909.html,A 95:6531–6536.

Chan,T.A.,Hermeking,H.,Lengauer,C.,Kinzler,K.W.and V ogel-stein,B.1999.14-3-3óis required to prevent mitotic catastrophe after DNA damage.Nature401:616–620.

Chelysheva,V.V.,Smolenskaya,I.N.,Tro?mova,M.C.,Babakov,

A.V.and Muromtsev,G.S.1999.Role of the14-3-3proteins in

the regulation of H+-ATPase activity in the plasma membrane of suspension-cultured sugar beet cells under cold stress.FEBS Lett.456:22–26.

Chen,Z.,Fu,H.,Liu,D.,Chang,P.F.,Narasimhan,M.,Ferl, R.,Hasegawa,P.M.and Bressan,R.A.1994.A NaCl-regulated plant gene encoding a brain protein homology that activates ADP ribosyltransferase and inhibits protein kinase C.Plant J.6: 729–740.

Collinge, D.B.,Borch,J.,Madriz-Orde?ana,K.and Newman, M.-A.2001.The responses of plants to pathogens.In:M.J.

Hawkesford and P.Buchner(Eds)Molecular Tools for the Assessment of Plant Adaptation to the Environment,Kluwer Academic Publishers,Dordrecht,Netherlands,pp.131–158. Cotelle,V.,Meek,S.E.M.,Provan,F.,Milne,F.C.,Morrice,N.

and MacKintosh,C.2000.14-3-3s regulate global cleavage of

1038

their diverse binding partners in sugar-starved Arabidopsis cells.

EMBO J.19:2869–2876.

Dangl,J.and Jones,J.D.G.2001.Plant pathogens and integrated defence responses to infection.Nature411:833.

de Bruxelles,G.and Roberts,M.R.2001.Signals regulating multi-ple responses to wounding and herbivores.Crit.Rev.Plant Sci.

20:487–521.

DeLille,J.M.,Sehnke,P.C.and Ferl,R.J.2001.The Arabidopsis 14-3-3family of signaling regulators.Plant Physiol.126:35–38. Dixon,R.A.and Paiva,N.L.1995.Stress-induced phenylpropanoid metabolism.Plant Cell7:1085–1097.

Doherty,H.M.and Bowles,D.J.1990.The role of pH and ion-transport in oligosaccharide-induced proteinase-inhibitor accu-mulation in tomato plants.Plant Cell Env.13:851–855.

Emi,T.,Kinoshita,T.and Shimazaki,K.2001.Speci?c binding of vf14-3-3a isoform to the plasma membrane H+-ATPase in response to blue light and fusicoccin in guard cells of broad bean.

Plant Physiol.125:1115–1125.

Faris,J.D.,Li,W.L.,Liu,D.J.,Chen,P.D.and Gill,B.S.1999.Can-didate gene analysis of quantitative disease resistance in wheat.

Theor.Appl.Genet.98:219–225.

Ferguson,A.T.,Evron,E.,Umbricht,C.B.,Pandita,T.K.,Chan, T.A.,Hermeking,H.,Marks,J.R.,Lambers,A.R.,Futreal,P.A., Stampfer,M.R.and Sukumar,S.2000.High frequency of hyper-methylation at the14-3-3ólocus leads to gene silencing in breast https://www.360docs.net/doc/0e6556909.html,A97:6049–6054.

Finnie, C.,Borch,J.and Collinge, D.B.1999.14-3-3proteins: eukaryotic regulatory proteins with many functions.Plant Mol.

Biol.40:545–554.

Finnie,C.,Andersen,C.H.,Borch,J.,Gjetting,S.,Christensen,

A.B.,de Boer,A.H.,Thordal-Christensen,H.and Collinge,D.B.

2002.Do14-3-3proteins and plasma membrane H+-ATPases interact in the barley epidermis in response to the barley powdery mildew fungus?Plant Mol.Biol.49:137–147.

Fu,H.,Subramanian,R.R.and Masters,S.C.2000.14-3-3pro-teins:structure,function,and regulation.Annu.Rev.Pharmacol.

Toxicol.40:617–647.

Gelsthorpe,M.,Pulumati,M.,McCallum,C.,Dang-Vu,K.and Tsubota,S.I.1997.The putative cell cycle gene,enhancer of rudimentary,encodes a highly conserved protein found in plants and animals.Gene186:189–195.

Gregersen,P.L.,Thordal-Christensen,H.,Forster,H.and Collinge,

D.B.1997.Differential gene transcript accumulation in barley

leaf epidermis and mesophyll in response to attack by Blume-ria graminis f.sp.hordei(syn.Erysiphe graminis f.sp.hordei).

Physiol.Mol.Plant Path.51:85–97.

Hasegawa,P.M.,Bressan,R.A.,Zhu,J.K.and Bohnert,H.J.2000.

Plant cellular and molecular responses to high salinity.Annu.

Rev.Plant Physiol.Plant Mol.Biol.51:463–499.

Hill,M.K.,Lyon,K.J.and Lyon,B.R.1999.Identi?cation of disease response genes expressed in Gossypium hirsutum upon infection with the wilt pathogen Verticillium dahliae.Plant Mol.Biol.40: 289–296.

Iwata,N.,Yamamoto,H.,Sasaki,S.,Itoh,F.,Suzuki,H.,Kikuchi, T.,Kaneto,H.,Iku,S.,Ozeki,I.,Karino,Y.,Satoh,T.,Toyota, J.,Satoh,M.,Endo,T.and Imai,K.2000.Frequent hypermethy-lation of CpG islands and loss of expression of the14-3-3σgene in human hepatocellular carcinoma.Oncogene19:5298–5302. Jarillo,J.A.,Capel,J.,Levya,A.,Martinez-Zapater,J.M.and Salinas,J.1994.Two related low-temperature-inducible genes of Arabidopsis encode proteins showing high homology to14-3-3proteins,a family of putative kinase regulators.Plant Mol.

Biol.25:693–704.Kidou,S.,Umeda,M.,Kato,A.and Uchimiya,H.1993.Isolation and characterization of a rice cDNA similar to the bovine brain-speci?c14-3-3protein gene.Plant Mol.Biol.21:191–194. Kinoshita,T.and Shimazaki,K.1999.Blue light activates the plasma membrane H+-ATPase by phosphorylation of the C-terminus in stomatal guard cells.EMBO J.18:5548–5558. Knight,H.and Knight,M.R.2001.Abiotic stress signalling path-ways:speci?city and cross talk.Trends Plant Sci.6:262–267. Knight,M.R.,Campbell,A.K.,Smith,S.M.and Trewavas,A.J.

1991.Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium.Nature352: 524–526.

Knight,H.,Trewavas, A.J.and Knight,M.R.1997.Calcium signalling in Arabidopsis thaliana responding to drought and salinity.Plant J.12:1067–1078.

Lapointe,G.,Luckevich,M.D.and Seguin,A.2001a.Investigation on the induction of14-3-3in white spruce.Plant Cell Rep.20: 79–84.

Lapointe,G.,Luckevich,M.D.,Cloutier,M.and Seguin,A.2001b.

14-3-3gene family in hybrid poplar and its involvement in tree defence against pathogens.J.Exp.Bot.52:1331–1338. Lewis,B.D.,Karlin-Neumann,G.,Davis,R.W.and Spalding,E.P.

1997.Ca2+-activated anion channels and membrane depolarisa-tions induced by blue light and cold in Arabidopsis seedlings.

Plant Physiol.114:1327–1334.

