2015届高考数学二轮专题训练:专题八 第3讲 分类讨论思想

2015届高考数学二轮专题训练:专题八 第3讲 分类讨论思想
2015届高考数学二轮专题训练:专题八 第3讲 分类讨论思想

第3讲分类讨论思想

1.分类讨论思想是一种重要的数学思想方法.其基本思路是将一个较复杂的数学问题分解(或分割)成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的思想策略.对问题实行分类与整合,分类标准等于增加一个已知条件,实现了有效增设,将大问题(或综合性问题)分解为小问题(或基础性问题),优化解题思路,降低问题难度.

2.分类讨论的常见类型

(1)由数学概念引起的分类讨论.有的概念本身是分类的,如绝对值、直线斜率、指数函数、对数函数等.

(2)由性质、定理、公式的限制引起的分类讨论.有的数学定理、公式、性质是分类给出的,在不同的条件下结论不一致,如等比数列的前n项和公式、函数的单调性等.

(3)由数学运算要求引起的分类讨论.如除法运算中除数不为零,偶次方根为非负,对数真数与底数的要求,指数运算中底数的要求,不等式两边同乘以一个正数、负数,三角函数的定义域等.

(4)由图形的不确定性引起的分类讨论.有的图形类型、位置需要分类:如角的终边所在的象限;点、线、面的位置关系等.

(5)由参数的变化引起的分类讨论.某些含有参数的问题,如含参数的方程、不等式,由于参数的取值不同会导致所得结果不同,或对于不同的参数值要运用不同的求解或证明方法.(6)由实际意义引起的讨论.此类问题在应用题中,特别是在解决排列、组合中的计数问题时常用.

3.分类讨论的原则

(1)不重不漏.

(2)标准要统一,层次要分明.

(3)能不分类的要尽量避免或尽量推迟,决不无原则地讨论.

4.解分类问题的步骤

(1)确定分类讨论的对象,即对哪个变量或参数进行分类讨论.

(2)对所讨论的对象进行合理的分类.

(3)逐类讨论,即对各类问题详细讨论,逐步解决.

(4)归纳总结,将各类情况总结归纳.

热点一 由数学概念、性质、运算引起的分类讨论

例1 (1)(2014·浙江)设函数f (x )=?

????

x 2+x ,x <0,

-x 2,x ≥0,若f (f (a ))≤2,则实数a 的取值范围是

________.

(2)在等比数列{a n }中,已知a 3=32,S 3=9

2,则a 1=________.

答案 (1)a ≤2 (2)3

2

或6

解析 (1)f (x )的图象如图,由图象知,满足f (f (a ))≤2时,得f (a )≥-2,而满足f (a )≥-2时,得a ≤ 2.

(2)当q =1时,a 1=a 2=a 3=3

2,

S 3=3a 1=9

2

,显然成立;

当q ≠1时,由题意,得???

a 1q 2

=a 3

=3

2,

a 1

(1-q 3

)1-q

=S 3

=9

2.

所以???

a 1q 2=3

2

, ①

a 1

(1+q +q 2

)=9

2

, ②

由①②,得1+q +q 2

q 2

=3,即2q 2-q -1=0, 所以q =-1

2

或q =1(舍去).

当q =-12时,a 1=a 3q 2=6.综上可知,a 1=3

2

或a 1=6.

思维升华 (1)由数学概念引起的讨论要正确理解概念的内涵与外延,合理进行分类;(2)运算引起的分类讨论有很多,如除法运算中除数不为零,偶次方根为非负,对数运算中真数与底数的要求,指数运算中底数的要求,不等式两边同乘以一个正数、负数,三角函数的定义域等.

(1)已知函数f (x )=?

????

log 2(x +1),x >3,

2x -3+1, x ≤3满足f (a )=3,则f (a -5)的值为( )

A .log 23 B.1716 C.3

2

D .1

(2)已知数列{a n }的前n 项和S n =p n -1(p 是常数),则数列{a n }是( ) A .等差数列 B .等比数列

C .等差数列或等比数列

D .以上都不对 答案 (1)C (2)D

解析 (1)分两种情况分析,?

???? a ≤32a -3+1=3①或者?????

a >3

log 2(a +1)=3②,①无解,由②得,a =7,

所以f (a -5)=22-

3+1=32,故选C.

(2)∵S n =p n -1,

∴a 1=p -1,a n =S n -S n -1=(p -1)p n -

1(n ≥2),

当p ≠1且p ≠0时,{a n }是等比数列; 当p =1时,{a n }是等差数列;

当p =0时,a 1=-1,a n =0(n ≥2),此时{a n }既不是等差数列也不是等比数列. 热点二 由图形位置或形状引起的讨论 例2 (1)不等式组????

?

x -y +3≥0,x +y ≥0,

x ≤2表示的平面区域内有________个整点(把横、纵坐标都是整

数的点称为整点).

(2)设圆锥曲线T 的两个焦点分别为F 1,F 2,若曲线T 上存在点P 满足|PF 1|∶|F 1F 2|∶|PF 2|=4∶3∶2,则曲线T 的离心率为________. 答案 (1)20 (2)12或3

2

解析 (1)画出不等式组表示的平面区域(如图). 结合图中的可行域可知

x ∈[-3

2,2],y ∈[-2,5].

由图形及不等式组,知 ?????

-x ≤y ≤x +3,-32

≤x ≤2,且x ∈Z . 当x =-1时,1≤y ≤2,有2个整点; 当x =0时,0≤y ≤3,有4个整点; 当x =1时,-1≤y ≤4,有6个整点; 当x =2时,-2≤y ≤5,有8个整点;

所以平面区域内的整点共有2+4+6+8=20(个).

(2)不妨设|PF 1|=4t ,|F 1F 2|=3t ,|PF 2|=2t ,若该圆锥曲线为椭圆,则有|PF 1|+|PF 2|=6t =2a ,|F 1F 2|=3t =2c ,e =c a =2c 2a =3t 6t =1

2;若该圆锥曲线是双曲线,则有|PF 1|-|PF 2|=2t =2a ,

|F 1F 2|=3t =2c ,e =c a =2c 2a =3t 2t =3

2.

所以圆锥曲线T 的离心率为12或3

2

.

思维升华 求解有关几何问题时,由于几何元素的形状、位置变化的不确定性,所以需要根据图形的特征进行分类讨论.

一般由图形的位置或形状变化引发的讨论包括:二次函数对称轴位置的变化;函数问题中区间的变化;函数图象形状的变化;直线由斜率引起的位置变化;圆锥曲线由焦点引起的位置变化或由离心率引起的形状变化.

(1)已知变量x ,y 满足的不等式组????

?

x ≥0,y ≥2x ,

kx -y +1≥0

表示的是一个直角三角形围成

的平面区域,则实数k 等于( ) A .-1

2

B.12 C .0

D .-12

或0

(2)设F 1,F 2为椭圆x 29+y 2

4=1的两个焦点,P 为椭圆上一点.已知P ,F 1,F 2是一个直角三角

形的三个顶点,且|PF 1|>|PF 2|,则|PF 1|

|PF 2|

的值为________. 答案 (1)D (2)2或7

2

解析 (1)不等式组????

