变频器制动的思路与方法

变频器制动的思路与方法
变频器制动的思路与方法

变频器制动的思路与方法

(贵州大学电气工程学院贵州贵阳 550003)

中图分类号:tm文献标识码:a 文章编号:1007-0745(2008)11-00

摘要:有些专家曾在书籍、刊物上谈论过有关变频器制动方面的设计与应用,尤其是近些时间有过许多关于“能量回馈制动”方面的文章。如今,本人提供一种新型的制动方法,它具有“回馈制动”的四象限运转、运行效率高等优点,也具有“能耗制动”对电网无污染、可靠性高等好处。以下就简要介绍动力制动、回馈制动的特点,较详细的说明了电容反馈制动的原理、特点及应用场合等。

关键词:变频器电动机制动

由通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,在电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏,所以这部分能量我们就应该考虑考虑了。

在通用变频器中,对再生能量最普遍的处理方式有两种:①耗散

变 频 器 的 作 用

变频器的作用 变频调速能够应用在大部分的电机拖动场合,由于它能提供精确的速度控制,因此可以方便地控制机械传动的上升、下降和变速运行。变频应用可以大大地提高工艺的高效性(变速不依赖于机械部分),同时可以比原来的定速运行电机更加节能。下面例举使用变频调速的10个理由,来说明变频器应用日趋普及的基本认识: (1) 控制电机的启动电流。当电机通过工频直接启动时,它将会产生7到8倍的电机额定电流。这个电流值将大大增加电机绕组的电应力并产生热量,从而降低电机的寿命。而变频调速则可以在零速零电压启动(也可适当加转矩提升)。一旦频率和电压的关系建立,变频器就可以按照V/F或矢量控制方式带动负载进行工作。使用变频调速能充分降低启动电流,提高绕组承受力,用户最直接的好处就是电机的维护成本将进一步降低、电机的寿命则相应增加。 (2) 降低电力线路电压波动。在电机工频启动时,电流剧增的同时,电压也会大幅度波动,电压下降的幅度将取决于启动电机的功率大小和配电网的容量。电压下降将会导致同一供电网络中的电压敏感设备故障跳闸或工作异常,如PC机、传感器、接近开关和接触器等均会动作出错。而采用变频调速后,由于能在零频零压时逐步启动,则能最大程度上消除电压下降 (3) 启动时需要的功率更低。电机功率与电流和电压的乘积成正比, 那么通过工频直接启动的电机消耗的功率将大大高于变频启动所需要的功率。在一些工况下其配电系统已经达到了最高极限,其直接工频启动电机所产生的电涌就会对同网上的其他用户产生严重的影响, 从而将受到电网运行商的警告, 甚至罚款。如果采用变频器进行电机起停, 就不会产生类似的问题。(4) 可控的加速功能。变频调速能在零速启动并按照用户的需要进行均匀地加速,而且其加速曲线也可以选择(直线加速、S形加速或者自动加速)。而通过工频启动时对电机或相连的机械部分轴或齿轮都会产生剧烈的振动。这种振动将进一步加剧机械磨损和损耗,降低机械部件和电机的寿命。另外,变频启动还能应用在类似灌装线上,以防止瓶子倒翻或损坏。 (5) 可调的运行速度。运用变频调速能优化工艺过程,并能根据工艺过程迅速改变,还能通过远控PLC或其他控制器来实现速度变化。 (6) 可调的转矩极限。通过变频调速后,能够设置相应的转矩极限来保护机械不致损坏,从而保证工艺过程的连续性和产品的可靠性。目前的变频技术使得不仅转矩极限可调,甚至转矩的控制精度都能达到3%~5%左右。在工频状态下,电机只能通过检测电流值或热保护来进行控制,而无法像在变频控制一样设置精确的转矩值来动作。 (7) 受控的停止方式。如同可控的加速一样, 在变频调速中, 停止方式可以受控,并且有不同的停止方式可以选择(减速停车、自由停车、减速停车+直流制动),同样它能减少对机械部件和电机的冲击,从而使整个系统更加可靠,寿命也会相应增加。 (8) 节能离心风机或水泵采用变频器后都能大幅度地降低能耗,这在十几年的工程经验中已经得到体现。由于最终的能耗是与电机的转速成立方比,所以采用变频后投资回报就更快。

变频器制动电阻选配表

制动电阻标称功率 = 制动电阻降额系数×制动期间平均消耗功率×制动使用率% 在连铸工艺中,连铸机拉坯辊速度控制是连铸机的三大关键技术之一,拉坯速度控制水平直接影响连铸坯的产量和质量,而拉坯辊电机驱动装置的性能又在其中发挥着重要作用。交流电机变频调速技术日益成熟,交流变频驱动调速平稳,调速范围宽,对机械冲击低,交流电机维护量低,交流变频调速已取代直流调速,完全能够满足拉坯辊速度控制的需要。 4、5号连铸机的拉矫机为五辊双机架三驱动,上拉坯辊、下拉坯辊、矫直辊由三台同型号电机共同驱动,完成引锭杆的上下传送运行和连铸坯牵引,三台电机必须保持同步,与一般的同步要求不同的是要保证三个辊面的线速度相同,而不是三台电机的转速相同,以避免出现负载分配不均引起母线过压、欠压、过载故障。