Mackerness,S.A.H.2000.Plant responses to ultraviolet-B(UV-B: 280–320nm)stress:what are the key regulators?Plant Growth Regul.32:27–39.

Messiaen,J.and van Cutsem,P.1994.Pectic signal transduction in carrot cells-membrane,cytosolic and nuclear responses induced by oligogalacturonides.Plant Cell Physiol.35:677–689. Minorsky,P.V.and Spanswick,R.M.1989.Electrophysiological ev-idence for a role for calcium in temperature sensing by roots of cucumber seedlings.Plant Cell Envir.12:137–143. Moorhead,G.,Douglas,P.,Cotelle,V.,Harthill,J.,Morrice,N., Meek,S.,Deiting,U.,Stitt,M.,Scarabel,M.,Aitken,A.and MacKintosh,C.1999.Phosphorylation-dependent interactions between enzymes of plant metabolism and14-3-3proteins.Plant J.18:1–12.

Mullineaux,P.,Ball,L.,Escobar,C.,Karpinska,B.,Creissen,G.

and Karpinski,S.2000.Are diverse signalling pathways inte-grated in the regulation of Arabidopsis antioxidant defence gene expression in response to excess excitation energy?Phil.Trans.

R.Soc.Ser.B:Biol.Sci.355:1531–1540.

Muslin,A.J.and Xing H.2000.14-3-3proteins:regulation of sub-cellular localization by molecular interference.Cell Signal.12: 703–709.

Muslin,A.J.,Tanner,J.W.,Allen,P.M.and Shaw,A.S.1996.In-teraction of14-3-3with signalling proteins is mediated by the recognition of phosphoserine.Cell84:889–897.

Roberts,M.R.and Bowles, D.J.1999.Fusicoccin,14-3-3pro-teins,and defense responses in tomato plants.Plant Physiol.119: 1243–1250.

Roberts,D.M.and Harmon,A.C.1992.Calcium-modulated pro-teins-targets of intracellular calcium signals in higher plants.

Annu.Rev.Plant Physiol.Plant Mol.Biol.43:375–414. Schaller,A.and Frasson,D.2001.Induction of wound response gene expression in tomato leaves by ionophores.Planta212: 431–435.

Schaller,A.and Oecking,C.1999.Modulation of plasma mem-brane H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants.Plant Cell11: 263–272.

1039

Seehaus,K.and Tenhaken,R.1998.Cloning of genes by mRNA differential display induced during the hypersensitive reaction of soybean after inoculation with Pseudomonas syringae pv.

glycinea.Plant Mol.Biol.38:1225–1234.

Sehnke,P.C.,Chung,H.J.,Wu,K.and Ferl,R.J.2001.Regulation of starch accumulation by granule-associated plant14-3-3proteins.

https://www.360docs.net/doc/0e6556909.html,A98:765–770.

Serrano,R.1989.Structure and function of plasma membrane ATPase.Annu.Rev.Plant Physiol.Plant Mol.Biol.40:61–94. Smedegaard-Petersen,V.,Collinge,D.B.,Thordal-Christensen,H., Brandt,J.,Gregersen,P.L.,Cho,B.H.,Walther-Larsen,H.,Kris-tensen,H.J.and Vad,K.1992.Induction and molecular analyses of resistance to barley powdery mildew.In:E.C.Tjamos,G.C.

Papavizas and R.J.Cook(Eds)Biological Control of Plant Diseases:Progress and Challenges for the Future,NATO-ASI Plenum Press,New York,pp.321–326.

Srivastava,H.S.1999.Biochemical defence mechanisms of plants to increased levels of ozone and other atmospheric pollutants.

Curr.Sci.76:525–533.

Suzuki,H.,Itoh,F.,Toyota,M.,Kikuchi,T.,Kakiuchi,H.and Imai, K.2000.Inactivation of the14-3-3σgene is associated with5 CpG island hypermethylation in human cancers.Cancer Res.60: 4353–4357.

Thomashow,M.F.1999.Plant cold acclimation:freezing tolerance genes and regulatory mechanisms.Annu.Rev.Plant Physiol.

Plant Mol.Biol.50:571–599.

Thordal-Christensen,H.,Brandt,J.,Cho,B.H.,Rasmussen,S.K., Gregersen,P.L.,Smedegaard-Petersen,V.and Collinge,D.B.

1992.cDNA cloning and characterization of two barley per-oxidase transcripts induced differentially by the powdery mildew

fungus Erysiphe graminis.Physiol.Mol.Plant Path.40:395–409.

Wilczynski,G.,Kulma,A.,Feiga,I.,Wenczel,A.and Szopa,J.

1998.Manipulating of14-3-3protein expression results in the changes of catecholamine content in potato plant.Cell Mol.Biol.

Lett.3:75–91.

Wu,K.,Rooney,M.F.and Ferl,R.J.1997.The Arabidopsis14-3-3 multigene family.Plant Physiol.114:1421–1431.

Xing,H.M.,Zhang,S.S.,Weinheimer,C.,Kovacs,A.and Muslin,

A.J.2000.14-3-3proteins block apoptosis and differentially

regulate MAPK cascades.EMBO J.19:349–358.

Yaffe,M.B.,Rittinger,K.,V olinia,S.,Caron,P.R.,Aitken,A., Leffers,H.,Gamblin,S.J.,Smerdon,S.J.and Cantley,L.C.

1997.The structural basis for14-3-3:phosphopeptide binding speci?city.Cell91:961–971.

Yan,J.,Wang,J.and Zhang,H.2002.An ankyrin repeat-containing protein plays a role in both disease resistance and antioxidation metabolism.Plant J.29:193–202.

Zhang,H.,Wang,J.and Goodman,H.M.1997a.An Arabidop-sis gene encoding a putative14-3-3-interacting protein,caf-feic acid/5-hydroxyferulic acid O-methyltransferase.Biochim.

Biophys.Acta.1353:199–202.

Zhang,H.,Wang,J.,Nickel,U.,Allen,R.D.and Goodman,H.M.

1997b.Cloning and expression of an Arabidopsis gene encoding

a putative peroxisomal ascorbate peroxidase.Plant Mol.Biol.34:

967–971.

Zhou,F.S.,Andersen,C.H.,Burhenne,K.,Fischer,P.H.,Collinge,

D.B.and Thordal-Christensen,H.2000.Proton extrusion is an

essential signaling component in HR of epidermal single cells in the barley-powdery mildew interaction.Plant J.23:245–254.

市场常见冰鲜鱼类

市场常见冰鲜鱼类 鲨鱼 鲨鱼早在恐龙出现前三亿年前就已经存在地球上,至今已超过四亿年,它们在近一亿年来几乎没有改变。鲨鱼,在古代叫作鲛、鲛鲨、沙鱼,是海洋中的庞然大物,所以号称“海中狼”。 1.基本介绍 鲨鱼,生活在海洋中,被一些人认为是海洋中最凶猛的鱼类之一。但鲨鱼中体型最大的鲸鲨却以小型海洋生物为食物,和须鲸差不多。由于食物具有某种相似性,经过漫长的生物演化,它们长得和须鲸很有相似点,这个叫做“趋同进化”。于是“鲸鲨”的名字就理所当然了。 2.食材图片 3.营养价值