?

x ≥0,y ≥2x ,

kx -y +1≥0

表示的可行域如图(阴影部分)所示,由图可知若不等式组

????

?

x ≥0,y ≥2x ,kx -y +1≥0

表示的平面区域是直角三角形,只有直线y =kx +1与直线x =0垂直(如图①)或直线y =kx +1与直线y =2x 垂直(如图②)时,平面区域才是直角三角形.

由图形可知斜率k 的值为0或-12.

(2)若∠PF 2F 1=90°, 则|PF 1|2=|PF 2|2+|F 1F 2|2, ∵|PF 1|+|PF 2|=6,|F 1F 2|=25, 解得|PF 1|=

143,|PF 2|=43,∴|PF 1||PF 2|=7

2

. 若∠F 2PF 1=90°, 则|F 1F 2|2=|PF 1|2+|PF 2|2 =|PF 1|2+(6-|PF 1|)2, 解得|PF 1|=4,|PF 2|=2, ∴

|PF 1||PF 2|=2.综上所述,|PF 1||PF 2|=2或72

. 热点三 由参数引起的分类讨论

例3 (2014·四川改编)已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.

设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值. 解 由f (x )=e x -ax 2-bx -1, 有g (x )=f ′(x )=e x -2ax -b . 所以g ′(x )=e x -2a .

因此,当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ]. 当a ≤1

2时,g ′(x )≥0,

所以g (x )在[0,1]上单调递增,

因此g (x )在[0,1]上的最小值是g (0)=1-b ;

当a ≥e

2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,

因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ; 当12

2

时,令g ′(x )=0得x =ln(2a )∈(0,1), 所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 于是,g (x )在[0,1]上的最小值是 g (ln(2a ))=2a -2a ln(2a )-b .

综上所述,当a ≤1

2时,g (x )在[0,1]上的最小值是

g (0)=1-b ;

当12

2时,g (x )在[0,1]上的最小值是 g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e

2时,g (x )在[0,1]上的最小值是

g (1)=e -2a -b .

思维升华 一般地,遇到题目中含有参数的问题,常常结合参数的意义及对结果的影响进行分类讨论,此种题目为含参型,应全面分析参数变化引起结论的变化情况,参数有几何意义时还要考虑适当地运用数形结合思想,分类要做到分类标准明确,不重不漏.

已知函数g (x )=ax

x +1

(a ∈R ),f (x )=ln(x +1)+g (x ).

(1)若函数g (x )过点(1,1),求函数f (x )的图象在x =0处的切线方程; (2)判断函数f (x )的单调性.

解 (1)因为函数g (x )过点(1,1),所以1=a 1+1,解得a =2,所以f (x )=ln(x +1)+2x

x +1.由f ′(x )

1x +1+2

(x +1)2=x +3(x +1)2

,则f ′(0)=3,所以所求的切线的斜率为3.又f (0)=0,所以切点为(0,0),故所求的切线方程为y =3x . (2)因为f (x )=ln(x +1)+

ax

x +1

(x >-1), 所以f ′(x )=1

x +1+a (x +1)-ax (x +1)2=x +1+a (x +1)2.

①当a ≥0时,因为x >-1,所以f ′(x )>0, 故f (x )在(-1,+∞)上单调递增.

②当a <0时,由?

????

f ′(x )<0,

x >-1,得-1

故f (x )在(-1,-1-a )上单调递减;

由?

????

f ′(x )>0,x >-1,得x >-1-a , 故f (x )在(-1-a ,+∞)上单调递增.

综上,当a ≥0时,函数f (x )在(-1,+∞)上单调递增; 当a <0时,函数f (x )在(-1,-1-a )上单调递减, 在(-1-a ,+∞)上单调递增.

分类讨论思想的本质是“化整为零,积零为整”.用分类讨论的思维策略解数学问题的操作过程:明确讨论的对象和动机→确定分类的标准→逐类进行讨论→归纳综合结论→检验分类是否完备(即分类对象彼此交集为空集,并集为全集).做到“确定对象的全体,明确分类的标准,分类不重复、不遗漏”的分析讨论. 常见的分类讨论问题有:

(1)集合:注意集合中空集?的讨论.

(2)函数:对数函数或指数函数中的底数a ,一般应分a >1和0

(3)数列:由S n 求a n 分n =1和n >1的讨论;等比数列中分公比q =1和q ≠1的讨论. (4)三角函数:角的象限及函数值范围的讨论.

(5)不等式:解不等式时含参数的讨论,基本不等式相等条件是否满足的讨论. (6)立体几何:点线面及图形位置关系的不确定性引起的讨论;

(7)平面解析几何:直线点斜式中k 分存在和不存在,直线截距式中分b =0和b ≠0的讨论;轨迹方程中含参数时曲线类型及形状的讨论. (8)排列、组合、概率中的分类计数问题. (9)去绝对值时的讨论及分段函数的讨论等.

真题感悟

1.(2014·课标全国Ⅱ)钝角三角形ABC 的面积是12,AB =1,BC =2,则AC 等于( )

A .5 B. 5 C .2 D .1

答案 B

解析 ∵S △ABC =12AB ·BC ·sin B =12×1×2sin B =1

2,

∴sin B =

22,∴B =π4或3π4

. 当B =3π

4时,根据余弦定理有AC 2=AB 2+BC 2-2AB ·BC ·cos B =1+2+2=5,所以AC =5,

此时△ABC 为钝角三角形,符合题意;

当B =π

4时,根据余弦定理有AC 2=AB 2+BC 2-2AB ·BC ·cos B =1+2-2=1,所以AC =1,此

时AB 2+AC 2=BC 2,△ABC 为直角三角形,不符合题意.故AC = 5.

2.(2013·安徽)“a ≤0”是“函数f (x )=|(ax -1)x |在区间(0,+∞)内单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件

答案 C

解析 当a =0时,f (x )=|(ax -1)x |=|x |在区间(0,+∞)上单调递增;

当a <0时,结合函数f (x )=|(ax -1)x |=|ax 2-x |的图象知函数在(0,+∞)上单调递增,如图(1)所示;

当a >0时,结合函数f (x )=|(ax -1)x |=|ax 2-x |的图象知函数在(0,+∞)上先增后减再增,不符合条件,如图(2)所示.

所以,要使函数f (x )=|(ax -1)x |在(0,+∞)上单调递增只需a ≤0.

即“a ≤0”是“函数f (x )=|(ax -1)x |在区间(0,+∞)内单调递增”的充要条件.

3.(2014·广东)设集合A ={(x 1,x 2,x 3,x 4,x 5)|x i ∈{-1,0,1},i =1,2,3,4,5},那么集合A 中满足条件“1≤|x 1|+|x 2|+|x 3|+|x 4|+|x 5|≤3”的元素个数为( ) A .60 B .90 C .120 D .130

答案 D

解析 在x 1,x 2,x 3,x 4,x 5这五个数中,因为x i ∈{-1,0,1},i =1,2,3,4,5,所以满足条件1≤|x 1|+|x 2|+|x 3|+|x 4|+|x 5|≤3的可能情况有“①一个1(或-1),四个0,有C 15×2种;②两个1(或

-1),三个0,有C 25×2种;③一个-1,一个1,三个0,有A 25种;④两个1(或-1),一个-1(或1),两个0,有C 25C 13×2种;⑤三个1(或-1),两个0,有C 35×2种.故共有C 15×2+C 25×2+A 25+C 25C 13×2+C 35×2=130(种),故选D.

