弹性力学8-逆解法、半逆解法、梁的纯弯曲

弹性力学教学大纲

课程编号:05z8514 弹性力学Theory of Elasticity 学分学时:3/48 先修课程: 高等数学;线性代数;理论力学;材料力学 一、课程教学目标 《弹性力学》是航空、航天结构强度和力学专业的重要专业基础课程,是固体力学的一个分支。主要研究弹性体受外力作用或温度改变等原因而产生的应力、位移和变形。弹性力学的任务是分析各种结构或其构件在弹性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。本课程的主要研究对象为非杆状结构,如板、壳以及其它实体结构。通过本课程的学习可为进一步学习力学类和相关工程类的后续课程打下坚实的力学基础。 二、教学内容及基本要求 1. 绪论(2学时) 弹性力学的发展史;研究内容;基本假设;矢量、张量基本知识。 2. 应力理论(4学时) 内力和应力;斜面应力公式;应力分量转换公式;主应力、应力不变量;最大剪应力;应力偏量;平衡微分方程。 3. 应变理论(4学时) 位移和变形;几何方程;转动张量;主应变和应变不变量;变形协调方程;位移场的单值条件;由应变求位移。 4. 本构关系(2学时) 热力学定律与应变能;本构关系;具有弹性对称面的弹性材料的本构关系;各向同性弹性材料的弹性常数;各向同性弹性材料的应变能密度 5. 弹性理论的建立与一般原理(4学时) 弹性力学基本方程和边界条件;位移解法和拉梅方程;应力解法与变形协调方程;叠加原理;解的唯一性原理;圣维南原理。 6.柱形杆问题(4学时) 圣维南问题;柱形扭转问题的基本解法;反逆法与半逆法,扭转问题解例;薄膜比拟;*柱形杆的一般弯曲。 7.平面问题(12学时) 平面问题及其分类;平面问题的基本解法;应力函数的性质;直角坐标解例(矩形梁的纯弯曲、简支梁受均布载荷和任意分布载荷);极坐标中的平面问题基本方程;轴对称问题(均匀圆筒或圆环、纯弯的曲梁、压力隧洞);非轴对称问题(小圆孔应力集中、楔体问题);关于解和解法的讨论。 8. 空间问题(2学时) 基本方程及求解方法;空间轴对称和球对称问题的基本方程;半空间体受重力及均布压力;半空间体在边界上受法向集中力;空心球受内压作用问题。 9.能量原理与变分法(6学时) 弹性体的变形比能与形变势能;变分法;位移变分方程;位移变分法;位移变分法应用于平面问题;应力变分方程与极小余能原理;应力变分法;应力变分法应用于平面问题;应力变分法应用于扭转问题。 10.复变函数解法或薄板弯曲(4学时)

实验五 梁的纯弯曲正应力测定

图2-2 梁的尺寸、测点布置及加载示意图 图2-3半桥接线图 实验五 梁的纯弯曲正应力测定 一、概述 梁是工程中常用的构件和零件。在结构设计和强度计算中经常要涉及到梁的弯曲正应力的计算。而梁的弯曲正应力的理论公式是根据纯弯曲梁横截面变形保持平面的假设推导出来的,它的正确性以及能否推广到剪切弯曲梁,可以由本次实验提供的简便方法验证。 二、实验目的 1.用电测法测量矩形截面梁在纯弯曲时横截面上正应力的大小及分布规律,并与理论计算值相比较,以验证弯曲正应力理论公式。 2.掌握电测法原理和电阻应变仪的使用方法。 三、实验设备、器材及试样 1. 静态应变测试仪。 2. 多功能组合实验台。 四、实验原理 弯曲梁为矩形截面钢梁,其弹性模量E =2.05×105MPa ,几何尺寸见图2-2,CD 段为纯弯曲段,梁上各点为单向应力状态,在正应力不超过 比例极限时,只要测出各点的轴向应变ε实,即可按σ实 =E ε实计算正应力。为此在梁的CD 段某一截面的前后 两侧面上,在不同高度沿平行于中性层各贴有五枚电阻 应变片。其中编号3和3′片位于中性层上,编号2和2′ 片与编号4和4′片分别位于梁的上半部分的中间和梁 的下半部分的中间,编号1和1′片位于梁的顶面的中线 上,编号5和5′片位于梁的底面的中线上(见图2-2), 并把各前后片进行串接。 温度补偿片贴在一块与试件相同的材料上,实验时放在 被测试件的附近。上面粘贴有各种应变片和应变花,实验时根据工作片的情况自行组合。为了便于检验测量结果的线性度,实验时采用等量逐级缓慢加载方法,即每次增加等量的荷载ΔP ,测出每级荷载下各点的应变增量Δε,然后取应变增量的平均值 实ε?,依次求出各点应力增量Δσ实=E 实实ε?。 实验可采用半桥接法、公共外补偿。即工作片与不受力的温度补 偿片分别接到应变仪的A 、B 和B 、C 接线柱上(如图2-3),其中R 1 为工作片,R 2为温度补偿片。对于多个不同的工作片,用同一个温度 补偿片进行温度补偿,这种方法叫做“多点公共外补偿”。 也可采用半桥自补偿测试。即把应变值绝对值相等而符号相反的两个 工作片接到A 、B 和B 、C 接线柱上进行测试、但要注意,此时ε实=ε仪/2,ε仪 为应变仪所

第一节 矩形截面梁的纯弯曲实验

第一节矩形截面梁的纯弯曲实验 一、实验目的 1.学习电测法的基本原理和静态电阻应变仪的使用方法。 2.学习电测法中的1/4桥、1/2桥和全桥的测量方法。 3.测量矩形截面梁在纯弯曲段中测点沿轴线方向的线应变,画出该线应变沿梁高度方向的变化规律,验证平面截面假设。 4.根据上述测量结果计算测点的正应力,并与理论计算值进行比较。 二、实验设备和仪器 1.多用电测实验台。 2.DH-3818型静态电阻应变仪。 3.SDX-I型载荷显示仪。 三、实验原理及方法 实验装置如图2-1所示,矩形截面梁采用低碳钢制成,其弹性模量,E,210 GPa梁的尺寸为,,。在发生纯弯曲变形的梁段上,沿a,100 mmb,20 mmh,40 mm 梁的沿轴线方向粘贴有5个应变片(其中应变片1位于梁的上表面,应变片2 位于梁的上表面与中性层的中间,应变片3位于梁的中性层上,应变片4位于梁的中性层与下表面的中间,应变片5位于梁的下表面),另外在梁的支撑点以外粘贴有一个应变片作为温度补偿片。应变片的灵敏系数K,2.08。 1.应变测量 3种测量桥路的接线方法如下: F 温度补偿片 b