鱼翅之所以能食用,是因为鲨鱼的鳍含有一种形如粉丝状的翅筋,其中含80%左右的蛋白质,还含有脂肪、糖类及其他矿物质。鱼翅是比较珍贵的烹调原料,但营养价值不十分高,因鱼翅所含的蛋白质缺少一种必需的氨基酸(色氨酸),是一种不完全蛋白质。 大海鳝 海鳝,分布于热带和亚热带海洋,生活于浅水,栖于岩礁间并隐在缝穴内。与其他鳗类不同之处是鳃孔小而圆,一般无胸鳍。皮厚,光滑,无鳞。口大,牙坚利,适于捕捉及咬住猎物(主要是其他鱼类),也能严重伤其天敌,包括人类。海鳝于受侵扰时才会攻击人类,此时可变得十分凶恶。 1.生活习性 海鳝通常具鲜艳的体色或斑纹。体长一般不超过1.5公尺(5呎),但太平洋的长体海鳝可长约3.5公尺(11.5呎)。在世界上某些地区人们食海鳝的肉,但某些种类有毒,可引起疾病和死亡。 2.食材图片

3.药物功能 【药名】:网纹裸胸鳝 【来源】:为海鳝科动物网纹裸胸鳝的全体。 【功效】:散寒止痛、消肿收敛。 【主治】:用于寒凝气滞胸痛、痔。 【性味归经】:涩、苦,温。入心、肺二经。 【用法用量】:内服:煎汤,适量,外用:适量,研末,麻油调敷[3] 【别名】:黄海鳝(《中国药用动物志》) 【动植物资源分布】:分布我国黄海、东海、南海。 【药材的采收与储藏】:捕捉后洗净焙干或煅炭用。 三文鱼 三文鱼(salmon)也叫撒蒙鱼或萨门鱼,学名鲑鱼,主要分布在太平洋北部及欧洲、亚洲、美洲的北部地区。鲑鱼体侧扁,背部隆起,齿尖锐,鳞片细小,银灰色,产卵期有橙色条纹。鲑鱼肉质紧密鲜美,肉色为粉红色并具有弹性。鲑鱼以挪威产量最大,名气也很大。但质量最好的三文鱼产自美国的阿拉斯加海域和英国的英格兰海域。三文鱼是西餐较常用的鱼类原料之一。 1.基本介绍 鲑科有淡色细点的北太平洋食用鱼类. 重达3.6kg(8磅)。在秋季繁殖季节,沿北美育空(Yukon)河洄游上溯逾3,200km(2,000哩)。春季幼鱼孵出数星期後即入海。“三文鱼”是香港人的洋泾浜英语的“Salmon”的发音。三文鱼主要分布在太平洋北部及欧洲、亚洲、美洲的北部地区。

双曲面玻璃幕墙施工工法

双曲面玻璃幕墙施工工法 东亚装饰股份有限公司,潘海鸿 1 前言 随着现代化建筑物的不断发展,其外在造型也越来越丰富、新颖和复杂化,例弧形双曲面建筑等,这种建筑往往通过幕墙形式表现出来。由于弧形壳体建筑物测量定位、龙骨加工及安装、面板安装,远比一般的矩形、圆形等简单几何图形要复杂得多,且与一般的框架结构不同的是,该建筑的弧形主体结构先完成,而后做外面的弧形玻璃幕墙,这给测量定位、龙骨加工安装、面板安装等施工带来了很大的难度,对现场安装工作者而言,较为辣手。放线的精准度、龙骨加工和安装的偏差、面板安装的偏差,在施工中都是控制的要点,是保证幕墙外观效果的必要措施。 我公司在世园会睡莲博物馆弧形玻璃幕墙工程施工过程中,采用犀牛建模、CAD绘图软件辅助设计,将现场放线、玻璃及型材加工制作等工序统一进行建模,根据犀牛建模定位尺寸,进行测量放样放线,统一工厂制作与现场安装的标准,改进质量验收手段,保证了弧形玻璃幕墙的施工质量,并通过归纳、总结,形成了本工法。 2 工法特点 2.0.1 本工程双曲面玻璃定位及安装采用以外弦定圆弧。构件制作加工及安装无需确定圆心即可进行。 2.0.2 竖龙骨、横梁及扣盖整体拉弯加工,保证了安装密闭性及弧度的准确性。 2.0.3 立柱、横梁采用可调节角铝支座,通过可调节的角铝支座消除安装板块时造成的施工误差,同时满足双曲面板块在连续曲面空间的变化,施工速度快、精度高,提高了效率,节省了工期。

2.0.4 弧形玻璃面板工厂化定型制作加工,粘玻璃副框在加工厂组装,现场进行挂装。这样能够保证装饰材料尺寸精确,饰面感官效果好,同时还保证施工现场的安全和整洁。 2.0.5每个单元板块都可以方便地拆卸,维护和更换。 2.0.6技术含量高、质量容易保证,并能产生明显的经济效益。 3 适用范围 本工法适用弧形壳体建筑幕墙工程,对其他复杂造型幕墙有参考作用。 4 工艺原理 4.0.1首先进行现场测量(主要测量弧长、弦高、弦长);根据幕墙设计施工图以及现场实测,采用计算机辅助设计软件AutoCAD对幕墙立柱、横龙骨在计算机上按1:1尺寸建模,模拟定位然后进行现场测量,把计算机定位点转换到现场定位。水平放线具体操作如下图4.0.1所示: 1 根据幕墙施工图以及现场实测尺寸调整幕墙分格尺寸。 2 幕墙分格确定后在计算机模拟图中确定分格点。 3 在模拟图形中以的D点为坐标原点,弦长AB为X轴,弦高CD 为Y轴,建立直角坐标系。 4 根据幕墙分格点、圆心两点连线与线段AB交点d6(0,d6),点D6、d6两点确定幕墙立柱中心轴线; 现场测量放线时,无需定位圆心位置,仅通过A、B、D、Xn、Yn、Ln等点的确定即可确定幕墙立柱位置。 4.0.2纵向放线具体操作: 1根据幕墙施工图以及现场实测尺寸调整幕墙分格尺寸; 2幕墙纵向分格确定后在计算机模拟图中确定分格点;

可见光通信系统研究

可见光通信系统研究 摘要 目前室内无线通信能满足要求的最好选择就是白光LED。白光LED在提供室内照明的同时,被用作通信光源有望实现室内无线高速数据接入。目前,商品化的大功率白光LED功率已经达到5W,发光效率也已经达到90lm/W,其发光效率(流明效率)已经超过白炽灯,接近荧光灯。白光LED的光效超过100lm/W并达到200lm/W(可以完全取代现有的照明设备)在不久的将来即可实现。因而LED照明光通信技术具有极大的发展前景,已引起人们的广泛关注和研究。论文主要对基于白光LED的室内可见光通信系统进行了研究。 本文在对白光LED用作通信光源时的伏安特性、光谱特性和调制特性等物理特性做深入分析的基础上,重点研究了白光LED照明光源通信系统的组成结构和系统设计,并设计出了白光LED调制和发射电路。给出了一种求LED照明灯室内布局的方法,仿真结果表明,该方法可以较好地解决可见光通信系统的室内LED照明灯的最优布局问题。采用直射式链路形式和光强度调制一直接检测技术,可以实现对白光LED的高速调制,并设计出了用于接收可见光信号和信号解调的光接收电路,完成了白光LED的可见光通信收发实验并给出了实验结果。 绪论 VLC VLC是一种在白光LED技术上发展起来的新兴的无线光通信技术。白光LED具有功耗低、使用寿命长、尺寸小、绿色环保等优点,特别是其响应灵敏度非常高,因此可以用来进行超高速数据通信。与传统的射频通信和FSO相比,VLC具有发射功率高、无电磁干扰、节约能源等优点,在VLC系统中,白光LED具有通信与照明的双重作用,这是因为白光LED的亮度很高,且调制速率非常高,人的眼睛完全感觉不到光的闪烁,因而VLC技术具有极大的发展前景,已引起人们的广泛关注和研究。 与FSO和射频通信相比,VLC主要有一下几个优点: 1 可见光对人体相对安全,无伤害。Vlc系统主要使用室内LED照明灯来传送数据,对人体辐射小。 2 VLC无处不在。几乎生活中的每一处都有照明灯,因此用于通信的照明灯可以安装在任何地方,可以比较方便的传输无线数据。 3 发射功率较高。相比于红外通信,由于红外通信对人的眼睛损伤较大,发射功率需要压制到相当低,系统的性能因此将受到严重的限制。而对于射频通信,其射频信号对人体的损伤又比较大,也需要限制其