押题精练

1.已知函数f (x )=?

????

ax 2+1, x ≥0,

(a +2)e ax

x <0为R 上的单调函数,则实数a 的取值范围是( ) A .(0,+∞) B .[-2,0) C .[-1,0) D .[-1,+∞)

答案 C

解析 若a =0,则f (x )在定义域的两个区间内都是常函数,不具备单调性;若a >0,函数f (x )在两段上都是单调递增的,要使函数在R 上单调递增,只要(a +2)e 0≤1,即a ≤-1,与a >0矛盾,此时无解.若-2

2.等比数列{a n }中,a 3=7,前3项之和S 3=21,则公比q 的值是( ) A .1 B .-1

2

C .1或-1

2

D .-1或1

2

答案 C

解析 当公比q =1时,a 1=a 2=a 3=7,S 3=3a 1=21,符合要求.

当q ≠1时,a 1q 2

=7,a 1(1-q 3)1-q

=21,解之得,q =-12或q =1(舍去).综上可知,q =1或-1

2.

3.抛物线y 2=4px (p >0)的焦点为F ,P 为其上的一点,O 为坐标原点,若△OPF 为等腰三角形,则这样的点P 的个数为( ) A .2 B .3 C .4 D .6 答案 C

解析 当|PO |=|PF |时,点P 在线段OF 的中垂线上,此时,点P 的位置有两个;当|OP |=|OF |时,点P 的位置也有两个;对|FO |=|FP |的情形,点P 不存在.事实上,F (p,0),若设P (x ,y ),则|FO |=p ,|FP |=(x -p )2+y 2,若(x -p )2+y 2=p ,则有x 2-2px +y 2=0,又∵y 2=4px ,∴x 2+2px =0,解得x =0或x =-2p ,当x =0时,不构成三角形.当x =-2p (p >0)时,与点P 在抛物线上矛盾.所以符合要求的点P 一共有4个.

4.6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为( ) A .1或3 B .1或4 C .2或3 D .2或4

答案 D

解析 设6位同学分别用a ,b ,c ,d ,e ,f 表示.

若任意两位同学之间都进行交换共进行15次交换,现共进行了13次交换,说明有两次交换没有发生,此时可能有两种情况:

(1)由3人构成的2次交换,如a -b 和a -c 之间的交换没有发生,则收到4份纪念品的有b ,c 两人.

(2)由4人构成的2次交换,如a -b 和c -e 之间的交换没有发生,则收到4份纪念品的有a ,b ,c ,e 四人.故选D.

5.已知等差数列{a n }的前3项和为6,前8项和为-4. (1)求数列{a n }的通项公式;

(2)设b n =(4-a n )q n -

1 (q ≠0,n ∈N *),求数列{b n }的前n 项和S n .

解 (1)设数列{a n }的公差为d ,

由已知,得????? 3a 1+3d =6,8a 1+28d =-4,解得?

????

a 1=3,

d =-1.

故a n =3-(n -1)=4-n . (2)由(1)可得b n =n ·q n -

1,

于是S n =1·q 0+2·q 1+3·q 2+…+n ·q n -

1.

若q ≠1,将上式两边同乘q ,得 qS n =1·q 1+2·q 2+…+(n -1)·q n -

1+n ·q n .

两式相减,得(q -1)S n =nq n -1-q 1-q 2-…-q n -

1

=nq n

-q n -1q -1=nq n +

1-(n +1)q n +1

q -1

.

于是,S n =nq n +

1-(n +1)q n +1

(q -1)2

.

若q =1,则S n =1+2+3+…+n =n (n +1)

2

.

综上,S n

=?

????

n (n +1)

2

(q =1),nq

n +1

-(n +1)q n +1

(q -1)2

(q ≠1).

6.已知函数f (x )=(a +1)ln x +ax 2+1,试讨论函数f (x )的单调性. 解 由题意知f (x )的定义域为(0,+∞), f ′(x )=a +1x +2ax =2ax 2+a +1

x

.

①当a ≥0时,f ′(x )>0,故f (x )在(0,+∞)上单调递增. ②当a ≤-1时,f ′(x )<0,故f (x )在(0,+∞)上单调递减. ③当-1

-a +1

2a

则当x ∈?

??

??

0, -

a +12a 时,f ′(x )>0; 当x ∈? ??

??

-a +12a ,+∞时,f ′(x )<0. 故f (x )在?

??

??

0, -

a +12a 上单调递增, 在? ??

??

-a +12a ,+∞上单调递减. 综上,当a ≥0时,f (x )在(0,+∞)上单调递增; 当a ≤-1时,f (x )在(0,+∞)上单调递减; 当-1

?

?

??

0, -

a +12a 上单调递增, 在? ??

??

-a +12a ,+∞上单调递减.

2020高考数学专题复习----立体几何专题

空间图形的计算与证明 一、近几年高考试卷部分立几试题 1、(全国 8)正六棱柱 ABCDEF -A 1B 1C 1D 1E 1F 1 底面边长为 1, 侧棱长为 2 ,则这个棱柱的侧面对角线 E 1D 与 BC 1 所成的角是 ( ) A 、90° B 、60° C 、45° D 、30° [评注]主要考查正六棱柱的性质,以及异面直线所成角的求法。 2、(全国 18)如图,正方形ABCD 、ABEF 的边长都是 1,而且 平面 ABCD 、ABEF 互相垂直,点 M 在 AC 上移动,点 N 在 BF C 上移动,若 CM=NB=a(0

的底面是边长为a的正方形,PB⊥面ABCD。 (1)若面PAD与面ABCD所成的二面角为60°, 求这个四棱锥的体积; (2)证明无论四棱锥的高怎样变化,面PAD与面 PCD所成的二面角恒大于90°。 [评注]考查线面关系和二面角概念,以及空间想象力和逻辑推理能力。 4、(02全国文22)(一)给出两块面积相同的正三角形纸片,要求用其中一块剪拼成一个正三棱锥模型,使它们的全面积都与原三角形面积相等,请设计一种剪拼法,分别用虚线标示在图(1)(2)中,并作简要说明。 (3) (1)(2) (二)试比较你剪拼的正三棱锥与正三棱柱的体积的大小。(三)如果给出的是一块任意三角形的纸片,如图(3)要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形面积相等,请设计一种剪拼方法,用虚线标出在图3中,并作简要说明。

[数学]数学高考压轴题大全

1、(本小题满分14分) 已知函数. (1)当时,如果函数仅有一个零点,求实数的取值范围; (2)当时,试比较与的大小; (3)求证:(). 2、设函数,其中为常数. (Ⅰ)当时,判断函数在定义域上的单调性; (Ⅱ)若函数的有极值点,求的取值范围及的极值点; (Ⅲ)当且时,求证:. 3、在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原 点的直线交椭圆于,两点,线段的中点为,射线交椭圆于点,交直 线于点. (Ⅰ)求的最小值; (Ⅱ)若?,(i)求证:直线过定点;

(ii )试问点,能否关于轴对称?若能,求出 此时 的外接圆方程;若不能,请说明理由. 二、计算题 (每空? 分,共? 分) 4 、设函数 的图象在点处的切线的斜率 为 ,且函数为偶函数.若函数 满足下列条件:①;② 对一切实数 ,不等式恒成立. (Ⅰ)求函数的表达式; (Ⅱ)求证: . 5 、已知函数: (1 )讨论函数的单调性; (2) 若函数 的图像在点 处的切线的倾斜角为,问:在什么范围取值 时,函数 在区间上总存在极值? (3)求证:.