三台变频器接受相同的速度指令,按照同一频率运行,但由于三辊处于一个半径8m的圆弧段的不同位置上,若要保持三个辊面的线速度相同,则三台电机的转速实际应有轻微差别,加上三台电机的参数不可能完全相同,这就造成了三台电机同步的困难。如果打开母线调节功能,虽然可以在一定程度上避免由于不同步造成的母线电压升高,但会造成电机转速的不稳定,从而使拉速值波动,进一步影响到结晶器钢水液面和二冷配水的稳定,甚至有造成事故的危险。为此,我们利用变频器内置的PI控制功能,使三台电机构成主从驱动系统,即以上拉坯电机作为主驱动电机,工作在速度调节方式,下拉坯电机和矫直电机作为从动电机,工作在带有速度修正的速度调节方式下,通过比较主从电机的力矩电流产生偏差信号,从而修正从动电机的速度。变频器间的力矩电流信号传送可以通过变频器内置的模拟量输入、输出通道来实现,无需另外添加硬件。这种方法构成的主从驱动系统,结构简单,完全利用变频器内置功能实现,可以连续自动完成速度修正,应用在多辊传动的拉矫机上效果非常理想。 拉矫机和结晶器振动装置采用变频器调速系统,拉矫机变频器的启动、停止以及调速由PLC 发送给拉矫机变频器,拉矫机的实际速度FM经光电隔离后再反馈给PLC,然后由PLC传送给相应仪表显示实际值。结晶器振动采用同调方式,即振动频率随拉速变化而变化,即根据下面的公式,来控制结晶器振动频率f: 计算出振动频率f由PLC发送给结晶器振动变频器,使结晶器的振动适应于拉速变化,系统框图如图所示。 结晶器 2008-11-25 19:43 在连续铸造、真空吸铸、单向结晶等铸造方法中,使铸件成形并迅速凝固结晶的特种金属铸型。 结晶器包括: 直型结晶器、 弧形结晶器curved mold:用于弧型和超低头型(椭圆型)连铸机上。 组合式结晶器composite mold:由四块壁板组成,每块壁板又由一块铜板和一块钢(铁)板用螺栓连接而成。 多级结晶器multi stage mold 调宽结晶器adjustable mold:宽度可调的结晶器,一般只用于板坯连铸。 结晶器是连铸机的核心设备之一,直接关系到连铸坯的质量。结晶器的振动频率要求准确,并根据拉坯速度自动调整,在高振频时,由于电机负载率上升,转差率增加,导致振动频率有所降低,而为了保证振动频率的精确,需要打开变频器的转差补偿控制,在负载增加时,使变频器自动增加输出频率以提供在没有速度降低情况下所需要的电机转差率,补偿量正比于负载的增加量,并在整个调速范围内都起作用。 另外,结晶器的振动是由电机带动偏心机构旋转来实现的,因此表现为输出电流及母线电压呈现周期性震荡,在振动频率较高时有引起母线过电压故障的可能,通过允许变频器的母线调节功能,使变频器会基于直流母线电压自动调整输出频率,监测到母线电压瞬时升高时变频器会适当增加输出频率以减小引起母线电压升高的再生能量,这样做降低了出现变频

变频器控制系统的制动单元及其应用

36 变频器控制系统的制动单元及其应用 方涌奎1 屈敏娟 2 张支钢2 上海机床厂有限公司1(200093) 上海长机自动化有限公司 2(200093) 摘 要阐述了在变频器控制系统中,电动机制动所带来的问题。介绍了在变频器控制系统中,电动机的能耗制动、直流制动和回馈(再生)制动等几种方法和及其制动单元的基本原理与应用,最后以二个实例来说明制动单元的实际应用。 关键词变频器 控制系统 制动 制动单元 在日常工作中需要电动机迅速而准确的停车, 为此对电动机采取一定的制动方法来实现。但在变频器控制系统中采用同样的制动方法,由于变频器的结构而带来了一些问题,这一点必须加以重视。 1 变频器控制系统电动机制动所存在的问题 在变频器控制系统中经常遇到需要电动机制动的场合,如大惯量负载的快速停车、势能负载的拖动、多级传动中的同步控制及负载突变等。 当变频器给定频率的下降速度过快时,由于所拖动的电动机带有负载(机械装置),有较大的机械惯量而不能很快地下降,使电动机绕组切割旋转磁场的速度加快,绕组的电动势和电流增大,造成电动机侧的反电势E大于端电压U,电动机处于制动状态或发电状态,且有较强的制动转矩。这一能量的回馈将通过变频器的逆变环节中与大功率管并联的二极管流向变频器的直流供电环节。 对于通用变频器来说,其基本结构多是“整流+滤波+逆变”的“交-直-交”系统,其整流部分大多采用不可逆的桥式整流电路,因此无法将这能量回馈给主电路,结果就造成变频器直流供电环节中的电容器二端电压(通常称之泵升电压)升高。当回馈能量较大时,还会引起直流回路的过电压而发生变频器的过电压故障。这就是在变频器控制系统中,电动机制动所带来的新问题,必须加以注意。 2 变频器控制系统电动机制动的方法 2.1 能耗制动 对于变频器,如果输出频率降低,电动机转速 将跟随频率同样降低,这时会产生制动过程。由制动产生的功率将返回到变频器侧,这些功率以电阻发热形式消耗,因此该制动方法被称作“能耗制动”。 由于用发热来消耗返回的功率,需要在变频器侧安装制动电阻。为了提高制动能力,不能期望增加变频器的容量来解决问题。由于不可能无限制减小制动电阻值来增大制动电流值,可选用“制动单元+制动电阻”选件来提高变频器的制动能力。 2.2 直流制动 直流制动是在变频器停止时刻输出一直流电流产生转矩迫使电动机停止以确保准确停车。 在一般的变频器中,大多都有直流制动的设置项目,用户只要对它作以下的设定即可。 选择是否启用直流制动功能; 根据实际需要设置直流制动的电流值; 设置直流制动的时间; 设置直流制动的开始频率,此值应根据负载对制动时间的要求来设定,一般应尽量设置得低一些。 2.3 回馈(再生)制动 在减速期间,产生的功率如果不通过热消耗的方法消耗掉而是把能量返回送到变频器电源侧的方法叫做回馈(再生)制动。同样当用于提升类负载在下降的过程中,能量(势能)也要返回到变频器(或电源)侧进行制动。这种操作方法被称作“再生制动”,该方法也可应用于变频器制动。在实际中这种应用需要“能量回馈单元”选件。 3 制动单元的基本原理与应用 制动单元是变频器的配套附件设备。当变频器 万方数据