123hz45y aa工作片 图2-1 矩形截面梁的纯弯曲 (1) 1/4桥测量方法 将5个工作片和温度补偿片按1/4桥形式分别接入电阻应变仪的5个通道中,组成5个电桥。具体接法:工作片的引线接在每个电桥的、端,温度补偿片接AB ?19 ? 在电桥的、端。当梁在载荷作用下发生弯曲变形时,工作片的电阻值将随着梁CB 的变形而发生变化,电阻应变仪相应通道的输出应变为,于是测点的应变为 ,仪 ,,,仪实 (2) 1/2桥测量方法 由于测点5与测点1的应变之间存在关系 ,,,,实5实1 测点4与测点2的应变之间存在关系 ,,,,实4实2 于是可将工作片5和1、4和2分别按1/2桥形式接入电阻应变仪的2个通道中,组 成2个电桥。具体接法:工作片5接到一个电桥的、端,工作片1接到该电桥AB的、端;工作片4接到另一个电桥的、端,工作片2接到相应电桥的、CBABB 端。当梁在载荷作用下发生弯曲变形时,电阻应变仪相应通道的输出应变为,C,仪 于是测点5和测点4的应变为

弹性力学习题(新)

1-3 五个基本假定在建立弹性力学基本方程时有什么用途? 答:1、连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 2、完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应 力成正比的含义,亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。 3、均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是 相同的。因此,反映这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化。 4、各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是 相同的。进一步地说,就是物体的弹性常数也不随方向而变化。 5、小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的 改变而仍然按照原来的尺寸和形状进行计算。同时,在研究物体的变形和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。 在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理。

2-1 已知薄板有下列形变关系:式中A,B,C,D皆为常数,试检查在形变过程中是否符合连续条件,若满足并列出应力分量表达式。 解: 1、相容条件: 将形变分量带入形变协调方程(相容方程)

其中 所以满足相容方程,符合连续性条件。 2、在平面应力问题中,用形变分量表示的应力分量为 3、平衡微分方程

其中 若满足平衡微分方程,必须有

分析:用形变分量表示的应力分量,满足了相容方程和平衡微分方程条件,若要求出常数A,B,C,D还需应力边界条件。 例2-2 如图所示为一矩形截面水坝, 其右侧面受静水压力(水的密度为ρ), 顶部受集中力P作用。试写出水坝的应 力边界条件。 解: 根据在边界上应力与面力的关系 左侧面:

材料力学实验指导书(矩形截面梁纯弯曲正应力的电测实验)

矩形截面梁纯弯曲正应力的电测实验 一、实验名称 矩形截面梁纯弯曲正应力的电测实验。 二、实验目的 1.学习使用电阻应变仪,初步掌握电测方法; 2.测定矩形截面梁纯弯曲时的正应力分布规律,并与理论公式计算结果进行比较,验证弯曲正应力计算公式的正确性。 三、实验设备 1.WSG-80型纯弯曲正应力试验台 2.静态电阻应变仪 四、试样制备及主要技术指标 1、矩形截面梁试样 材料:20号钢,E=208×109Pa; 跨度:L=600mm,a=200mm,L1=200mm; 横截面尺寸:高度h=28mm,宽度b=10mm。

2.载荷增量 载荷增量ΔF=200N (砝码四级加载,每个砝码重10N 采用1:20杠杆比放大),砝码托作为初载荷,F0=26 N 。 3.精度 满足教学实验要求,误差一般在5%左右。 五、实验原理 如图1所示,CD 段为纯弯曲段,其弯矩为a 2 1 F M = , 则m N M ?=6.20,m N M ?=?20。根据弯曲理论,梁横截面上各点的正应力增量为: z I y M ?= ?理σ (1) 式中:y 为点到中性轴的距离;Iz 为横截面对中性轴z 的惯性矩,对于矩 形截面, 12 bh I 3 z = (2) 由于CD 段是纯弯曲的,纵向各纤维间不挤压,只产生伸长或缩短,所以各点均为单向应力状态。只要测出各点沿纵向的应变增量ε?,即可按胡克定律计算出实际的正应力增量实σ?。 εσ?=?E 实 (3) 在CD 段任取一截面,沿不同高度贴五片应变片。1片、5片距中性轴z 的 距离为h/2,2片、4片距中性轴z 的距离为h/4,3片就贴在中性轴的位臵上。 测出各点的应变后,即可按(3)式计算出实际的正应力增量实σ?,并画出正应力实σ?沿截面高度的分布规律图,从而可与(1)式计算出的正应力理论值理σ?进行比较。 六、实验步骤 1.开电源,使应变仪预热。