6、已知函数=,. (Ⅰ)求函数在区间上的值域; (Ⅱ)是否存在实数,对任意给定的,在区间上都存在两个不同的, 使得成立.若存在,求出的取值范围;若不存在,请说明理由; (Ⅲ)给出如下定义:对于函数图象上任意不同的两点,如果对 于函数图象上的点(其中总能使得 成立,则称函数具备性质“”,试判断函数是不是具 备性质“”,并说明理由. 7、已知函数 (Ⅰ)若函数是定义域上的单调函数,求实数的最小值; (Ⅱ)方程有两个不同的实数解,求实数的取值范围; (Ⅲ)在函数的图象上是否存在不同两点,线段的中点的横坐标 为,有成立?若存在,请求出的值;若不存在,请说明理由. 8、已知函数: ⑴讨论函数的单调性;

2020届江苏高考数学应用题专题复习

高三数学应用题专题 1. 经销商用一辆J 型卡车将某种水果从果园运送(满载)到相距400 km 的水果批发市场.据测算,J 型卡车满载行驶时,每100 km 所消耗的燃油量u(L)与速度v(km/h)的关系近似地满 足u =? ??100v +23,050.除燃油费外,人工工资、车损等其他费用平均每小时为300元.已知燃油价格为每升(L)7.5元. (1) 设运送这车水果的费用为y(元)(不计返程费用),将y 表示成速度v 的函数关系式; (2) 卡车应该以怎样的速度行驶,才能使运送这车水果的费用最少? 2. 某城市受雾霾影响严重,现欲在该城市中心P 的两侧建造A ,B 两个空气净化站(A ,P , B 三点共线),A ,B 两站对该城市的净化度分别为1a a -,,其中(01)a ∈,.已知对该城市总净化效果为A ,B 两站对该城市的净化效果之和,且每站净化效果与净化度成正比,与中心P 到净化站距离成反比.若1AB =,且当 34AP =时,A 站对该城市的净化效果为3a ,B 站对 该城市的净化效果为1a -. (1)设AP x =,(01)x ∈,,求A ,B 两站对该城市的总净化效果()f x ; (2)无论A ,B 两站建在何处,若要求A ,B 两站对该城市的总净化效果至少达到2 5,求a 的取值集合. 3. 如图,直线1l 是某海岸线,2l 是位于近海的虚拟线,12l l ⊥于点P,点A,C 在2l 上,AC 的中点为O ,且km AC PA 2==. (1)原计划开发一片以AC 为一条对角线,周长为8 km 的平行四边形水域ABCD,建深水养殖场.求深水养殖场的最大面积; (2)现因资金充裕,计划扩大开发规模,开发如图五边形水域QABCD,建养殖场,其中ABCD 是周长为8 km 的平行四边形,点Q 在1l 上,且在点P 的上方,AD OQ ⊥, ?≤∠90OCD . 养殖场分两个区域,四边形QAOD 区域内养殖浅水产品,其他区域内养 殖深水产品,要求养殖浅水产品区域的面积最大.求点Q 与点P 的距离.

高考数学大题练习

高考数学大题 1.(12分)已知向量a =(sin θ,cos θ-2sin θ),b =(1,2) (1)若a ⊥b ,求tan θ的值; (2)若a ∥b ,且θ为第Ⅲ象限角,求sin θ和cos θ的值。 2.(12分)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC ⊥BC ,且AC=BC=BD=2AE ,M 是AB 的中点. (I)求证:CM ⊥EM: (Ⅱ)求DE 与平面EMC 所成角的正切值. 3.(13分)某地区为下岗人员免费提供财会和计算机培训,以提高 下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加 两项培训或不参加培训.已知参加过财会培训的有60%,参加过计算机培训的 有75%.假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响. (Ⅰ)任选1名下岗人员,求该人参加过培训的概率; (Ⅱ)任选3名下岗人员,求这3人中至少有2人参加过培训的概率. 4.(12分) 在△ABC 中,∠A .∠B .∠C 所对的边分别为a .b .c 。 若B A cos cos =a b 且sinC=cosA (1)求角A .B .C 的大小; (2)设函数f(x)=sin (2x+A )+cos (2x- 2C ),求函数f(x)的单调递增区间,并指出它相邻两对称轴间的距离。 5.(13分)已知函数f(x)=x+x a 的定义域为(0,+∞)且f(2)=2+22,设点P 是函数图象上的任意一点,过点P 分别作直线y=x 和y 轴的垂线,垂足分别为M ,N. (1)求a 的值; (2)问:|PM|·|PN|是否为定值?若是,则求出该定值, 若不是,则说明理由: (3)设O 为坐标原点,求四边形OMPN 面积的最小值。 6.(13分)设函数f(x)=p(x-x 1)-2lnx,g(x)=x e 2(p 是实数,e 为自然对数的底数) (1)若f(x)在其定义域内为单调函数,求p 的取值范围; (2)若直线l 与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于点(1,0),求p 的值; (3)若在[1,e]上至少存在一点x 0,使得f(x 0)>g(x 0)成立,求p 的取值范围.

江苏高考数学专题练习函数(含解析)

江苏高考数学专题练习——函数 1. 已知函数,,则的解集是 . 2. 设函数,则满足的的取值范围为 . 3. 已知函数,不等式对恒成立,则 .* 4. 已知函数f (x )=e x -1 -tx ,?x 0∈R ,f (x 0)≤0,则实数t 的取值范围 . 5. 已知函数f (x )=2x 3 +7x 2 +6x x 2+4x +3,x ∈0,4],则f (x )最大值是 .* 6. 已知函数,若在区间上有且只有2个零点, 则实数的取值范围是 . 7. 已知函数2()12f x x x =-的定义域为[]0m ,,值域为2 0am ????,,则实数a 的取值范围 是 . * 8. 若存在实数,使不等式成立,则实数的取值范围为 . 9. 设函数,若关于的不等式在实数集上有解,则 实数的取值范围是 .* 10. 已知函数f (x )=???x 2 -1,x ≥0, -x +1,x <0. 若函数y =f (f (x ))-k 有3个不同的零点,则实数 k 的取值范围是 . 11. 设a 为实数,记函数f (x )=ax -ax 3(x ∈1 2,1])的图象为C .如果任何斜率不小于1的直 线与C 都至多有一个公共点,则a 的取值范围是 . 2()||2 x f x x += +x R ∈2 (2)(34)f x x f x -<-???≥<-=1 ,21,13)(2x x x x x f 2 ))((2))((a f a f f =2()()()(0)f x x a x b b =--≠()()f x mxf x '≥x R ?∈2m a b +-=222101, ()2 1,x mx x f x mx x ?+-=?+>? ,,≤≤()f x [)0,+∞m 2e 2e 10x x a +≥-()33,2,x x x a f x x x a ?-<=?-≥? ,()4f x a >R