变频器制动控制目的

电动机知识 变频器制动控制目的 对于位能型负载来说,由于重物具有重力的缘由,如没有特地的制动安装,重物在空中是停不住的。为此,电动机轴上必需加装机械制动器,常用的有电磁铁制动器和液压电磁制动器等。多数制动器都采用常闭式的,即:线圈断电时制动器依托弹簧的力气将轴抱住;线圈通电时松开。在重物开端升降或停住时,请求制动器和电动机的动作之间,必需严密配合。由于制动器从抱紧到松开,以及从松开到抱紧的动作过程需求时间(约0.6s,因电动机的容量大小而异),而电动机转矩的产生或消逝,是在通电或断电霎时就立即反映的。因而,两者在动作的配合上极易呈现问题。如电动机曾经通电,而制动器尚未松开,将招致电动机的严重过载;反之,如电动机曾经断电,而制动器尚未抱紧,则重物必将下滑,呈现溜钩现象。 匿名 随着起重机的不断发展,传统控制技术难以满足起重机越来越高的调速和控制要求。在电子技术飞速发展的今天,起重机与电子技术的结合越来越紧密,如采用PLC取代继电器进行逻辑控制,交流变频调速装置取代传统的电动机转子串电阻的调速方式等。在选型对比基础上,本项目电动机调速装置采用了先进的变频调速方案,变频器最终选型为ABB变频器ACS800,电动机选用专用鼠笼变频电动机。在众多交流变频调速装置中,ABB变频器以其性能的稳定性,选件扩展功能的丰富性,编程环境的灵活性,力矩特性的优良性和在不同场合使用的适应性,使其在变频器高端市场中占有相当重要的地位。ACC800变频器是ACS800系列中具有提升机应用程序的重要一员,

它在全功率范围内统一使用了相同的控制技术,例如起动向导,自定义编程,DTC控制等,非常适合作为起重机主起升变频器使用。本文结合南京梅山冶金发展有限公司设备分公司所负责维修管理的宝钢集团梅钢冷轧厂27台桥式起重机变频调速控制系统,详细介绍ACC800变频器在起重机主起升中的应用。 1DTC控制技术 DTC(直接转矩控制,DirectTorqueControl)技术是ACS800变频器的核心技术,是交流传动系统的高性能控制方法之一,它具有控制算法简单,易于数字化实现和鲁棒性强的特点。其实质是利用空间矢量坐标的概念,在定子坐标系下建立异步电动机空间矢量数学模型,通过测量三相定子电压和电流(或中间直流电压)直接计算电动机转矩和磁链的实际值,并与给定转矩和磁链进行比较,开关逻辑单元根据磁链比较器和转矩比较器的输出选择合适的逆变器电压矢量(开关状态)。定子给定磁链和对应的电磁转矩的实际值,可以用定子电压和电流测量值直接计算得到。在计算中,只需要一个电动机参数―――定子电阻,这一点和几乎需要全部电动机参数的直接转子磁链定向控制(矢量控制)形成了鲜明对比,极大地减轻了微处理器的计算负担,提高了运算速度 。直接转矩控制结构较为简单,可以实现快速的转矩响应(不大于5ms)。 2防止溜钩控制 作为起重用变频系统,其控制重点之一是在电动机处于回馈制动状态下系统的可靠性("回馈"是指电动机处于发电状态时通过逆变桥向变频器中间直流回路注入电能),尤其需要引起注意的是主起升机构的防止溜钩控制。溜钩是指在电磁制动器

变频器的制动电阻作用

在变频调速系统中,电机的降速和停机是通过逐渐减小频率来实现的,在频率减小的瞬间,电机的同步转速随之下降,而由于机械惯性的原因,电机的转子转速未变。当同步转速小于转子转速时,转子电流的相位几乎改变了180度,电机从电动状态变为发电状态;与此同时,电机轴上的转矩变成了制动转矩,使电机的转速迅速下降,电机处于再生制动状态。电机再生的电能经续流二极管全波整流后反馈到直流电路。由于直流电路的电能无法通过整流桥回馈到电网,仅靠变频器本身的电容吸收,虽然其他部分能消耗电能,但电容仍有短时间的电荷堆积,形成“泵升电压”,使直流电压升高。过高的直流电压将使各部分器件受到损害。 因此,对于负载处于发电制动状态中必须采取必需的措施处理这部分再生能量。处理再生能量的方法:能耗制动和回馈制动. 能耗制动的工作方式 能耗制动采用的方法是在变频器直流侧加放电电阻单元组件,将再生电能消耗在功率电阻上来实现制动。这是一种处理再生能量的最直接的办法,它是将再生能量通过专门的能耗制动电路消耗在电阻上,转化为热能,因此又被称为“电阻制动”,它包括制动单元和制动电阻二部分。 制动单元 制动单元的功能是当直流回路的电压Ud超过规定的限值时(如660V或710V),接通耗能电路,使直流回路通过制动电阻后以热能方式释放能量。制动单元可分内置式和外置式二种,前者是适用于小功率的通用变频器,后者则是适用于大功率变频器或是对制动有特殊要求的工况中。从原理上讲,二者并无区别,都是作为接通制动电阻的“开关”,它包括功率管、电压采样比较电路和驱动电路。 制动电阻 制动电阻是用于将电机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。通常在工程上选用较多的是波纹电阻和铝合金电阻两种:前者采用表面立式波纹有利于散热减低寄生电感量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命;后者电阻器耐气候性、耐震动性,优于传统瓷骨架电阻器,广泛应用于高要求恶劣工控环境使用,易紧密安装、易附加散热器,外型美观。 制动过程 能耗制动的过程如下: 能耗制动的过程如下:A、当电机在外力作用下减速、反转时(包括被拖动),电机即以发电状态运行,能量反馈回直流回路,使母线电压升高;B、当直流电压到达制动单元开的状态时,制动单元的功率管导通,电流流过制动电阻;C、制动电阻消耗电能为热能,电机的转速降低,母线电压也降低;D、母线电压降至制动单元要关断的值,制动单元的功率管截止,制动电阻无电流流过;E、采样母线电压值,制动单元重复ON/OFF过程,平衡母线电压,使系统正常运行。