可见光通信

兰州交通大学本科生课程设计 中文题目:可见光通信技术的应用 英文题目: The Application of The VLC Technology 课程:现代传输技术 学院:电信学院 专业:通信工程 班级:通信1302班 组长:XXX 组员:XXX XXXXXX 指导教师:高丽 完成日期: 2016年7月 7 日 成绩:

目录 目录 摘要 (1) Abstract (1) 1 可见光(VLC)通信技术概述 (2) 1.1 VLC的研究背景 (2) 1.2 VLC的简介 (2) 1.3 VLC的发展现状 (2) 1.4 VLC的特点 (4) 2.传输原理 (5) 2.1概述 (5) 2.2组成 (5) 2.3 信号调制 (5) 2.4 信号解调 (6) 2.5关键技术研究 (7) 2.5.1光源 (7) 2.5.2光源布局 (7) 2.6最佳LED灯个数 (7) 2.7接收机FOV的选择 (8) 2.8不同光路径引起的ISI (8) 3可见光通信应用 (9) 3.1创新应用 (9) 3.2存在问题 (9) 3.3 VCL的基本应用 (10) 3.3.1室内(Indoor)应用 (10) 3.3.2室外(Outdoor)应用 (11) 3.4可见光的应用延伸 (12) 3.4.1实现室内定位导航 (12) 3.4.2 灯光无线 (14) 3.4.3结束乘飞机无通信时代 (14) 结束语 (15) 参考文献 (16)

摘要 用室内照明的白光LED光源作为通信基站进行信息无线传输的技术是当前国外光无线通信领域的研究热点之一,是一项有发展前景的新兴技术。这也将可见光通信技术带到了众人的面前。可见光通信技术是一种新兴的无线光通信技术,随着白光LED的发明及应用,可见光通信技术得到了良好的发展。白光LED不仅可以提供室内照明,而且可以应用到无线光通信系统中满足室内个人网络需求。在照明方面,白光LED的节能、环保等特点被认为终将取代荧光灯、白炽灯等传统照明光源,成为下一代固体照明光源。与此同时,白光LED又具有响应时间短,加之其具有高速调制特性,可以设计出基于白光LED的室内可见光无线通信系统。由此设计出的基于白光LED的室内可见光无线通信系统,与传统的红外和无线电通信相比,具有发射功率高、无电磁干扰和无需申请频谱资源等优点。文章详细介绍了可见光通信技术在国内外的研究现状,分析了其关键技术,阐述了其巨大的优点以及应用领域上的发展趋势。 关键词:可见光通信、技术优势、发展历史、关键技术、应用展望 Abstract It is one of hot spots of optical wireless communication research field in abroad that using whiteLED light source as base station to transmit information through wireless mode currentl y, which is an promisingnew technology. This trend brings the visible light communication int o our attention. Visible light communication technology is an emerging wireless optical communication technology. The visible light communication technology has a good development with the invention and application of LED white light. White LED can not only provide indoor lighting, but also can be applied to wireless optical communication system network to meet the individual needs of the indoor. In the lighting, white LED has energy-saving, environmental protection and other features, that fluorescent, incandescent,In this paper I introduce the current situation of visible light communication by white LEDs at home and abroad in detail, analyze the key techniques and clarify the advantag es and development trend of thesystem. Key Words:visible light communication, advantages, key technologies, developing history, dev elopments

高中地理必修一思维导图

高中地理必修一思维导图 第一章 行星地球 一、描述地球所处的宇宙环境,运用资料说明地球是太阳系中一颗既普通又特殊的行星。 地 球 在 宇 宙 中 的 位 置 二、阐述太阳对地球的影响: 1、太阳辐射对地球的影响: 太阳主要成分是_氢___和 氦 ,表面温度为_6000K_, 太阳能量的来源是: 核聚变 ;其能量以 电磁波 的形式释放出来。太阳辐射能由赤道向两极 逐渐减少 。 在宇 宙中的位置 不同级别 的天体系统 地球宇宙中的位置(自己描述) 太阳系的 普通行星 与其他行星运动特征比较 与其他行星结构特征比较 太阳系的特殊形星 (存在生命的行星) 地球所处的宇宙环境很安全 具有适宜的温度条件 具有适合生物生存的大气条地球上有液态水

对地球的影响:太阳辐射是地球的主要能量来源,它可以维持地表温度,是促进地球上的水、大气、生物活动和变化的主要动力,可以影响人类的生产和生活,提供煤炭、石油等化石燃料,还可以通过人为转化形成其它形式的能量。 2太阳活动对地球的影响: 太阳活动最主要的类型是黑子和耀斑。它们是太阳活动的重要标志, 分别出现在太阳大气层的光球和色球,其活动周期为 11 年, 它们同步起落体现了太阳活动的整体性。 太阳活动对地球的影响主要有1、扰动电离层,影响无线短波通讯、2、扰乱地球磁场,引起“磁暴”现象、3、出现极光、4、引起自然灾害。 三、分析地球运动的地理意义 1、比较自转公转 逆

2、地球自转的意义 (1)晨昏线:昼夜半球的分界线。晨昏线的判断方法顺着地球自转方向:由昼入夜叫昏线,由夜入昼叫晨线。在此线上太阳高度是____0_____度。 如下图中,ab为昏线,bc为晨线 (2)时间计算:东加西减。(加减) 地方时:因经度不同而不同的时刻(同一经度上,地方时相等)。经度每相差15度,地方时相差一小时,经度每相差1度,时间相差 4分钟。 例如:600E为10时,则800E为 11时20分 时区:为了统一标准,国际上把 15个经度划分为一个时区,全球划分为24个时区。 区时:各时区的都把本区的中央经线的地方时作为全区使用的时刻,相邻时区相差 1小时。 例如:本初子午线(中时区)为8时,则时间(东八区)为 16时,纽约(西五区)为 3时。

7、高空采光顶施工悬索操作平台施工创新

高空采光顶施工悬索操作平台施工创新 东亚装饰股份有限公司 山东大学青岛校区博物馆工程幕墙创新 QC 小组

一、工程概况 山大博物馆玻璃总建筑面积 40800.87 平方米,地上建筑面积 27981.63 平方米。地上六层, 地下一层。 其中幕墙总面积约 4500 平方米, 石材幕墙约 15000 平方米, 铜板幕墙约 1000 平方米。 所处建筑气候分区为寒冷地区,建筑耐火等级为一级。幕墙结构使用年限 25 年,起始高度 0.7 米,最高标高约 42 米。 山大博物馆主楼采光顶,标高 32.3 米,长度 * 宽度为 17.6*17.6 米。 主楼二层标高 4.8 米,采光顶距离二层地面净高度为 27.5 米。 采光顶采用 Q345BH 型钢结构骨架, 钢梁净高 750mm,室内侧龙骨吊顶采用 3mm 厚铝单板装饰。 铝单板安装需要在室内侧进行安装。 安装需搭设操作平台, 操作平台净高度高达 26 米。此次课题 针对性解决现场安装平台施工。 图 1-1 效果图 图 1-2 现场图纸 图 1-3 CAD 剖面