最新高考数学压轴题专题训练(共20题)[1]

1.已知点)1,0(F ,一动圆过点F 且与圆8)1(2 2 =++y x 内切. (1)求动圆圆心的轨迹C 的方程; (2)设点)0,(a A ,点P 为曲线C 上任一点,求点A 到点P 距离的最大值)(a d ; (3)在10<

3.已知点A (-1,0),B (1,0),C (- 5712,0),D (5712 ,0),动点P (x , y )满足AP →·BP → =0,动点Q (x , y )满足|QC →|+|QD →|=10 3 ⑴求动点P 的轨迹方程C 0和动点Q 的轨迹方程C 1; ⑵是否存在与曲线C 0外切且与曲线C 1内接的平行四边形,若存在,请求出一个这样的平行四边形,若不存在,请说明理由; ⑶固定曲线C 0,在⑵的基础上提出一个一般性问题,使⑵成为⑶的特例,探究能得出相应结论(或加强结论)需满足的条件,并说明理由。 4.已知函数f (x )=m x 2+(m -3)x +1的图像与x 轴的交点至少有一个在原点右侧, ⑴求实数m 的取值范围; ⑵令t =-m +2,求[1 t ];(其中[t ]表示不超过t 的最大整数,例如:[1]=1, [2.5]=2, [-2.5]=-3) ⑶对⑵中的t ,求函数g (t )=t +1t [t ][1t ]+[t ]+[1t ]+1的值域。

历年高考数学压轴题集锦

高考数学压轴题集锦 1.椭圆的中心是原点O ,它的短轴长为(,)0F c (0>c )的准线l 与x 轴相交于点A ,2OF FA =,过点A 的直线与椭圆相交于P 、Q 两点。 (1)求椭圆的方程及离心率; (2)若0OP OQ ?=,求直线PQ 的方程; (3)设AP AQ λ=(1λ>),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证 明FM FQ λ=-. (14分) 2. 已知函数)(x f 对任意实数x 都有1)()1(=++x f x f ,且当]2,0[∈x 时,|1|)(-=x x f 。 (1) )](22,2[Z k k k x ∈+∈时,求)(x f 的表达式。 (2) 证明)(x f 是偶函数。 (3) 试问方程01 log )(4=+x x f 是否有实数根?若有实数根,指出实数根的个数;若没有实数根,请说明理由。 3.(本题满分12分)如图,已知点F (0,1),直线L :y=-2,及圆C :1)3(2 2 =-+y x 。 (1) 若动点M 到点F 的距离比它到直线L 的距离小1,求动点M 的轨迹E 的方程; (2) 过点F 的直线g (3) 过轨迹E 上一点P 点P 的坐标及S

4.以椭圆2 22y a x +=1(a >1)短轴一端点为直角顶点,作椭圆内接等腰直角三角形,试 判断并推证能作出多少个符合条件的三角形. 5 已知,二次函数f (x )=ax 2 +bx +c 及一次函数g (x )=-bx ,其中a 、b 、c ∈R ,a >b >c ,a +b +c =0. (Ⅰ)求证:f (x )及g (x )两函数图象相交于相异两点; (Ⅱ)设f (x )、g (x )两图象交于A 、B 两点,当AB 线段在x 轴上射影为A 1B 1时,试求|A 1B 1|的取值范围. 6 已知过函数f (x )=12 3++ax x 的图象上一点B (1,b )的切线的斜率为-3。 (1) 求a 、b 的值; (2) 求A 的取值范围,使不等式f (x )≤A -1987对于x ∈[-1,4]恒成立; (3) 令()()132 ++--=tx x x f x g 。是否存在一个实数t ,使得当]1,0(∈x 时,g (x )有 最大值1? 7 已知两点M (-2,0),N (2,0),动点P 在y 轴上的射影为H ,︱PH ︱是2和→ → ?PN PM 的等比中项。 (1) 求动点P 的轨迹方程,并指出方程所表示的曲线; (2) 若以点M 、N 为焦点的双曲线C 过直线x+y=1上的点Q ,求实轴最长的双曲线C 的方程。 8.已知数列{a n }满足a a a a b a a a a a a a n n n n n n +-=+=>=+设,2),0(322 11 (1)求数列{b n }的通项公式; (2)设数列{b n }的前项和为S n ,试比较S n 与 8 7 的大小,并证明你的结论. 9.已知焦点在x 轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点)2,0(A 为圆心,1为半径的圆相切,又知C 的一个焦点与A 关于直线x y =对称. (Ⅰ)求双曲线C 的方程; (Ⅱ)设直线1+=mx y 与双曲线C 的左支交于A ,B 两点,另一直线l 经过M (-2,0)及AB 的中点,求直线l 在y 轴上的截距b 的取值范围; (Ⅲ)若Q 是双曲线C 上的任一点,21F F 为双曲线C 的左,右两个焦点,从1F 引21QF F ∠的平分线的垂线,垂足为N ,试求点N 的轨迹方程. 10. )(x f 对任意R x ∈都有.2 1)1()(= -+x f x f

2014年江苏省高考数学试卷答案与解析

2014年江苏省高考数学试卷 参考答案与试题解析 一、填空题(本大题共14小题,每小题5分,共计70分) 1.(5分)(2014?江苏)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B=.2.(5分)(2014?江苏)已知复数z=(5+2i)2(i为虚数单位),则z的实部为.3.(5分)(2014?江苏)如图是一个算法流程图,则输出的n的值是. 4.(5分)(2014?江苏)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是. 5.(5分)(2014?江苏)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是. 6.(5分)(2014?江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100cm. 7.(5分)(2014?江苏)在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是. 8.(5分)(2014?江苏)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.

9.(5分)(2014?江苏)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为. 10.(5分)(2014?江苏)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是. 11.(5分)(2014?江苏)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是.12.(5分)(2014?江苏)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,?=2,则?的值是. 13.(5分)(2014?江苏)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f (x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实 数a的取值范围是. 14.(5分)(2014?江苏)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.二、解答题(本大题共6小题,共计90分) 15.(14分)(2014?江苏)已知α∈(,π),sinα=. (1)求sin(+α)的值; (2)求cos(﹣2α)的值. 16.(14分)(2014?江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB 的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证: (1)直线PA∥平面DEF; (2)平面BDE⊥平面ABC.