第11章梁的弯曲应力要点

第11章梁的弯曲应力 教学提示:梁纯弯曲和横力弯曲时横截面上的正应力;梁横力弯曲时横截面上的切应力;提高弯曲强度的若干措施、薄壁杆件的切应力流和弯曲中心。 教学要求:掌握梁纯弯曲时横截面上正应力计算公式的推导过程,理解横力弯曲正应力计算仍用纯弯曲公式的条件和近似程度。掌握中性层、中性轴和翘曲等基本概念和含义。熟练掌握弯曲正应力和剪应力强度条件的建立和相应的计算。了解什么情况下需要对梁的弯曲切应力进行强度校核。从弯曲强度条件出发,掌握提高弯曲强度的若干措施。 在外荷载作用下,梁截面上一般都有弯矩和剪力,相应地在梁的横截面上有正应力和剪应力。弯矩是垂直于横截面的分布内力的合力偶矩;而剪力是切于横截面的分布内力的合力。本章研究正应力σ和剪应力τ的分布规律,从而对平面弯曲梁的强度进行计算。 11.1梁的弯曲正应力 平面弯曲情况下,一般梁横截面上既 有弯矩又有剪力,如图11.1所示梁的AC、 DB段。而在CD段内,梁横截面上剪力等 于零,而只有弯矩,这种情况称为纯弯曲。 下面推导梁纯弯曲时横截面上的正应力公 式。应综合考虑变形几何关系、物理关系 和静力学关系等三个方面。 11.1.1 弯曲正应力一般公式 1、变形几何关系 为研究梁弯曲时的变形规律,可通过 试验,观察弯曲变形的现象。取一具有对 称截面的矩形截面梁,在其中段的侧面上, 画两条垂直于梁轴线的横线mm和nn,再 在两横线间靠近上、下边缘处画两条纵线 ab和cd,如图11.2(a)所示。然后按图 11.1(a)所示施加荷载,使梁的中段处于纯弯曲 状态。从试验中可以观察到图11 .2(b)情况: (1)梁表面的横线仍为直线,仍与纵线正 交,只是横线间作相对转动。

矩形截面梁纯弯曲正应力的电测实验

A B C D L a a 1L b 2 F 2 F 2 F 2 F h 实验四 矩形截面梁纯弯曲正应力的电测实验 一、实验名称 矩形截面梁纯弯曲正应力的电测实验 二、实验目的 1.学习使用电阻应变仪,初步掌握电测方法; 2.测定矩形截面梁纯弯曲时的正应力分布规律,并与理论公式计算结果进行比较,验证弯曲正应力计算公式的正确性。 三、实验设备 1.WSG -80型纯弯曲正应力试验台 2.静态电阻应变仪 四、主要技术指标 1.矩形截面梁试样 图1 试样受力情况 材料:20号钢,E=208×109Pa ; 跨度:L=600mm ,a=200mm ,L 1=200mm ; 横截面尺寸:高度h=28mm ,宽度b=10mm 。 2.载荷增量 载荷增量ΔF=200N (砝码四级加载,每个砝码重10N 采用1:20杠杆比放大),砝码托作为初载荷,F 0=26 N 。 3.精度 满足教学实验要求,误差一般在5%左右。 五、实验原理

如图1所示,CD 段为纯弯曲段,其弯矩为Fa 2 1 M = ,则m 6N .2M 0?=,m 20N M ?=?。根据弯曲理论,梁横截面上各点的正应力增量为: z I My ?= ?理 σ (1) 式中:y 为点到中性轴的距离;Iz 为横截面对中性轴z 的惯性矩,对于矩形截面 12 bh I 3 z = (2) 由于CD 段是纯弯曲的,纵向各纤维间不挤压,只产生伸长或缩短,所以各点均为单向应力状态。只要测出各点沿纵向的应变增量ε?,即可按胡克定律计算出实际的正应力增量实σ?。 ε σ?=?E 实 (3) 在CD 段任取一截面,沿不同高度贴五片应变片。1片、5片距中性轴z 的距离为h/2,2片、4片距中性轴z 的距离为h/4,3片就贴在中性轴的位置上。 测出各点的应变后,即可按(3)式计算出实际的正应力增量实σ?,并画出正应力实σ?沿截面高度的分布规律图,从而可与(1)式计算出的正应力理论值 理σ?进行比较。 六、实验步骤及注意事项 1.开电源,使应变仪预热。 2.在CD 段的大致中间截面处贴五片应变片与轴线平行,各片相距h/4,作为工作片;另在一块与试样相同的材料上贴一片补偿片,放到试样被测截面附近。应变片要采用窄而长的较好,贴片时可把试样取下,贴好片,焊好固定导线,再小心装上。 3.调动蝶形螺母,使杠杆尾端翘起一些。 4.把工作片和补偿片用导线接到预调平衡箱的相应接线柱上,将预调平衡箱与应变仪联接,接通电源,调平应变仪。 5.先挂砝码托,再分四次加砝码,记下每次应变仪测出的各点读数。注意加砝码时要缓慢放手。 6.取四次测量的平均增量值作为测量的平均应变,代入(3)式计算可得各点的

弹性力学--纳维解法(板壳理论)

板壳理论课程设计 对工科各专业说来,弹性力学的任务和材料力学、结构力学的任务一样,是分析各种结构或其构件在弹性阶段的应力和位移,校核它们是否具有所需的强度和刚度,并寻求或改进它们的计算方法。然而,它们之间还存在着一些不同。材力中,基本上只研究杆状结构,即长度远大于高度和宽度的构件。而材料力学中主要研究的是这种构件在拉压、剪切、弯曲、扭转作用下的应力和位移。结构力学中,主要是在材料力学的基础上研究杆状构件所组成的结构,即杆件系统。至于非杆状结构,则是弹性力学的主要研究内容。在弹性力学中,研究杆状结构一般都不用诸如一些关于构建的形变状态或应力分布的假定,因而得到的结果就比较精确。 从8个方程8个未知量,到圣维南原理、相容方程;从逆解法、半逆解法到差分法、变分法,邱老师的课讲的十分生动,同学们也听得十分认真。到弹性力学下册,也就是板壳理论,主要是研究薄板的小挠度变形及其应力、应变。求解四边简支矩形薄板在载荷下的挠度,以及矩形薄板的莱维法解及一般解法。另外,变厚度矩形和圆形薄板的挠度求解问题。差分法中引进了较为精确的边界条件以及在均布载荷和集中载荷下的不同解法。 在课程设计的过程中,在自学Matlab 的过程中完成了纳维解法中挠度表达式的表示和循环收敛过程,并且完成了差分法中不同网格划分下的差分方程化为矩阵形式后的求解过程。除此之外,还学会了使用ABAQUS 创建板并定义厚度以减少同等情况下创建实体添加边界条件不准确对计算结果产生的影响。尽管和差分法与精确解的误差分析相比,误差还是比较大,但相比于创建三维实体并在底边添加约束条件相比,误差还是减少了很多。 在计算过程中,先是采用厚度0.2m 薄板,有限元方法的误差过大,而当把薄板的厚度改为0.1m 时,误差变小。两种厚度的薄板都进行了同样的计算。 四边简支的薄板在均布载荷作用下位移的最大值,薄板的尺寸为长宽高: 110.1??,均布载荷为21000/q N m =,弹性模量E=205GPa ,泊松比=0.3μ, 分别用:纳维法、差分法以及有限元方法进行求解并比较求得的结果。 得到结果如下:

纯弯梁正应力分布规律实验

中国矿业大学(北京) 工程土木工程_______专业_______班_________组 实验者姓名:__________实验日期:___________年____月___日 实验六纯弯曲正应力分布规律实验 一.实验目的 1.用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)的 分布规律。 2.验证纯弯曲梁的正应力计算公式。 二.实验仪器与设备 1.多功能工程力学实验台。 2.应力&应变综合参数测试仪一台。 3.矩形截面钢梁。 4.温度补偿块(或标准无感电阻)。 5.长度测量尺。 三.实验原理及方法 四.实验步骤

1.测量梁矩形截面的宽度b 和高度h 、载荷作用点到梁支点的距离a ,并测量各应变片到中性层的距离y I 。 2.将拉压传感器接至应力&应变综合参数测试仪中。 3.应变片连接采用1/4桥连接方式,将待测试应变片连接在A 、B 两端,将B 、B 1短接,在桥路选择上,将A 、D 两端连接补偿片,D 1、D 2短线连接即可。 4.本次实验的载荷范围为0~2kN ,在此范围内,采用分级加载方 式(一般分4~6级),实验时逐级加载,分别记录各应变片在各级载荷作用下的应变值。 五.实验结果处理 1.按实验记录数据求出各点的应力实验值,并计算出各点的应 力理论值。计算出它们的相对误差。 2.按同一比例分别画出各点应力的实验值和理论值沿横截面高度 的分布曲线,将两者进行比较,如两者接近,则说明弯曲正应 力的理论分析是可行的。 3.计算6#和5#的比值,若 μεε≈5 6 ,则说明纯弯曲梁为单向应力状 态。

4.实验数据可参照下表: 应变片至中性层的距离 梁宽度b= 20.84 mm;梁高度h= 40.15mm;施力点到支座距离l= 106 mm 应变片在各级载荷下的应变值 各测试点应力实验结果 P=400N

最新梁弯曲时横截面上的正应力教程文件

梁弯曲时横截面上的正应力 在确定了梁横截面的内力之后,还需要进一步研究横截面上的应力与截面内力之间的定量关系,从而建立梁的强度设计条件,进行强度计算。 1、纯弯曲与横力弯曲 从火车轴的力学模型为图2-53a所示的外伸梁。画其剪力、弯矩图(见图2-53b、c),在其AC、BD段内各横截面上有弯矩M和剪力同时存在,故梁在这些段内发生弯曲变形的F Q 同时还会发生剪力变形,这种变形称为剪力弯曲,也称为横力弯曲。在其CD段内各段截面, ,梁的这种弯曲称为纯只有弯矩M而无剪力F Q 弯曲。 2、梁纯弯曲时横截面上的正应力 如图2-54a所示,取一矩形截面梁,弯曲前在其表面两条横向线m—m和n—n,再画两条纵向线a—a和b—b,然后在其两端外力偶矩M,梁将发生平面纯弯曲变形(见图2-54b)。此时可以观察到如下变形现象:

⑴横向线m —m 和n —n 任为直线且与正向线正交,但绕某点相对转动了一个微小角度。 ⑵纵向线a —a 和b —b 弯成了曲线,且a —a 线缩短,而b —b 线伸长。 由于梁内部材料的变化无法观察,因此假设横截面在变形过程中始终保持为平面,这就是纯梁弯曲时的;平面假设。可以设想梁由无数条纵向纤维组成,且纵向纤维间无相互的挤压作用,处于单向受拉或受压状态。 从图2-54b 中可以看出,;梁春弯曲时,从凸边纤维伸长连续变化到凹边纤维缩短,期间必有一层纤维既不伸长也不缩短,这一纵向纤维层称为中性层(见图2-54c )。中性层与横截面的交线称为中性轴。梁弯曲时,横截面绕中心轴绕动了一个角度。 由上述分析可知,矩形截面梁弯曲时的应力分布有如下特点: ⑴中性轴的线应变为零,所以其正应力也为零。 ⑵距中性轴距离相等的各点,其线应变相等。根据胡克定律,它们的正应力也必相等。 ⑶在图2-54b 所示的受力情况下,中性轴上部分各点正应力为压应力(即负值),中性轴下部分各点正应力为拉应力(即正值)。 ⑷横截面上的正应力沿y 轴呈线性分布,即ky =σ(k 为特定常数),如图2-55、图2-56所示。最大正应力(绝对值)在离中性轴最远的上、下边缘处。 由于距离中性层上、下的纵向纤维的线应变与到中性层的距离y 成正比,当其正应力不超过材料的比例极限时,由胡克定律可知 y E y E E ?=?=?=ρρεσ 2-24 对于指定的横截面,ρE 为常数(即为上述k 的值)看,由于此时梁轴线的曲率

纯弯曲正应力分布规律实验

实验三纯弯曲正应力分布规律实验 一、实验目的 1.用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律并与理论值进行比较; 2.验证纯弯曲梁的正应力计算公式; 3.掌握运用电阻应变仪测量应变的方法。 二、实验仪器和设备 1.多功能组合实验装置一台或弯曲梁试验装置; 2.TS3860型静态数字应变仪一台; 3.纯弯曲实验梁一根; 4.温度补偿块一块; 5.游标卡尺 3-1 多功能组合实验装置 3-2弯曲梁试验装置 1—弯曲梁 2—铸铁架 3—支架 4—加载杆 5—加载螺杆系统 6—载荷传感器 7和8—组成电子秤 三、实验原理和方法 弯曲梁的材料为钢,其弹性模量E=200GN/m2,泊松比μ=0.29。用手转动实验装置上面的加力手轮,使四点弯上压头压住实验梁,则梁的中间段承受纯弯曲。根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为:

x M y I σ= (3-2) 式中:M 为弯矩;I x 为横截面对中性轴的惯性矩;y 为所求应力点至中性轴的距离。由上式可知,沿横截面高度正应力按线性规律变化。 实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。当增加压力ΔP 时,梁的四个受力点处分别增加作用力ΔP /2,如图3-3所示。 为了测量梁纯弯曲时横截面上应变分布规律,在梁纯弯曲段的侧面各点沿轴线方向布置了7片应变片(见图3-3)(对多功能组合装置:b =18.3mm ;h =38mm ;c =133.5mm ),各应变片的粘贴高度见弯曲梁上各点的标注。此外,在梁的下表面沿横向粘贴了应变片8# 。 如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的胡克定律公式σ=E ε,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。 若由实验测得应变片7#和8#的应变ε7,和ε8满足 87||εμε≈ 则证明梁弯曲时近似为单向应力状态,即梁的纵向纤维间无挤压的假设成立。 图3-3弯曲梁布片图 四、实验步骤 1.检查或测量(弯曲梁试验装置)矩形截面梁的宽度b 和高度h 、载荷作用点到梁支点距离c ,及各应变片到中性层的距离y i 。 2.检查压力传感器的引出线和电子秤的连接是否良好,接通电子秤的电源线。检查应变仪的工作状态是否良好。然后把梁上的应变片按序号接在应变仪上的各不同通道的接线柱A 、B 上,公共温度补偿片接在接线柱B 、C 上。相应电桥的接线柱B 需用短接片连接起来,而各接线柱C 之间不必用短接片连接,因其内部本来就是相通的。因为采用半桥接线法,故应变仪应处于半桥测量状态,应变仪的操作步骤见应变仪的使用说明书。 3.根据梁的材料、尺寸和受力形式,估计实验时的初始载荷P 0(一般按P 0=0.1σS 确定)、最大载荷P max (一般按P max ≤0.7σS 确定)和分级载荷ΔP (一般按加载4~6级考虑)。

纯弯曲梁正应力电测实验

实验二、纯弯曲梁正应力电测实验 一、 实验目的 1、 电测法测定纯弯曲梁正应力分布规律。 2、验证纯弯曲梁正应力计算公式。 二、 实验装置与仪器 1、 纯弯曲梁实验装置。 2、 数字式电阻应变仪。 三、 实验装置与实验原理 1、实验装置 弯曲梁试验装置如图1所示。它有弯曲梁 1, 定位板2,支座3,试验机架4,加载系统5, 两 端带万向接头的加载杆6,加载压头(包括φ16 钢珠)7,加载横梁8,载荷传感器9和测力 仪10等组成。该装置有已粘贴好应变片的钢梁(其弹性模量2210m GN E =)用来完成纯 弯曲梁正应变分布规律试验。 纯弯曲梁正应变分布规律试验 纯弯曲梁受力状态及有关尺寸见图2。 图 2 在梁的纯弯曲段内已粘贴好两组应变片,每组8片,分别为1~8号片和1*~8*号片,各片距中心层的距离在图3中已标出。当梁受力变形后,可由应变仪测出每片应变片产生的应变,这样就可得到实测的沿梁横截面高度的正应变分布规律。根据材料力学中纯弯曲梁的

平面假设,沿梁横截面高度的正应变分布规律应当是直线。另外材料力学中还假设梁在纯弯曲段内是单向应力状态,为此,我们在梁的下 表面粘贴有与7号片和7*号片垂直的8号片和 8*号片,当梁受力变形后,可测得8ε和* 8ε,根 据泊松比纵横 εεμ=,可由78εε或* *78εε计算得到 'μ,若'μ近似等于μ时,则证明梁纯弯曲段 内近似于单向应力状态。 2、实验原理 梁的纯弯曲段内,每片应变片所处状态是单向应力状态。根据单向应力状态的虎克定律: σ = E ε 可以计算出梁的纯弯曲段内每片应变片所处的应力。 注:该装置只允许加4KN 载荷,超载会损坏传感器。

弹性力学题

一、单项选择题 1.弹性力学建立的基本方程多是偏微分方程,还必须结合( C )求解这些微分方程,以求得具体问题的应力、应变、位移。 A.相容方程 B.近似方法 C.边界条件 D.附加假定 2.根据圣维南原理,作用在物体一小部分边界上的力系可以用( B )的力系代替,则仅在近处应力分布有改变,而在远处所受的影响可以不计。 A.几何上等效 B.静力上等效 C.平衡 D.任意 3.弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程不完全相同,其比较关系为( B )。 A.平衡方程、几何方程、物理方程完全相同 B.平衡方程、几何方程相同,物理方程不同 C.平衡方程、物理方程相同,几何方程不同 D.平衡方程相同,物理方程、几何方程不同 4.不计体力,在极坐标中按应力求解平面问题时,应力函数必须满足( A ) ①区域内的相容方程;②边界上的应力边界条件;③满足变分方程; ④如果为多连体,考虑多连体中的位移单值条件。 A.①②④ B. ②③④ C. ①②③ D. ①②③④ 5.如下图1所示三角形薄板,按三结点三角形单元划分后,对于与局部编码ijm对应的整体编码,以下叙述正确的是( D )。

① I 单元的整体编码为162 ② II 单元的整体编码为426 ③ II 单元的整体编码为246 ④ III 单元的整体编码为243 ⑤ IV 单元的整体编码为564 图1 A. ①③ B. ②④ C. ①④ D. ③⑤ 6.平面应变问题的微元体处于( C ) A.单向应力状态 B.双向应力状态 C.三向应力状态,且z σ是一主应力 D.纯剪切应力状态 7.圆弧曲梁纯弯时,( C ) A.应力分量和位移分量都是轴对称的 B.应力分量和位移分量都不是轴对称的 C.应力分量是轴对称的,位移分量不是轴对称的 D.位移分量是轴对称的,应力分量不是轴对称的 8.下左图2中所示密度为ρ的矩形截面柱,应力分量为:0,,0=+==xy y x B Ay τσσ对图(a )和图(b)两种情况由边界条件确定的常数A 及B 的关系是( C ) 相同,B 也相同 不相同,B 也不相同 相同,B 不相同 不相同,B 相同