电气传动变频器习题解答

第1章习题得解答 1.什么叫变频器?变频调速有哪些应用? 答:变频器是将固定电压、固定频率的交流电变换为可调电压、可调频率的交流电的装置。 变频调速的应用主要有:①在节能方面的应用。例如风机、泵类负载采用变频调速后,节电率可以达到20%~60%;②在提高工艺水平和产品质量方面的应用。例如变频调速应用于传送、起重、挤压和机床等各种机械设备控制领域;③在自动化系统中的应用。例如,化纤工业中的卷绕、拉伸、计量、导丝;玻璃工业中的平板玻璃退火炉、玻璃窑搅拌、拉边机、制瓶机;电弧炉自动加料、配料系统以及电梯的智能控制等。 2.为什么说电力电子器件是变频器技术发展的基础? 答:变频器的主电路不论是交-直-交变频或是交-交变频形式,都是采用电力电子器件作为开关器件。因此,电力电子器件是变频器发展的基础。 3.为什么计算机技术和自动控制理论是变频器发展的支柱? 答:计算机技术使变频器的功能也从单一的变频调速功能发展为包含算术、逻辑运算及智能控制的综合功能;自动控制理论的发展使变频器在改善压频比控制性能的同时,推出了能实现矢量控制、直接转矩控制、模糊控制和自适应控制等多种模式。现代的变频器已经内置有参数辨识系统、PID调节器、PLC控制器和通讯单元等,根据需要可实现拖动不同负载、宽调速和伺服控制等多种应用。 4.变频调速发展的趋势如何?答:①智能化;②专门化;③一体化;④环保化.

5.按工作原理变频器分为哪些类型?按用途变频器分为哪些类型? 答:按工作原理变频器分为:交-交变频器和交-直-交变频器两大类。 按用途变频器分为:①通用变频器;②专用变频器。 6.交-交变频器与交-直-交变频器在主电路的结构和原理有何区别? 答:交-交变频器的主电路只有一个变换环节,即把恒压恒频(CVCF)的交流电源转换为变压变频(VVVF)电源;而交-直-交变频器的主电路是先将工频交流电通过整流器变成直流电,再经逆变器将直流电变成频率和电压可调的交流电。 7.按控制方式变频器分为哪几种类型? 答:按控制方式变频器分为:①V/f控型变频器;②转差频率控制变频器;③矢量控制变频器;④直接转矩控制变频器。 第3章习题解答 1.交-直-交变频器的主电路包括哪些组成部分?说明各部分的作用。 答:交-直-交变频器主电路包括三个组成部分:整流电路、中间电路和逆变电路。整流电路的功能是将交流电转换为直流电;中间电路具有滤波电路或制动作用;逆变电路可将直流电转换为交流电。 2.不可控整流电路和可控整流电路的组成和原理有什么区别? 答:不可控整流电路整流元件为二极管,不可控整流电路输出的直流电压不可调节;可控整流电路的整流元件为晶闸管,利用晶闸管的可控导电性可使输出的直流电压大小可

变频器复习题及答案

1、输出电磁滤波器安装在变频器和 电动机 之间,抑制变频器输出侧的 浪涌 电压。 变频器具有多种不同的类型:按变换环节可分为交—交型和___交-直-交________型;按改变变频器输出电压的方法可分为脉冲幅度调制(PAM )型和_脉冲宽度调制(PWM )___型;按用途可分为专用型变频器和___通用型__型变频器。 1.变频器种类很多,其中按滤波方式可分为电压型和 电流 型;按用途可分为通用型和 专用 型。 2.变频器的组成可分为主电路和 控制 电路。 4.变频器安装要求其正上方和正下方要避免可能阻挡进风、出风的大部件,四周距控制柜顶部、底部、隔板或其他部件的距离不应小于120mm 。 变频器按控制方式分类 :压频比控制变频器 ( V/f )、转差频率控制变频器 (SF )、矢量控制 (VC )、直接转矩控制。 变频器产生谐波时,由于功率较大,因此可视为一个强大的干扰源,其干扰途径与一般电磁干扰途径相似,分别为传导、辐射和二次辐射、电磁耦合、边传导边辐射等。 13.输入电源必须接到变频器输入端子R 、S 、T 上,电动机必须接到变频器输出端子U 、V 、W 上。 交-交变频根据其输出电压的波形,可以分为矩形波及正弦波型两种。 高(中)压变频调速系统的基本型式有直接高-高型、高-中型和高-低-高型等三种。 8.(:对)电压型变频器多用于不要求正反转或快速加减速的通用变频器中。 5.(错)交-交变频器的最大输出频率和市网电压频率一样,为50Hz 。 16.变频器的问世,使电气传动领域发生了一场技术革命,即 交流调速 取代直流调速。 19.SCR 是指(可控硅)。 20.GTO 是指(门极关断晶闸管)。 21.IGBT 是指(绝缘栅双极型晶体管 )。 22.IPM 是指(智能功率模块)。 53.电阻性负载的三相桥式整流电路负载电阻L R 上的平均电压O U 为( )。 A .2.342U B .2U C .2.341U D .1U 107.下述选项中,( )不是高中压变频器调速系统的基本形式。 A .直接高-高型 B .高-中型 C .高-低-高型 D .交-交变频器 116.( )变频器矢量控制模式下,一只变频器只能带一台电动机。对