小组概况 制表人:王玉波 制表时间: 2015年 8月 、小组概况 表 2-1

QC 小组活动计划 表 2-2 序号 实施项目 2015 年 -2016 年 8月 9月 10 月 11 月 12月 1月 1 选定课题 2 设定目标 3 提出各种方案并确定最隹 方案 4 制定对策表 5 对策实施 6 效果检查 7 巩固措施 8 总结及今后打算 三、选题理由 山大博物馆幕墙工程,为青岛市重点工 程,质量目标为确保“泰山杯” 工期紧,甲方要求采光顶工程在 2016 年 1 月 25 前完成 封闭, 为内装单位提供 施工面,确保整个施工进度 采光顶净高度为 27.5 米,铝单板为吊顶 装饰,钢梁高度为 750mm,玻璃封闭后需 要在室内侧进行安装, 高空施工风险大。 需要提供专项施工平台。 必须及时有效解决室内侧安装平台,确 保工程质量及工期。 工期要求 结构特点 选定课题

可见光通信研究现状

可见光通信技术研究现状介绍 作为一种新兴的通信技术,LED可见光通信提出的历史不算久远,早在2000年以前,就有研究人员提出利用LED发出的光来进行通信的设想,并付诸实验,实现了一些简单的通信系统[1-6]。在这些设想中,最具代表性的是香港大学的Grantham Pang于1999年提出的实现方案,他们的实验小组搭建并演示了基于可见光LED的音频信号传输系统[3]。这些设想方案提出时,LED照明技术还没有受到重视,对LED可见光通信的关键技术也没有进行深入研究,其影响力有限。 2000年,日本Keio大学M. Nakagawa教授领导的研究团队提出了一种利用白光LED实现室内可见光接入的方案,并针对室内可见光通信信道进行建模仿真和分析计算,实现了10Mbps的室内可见光通信接入方案[8],正是这一成果被视为可见光通信领域具有影响力的开创性研究,之后,可见光通信技术开始受到世界各地研究人员的重视。 1 国外研究现状 1.1 日本方面 日本方面,在庆应义塾大学(KeioUniversity)的M. Nakagawa研究团队提出LED可见光通信的接入方案后,这种技术在日本国内非常受重视。先后有名古屋大学(Nagoya Univesity)、东京理科大学(Tokyo University of Science)、长冈技术科学大学(Nagaoka University of Technology)、日本电信电话(NTT Cooperation)的科研团队参与研究。在可见光通信的各类应用方面,日本的研究人员做了大量的工作,从局域网高速互连、LED显示器数据下载、智能交通系统、智能灯塔到测量等种类繁多。 2001年,庆应义塾大学的研究人员首先研究了利用交通灯进行可见光通信,并对系统的调制方式、所需的信噪比以及通信速率等特性[9]进行了分析。同年,他们研究了OOK调制技术和OFDM技术在室内可见光通信的应用。研究结果表明:OOK调制方式在较低速率下(如100Mbps以下)非常有效,而在高速率情况下,选择OFDM调制方式性能更佳[10]。之后,他们又进一步提出在道路照明系统中加入可见光通信功能,以减少交通事故的发生,通过用符合照明要求的LED进行实验获得成功[11]。2004年,M. Nakagawa研究团队对LED室内可见光通信系统的可行性进一步分析,对光源进行建模,仿真了在多盏灯照射下室内光照分布、信道冲激响应,并对有无反射情况下的室内信噪比分布、符号间干扰等参数进行了研究。在此基础上,他们还研究了接收端FOV(Field of View)视场角大小对系统速率的影响,并得到结论:当接收端视场角足够小时,可见光通信的

我国鲤科鱼类分类总结

我国鲤科鱼类分类总结 汪海 西南大学生命科学学院北碚重庆400715 摘要:鲤科(Cyprinidae),是鲤形目下种类最多的一个科,包括210属2010种。其特征是口部有须,有咽齿没脂鳍。最后一对鳃弧腹面部分特别粗壮,成为下咽骨,上有1~3行咽齿。具角质咽磨、体常被覆瓦状圆鳞,无脂鳍;背鳍只有1个,前部有2~4根不分支鳍条;腹鳍腹位;尾鳍多呈叉形,绝少平截或微凹。最大是巨暹罗鲤(Catlocarpio siamensis),可以长到3米。我国共有132属532种和亚种。 关键词:中国鲤科分类 1. 简介 鲤科鱼类是鲤形目中分布最广、种类也最多的一群。台湾共有八十余种初级淡水鱼,其中鲤科即占了将近一半。它们的形态与生态习性富于变化,多数种类只有一个背鳍,腹鳍在腹位,且和臀鳍明显分开,尾鳍分叉;身体被覆圆鳞;口器则分化为各种不同的类型,以便摄取各类的食物。本科为鱼类中最大的一科,约有200多属,2000多种,都是淡水鱼类,分布很广。我国有鲢鱼、鲤鱼、裂腹鱼、鳅鮀、鳊、雅罗鱼、鲴、鳑鲏、鲃、鮈共10个亚科。我国鲤科鱼类中的主要经济鱼类有“四大家鱼”(青鱼Mylopharyngodon piceus、草鱼Ctenopharyngodon idellus、链Hypophthalmichthys molitrix、鳙Aristichthys nobilis)、鲤Cyprinus carpio、鲫Carassius auratus、鳊Megalobrama terminalis、团头鲂Parabramis pekinensis等,是池塘养鱼的主要对象。鲤科鱼类的观赏鱼也是种类繁多,大、中、小型鱼都有,约有1600多种(我国约产370种),属于热带观赏鱼的种类主要分布在东南亚和非洲。 2. 形态特征 鲤科鱼类颌骨无齿。最后一对鳃弧腹面部分特别粗壮,成为下咽骨,上有1~3行咽齿。具角质咽磨、体常被覆瓦状圆鳞,无脂鳍;背鳍只有1个,前部有2~4根不分支鳍条;腹鳍腹位;尾鳍多呈叉形,绝少平截或微凹。吻部无须或仅有一对吻须,偶鳍前部仅有一根不分支鳍条,下咽齿1~4行,背鳍分支鳍条30以下。中国鲤科鱼类中的主要经济鱼类有“四大家鱼”(青鱼、草鱼、链、鳙)、鲤、鲫、鳊、团头鲂等,都是池塘养鱼的主要对象。 3. 鲤科(下属亚科)分类 本科为鱼类中最大的一科,约有200多属,2000多种,都是淡水鱼类,分布很广。中国有鲢鱼、鲤鱼、裂腹鱼、鳅鮀、鳊、雅罗鱼、银鲴、鳑鲏、鲃、鮈共10个亚科。 3.1 鲢亚科Hypophthaemichthyinae 仅2属2种。眼小,位于头尾轴的稍下方,咽齿4/4,铲状,具腹棱,鳃耙细长或呈海绵状,鳃膜不与峡部相连。中上层鱼类,主食浮游动物。鳙鱼Aristichthys nobilis体背面及上侧面暗色,腹棱不完全,鳃耙长,不相连,咽齿面光滑,行动迟缓,易捕捞,4~7月繁殖,生长快,可达45千克,俗称“雄鱼”。鲢Hypophthalmichthys molitrix体银白,腹棱完全,鳃耙海绵状,咽齿面具羽状细纹,性活泼,善跳,4~6月繁殖,可达35千克。 3.2 鲤亚科Cyprininae 我国有5属28种。背鳍、臀鳍最后一枚不分枝鳍条后缘为锯齿状。背鳍基底长,分枝鳍条通常14枚以上。鲤Cyprinus carpio须两对,底层鱼类,杂食性(偏重动物性),适应性强,