2020高考数学专题训练16

六) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 1.满足条件?≠?M ≠?{0,1,2}的集合共有( ) A .3个 B .6个 C .7个 D .8个 2.等差数列}{n a 中,若39741=++a a a ,27963=++a a a ,则前9项的和9S 等于( ) A .66 B .99 C .144 D .297 3.函数)1(log 2-=x y 的反函数图像是( ) A B C D 4.已知函数)cos()sin()(??+++=x x x f 为奇函数,则?的一个取值为( ) A .0 B .4 π - C .2π D .π 5.从10种不同的作物种子中选出6种放入6个不同的瓶子中展出,如果甲、乙两种种 子不能放入第1号瓶内,那么不同的放法共有( ) A .4 82 10A C 种 B .5 91 9A C 种 C .5 91 8A C 种 D .5 81 8A C 种 6.函数512322 3 +--=x x x y 在[0,3]上的最大值、最小值分别是( ) A .5,-15 B .5,-4 C .-4,-15 D .5,-16 7.已知9)222(-x 展开式的第7项为4 21 ,则实数x 的值是( ) A .31- B .-3 C .4 1 D .4 8.过球面上三点A 、B 、C 的截面和球心的距离是球半径的一半,且AB =6,BC =8, AC =10,则球的表面积是( ) A .π100 B .π300 C . π3100 D .π3 400 9.给出下面四个命题:①“直线a 、b 为异面直线”的充分非必要条件是:直线a 、b 不相交;②“直线l 垂直于平面α内所有直线”的充要条件是:l ⊥平面α;③“直线a ⊥b ”的充分非必要条件是“a 垂直于b 在平面α内的射影”;④“直线α∥平面β”的必要非充分条件是“直线a 至少平行于平面β内的一条直线”.其中正确命题的个数是( )

高考数学压轴题汇编

高考数学压轴题汇编 1.〔本小题满分12分〕设函数在上是增函数.求正实数的取值范围; 设,求证:1 ,0>>a b .ln 1b b a b b a b a +<+<+ 高考数学压轴题练习2 2.已知椭圆C 的一个顶点为,焦点在x 轴上,右焦点到直线(0,1)A -10x y -+= 〔1〕求椭圆C 的方程; 〔2〕过点F 〔1,0〕作直线l 与椭圆C 交于不同的两点A 、B ,设,若的取值范围. 高考数学压轴题练习2 2.已知椭圆C 的一个顶点为,焦点在x 轴上,右焦点到直线(0,1)A -10x y -+= 〔1〕求椭圆C 的方程; 〔2〕过点F 〔1,0〕作直线l 与椭圆C 交于不同的两点A 、B ,设,若的取值范围. 高考数学压轴题练习4 4.设函数3 2 2 ()f x x ax a x m =+-+(0)a > 〔1〕若时函数有三个互不相同的零点,求的范围; 〔2〕若函数在内没有极值点,求的范围; 〔3〕若对任意的,不等式在上恒成立,求实数的取值范围. 高考数学压轴题练习5 5.〔本题满分14分〕 已知椭圆的离心率为,直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切. 〔Ⅰ〕求椭圆的方程; 〔Ⅱ〕设椭圆的左焦点为F1,右焦点为F2,直线过点F1,且垂直于椭圆的长轴,动直线垂直于点P ,线段 PF2的垂直平分线交于点M ,求点M 的轨迹C2的方程; 〔Ⅲ〕若AC 、BD 为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD 的面积的最小值. 高考数学压轴题练习6 6.〔本小题满分14分〕 已知椭圆+=1〔a>b>0〕的左.右焦点分别为F1.F2,离心率e =,右准线方程为x =2. 〔1〕求椭圆的标准方程; 〔2〕过点F1的直线l 与该椭圆相交于M .N 两点,且|+|=,求直线l 的方程. 高考数学压轴题练习7 7.〔本小题满分12分〕 已知,函数,〔其中为自然对数的底数〕. 〔1〕判断函数在区间上的单调性; 〔2〕是否存在实数,使曲线在点处的切线与轴垂直? 若存在,求出的值;若不存在,请说明理由.

江苏高考数学专题复习及答案

江苏高考数学专题复习专题一函数与导数1 第1课时函数的图象与性质1 第2课时导数及其应用5 第3课时函数与方程8 第4课时函数与导数的综合应用10 专题二三角函数与平面向量14 第1课时三角函数的图象与性质14 第2课时平面向量、解三角形17 第3课时三角函数与向量的综合问题21 专题三不等式25 第1课时基本不等式及其应用25 第2课时不等式的解法与三个“二次”的关系29 专题四数列31 第1课时等差、等比数列31 第2课时数列的求和34 第3课时数列的综合应用38 专题五立体几何42 第1课时平行与垂直42 第2课时面积与体积47 专题六平面解析几何52 第1课时直线与圆52 第2课时圆锥曲线56 第3课时圆锥曲线的定点、定值问题60 第4课时圆锥曲线的范围问题64 专题七应用题67 专题八理科选修72 第1课时空间向量72 第2课时离散型随机变量的概率分布76 第3课时二项式定理80 第4课时数学归纳法84 专题九思想方法88 第1课时函数与方程思想88 第2课时数形结合思想92 第3课时分类讨论思想95 第4课时等价转化思想98

专题一 函数与导数 考情分析 函数与导数问题在高考中通常有两个小题和一个大题,主要考点有:一是函数的性质及其应用;二是分段函数的求值问题;三是函数图象的应用;四是方程根与函数零点转化问题;五是导数的几何意义及应用.函数与导数问题属中等难度以上,对考生的理解能力、计算能力、数学思想等方面要求较高. 第1课时 函数的图象与性质 考点展示 1.(2016·江苏)函数y =3-2x -x 2 的定义域是________. 2.(2016·江苏)设f ()x 是定义在R 上且周期为2的函数,在区间[)-1,1上,f ()x =?????x +a ,-1≤x <0? ????? 25-x ,0≤x <1,其中a ∈R ,若f ? ????-52=f ? ????92,则f ()5a 的值是________. 3.(17苏北三市三调)如图,已知正方形ABCD 的边长为2,BC 平行于x 轴,顶点A ,B 和 C 分别在函数y 1=3log a x ,y 2=2log a x 和y 3=log a x (a >1)的图象上,则实数a 的值为________. 第3题图 4.(17无锡一调)已知f ()x =? ??2x -3,x >0 g ()x ,x <0是奇函数,则f ()g ()-2=________. 5.(17无锡一调)若函数f ()x 在[]m ,n ()m 0,且a ≠1对任意x ∈()1,100恒成立,则实数a 的取值范围为________. 热点题型 题型1__函数的图象与性质 【例1】 (1)已知函数y =f ()x 是奇函数,当x <0时,f ()x =x 2 +ax ()a ∈R ,且f ()2=6,则a =______. (2)已知函数f ()x 是定义在R 上且周期为4的偶函数.当x ∈[]2,4时,f ()x = ??????log 4? ????x -32,则f ? ?? ??12的值为__________.