弹性力学 第五章 第五章 弹性力学的求解方法和一般性原理

第五章弹性力学的求解方法和一般性原理知识点 弹性力学基本方程 边界条件 位移表示的平衡微分方程 应力解法 体力为常量时的变形协调方程 物理量的性质 逆解法和半逆解法 解的迭加原理,弹性力学基本求解方法位移解法 位移边界条件变形协调方程混合解法 应变能定理 解的唯一性原理圣维南原理 一、内容介绍 通过弹性力学课程学习,我们已经推导和确定了弹性力学的基本方程和常用公式。本章的任务是对弹性力学所涉及的基本方程作一总结,并且讨论具体地求解弹性力学问题的方法。 弹性力学问题的未知量有位移、应力和应变分量,共计15个,基本方程有平衡微分方程、几何方程和本构方程,也是15个。面对这样一个庞大的方程组,直接求解显然是困难的,必须讨论问题的求解方法。根据这一要求,本章的主要任务有三个: 一是综合弹性力学的基本方程,并按边界条件的性质将问题分类; 二是根据问题性质,确定基本未知量,建立通过基本未知量描述的基本方程,得到基本解法。弹性力学问题的基本解法主要是位移解法、应力解法和混合解法等。应该注意的是对于应力解法,基本方程包括变形协调方程。 三是介绍涉及弹性力学求解方法的一些基本原理。主要包括解的唯一性原理、叠加原理和圣维南原理等,这些原理将为今后的弹性力学问题解建立基础。 如果你在学习本章内容时有困难,请及时查阅和复习前三章相关内容,以保证今后课程的学习。 二、重点 1、弹性力学的基本方程与边界条件分类; 2、位移解法与位移表示 的平衡微分方程;3、应力解法与应力表示的变形协调方程;4、混合 解法;5、逆解法和半逆解法;6、解的唯一性原理、叠加原理和圣维

南原理 §5.1 弹性力学的基本方程及其边值问题 学习思路: 通过应力状态、应变状态和本构关系的讨论,已经建立了一系列的弹性力学基本方程和边界条件。本节的主要任务是将基本方程和边界条件作综合总结,并且对求解方法作初步介绍。 弹性力学问题具有15个基本未知量,基本方程也是15个,因此问题求解归结为在给定的边界条件下求解偏微分方程。 由于基本方程与15个未知量的内在联系,例如已知位移分量,通过几何方程可以得到应变分量,然后通过物理方程可以得到应力分量;反之,如果已知应力分量,也可通过物理方程得到应变分量,再由几何方程的积分求出位移分量,不过这时的应变分量必须满足一组补充方程,即变形协调方程。基于上述的理由,为简化求解的难度,可以选取部分未知量作为基本未知量求解。 根据基本未知量,弹性力学问题可以分为应力解法、位移解法和混合解法。 上述三种求解方法对应于偏微分方程的三种边值问题。 学习要点: 1、弹性力学基本方程; 2、本构方程; 3、边界条件; 4、弹性力学边值问题1、弹性力学基本方程 首先将弹性力学基本方程综合如下 1、平衡微分方程 用张量形式描述 2、几何方程

实验五 纯弯曲梁正应力实验

实验五 纯弯曲梁正应力实验 一、试验目的 1、熟悉电测法的基本原理。 2、进一步学会静态电阻应变仪的使用。 3、用电测法测定钢梁纯弯曲时危险截面沿高度分布各点的应力值。 二、试验装置 1、材料力学多功能实验装置 2、CM-1C 型静态数字应变仪 三、试验原理 本试验装置采用低碳钢矩形截面梁,为防止生锈将钢梁进行电镀。矩形截面钢梁架在两支座上,加载荷时,钢梁中段产生纯弯曲变形最大,是此钢梁最危险的截面。为了解中段危险截面纯弯曲梁应力沿高度方向分布情况,采用电测法测出加载时钢梁表面沿高度方向的应变情况,再由σ实=E ε实得到应力的大小。试验前在钢梁上粘贴5片应变 片见图5—1,各应变片的间距为4 h ,即把钢梁4等分。在钢梁最外侧不受力处粘贴一片 R 6作为温度补偿片。 图5—1 试验装置示意图 对于纯弯曲梁,假设纵向纤维仅受单向拉伸或压缩,因此在起正应力不超过比例极限时,可根据虎克定律进行计算: σ实=E ε实 E 为刚梁的弹性模量,ε实是通过电测法用电阻应变仪测得的应变值。 四、电测法基本原理 1、电阻应变法工作原理 电测法即电阻应变测试方法是根据应变应力关系,确定构件表面应力状态的一种实验应力分析法。 将应变片紧紧粘贴在被测构件上,连接导线接到电桥接线端子上 当构件受力 构件产生应变 应变片电阻值随之变化 应变仪内部的惠斯登电桥

将电阻值的变化转变成正比的电压信号电阻应变仪内部的放大、相敏、检波电路转换显示器读出应变量。 2、电阻应变片 1)电阻应变片的组成 由敏感栅、引线、基底、盖层和粘结剂组成,其构造简图如图5—2所示。敏感栅能把构件表面的应变转换为电阻相对变化。由于它非常敏感,故称为敏感栅。它用厚度为0.002~0.005mm的铜合金或铬合金的金属箔,采用刻图、制版、光刻及腐蚀等工艺过程制成,简称箔式应变。它粘贴牢固、散热性能好、疲劳寿命长,并能较好的反映构件表面的变形,使测量精度较高。在各测量领域得到广泛的应用。 图5—2 电阻应变片构造简图 2)电阻应变片种类 电阻应变片按敏感栅的结构形状可分为: 单轴应变片:单轴应变片一般是指具有一个敏感栅的应变片。 应变花(多轴应变片):具有两个或两个以上轴线相交成一定角度的敏感栅制成的应变片称为多轴应变片,也称为应变花。其敏感栅可由金属丝或金属箔制成。采用应变花可方便地测定平面应变状态下构件某一点处的应变。 3)应变灵敏系数(K) 将应变片贴在单向应力状态的试件表面,且其轴向与应力方向重合。在单向应力作用下,应变片的电阻相对变化ΔR/P与试件表面沿应变片轴线方向的应变ε之比值,称为应变片的灵敏系数 K=(ΔR/P)/ε 应变片灵敏系数是使用应变片的重要数据。它主要取决于敏感栅的材料、型式和几何尺寸。应变片的灵敏系数受到多种因素的影响,无法由理论求得,是由制造厂经抽样在专门的设备上进行标定,并于包装上注明。常用的应变片灵敏度系数为2—2.4。 当我们使用应变片时,必须在测量前进行校准。校准方法:根据应变片的K值,查表5—1,再根据表内K值所对应的标定值,来调节静态应变仪。 3、CM-1C型静态数字应变仪 通过应变片可以将试件的应变转换为应变片的电阻变化。但通常这种电阻变化是很小的。为了便于测量,需将应变片的电阻变化转换成电压(或电流)信号,再通过电