高中地理必修一思维导图 (2)

高中地理必修一思维导图 第一章 行星地球 一、描述地球所处的宇宙环境,运用资料 说明地球是太阳系中一颗既普通又特殊 的行星。 地 球 在 宇 宙 中 的 位 置 二、阐述太阳对地球的影响: 1、太阳辐射对地球的影响: 在宇 宙中的位置 不同级别 的天体系统 地球宇宙中的位置(自己描述) 太阳系的 普通行星 与其他行星运动特征比较 与其他行星结构特征比较 太阳系的特殊形星 (存在生命的行星) 地球所处的宇宙环境很安全 具有适宜的温度条件 具有适合生物生存的大气条 地球上有液态水

太阳主要成分是_氢___和氦,表面温度为_6000K_,太阳能量的来源是:核聚变;其能量以电磁波的形式释放出来。太阳辐射能由赤道向两极逐渐减少。 对地球的影响:太阳辐射是地球的主要能量来源,它可以维持地表温度,是促进地球上的水、大气、生物活动和变化的主要动力,可以影响人类的生产和生活,提供煤炭、石油等化石燃料,还可以通过人为转化形成其它形式的能量。 2太阳活动对地球的影响: 太阳活动最主要的类型是黑子和耀斑。它们是太阳活动的重要标志, 分别出现在太阳大气层的光球和色球,其活动周期为 11 年, 它们同步起落体现了太阳活动的整体性。 太阳活动对地球的影响主要有1、扰动电离层,影响无线短波通讯、2、扰乱地球磁场,引起“磁暴”现象、3、出现极光、4、引起自然灾害。 三、分析地球运动的地理意义 1、比较自转公转

东 北逆南 顺 日 一个太阳 日 外, 都是 15°/h 为0 公 转 自西向 东 北逆南 逆 一个恒星 年 规律:近日点( 1 月初)较快, 远日点( 7 月初)较慢 2、地球自转的意义 (1)晨昏线:昼夜半球的分界线。晨昏线的判断方法顺着地球自转方向:由昼入夜叫昏线,由夜入昼叫晨线。在此线上太阳高度是____0_____度。 如下图中,ab为昏线,bc为晨线

可见光通信

可见光通信技术前景广阔的通信新领域

目录 前言 (2) 可见光通信技术介绍 (2) 可见光通信技术的特点 (3) 光通信的发展历程 (4) 可见光通信技术的发展 (5) 应用邻域 (7) LED灯=高速网络连接 (7) 未来飞机上也能打电话 (8) “光通讯”将挺进传统通讯禁区 (8) “光通讯”运用于日常生活中 (9) 参考文献 (10)

前言 在通信技术发达的现在,网络信号的传输速度与方式已经有了大幅度的提高与改进。但在多年的应用检验下,这些网络信号传输方式仍旧存在一些众所周知的不足。以现如今流行的Wi-Fi举例:它存在地区限制,在同一时间容纳的用户数量的限制,稳定性与抗干扰能力也有待提高。 但是你可曾想过有这么一天,有灯光的地方,就有网络信号。点一盏LED灯,就能上网。只要一盏1W的LED灯珠,就能够“一拖四”,使灯光下的4台电脑同时上网,平均上网速率达到150M,这样的方便快捷到秒杀Wi-Fi的新技术你向往吗? 而这种技术便是被称为Li-fi的可见光通信技术。 可见光通信技术介绍 可见光通信技术(Visible Light Communication,VLC)是指利用可见光波段的光作为信息载体,不使用光纤等有线信道的传输介质,而在空气中直接传输光信号的通信方式。它能够同时实现照明与通信的功能,具有传输数据率高,保密性强,无电磁干扰,无需频谱认证等优点,是理想的室内高速无线接入方案,在全球已经成为了研究的热点。与目前使用的无线局域网(无线LAN)相比,“可见光通信”系统可利用室内照明设备代替无线LAN局域网基站发射信号,其通信速度

可达每秒数十兆至数百兆,未来传输速度还可能超过光纤通信。利用专用的、能够接发信号功能的电脑以及移动信息终端,只要在室内灯光照到的地方,就可以长时间下载和上传高清晰画像和动画等数据。 可见光通信技术的特点 无线电信号传输设备存在很多局限性,它们稀有、昂贵、但效率不高,比如手机,全球数百万个基站帮助其增强信号,但大部分能量却消耗在冷却上,效率只有5%。相比之下,全世界使用的灯泡却取之不尽,尤其在国内LED光源正在大规模取代传统白炽灯。只要在任何不起眼的LED灯泡中增加一个微芯片,便可让灯泡变成无线网络发射器。 该系统还具有安全性高的特点。用窗帘遮住光线,信息就不会外泄至室外,同时使用多台电脑也不会影响通信速度。由于不使用无线电波通信,对电磁信号敏感的医院等部门可以自由使用该系统。而且,光谱比无线电频谱大10000倍,意味着更大的带宽和更高的速度,网络设置又几乎不需要任何新的基础设施。

鱼类的消化系统

? 消化系统 讲授重点: 1 、鱼类消化管的结构 2 、鱼类消化管构造与食性的关系 3 、肝脏、胰脏在鱼体的位置和机能 第一节 体腔和系膜 脊椎动物的体腔源于中胚层。体腔囊向腹面延伸,其背部及中部的腔不久消失,而腹部的腔残留下来,即形成将来的体腔。腔的外侧壁后来因肌节向腹面延伸,并和肌节里层相接,形成体壁的一层衬里,称为腹膜壁层。腔的内壁层称为腹膜脏层,包围内脏各器官。包围消化道外的腹膜脏层,称浆膜层。在消化道的背腹面各形成一条双层的薄膜,即肠系膜。背面一条称背肠系膜,腹面的一条称腹肠系膜,后者不久中断,左右两腔便合成一个大腔,称为体腔。 鱼类的体腔不久被一横隔(即围心腹腔隔膜)分隔成两个腔。前面的小腔包围心脏,称围心腔;后面的大腔容纳消化、生殖等器官,称腹腔。腹腔的形状随鱼的体形而异。有的处延长形腹腔如鳗鲡、黄鳝、玉筋鱼等;平扁形腹腔如鳐、平鳍鳅、鮟鱇等;侧扁形腹腔台银鲳、长春鳊、团头鲂等。肉食性鱼类的腹腔一般较大,而杂食性及草食性鱼类则较小。 腹腔脏层由于包围着各种不同内脏器官,其悬系的系膜因而有各种不同的名称,如胃脾系膜、胃肝系膜、精巢系膜、卵巢系膜等,它们能使各器官稳固在一定位置上。 第二节 鱼类的消化管 消化管是一肌肉的管子,它从口开始,向后延伸,经过腹腔,最后以泄殖腔或肛门开口于体外。 消化管包括口咽腔、食道、胃、肠、肛门等部分,有些鱼类这几部分的界限不明显,但可凭借不同的管径,不同性质的上皮组织及特殊的括约肌或一定腺体导管的入口来区别。 一、口咽腔