高考数学专题训练试题7

第一部分 专题二 第1讲 等差数列、等比数列 (限时60分钟,满分100分) 一、选择题(本大题共6个小题,每小题6分,共36分) 1.(精选考题·北京高考)在等比数列{a n }中,a 1=1,公比|q |≠1.若a m =a 1a 2a 3a 4a 5, 则m =( ) A .9 B .10 C .11 D .12 解析:由题知a m =|q |m -1=a 1a 2a 3a 4a 5=|q |10,所以m =11. 答案:C 2.(精选考题·广元质检)已知数列{a n }满足a 1=2,a n +1=1+a n 1-a n (n ∈N *),则连乘积a 1a 2a 3…aa 精选考题的值为( ) A .-6 B .3 C .2 D .1 解析:∵a 1=2,a n +1=1+a n 1-a n ,∴a 2=-3,a 3=-12,a 4=13,a 5= 2,∴数列{a n }的周期为4,且a 1a 2a 3a 4=1, ∴a 1a 2a 3a 4…aa 精选考题=aa 精选考题=a 1a 2=2×(-3)=-6. 答案:A 3.设等差数列{a n }的前n 项和为S n ,若2a 8=6+a 11,则S 9=( ) A .54 B .45

C .36 D .27 解析:根据2a 8=6+a 11得2a 1+14d =6+a 1+10d ,因此a 1+4d =6,即a 5=6.因此S 9=9(a 1+a 9) 2 =9a 5=54. 答案:A 4.已知各项不为0的等差数列{a n },满足2a 3-a 2 7+2a 11=0,数 列{b n }是等比数列,且b 7=a 7,则b 6b 8=( ) A .2 B .4 C .8 D .16 解析:因为a 3+a 11=2a 7,所以4a 7-a 27=0,解得a 7=4,所以 b 6b 8=b 27=a 2 7=16. 答案:D 5.(精选考题·福建高考)设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( ) A .6 B .7 C .8 D .9 解析:设等差数列{a n }的公差为d , ∵a 4+a 6=-6,∴a 5=-3, ∴d =a 5-a 1 5-1=2, ∴a 6=-1<0,a 7=1>0, 故当等差数列{a n }的前n 项和S n 取得最小值时,n 等于6. 答案:A 6.(精选考题·陕西高考)对于数列{a n },“a n +1>|a n |(n =1,2…)”

高考数学压轴题精编精解100题

个 个 高考数学压轴题精编精解 精选100题,精心解答{完整版} 1.设函数()1,12 1,23x f x x x ≤≤?=?-<≤? ,()()[],1,3g x f x ax x =-∈, 其中a R ∈,记函数()g x 的最大值与最小值的差为()h a 。 (I )求函数()h a 的解析式; (II )画出函数()y h x =的图象并指出()h x 的最小值。 2.已知函数()()ln 1f x x x =-+,数列{}n a 满足101a <<, ()1n n a f a +=; 数列{}n b 满足1111 ,(1)22 n n b b n b +=≥+, *n N ∈.求证: (Ⅰ)101;n n a a +<<<(Ⅱ)21;2 n n a a +< (Ⅲ)若12 ,2a =则当n ≥2时,!n n b a n >?. 3.已知定义在R 上的函数f (x ) 同时满足: (1)2 1212122()()2()cos24sin f x x f x x f x x a x ++-=+(12,x x ∈R ,a 为常数); (2)(0)()14f f π==;(3)当0, 4x π ∈[] 时,()f x ≤2 求:(Ⅰ)函数()f x 的解析式;(Ⅱ)常数a 的取值范围. 4.设)0(1),(),,(22 222211>>=+b a b x x y y x B y x A 是椭圆上的两点, 满足0),(),( 2211=?a y b x a y b x ,椭圆的离心率,23 =e 短轴长为2,0为坐标原点. (1)求椭圆的方程; (2)若直线AB 过椭圆的焦点F (0,c ),(c 为半焦距),求直线AB 的斜率k 的值; (3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由. 5.已知数列{}n a 中各项为: 12、1122、111222、 (111) ??????14243222n ??????14243 …… (1)证明这个数列中的每一项都是两个相邻整数的积. (2)求这个数列前n 项之和S n .

江苏省2014年高考数学二轮专题复习素材:训练21

常考问题21 坐标系与参数方程 1.在极坐标系中,已知圆C 的圆心坐标为C ? ? ???2,π3,半径R =5,求圆C 的极 坐标方程. 解 将圆心C ? ? ???2,π3化成直角坐标为(1,3),半径R =5,故圆C 的方程为(x -1)2+(y -3)2=5. 再将C 化成极坐标方程,得(ρcos θ-1)2+(ρsin θ-3)2=5, 化简得ρ2 -4ρcos ? ?? ?? θ-π3-1=0. 此即为所求的圆C 的极坐标方程. 2.(2011·江苏卷)在平面直角坐标系xOy 中,求过椭圆??? x =5cos φ, y =3sin φ(φ为参数) 的右焦点,且与直线??? x =4-2t , y =3-t (t 为参数)平行的直线的普通方程. 解 由题意知,椭圆的长半轴长为a =5,短半轴长b =3,从而c =4,所以右焦点为(4,0),将已知直线的参数方程化为普通方程得x -2y +2=0,故所求的直线的斜率为12,因此所求的方程为y =1 2(x -4),即x -2y -4=0. 3.(2010·江苏卷)在极坐标系中,已知圆ρ=2cos θ与直线3ρcos θ+4ρsin θ+a =0相切,求实数a 的值. 解 将极坐标方程化为直角方程,得圆的方程为x 2+y 2=2x ,即(x -1)2+y 2=1,直线的方程为3x +4y +a =0. 由题设知,圆心(1,0)到直线的距离为1,即有|3×1+4×0+a | 32+4 2 =1, 解得a =-8或a =2, 故a 的值为-8或2. 4.已知曲线C 1:??? x =-4+cos t ,y =3+sin t (t 为参数),C 2:? ?? x =8cos θ,y =3sin θ

高三数学 高考大题专项训练 全套 (15个专项)(典型例题)(含答案)

1、函数与导数(1) 2、三角函数与解三角形 3、函数与导数(2) 4、立体几何 5、数列(1) 6、应用题 7、解析几何 8、数列(2) 9、矩阵与变换 10、坐标系与参数方程 11、空间向量与立体几何 12、曲线与方程、抛物线 13、计数原理与二项式分布 14、随机变量及其概率分布 15、数学归纳法

高考压轴大题突破练 (一)函数与导数(1) 1.已知函数f (x )=a e x x +x . (1)若函数f (x )的图象在(1,f (1))处的切线经过点(0,-1),求a 的值; (2)是否存在负整数a ,使函数f (x )的极大值为正值?若存在,求出所有负整数a 的值;若不存在,请说明理由. 解 (1)∵f ′(x )=a e x (x -1)+x 2 x 2, ∴f ′(1)=1,f (1)=a e +1. ∴函数f (x )在(1,f (1))处的切线方程为 y -(a e +1)=x -1, 又直线过点(0,-1),∴-1-(a e +1)=-1, 解得a =-1 e . (2)若a <0,f ′(x )=a e x (x -1)+x 2 x 2 , 当x ∈(-∞,0)时,f ′(x )>0恒成立,函数在(-∞,0)上无极值;当x ∈(0,1)时,f ′(x )>0恒成立,函数在(0,1)上无极值. 方法一 当x ∈(1,+∞)时,若f (x )在x 0处取得符合条件的极大值f (x 0), 则???? ? x 0>1,f (x 0)>0,f ′(x 0)=0, 则0 0000 2 00 201,e 0,e (1)0,x x x a x x a x x x ? > +> -+ = ? ①②③ 由③得0 e x a =-x 20 x 0-1,代入②得-x 0x 0-1+x 0 >0, 结合①可解得x 0>2,再由f (x 0)=0 e x a x +x 0>0,得a >-02 0e x x , 设h (x )=-x 2 e x ,则h ′(x )=x (x -2)e x , 当x >2时,h ′(x )>0,即h (x )是增函数, ∴a >h (x 0)>h (2)=-4 e 2.