弹性力学的求解方法和一般性原理

第五章弹性力学的求解方法和一般性原理 一.内容介绍 通过弹性力学课程学习,我们已经推导和确定了弹性力学的基本方程和常用公式。本章的任务是对弹性力学所涉及的基本方程作一总结,并且讨论具体地求解弹性力学问题的方法。 弹性力学问题的未知量有位移、应力和应变分量,共计15个,基本方程有平衡微分方程、几何方程和本构方程,也是15个。面对这样一个庞大的方程组,直接求解显然是困难的,必须讨论问题的求解方法。根据这一要求,本章的主要任务有三个: 一是综合弹性力学的基本方程,并按边界条件的性质将问题分类; 二是根据问题性质,确定基本未知量,建立通过基本未知量描述的基本方程,得到基本解法。弹性力学问题的基本解法主要是位移解法、应力解法和混合解法等。应该注意的是对于应力解法,基本方程包括变形协调方程。 三是介绍涉及弹性力学求解方法的一些基本原理。主要包括解的唯一性原理、叠加原理和圣维南原理等,这些原理将为今后的弹性力学问题解建立基础。 如果你在学习本章内容时有困难,请及时查阅和复习前三章相关内容,以保证今后课程的学习。 二. 重点 1.弹性力学基本方程与边界条件分类; 2.位移解法与位移表示的平衡微分方程; 3. 应力解法与应力表示的变形协调方程; 4. 混合解法; 5. 逆解法和半逆解法; 6. 解的唯一性原理、叠加原理和圣维南原理 知识点 弹性力学基本方程边界条件位移表示的平衡微分方程应力解法 体力为常量时的变形协调方程物理量的性质逆解法和半逆解法 解的迭加原理弹性力学基本求解方法位移解法位移边界条件 变形协调方程混合解法应变能定理解的唯一性原理圣维南原理

§5.1 弹性力学的基本方程及其边值问题 学习思路: 通过应力状态、应变状态和本构关系的讨论,已经建立了一系列的弹性力学基本方程和边界条件。本节的主要任务是将基本方程和边界条件作综合总结,并且对求解方法作初步介绍。 弹性力学问题具有15个基本未知量,基本方程也是15个,因此问题求解归结为在给定的边界条件下求解偏微分方程。 由于基本方程与15个未知量的内在联系,例如已知位移分量,通过几何方程可以得到应变分量,然后通过物理方程可以得到应力分量;反之,如果已知应力分量,也可通过物理方程得到应变分量,再由几何方程的积分求出位移分量,不过这时的应变分量必须满足一组补充方程,即变形协调方程。基于上述的理由,为简化求解的难度,可以选取部分未知量作为基本未知量求解。 根据基本未知量,弹性力学问题可以分为应力解法、位移解法和混合解法。 上述三种求解方法对应于偏微分方程的三种边值问题。 学习要点: 1. 弹性力学基本方程; 2. 本构方程; 3. 边界条件; 4. 弹性力学边值问题; 首先将弹性力学基本方程综合如下: 1. 平衡微分方程 用张量形式描述 2. 几何方程

弹性力学边值问题

第五章弹性力学边值问题 本章任务 总结对弹性力学基本方程 讨论求解弹性力学问题的方法

目录 §5.1弹性力学基本方程 §5.2问题的提法 §5.3弹性力学问题的基本解法 解的唯一性 §5.4圣维南局部影响原理 §5.5叠加原理

§5.1弹性力学基本方程 ?总结弹性力学基本理论; ?讨论已知物理量、基本未知量;以及物理量之间的关系——基本方程和边界条件。

弹性力学基本方程 1.平衡微分方程 000=+??+??+??=+??+??+??=+??+??+??bz z yz z by zy y xy bx zx yx x F z y x F z y x F z y x στττστττσ0 ,=+bj i ij F σ2.几何方程 x w z u z v y w y u x v z w y v x u zx yz xy z y x ??+??=??+??=??+??=??=??=??=γγγεεε,,,,,),,(2 1i j j i ij u u +=ε

3.变形协调方程 y x z y x z z x z y x y z y z y x x z x x z z y z y y x y x z xy xz yz y xy xz yz x xy xz yz xz z x yz y z xy x y ???=??-??+???????=??+??-???????=??+??+??-?????=??+?????=??+?????=??+??εγγγεγγγεγγγγεεγεεγεε2222222222222222222)(2)(2)(位移作为基本未知量时,变形协调方程自然满足。

单一材料梁的弯曲正应力实验

单一材料梁的弯曲正应力实验 一、实验目的 1.用电测法测量单一材料的矩形截面梁在纯弯曲状态时其横截面上正应力的大小及分布规律,并与理论计算值比较,从而验证梁的弯曲正应力理论公式。 2.初步掌握电测法原理和静态电阻应变仪的使用方法。 二、预习思考要点 1.本实验装置是如何实现使梁的某一区段处于纯弯曲状态的? 2.梁处于纯弯曲状态时其内力分布有何特征? 3.梁处于纯弯曲状态时,若要测取其上某一点的线应变为何只需在该点布设一枚应变计,且平行于梁的轴线方向? 三、实验装置和仪器 1.纯弯曲实验装置 本实验采用低碳钢或中碳钢制成的矩形截面梁,测试其正应力分布规律的实验装置如图1-26(a)所示,所加的砝码重量通过杠杆以一定的放大比例作用于加载辅梁的中央,设作用于辅梁中央的载荷为F,由于载荷对称,支承条件对称,则通过两个挂杆作用于待测梁上C、D处的载荷各为F/2。由待测梁的内力图可知CD段上的剪力Q=0, 弯矩为一常量M= 2a F ,即梁的CD段处于纯弯曲状态。 图1-26 弯曲正应力实验装置及试样贴片位置图 2.静态电阻应变仪 3.游标卡尺、钢直尺 四、实验原理 由于矩形截面梁的CD段处于纯弯曲状态,当梁发生变形其横截面保持平面的假设