鱼类的口腔和咽没有明显的界限,鳃裂开口处为咽,其前即为口腔,故一般统称为口咽腔。 口咽腔常覆盖以复层上皮,其中有粘液细胞和味蕾的分布,口咽腔内有齿、舌及鳃耙等构造。 鱼类口咽腔的形态和大小与食性有关。凶猛的肉食性鱼类口咽腔较大,便于吞食大的食物,如鳜、鲈鱼、带鱼、 鳡 、鲶等。有些专食微小浮游生物的滤食性鱼类口咽腔也宽大,如鲢、鳙等,这是与它们不停地滤取水中食物的习性相适应的。 (一)齿 鱼类的牙齿在口咽腔中分布很广,齿的形状、大小、排列及锋利与否,均因鱼的种类而异,这与鱼类生活的水环境食物的多样性有关。 鱼类的牙齿主要用于捕食,咬住食物免于逃脱。有些鱼类的牙齿有撕裂和咬断食物的作用,然而一般都没有咀嚼的作用。 1 、软骨鱼类的齿 分布:软骨鱼类的齿借结缔组织附在腭方软骨和米克尔氏软骨上。 形状:食甲壳类、贝类等温和食性的板鳃类,齿一般呈铺石状,如:星鲨、何氏鳋等。凶猛的肉食性板鳃类,齿尖锐,边缘常有小锯齿。 全头亚纲中银鲛的齿呈板状,由许多小齿愈合而成,终生不换,损伤过程中,齿的基部可以不断生长。 2 、硬骨鱼类的齿 分布:上下颌(颌齿)、犁骨(犁齿)、腭骨(腭齿)、鳃弓(咽齿)、舌(舌齿)。 硬骨鱼类的牙齿不仅在上下颌有生长,甚至有的在口咽腔周围的一些骨骼上,如犁骨、腭骨、舌骨、鳃弓上均能生长牙齿。着生在上下颌骨上的齿称颌齿( Jaw teeth );着生在口腔背部两侧腭骨上的牙齿称为腭齿( Palatin teeth );着生在口腔背部前方中央犁骨上的齿称犁齿( Vomeine teeth );着生在鳃弓上的齿称为咽齿( Phaiyngeal teeth );着生在舌骨上的齿称舌齿。所有这些着生在口腔不同部位的牙齿,统称为口腔齿。 口腔齿的形态、数目、分布状态常作为分类标志之一,其中以犁齿和腭齿的有无,左右下咽齿是否分离或愈合等用得较多。 鲤科鱼类无颌齿,而第五对鳃弓的角鳃骨特别扩大,特称为咽骨( Phaiyngeal tone )或下咽骨( Aypophaiyngeal tone ),上生牙齿,即为咽齿,也称咽喉

股票 发行情况报告书

证券代码:430376 证券简称:东亚装饰公告编号:2014-14 青岛东亚装饰股份有限公司 QINGDAO DONGYA DECORATION Co., Ltd. 股票发行情况报告书 主办券商 (云南省昆明市北京路155号附1号) 二零一四年八月

目录 释义 (1) 一、本次发行的基本情况 (2) 二、发行前后相关情况对比 (3) 三、主办券商关于本次股票发行合法合规性的结论性意见 (7) 四、律师事务所关于本次股票发行的结论性意见 (9) 五、公司全体董事、监事、高级管理人员的声明 (11) 六、备查文件 (11)

释义 在本说明书中,除非另有所指,下列词语具有如下含义:

一、本次发行的基本情况 (一)发行数量:1,250万股 (二)发行价格:2.45元/股 (三)现有股东认购情况 除青岛建东投资控股有限公司、郝筠、姚瑞霞外,在册股东均签署自愿放弃股份优先认购权的承诺书,放弃优先认购权。 具体认购数量及方式如下表: (四)股票发行新增投资者认购情况及认购股份数量 1、新增投资者基本情况 (1)红塔证券股份有限公司 红塔证券成立于2002年1月31日,注册资本2,057,651,369元,注册号530000000003314,法定代表人:况雨林,注册地址:云南省昆明市北京路155号附1号;经营范围包括:证券经纪、证券自营、证券承销与保荐;证券投资咨询;与证券交易、证券投资活动有关的财务顾问;证券资产管理;融资融券;证券投资基金代销;为期货公司提供中间介绍业务;代销金融产品业务(以上经营范围中涉及国家法律、行政法规规定的专项审批,按审批的项目和时限开展经营活动)。 红塔证券股份有限公司与本公司及主要股东之间不存在关联关系。 (2)恒泰证券股份有限公司 恒泰证券股份有限公司成立于1998年12月28日,注册资本2,194,707,412元,注册号150000000001019,法定代表人:庞介民,注册地址:内蒙古自治区呼和浩特市新城区新华东街111号;经营范围包括:证券自营、代理证券买卖业务、代理证券还本付息和红利的支付、证券投资咨询、资产管理、融资融券、代销金融产品、发起设立证券投资基金和基金管理公司、中国证监会批准的其他业务(依

可见光通信概述

可见光通信及其关键技术研究 摘要:用室内照明的白光LED光源作为通信基站进行信息无线传输的技术是当前国外光无线通信领域的研究热点之一,是一项有发展前景的新兴技术。这也将可见光通信技术带到了众人的面前。文章详细介绍了可见光通信技术在国内外的研究现状,分析了其关键技术,阐述了其巨大的优点以及应用领域上的发展趋势。 关键词:可见光通信、技术优势、发展历史、关键技术、应用展望 Studies on the visible light communication and itskey technologies Jieyong He Optical Engineering, School of Physics, Sun Yat-sen University, User ID:15212250 Abstract It is one of hot spots of optical wireless communication research field in abroad that using whiteLED light source as base station to transmit information through wireless mode currently, which is an promisingnew technology. This trend brings the visible light communication into our attention. In this paper I introduce the current situation of visible light communication bywhite LEDs at home and abroad in detail, analyze the key techniques and clarify the advantages and development trend of thesystem. Key Words:visible light communication, advantages, key technologies, developing history, developments 1可见光通信介绍 近年来,被誉为“绿色照明”的半导体(LED)照明技术发展迅猛。与传统照明光源相比,白光LED 不仅功耗低、使用寿命长、尺寸小、绿色环保,更具有调制性能好、响应灵敏度高等优点。利用LED 的这种特性,它用作照明的同时,还可以把信号调制到LED 可见光束上进行传输,实现一种新兴的光无线通信技术,即可见光通信(indoor visible light communication,VLC)技术。 1.1可见光通信技术概述 一直以来,在一个人的头顶上画一个闪亮的灯泡,被用来象征一个发明家的灵光乍现,但是德国物理学家哈拉尔德·哈斯(Hass H.)由灯泡本身“点亮”了奇思妙想:依赖一盏小小的灯,将看不见的网络信号,变成“看得见”的网络信号。哈斯和他在英国爱丁堡大学的团队最新发明了一种专利技术,利用闪烁的灯光来传输数字信息,这个过程被称为可见光通信,人们常把它亲切地称为“LIFI”,以示它能给目前以WIFI为代表的无线网络传输技术可能带来革命性的改变。 可见光通信(VLC)是将发光二极管(LED)等可见光发出的肉眼察觉不到的高速明暗闪烁信号来传输信息的。VLC结构由两个部分组成,一个是VLC发送部分,另一个是VLC接收部分。发送部分处,将需要传输的数据加载在光载波信号上,并进行调制,然后到达接收部分,即利用光电转换器件接收光载波并解调以获取信息。 可见光通信系统能够覆盖灯光所能达到的范围,不需要电线连接。与目前使用的无线局域网(无线LAN)相比,可见光通信系统可以利用照明设备代替无线LAN局域网基站发射信号,其通信速度可达每秒数