江苏高考数学专题复习集合及其应用

江苏省高考数学综合专题1-集合及其应用部分 高考命题规律: 从考查内容上,高考命题仍以考查概念和计算为主,考查两个集合的交集与并集、补集。 形式上以填空题为主。 从能力要求上看,注重基础知识和基本技能的教材,要求具备数形结合的思想意识,会借助Venn 图、数轴等工具解决集合问题。 知识的综合联系上看,本考点会纵横关系数学各个方面的知识体系,如不等式的解集与不等关系,方程与曲线,函数的图象性质,三角函数等。 重难点: 集合的三个基本特征:确定性,互异性,无序性。 集合中三种语言的互化是解决集合问题的关键,即:文字语言、符号语言、图象语言的互化。 方法技巧: 一、数形结合:把题设条件有效转化成图形或图象类型,利用几何的直观性,以“形”助“数” ,形象、直观、方便快捷。特别是韦恩图法、数轴法、函数图象法。 二、补集思想:对正面求解困难的问题,则可考虑先求解问题的反面,采用“正难则反”的解题策略。具体地说,就是将研究的对象的全体视为全集,求了使问题反面成立的集合A ,则A 的补集即所求结论。 【2011年考题精选】 1。(2011江苏)已知集合{1,1,2,4},{1,0,2},A B =-=- 则_______,=?B A . 2.(2011安徽科)设集合{}1,2,3,4,5,6,A ={}4,5,6,7,B =则满足S A ?且?≠?B S 的集合S 为__________个. 3. (2011北京理科)已知集合P={x ︱x 2≤1},M={a }.若P ∪M=P,则a 的取值范围是____ 4. (2011广东理科)已知集合(){,A x y = ∣,x y 为实数,且}221x y +=,(){,B x y =,x y 为实数,且}y x =,则A B ?的元素个数为 ______ 5. (2011江西理科)若集合}02|{},3121|{≤-=≤+≤-=x x x B x x A ,则B A ?= _____ 6. (2011山东理科)设集合 M ={x|x 2+x-6<0},N ={x|1≤x ≤3},则M ∩N =_______ 7. (2011湖北理科)已知{}21|log ,1,|,2U y y x x P y y x x ? ?==>==>??? ?,则U C P =____ 8. (2011上海理科)若全集U R =,集合{|1}{|0}A x x x x =≥≤,则U C A = 【2010年考题精选】

2020高考数学专题训练4

1A .{1,2} B . {3,4} C . {1} D . {-2,-1,0,1,2} 2.函数y=2cos 2x+1(x ∈R )的最小正周期为 ( ) A .2π B .π C .π2 D .π4 3.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有( ) A .140种 B .120种 C .35种 D .34种 4.一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是( ) A .33π100cm B . 33π208cm C . 33π500cm D . 33 π3416cm 5.若双曲线1822 2=-b y x 的一条准线与抛物线x y 82=的准线重合,则双曲线的离心率为 ( ) A .2 B .22 C . 4 D .24 6.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( ) A .0.6小时 B .0.9小时 C .1.0小时 D .1.5小时 7.4)2(x x +的展开式中x 3的系数是( ) A .6 B .12 C .24 D .48 8.若函数)1,0)((log ≠>+=a a b x y a 的图象过两 点(-1,0)和(0,1),则( ) A .a =2,b=2 B .a = 2 ,b=2 C .a =2,b=1 D .a = 2 ,b= 2 9.将一颗质地均匀的骰子(它是一种各面上分 别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是( ) A .5216 B .25216 C .31216 D .91216 10.函数13)(3+-=x x x f 在闭区间[-3,0]上的最大值、最小值分别是( ) A .1,-1 B .1,-17 C .3,-17 D .9,-19 11.设k>1,f(x)=k(x-1)(x ∈R ) . 在平面直角坐标系xOy 中,函数y=f(x)的图象与x 轴交于 A 点,它的反函数y=f -1(x)的图象与y 轴交于 B 点,并且这两个函数的图象交于P 点. 已知 四边形OAPB 的面积是3,则k 等于 ( ) A .3 B .3 2 C .4 3 D .65 12.设函数)(1)(R x x x x f ∈+-=,区间M=[a ,b](a

高考数学玩转压轴题专题7.1与数学文化相关的数学考题

专题7.1 与数学文化相关的数学考题 一、方法综述: 关注学生数学文化的意识的养成,努力推进数学文化的教育,已经成为当今数学教师与改革的一个重要特征,在新课改的数学命题中,数学文化已经得到足够的重视,但并没由得到应有的落实,造成数学文化教学的缺失的根本原因在于教师自身数学文化素养的缺乏,令人欣喜的是在近几年的高考试题中已经开始有意识的进行尝试和引导,在众多的经典试题中,湖北卷的数学文化题更超凡脱俗和出类拔萃,因此,我们特别策划了此专题,将数学文化与数学知识相结合,选取典型样题深度解读,希望能够给予广大师生的复习备考以专业的帮助与指导. 二、解答策略: 类型一、取材数学游戏 游戏可以让数学更加好玩,在游戏中运用数学知识,或蕴含着数学原理的智力游戏可笼统地称为数学游戏,把数学游戏改编为高考试题,既不失数学型,又能增加了考题的趣味性,充分体现了素质教育与大众数学的理念。 例1、五位同学围成一圈依次循环报数,规定: ①第一位同学首次报出的数为1,第二位同学首次报出的数也为1,之后每位同学所报出的数都是前两位同学所报出的数之和; ②若报出的数是3的倍数,则报该数的同学需拍手一次。 已知甲同学第一个报数,当五位同学依次循环报到第100个数时,甲同学拍手的总次数为。 探究提高:以数学游戏为素材的命制高考题目,创造了既宽松又竞争的环境,拉近了考生与数学的心理距离,但要注意游戏素材的选择应与考生的实际生活密切相关,便于考生更好地理解游戏。例如:2012年高考湖北卷第13题“回文数”,考查排列、组合和归纳推理等知识。本题以此为背景,以简单的游戏为分析计算对象,考查学生的阅读理解能力和合情推理能力。 举一反三:回文数是指从左到右与从右到左读都一样的正整数。如22,,11,3443,94249等。显然2位回文数有9个:11,22,33…,99.3位回文数有90个:101,111,121,…,191,202,…,999。则 (Ⅰ)4位回文数有______个; (Ⅱ)2n+1(n∈N+)位回文数有______个。

相关文档
最新文档