制动电阻的选择和计算

1 引言 目前市场上变频器的制动方法大致有三种:能耗制动,直流制动,回馈(再生)制动。台达变频器属于不可控整流电压源型的变频器,其制动方式属于能耗制动和直流制动。能耗制动是台达变频器让生产机械在运动过程中快速地减速或停车的主要形式;直流制动则在电机运转准备时刻输出一直流电流产生转矩迫使电机停止,以得到平稳的启动特性,或者当变频器停止时刻输出一直流电流产生转矩迫使电机停止,以确保电机已准确停车。在使用台达变频器的变频调速系统中,减速的方法就是通过逐步降低给定频率来实现的。在频率下降过程中,电动机将处于再生制动状态(发电机状态),使得电动机的转速迅速地随频率的下降而下降。在制动过程中,泵生电压的产生会导致直流母线上的电压升高,此时变频器会控制刹车单元通过刹车电阻把升高的电压以热能的方式消耗掉。为了使得系统平稳降速,需要设置适当的减速时间,同时选择合适的制动电阻和制动单元才能满足需要。目前关于制动电阻的计算方法有很多种,从工程的角度来讲要精确的计算制动电阻的阻值和功率在实际应用过程中不是很实际,主要是部分参数无法精确测量。目前通常用的方法就是估算方法,由于每一个厂家的计算方法各有不同,因此计算的结果不大一致。本文所介绍的计算方法仅仅是供参考,具体的情况要根据每一个现场的使用情况来进行分析计算。 2 制动电阻的介绍 制动电阻是用于将电动机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。通常在工程上选用较多的是波纹电阻和铝合金电阻两种:波纹电阻采用表面立式波纹有利于散热减低寄生电感量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命,台达原厂配置的就是这样的电阻;铝合金电阻易紧密安装、易附加散热器,外型美观,高散热性的铝合金外盒全包封结构,具有极强的耐振性,耐气候性和长期稳定性;体积小、功率大,安装方便稳固,外形美观,广泛应用于高度恶劣工业环境使用。 3 制动电阻的阻值和功率计算 3.1刹车使用率ED% 制动使用率ED%,也就是台达说明书中的刹车使用率ED%。刹车使用率ED%定义为减速时间T1除以减速的周期T2,制动刹车使用率主要是为了能让制动单元和刹车电阻有充分的时间来散除因制动而产生的热量;当刹车电阻发热时,电阻值将会随温度的上升而变高,制动转矩亦随之减少。刹车使用率ED%=制动时间/刹车周期=T1/T2*100%。(图1) 图1刹车使用率ED%定义 现在用一个例子来说明制动使用率的概念:10%的制动频率可以这样理解,如果制动电阻在10秒钟能够消耗掉100%的功率,那么制动电阻至少需要90秒才能把产生的热量散掉。 3.2 制动单元动作电压准位 当直流母线电压大于等于制动电压准位(甄别阈值)时,刹车单元动作进行能量消耗。台达制动电压准位如表1所示。

变频器控制电动机停车制动方式

电动机知识 变频器控制电动机停车制动方式 电动机停车方式由P0700和P0701~P0708设置。制动时有如下几种方式: (1)由外接数字端子控制。将P0700设为2,P0701设为1,即可由外接数字端子5 (,低电平)控制电动机制动,制动时间可由P1121设置斜坡下降时间。 (2)由的键控制。将P0700设为1,P0701设为3,为2方式,即按惯性自由停车。用上的(停车)键控制时,按下键(持续2s)或按两次(停车)键即可。 (3)用3命令使电动机快速地减速停车。将P0701设为4,在设置了3的情况下, 为了起动电动机,二进制输入端必须闭合(高电平)。如果3为高电平,电动机才能起动并用1或2方式停车。如果3为低电平,电动机不能起动。3可以同时具有直流制动、复合制动的功能。 (4)直流注入制动。变频调速系统在降速过程中,电动机因为处于再生制动状态而迅速降速。但随着转速的下降,拖动系统的动能减小,电动机的再生能力和制动转矩也随之减小。所以,在惯性较大的拖动系统中,会出现低速时停不住的“爬行”现象。为了克服“爬行”现象,当拖动系统的转速下降到一定程度时,向电动机绕组中通入直流电流,以加大制动转矩,使拖动系统迅速停住。 在预置直流制动功能时,主要设定以下项目: 1)直流制动电压。即需要向电动机绕组施加的直流电压。拖动系统的惯性越大,直流制动电压的设定值也越大。 2)直流制动时间。即向电动机绕组施加直流电压的时间,

可设定得比估计时间略长一些。 3)直流制动的起始频率。即变频调速系统由再生制动状态转为直流制动状态的起始频率。拖动系统的惯性越大,直流制动的起始频率的设定值也越大。 直流注入制动可以与和3命令同时使用。向电动机注入直流电流时,电动机将快速停止,并在制动作用结束之前一直保持电动机轴静止不动。 “使能”直流注入制动可由参数P0701~P0708设置为25。直流制动的持续时间可由参数 P1233设置。直流制动电流可由参数P1232设置。直流制动的起始频率可由参数P1234设置。如果没有数字输入端设定为直流注入制动,而且P1233≠O,那么直流制动将在每个命令之后起作用,制动作用的持续时间由P1233设定。 (5)复合制动。复合制动可以与1和3命令同时使用。为了进行复合制动,应在交流电流中加入直流分量。制动电流可由参数P1236设定。 (6)用外接制动电阻进行动力制动。用外接制动电阻(外形尺寸为A~F的440变频器采用内置的斩波器)进行制动时,按线性方式平滑、可控地降低电动机的速度,如图3 -14所示。 图3 - 14 外接制动电阻进行动力制动 ·变频器维修怎样处理过电压保护 ·电工比武实践试题 ·利用管理变频器处理机械故障 ·正确使用变频器 ·变频器的转差频率控制方式 ·变频器选择时的注意事项 ·变频器应用中存在的问题及对策