成立,又可将梁视作由一层一层的纵向纤维叠合而成且假设纵向纤维间无挤压作用,此时纯弯曲梁上的各点处于单向应力状态,且弯曲正应力的方向平行于梁的轴线方向,所以若要测量纯弯曲状态下梁的横截面上的正应力的分布规律,可在梁的CD 段任一截面上沿不同高度处平行于梁的轴线方向布设若干枚电阻应变计,为简便计算,本实验的布片方案如图1-26(b )所示,一枚布设在梁的中性层上,其余四枚分别布设在距中性层h/4或h/2处(h 为梁矩形截面的高度),此外还布设了一枚温度补偿片。 当梁受载后,电阻应变计随梁的弯曲变形而产生伸长或缩短,使自身的电阻改变。通过力学量的电测法原理,利用电阻应变仪即可测出梁横截面上各测点的应变值ε实。由于本实验梁的变形控制在线弹性范围内,所以依据单向虎克定律即可求解相应各测点的应力值,即σ实=E ·ε实,E 为梁材料的弹性模量。 实验采用“等增量法”加载,即每增加等量的载荷ΔF ,测定一次各点相应的应变增量Δε实,并观察各点应变增量的线性程度。载荷分为3—5级,最终载荷的选取,应依据梁上的最大应力σmax <(0.7-0.8)σs (σs 为材料的屈服极限)。当加载至最后一级,测完各应变值后即卸载,最后算出各测点应变增量的算术平均值实ε?,依次求出各点的应力增量Δσ实。 Δσ实=E· 实ε? (1-43) 把Δσ实与理论公式计算的应力增量 Δσ理= z I y M ?? (1-44) 进行比较,算出截面上各测点的应力增量实验值与理论值的相对误差,即 %100???-?= 理 理 实σσση (1-45) 从而验证梁的弯曲正应力公式的正确性。 五、实验步骤 1.用游标卡尺和钢直尺测量梁的矩形截面的宽度b 和高度h ,载荷作用点到梁支点的距离a 。 2.根据梁的截面尺寸和支承条件,材料的σs 值,确定分级加载的载荷增量和级次,(每级加载应使梁上各点的应变有较明显的变化),最终载荷值。 3.本实验采用多点半桥公共补偿测量法,将5枚应变测量计和公共温度补偿计分别接入静态电阻应变仪的相邻桥臂上,根据电阻应变计所给出的灵敏系数k 值调好电阻

梁弯曲时横截面上的正应力

在确定了梁横截面的内力之后,还需要进一步研究横截面上的应力与截面内力之间的定量关系,从而建立梁的强度设计条件,进行强度计算。 1、纯弯曲与横力弯曲 从火车轴的力学模型为图2-53a 所示的外伸梁。画其剪力、弯矩图(见图2-53b 、c ),在其AC 、BD 段内各横截面上有弯矩M 和剪力F Q 同时存在,故梁在这些段内 发生弯曲变形的同时还会发生剪力变形,这种变形称为剪力弯曲,也称为横力弯曲。在其CD 段内各段截面,只有弯矩M 而无剪力F Q ,梁的这种弯曲称为纯弯曲。 2、梁纯弯曲时横截面上的正应力 如图2-54a 所示,取一矩形截面梁,弯曲前在其表面两条横向线m —m 和n —n ,再画两条纵向线a —a 和b —b ,然后在其两端外力偶矩M ,梁将发生平面纯弯曲变形(见图2-54b)。此时可以观察到如下变形现象: ⑴横向线m —m 和n —n 任为直线且与正向线正交,但绕某点相对转动了一个微小角度。 ⑵纵向线a —a 和b —b 弯成了曲线,且a —a 线缩短,而b —b 线伸长。 由于梁内部材料的变化无法观察,因此假设横截面在变形过程中始终保持为平面,这就是纯梁弯曲时的;平面假设。可以设想梁由无数条纵向纤维组成,且纵向纤维间无相互的挤压作用,处于单向受拉或受压状态。 从图2-54b 中可以看出,;梁春弯曲时,从凸边纤维伸长连续变化到凹边纤维缩短,期间必有一层纤维既不伸长也不缩短,这一纵向纤维层称为中性层(见图2-54c )。中性层与横截面的交线称为中性轴。梁弯曲时,横截面绕中心轴绕动了一个角度。 由上述分析可知,矩形截面梁弯曲时的应力分布有如下特点: ⑴中性轴的线应变为零,所以其正应力也为零。 ⑵距中性轴距离相等的各点,其线应变相等。根据胡克定律,它们的正应力也必相等。 ⑶在图2-54b 所示的受力情况下,中性轴上部分各点正应力为压应力(即负值),中性轴下部分各点正应力为拉应力(即正值)。 ⑷横截面上的正应力沿y 轴呈线性分布,即ky =σ(k 为特定常数),如图2-55、图2-56所示。最大正应力(绝对值)在离中性轴最远的上、下边缘处。 由于距离中性层上、下的纵向纤维的线应变与到中性层的距离y 成正比,当其正应力不超过材料的比例极限时,由胡克定律可知 y E y E E ?=?=?=ρρεσ 2-24 对于指定的横截面,ρE 为常数(即为上述k 的值)看,由于此时梁轴线的曲率 半径ρ还是一个未知量,通过静力学平衡关系∑z F )(=0,可得 图2-55 正应力分布图 图2-56 梁纯弯曲时横截面上的

相关文档
最新文档