鲤科大吻鱥属鱼类的分子系统发育关系与我国东部地区冷水性淡水鱼类的亲缘生物地理

鲤科大吻鱥属鱼类的分子系统发育关系与我国东部地区冷水性 淡水鱼类的亲缘生物地理 鲤科Cyprinidae雅罗鱼亚科Leuciscinae包括雅罗鱼族Leuciscin与鱥族Phoxinin两大类群,分布于欧洲、亚洲与北美洲。其中,鳞族包括北美洲除美鳊属Notemigonus外的所有雅罗鱼亚科鱼类和欧亚分布的鱥属Phoxinus以及主要分布在东亚的大吻鱥属Rhynchocypris、拟赤梢鱼属Pseudaspius、三块鱼属Tribolodon与山雅罗鱼属Oreoleuciscus。 大吻鱥属鱼类的系统位置与系统发育关系是雅罗鱼亚科鱼类系统学中长期存在争议的科学问题之一。基于线粒体基因和核基因分子证据,本论文重建鲤科大吻鱥属鱼类及其近亲类群的系统发育关系,聚焦于解决三个问题:(1)前人研究中定义的大吻鱥属鱼类是否形成单系群;(2)确定大吻鱥属的系统位置;(3)明确大吻鱥属物种之间的系统发育关系。 另外,本论文亦开展了我国东部地区冷水性淡水鱼类的亲缘生物地理研究。选择我国东部地区尖头大吻鱥Rhynchocypris oxycephalus、拉氏大吻鱥Rhynchocypris lagowskii和葛氏鲈塘鳢Perccottus glenii三种典型冷水性淡水鱼类作为代表,使用线粒体基因和核基因作为分子证据,通过系统发育关系重建及分子钟估算,结合地质学证据以及古气候信息,聚焦于:1)描述我国东部地区冷水性淡水鱼类的亲缘生物地理格局;2)揭示我国东部地区冷水性淡水鱼类的亲缘生物地理格局的主要驱动因子。 主要研究结果如下:1、鲤科大吻鱥属鱼类的分子系统发育关系研究基于线粒体16S与Cytb基因以及核基因位点Rag1与Rag2基因数据,通过整个东亚取样策略,本研究重建了鲤科大吻鱥属鱼类的分子系统发育关系。结果表明:1)大吻

鱼类学名词解释(形态部分)

鱼类学名词解释(形态部分) 绪论 圆口类:最原始的鱼类,骨骼全为软骨,无上下颌,故又称为无颌类 软骨类:内骨骼全为软骨,具上下颌,头侧有鳃裂5-7个。分为板鳃亚纲和全头亚纲 硬骨类:骨骼或多或少为硬骨。分为内鼻孔亚纲和辐鳍亚纲 真骨类:硬骨鱼纲中除多鳍鱼目、鲟形目、弓鳍鱼目和雀鳝目外的 8个总目的鱼统称为真骨类。分为软鳍鱼类和棘鳍鱼类 全骨类:硬骨鱼纲中弓鳍鱼目和雀鳝目统称为硬骨硬鳞类,又称为全骨类 软骨硬鳞类:辐鳍亚纲中多鳍鱼目和鲟形目合称为软骨硬鳞类 第一章外部形态 吻部:头部最前端到眼的前缘的部分 眼后头部:眼的后缘到鳃盖骨后缘或最后一鳃裂的部分 眼间隔:两眼间最短的距离 颊部:眼的下方到前鳃盖骨后缘的部分 喉部:两鳃盖间的腹面部分 下颌联合:下颌左右两齿骨在前方汇合处 颏部:也称颐部,紧接下颌联合的后方 峡部:眼的后下方到前鳃盖骨后缘的部分 角质鳍条:软骨鱼类具有的不分枝不分节的鳍条 棘:鳞质鳍条的一种强大坚硬,由鳍条变化形成,不分枝不分节,不能分为左右两半 假棘:两鳍条骨化而成,水煮可分为左右两半,只见于鲤科鱼类 软鳍鱼类:多数低等真骨鱼类的背鳍完全由分节而可屈曲的软条组成,称为软鳍鱼类 棘鳍鱼类:高等真骨鱼类的背鳍除了由软条组成外,还有坚硬的棘,称为棘鳍鱼类 脂鳍:鲑形目和鲇形目的绝大多数种类,在背鳍的后方有一肉片状突起,通常内无鳍条,充满疏松的结缔组织和脂肪组织 鳍式:用鳍的缩写、符号、数字表示鳍的组成情况的公式 鳍:是鱼类的特征器官,有偶鳍和奇鳍两种,由支鳍骨和鳍条组成,可分为角质鳍条和鳞质鳍条,其中鳞质鳍条又分为软条(分支鳍条和不分支鳍条)和棘(真棘和假棘),用于协助运动和维持身体平衡。

双曲面木质服务台现场制作施工工法

大面积镂空雕刻不锈钢隔墙施工工法 东亚装饰股份有限公司,王凤林 1前言 隔断墙在现代装饰艺术中起着重要的作用,在现在室内装饰设计中隔断运用的越来越多,不同形式的隔断符合简约不简单、和谐的要求,它不仅能充分分割空间,更具有艺术感。隔断是分割室内空间重要的方法之一,它可以有效的对空间进行改变,不同的材料与形式带来的较大的选择性,可以与不同的装饰风格相协调,起到室内装饰设计中的点睛之笔。但大面积金属隔断由于材质上的限制安装牢固性较重要,解决不了这个难题就失去了该种隔断墙的意义,在世园会接待中心装饰过程中就遇到了这个问题,面积达五十多平方的不锈钢隔断墙,整体重量达到 1.5吨,经过反复的设计研讨及论证,决定采用分块插接整体焊接方式固定,有效的保证了稳定性及牢固性。 我公司在青岛世园会接待中心装饰过程中,研究总结出不锈钢镂空雕刻隔墙施工工艺,形成本工法。 2工法特点 2.0.1镂空雕刻不锈钢隔墙采用电脑排版,工厂化加工,现场焊接组装方式,氩弧焊焊接,焊点重点处理,达到观感无焊缝效果。 2.0.2 不锈钢隔墙与周边石材套线连接处必须牢固,现场采用60*80mm镀锌方管做固定框,固定框与石材钢架烧制成整体,主龙骨使用8#槽钢固定于混凝土柱子,天地生根,保证了稳固性。 2.0.3本工程为世园会配套工程,工期紧迫,这就要求该隔墙尺寸必须准确无误,不能发生返工情况,现场放样测量后,固定钢框严格按照放样尺寸烧制,预留出准确尺寸后安装周边石材。

3适用范围 本工法适用于各种金属装饰隔墙制作安装,对其它造型复杂、观感要求较高的其他金属隔墙安装具有参考作用。 4 工艺原理 4.0.1 该隔墙固定需要首先焊制边框固定框架,该框架采用80*60镀锌方管,框架与外部连接不同材质采用不同的连接方式。 图4.0.1-1固定框架示意图 4.0.2不锈钢隔断墙组装之前,预先在地面进行临时拼接,按照块顺序从底部两端开始临时固定,待整体尺寸调整完毕后进行焊接,焊接完底排依次往上部焊接,所有焊接口平整,拼接口焊接后没有缝隙,外框刨坑折弯,花格全部焊接侧面,一面不锈钢花格焊死固定到外框方管架上,另一面不锈钢花格用螺丝固定,可以做到日后折装。

相关文档
最新文档