变频器在电梯中起着什么作用2008

变频器在电梯中起着什么作用2008-07-13 23:31 变频器的主要作用是通过改变交流电的频率,节能和调速,并实现自动控制和高精度控制。变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。可分为交——交变频器,交——直——交变频器。交——交变频器可直接把交流电变成频率和电压都可变的交流电;交——直——交变频器则是先把交流电经整流器先整流成直流电,再经过逆变器把这个直流电流变成频率和电压都可变的交流电。 PWM是英文Pulse Width Modulation(脉冲宽度调制)缩写,按一定规律改变脉冲列的脉冲宽度,以调节输出量和波形的一种调值方式。PAM是英文Pulse Amplitude Modulation(脉冲幅度调制)缩写,是按一定规律改变脉冲列的脉冲幅度,以调节输出量值和波形的一种调制方式。 变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容;电流型是将电流源的直流变换为交流的变频器,其直流回路滤波石电感。非同步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那麽磁通就过大,磁回路饱和,严重时将烧毁电机。因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。这种控制方式多用於风机、泵类节能型变频器。 频率下降(低速)时,如果输出相同的功率,则电流增加,但在转矩一定的条件下,电流几乎不变。 采用变频器运转,随著电机的加速相应提高频率和电压,起动电流被限制在150%额定电流 以下(根据机种不同,为125%-200%)。用工频电源直接起动时,起动电流为6-7倍,因此,将产生机械电气上的冲击。采用变频器传动可以平滑地起动(起动时间变长)。起动电流为额

变频器的电气制动

变频器的电气制动 电气制动概况 众所周知变频器的电气制动方法有三种:能耗制动,直流制动,回馈(再生)制动,其性能及特点如下所列: 制动方式制动力矩能量去路效果经济性适用功率适用场合及特点 能耗制动≤80%加强式达130-350% 消耗电阻上发热浪费差 50KW 一般要求的制动设备上制动力矩不平衡有冲击,有低速爬行可能 直流制动 80-100% 动能变电能产生制动力矩浪费差 50-100KW 要求平稳无冲击,停车精确,例针织、缝纫、起重、提升机、启动前先停车,例大型风机 回馈(再生)制动 80-150% 动能变电能回馈电网回收好 >100KW 适用离心机、清洗机等尤其高低速交叉,正反转交替高速与低速差值很大,并可四象限运转 I、能耗制动 1、制动概况 从高速到低速(零速)----这时电气的频率变化很快,但电动机的转子带着负载(生产机械)有较大的机械惯性,不可能很快的停止,这样就产生反电势E>U(端电压)电动机处于发电状态,其产生反向电压转矩与原电动状态转矩相反,而使电动机具有较强的制动力矩,迫使转子较快停下来,但由于通常变频器是交—直---交主电力,AC/DC

整流电路是不可逆的,因此无法回馈到电网上去,结果造成主电路电容器二端电压升高,称泵升电压,当超过设定上限值电压700V时,制动回路导通,这就是制动单元的工作过程,制动电阻流过电源,从而将动能变热能消耗,电压随之下降,待到设定下限值(680V)时即断.这种制动方法属不可控,制动力矩有波动,制动时间是可人为设定的. 2、技术性能 制动方式自动电压跟踪方式 反映时间 1ms以下有多种噪声 电网电压 300-460V,45-66Hz 动作电压 700V直流,误差2V 滞环电压 20V 制动力巨通常130% ,最大150% 保护过热,过电流,短路 滤波器有噪声滤波器 防护等级 IPOO 3、制动电阻计算方法: 制动力矩制动电阻 92% R=780/电动机KW 100% R=700/电动机KW 110% R=650/电动机KW 120% R=600/电动机KW 注:①电阻值越小,制动力矩越大,流过制动单元的电流越大;②不

变频器的工作原理以及接线图

变频器的工作原理以及接线图

————————————————————————————————作者: ————————————————————————————————日期: ?

变频器介绍:变频器是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的。 变频器工作原理 变频器可分为电压型和电流行两种变频器。 电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。 电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。是整流器,整流器,逆变器。 而变频器的主电路由整流器、平波回路和逆变器三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路。

变频器接线图 上图是一副变频器接线图。在变频器的安装中,有一些问题是需要注意的。例如变频器本身有较强的电磁干扰,会干扰一些设备的工作,因此我们可以在变频器的输出电缆上加上电缆套。又或变频器或控制柜内的控制线距离动力电缆至少100mm等等。 变频器接线方法

一、主电路的接线 1、电源应接到变频器输入端R、S、T接线端子上,一定不能接到变频器输出端(U、V、W)上,否则将损坏变频器。接线后,零碎线头必须清除干净,零碎线头可能造成异常,失灵和故障,必须始终保持变频器清洁。在控制台上打孔时,要注意不要使碎片粉末等进入变频器中。 2、在端子+,PR间,不要连接除建议的制动电阻器选件以外的东西,或绝对不要短路。 3、电磁波干扰,变频器输入/输出(主回路)包含有谐波成分,可能干扰变频器附近的通讯设备。因此,安装选件无线电噪音滤波器FR-BIF或FRBSF01或FR-BLF线路噪音滤波器,使干扰降到最小。 4、长距离布线时,由于受到布线的寄生电容充电电流的影响,会使快速响应电流限制功能降低,接于二次侧的仪器误动作而产生故障。因此,最大布线长度要小于规定值。不得已布线长度超过时,要把Pr.156设为1。 5、在变频器输出侧不要安装电力电容器,浪涌抑制器和无线电噪音滤波器。否则将导致变频器故障或电容和浪涌抑制器的损坏。 6、为使电压降在2%以内,应使用适当型号的导线接线。变频器和电动机间的接线距离较长时,特别是低频率输出情况下,会由于主电路电缆的电压下降而导致电机的转矩下降。 7、运行后,改变接线的操作,必须在电源切断10min以上,用万用表检查电压后进行。断电后一段时间内,电容上仍然有危险的高压电。 二、控制电路的接线

变频器电路中的制动电路

变频器电路中的制动控制电路 一、为嘛要采用制动电路 因惯性或某种原因,导致负载电机的转速大于变频器的输出转速时,此时电机由“电动”状态进入“动电”状态,使电动机暂时变成了发电机。一些特殊机械,如矿用提升机、卷扬机、高速电梯等,风机等,当电动机减速、制动或者下放负载重物时,因机械系统的位能和势能作用,会使电动机的实际转速有可能超过变频器的给定转速,电机转子绕组中的感生电流的相位超前于感生电压,并由互感作用,使定子绕组中出现感生电流——容性电流,而变频器逆变回路IGBT两端并联的二极管和直流回路的储能电容器,恰恰提供了这一容性电流的通路。电动机因有了容性励磁电流,进而产生励磁磁动势,电动机自励发电,向供电电源回馈能量。这是一个电动机将机械势能转变为电能回馈回电网的过程。 此再生能量由变频器的逆变电路所并联的二极管整流,馈入变频器的直流回路,使直流回路的电压由530V左右上升到六、七百伏,甚至更高。尤其在大惯性负载需减速停车的过程中,更是频繁发生。这种急剧上升的电压,有可能对变频器主电路的储能电容和逆变模块,造成较大的电压和电流冲击甚至损坏。因而制动单元与制动电阻(又称刹车单元和刹车电阻)常成为变频器的必备件或首选辅助件。在小功率变频器中,制动单元往往集成于功率模块内,制动电阻也安装于机体内。但较大功率的变频器,直接从直流回路引出P、N端子,由用户则根据负载运行情况选配制动单元和制动电阻。 一例维修实例: 一台东元7300PA 75kW变频器,因IGBT模块炸裂送修。检查U、V相模块俱已损坏,驱动电路受强电冲击也有损坏元件。将模块和驱动电路修复后,带电机试机,运行正常。即交付用户安装使用了。 运行约一个月时间,用户又因模块炸裂。检查又为两相模块损坏。这下不敢大意了,询问用户又说不大清楚。到用户生产现场,算是弄明白了损坏的原因。原来变频器的负载为负机,因工艺要求,运行三分钟,又需在30秒内停机。采用自由停车方式,现场做了个试验,因风机为大惯性负荷,电机完全停住需接近20分钟。为快速停车,用户将控制参数设置为减速停车,将减速时间设置为30秒。在减速停车过程中,电机的再生电能回馈,使变频器直流回路电压异常升高,有时即跳出过电压故障而停机。用户往往实施故障复位后,又强制开机。正是这种回馈电能,使直流回路电压异常升高,超出了IGBT的安全工作范围,而炸裂了。 此次修复后,给用户说明情况,增上了制动单元和制动电阻器后,变频器投入运行,几年来再未发生模块炸裂故障。 此种制动方式,加快机械惯性能量的消耗,利于缩短停车进程,将电机的再生发电能

变频器的功能和作用

变频器的功能和作用 变频器节能主要表现在风机、水泵的应用上。为了保证生产的可靠性,各种生产机械在设计配用动力驱动时,都留有一定的富余量。当电机不能在满负荷下运行时,除达到动力驱动要求外,多余的力矩增加了有功功率的消耗,造成电能的浪费。风机、泵类等设备传统的调速方法是通过调节入口或出口的挡板、阀门开度来调节给风量和给水量,其输入功率大,且大量的能源消耗在挡板、阀门的截流过程中。当使用变频调速时,如果流量要求减小,通过降低泵或风机的转速即可满足要求。 电动机使用变频器的作用就是为了调速,并降低启动电流。为了产生可变的电压和频率,该设备首先要把电源的交流电变换为直流电(DC),这个过程叫整流。把直流电(DC)变换为交流电(AC)的装置,其科学术语为“inverter”(逆变器)。一般逆变器是把直流电源逆变为一定的固定频率和一定电压的逆变电源。对于逆变为频率可调、电压可调的逆变器我们称为变频器。变频器输出的波形是模拟正弦波,主要是用在三相异步电动机调速用,又叫变频调速器。对于主要用在仪器仪表的检测设备中的波形要求较高的可变频率逆变器,要对波形进行整理,可以输出标准的正弦波,叫变频电源。一般变频电源是变频器价格的15--20倍。由于变频器设备中产生变化的电压或频率的主要装置叫“inverter”,故该产品本身就被命名为“inverter”,即:变频器。 变频不是到处可以省电,有不少场合用变频并不一定能省电。作为电子电路,变频器本身也要耗电(约额定功率的3-5%)。一台1.5匹的空调自身耗电算下来也有20-30W,相当于一盏长明灯.变频器在工频下运行,具有节电功能,是事实。但是他的前提条件是: 、大功率并且为风机/泵类负载; 第二、装置本身具有节电功能(软件支持); 这是体现节电效果的三个条件。除此之外,无所谓节不节电,没有什么意义。如果不加前提条件的说变频器工频运行节能,就是夸大或是商业炒作。知道了原委,你会巧妙的利用他为你服务。一定要注意使用场合和使用条件才好正确应用,否则就是盲从、轻信而“受骗上当”。 功率因数补偿节能

变频器制动电阻的作用

变频器制动电阻的作用 当变频器带动的电机或其他感性负载在停机的时候,一般都是采用能耗制动的方式来实现的,就是把停止后电机的动能和线圈里面的磁能都通过一个别的耗能元件消耗掉,从而实现快速停车。当供电停止后,变频器的逆变电路就反向导通,把这些剩余电能反馈到变频器的直流母线上来,直流母线上的电压会因此而升高,当升高到一定值的时候,变频器的制动电阻就投入运行,使这部分电能通过电阻发热的方式消耗掉,同时维持直流母线上的电压为一个正常值。 我现在用的是一个mm440的变频器,外界了一个制动电阻,我不知道设置那个参数可以切换到制动电阻制动,即制动电阻起作用!问题补充:我是想知道设置那个参数,可以让我的变频器在需要时起作用。还是默认的参数就可以啊? 要想使制动电阻工作,要满足以下几个条件:1、直流制动没有使能。P1230=0默认,P1233=0默认。2、复合制动没有使能。P1236=0默认。3、动力制动必须使能。也就是P1237>0。例如P1237=4(50%) 4、不使用最大直流电压控制器,P1240=0或2。主要是减速出现过压,首先最大电压控制器工作,制动电阻还没到门限,不会工作。通过以上设置,(如果你是380V 设定)制动电阻在默认直流电压达到或超过605V时动作。 变频器带负载直接断电对变频器有什么不良影响吗?这样的话是不是制动电阻就不起作用了。 原则上是没有影响的。但如果频繁的上电,电容的充电电阻就会频繁的受到冲击,网侧整流如果结构是带晶闸管软上电的问题就不大了。但不管什么结构,上电的冲击都是有的(主回路,控制回路等)。 第二个问题,有点复杂,要定量分析。有的变频器是有网侧电源判断电路的,当网侧电源断电后,变频器会开始自由停车(或并且给出报警信号)。有的是根据直流总线电压来推断的,控制电压也来自于直流总线,如果网侧断电前变频器已经开始减速停车,且负载有足够的转动惯量,已经开始把能量回馈给变频器,就会在断电后仍然有足够的直流总线电压,控制电源仍然存在,制动回路仍然会工作(适用再生制动,注意,直流制动是没有能力回馈的),把负载的能力回馈到制动电阻上,当回馈的能量不足以保持直流总线电压时,控制回路掉电,变频器进入自由停车状态。也就是说网侧电源掉电后,变频器仍然会保持制动力矩一段

变频器能耗制动

一、能耗制动 1.1、能耗制动概况 从高速到低速(零速)----这时电气的频率变化很快,但电动机的转子带着负载(生产机械)有较大的机械惯性,不可能很快的停止,这样就产生反电势E>U(端电压)电动机处于发电状态,其产生反向电压转矩与原电动状态转矩相反,而使电动机具有较强的制动力矩,迫使转子较快停下来, 但由于变频器是 交—直—交主电力,AC/DC整流电路是不可逆的,因此无法回馈到电网上去,结 果造成主电路电容器二端电压升高,称泵升电压,当超过设定上限值电压700V 时,制动回路导通,这就是制动单元的工作过程,制动电阻流过电源,从而将动能变热能消耗,电压随之下降,待到设定下限值(680V)时即断.这种制动方法属不可控,制动力矩有波动,制动时间是可人为设定的。 1.2、技术参数 1.2.1、制动方式:自动电压跟踪方式; 1.2.2、反映时间:1ms以下有多种噪声; 1.2.3、电网电压:300-460V,45-66Hz; 1.2.4、动作电压:700V直流,误差2V; 1.2.5、滞环电压:20V; 1.2.6、制动力矩:通常130%,最大150%; 1.2.7、保护:过热,过电流,短路; 1.2.8、滤波器:有噪声滤波器; 1.2.9、防护等级:IPOO; (注:通常这类制动器方式是不需要另外控制,是制动单元自动完成,其制动触发电压有的厂家的产品可以通过设置电网电压来设置。制动时间往往不可以直接调整,可以通过变频器的减速时间间接控制。) 1.3、制动电阻计算方法 制动力矩制动电阻 92% R=780/电动机KW 100% R=700/电动机KW 110% R=650/电动机KW 120% R=600/电动机KW

变频器外接电位器线该怎么接参数怎么设置

变频器外接电位器,线该怎么接?参数怎么设置? 变频器的品牌众多,名称、型号不太一样,但是电位器的接线方法都大同小异,产品说明书上都有图纸说明。 以艾米克变频器为例,各种系列的都可以使用电位器来控制频率输出,电位器接线0~10v电压。 首先外部电位器后面有3个端子,分别是1、2、3。 将电位器的3号端子连接在变频器+10V的位置,将电位器的2号端子连接在变频器AVI的位置,将电位器的1号端子连接在变频器ACM的位置。具体接线方法如图所示:

接线端子原理图 其中,+10V 是速度设定用电源,是模拟信号的频率设定电源,+10Vdc 3mA(可调电阻3~5kΩ),AVI是模拟电压频率指示,电压范围是0 ~ 10VDC,对应到0~最大输出频率,ACM是模拟信号公共端,是模拟信号的共同端子。

控制端子位置示意图 连接好之后,开始设置参数,首先设置频率来源,02.00是频率输入来源设定02.00参数说明 我们现在是用外部电位器,应该选择1,也就是主频率输入由模拟信号0-10V,先进入02.00,然后通过上下箭头,选择1,再按确定键保存,确定好之后,然后返回主界面。 然后设置运转指令来源,02.01是运转指令来源设定 02.01参数说明 我们是在变频器的面板上启动,应该选择0,也就是数字操作器控制,先进入02.01,然后通过上下箭头,选择0,再按确定键保存,确定好之后,然后返回主界面。

流程总结: 1、将外接电位器的两端分别接变频器的+10V和ACM,将电位器的滑动端接电压输入端AVI。 2、变频器与外接电位器之间的连接线要选用屏蔽线,且要三线均屏蔽的,如果变频器与外接电位器之间距离超过2米,就要考虑屏蔽线的质量,线径不能小。 3、如果变频器与外接电位器之间距离超过10米,那么在保证屏蔽线的质量和线径下,还需要再套铁管。在保证屏蔽线的质量和线径下套铁管,距离可以超过200米,原则是变频器端,线路压降可以忽略,若压降过大,可以用单芯铜线屏蔽代替屏蔽线。 4、变频器的控制如果采用闭环自动控制,必须将工艺参数,如生产过程中的流量、液面、压力、温度等通过变送器、调节器转换为4~20mA的信号,送至变频器的信号输入端,才能达到变频控制的目的。频率的设定可以通过外接频率设定电位器的方法来实现。

相关文档
最新文档