IK15N60T中文资料

Low Loss DuoPack : IGBT in TrenchStop ? and Fieldstop technology

with soft, fast recovery anti-parallel EmCon 3 diode

? Very low V CE(sat) 1.5 V (typ.)

? Maximum Junction Temperature 175 °C

? Short circuit withstand time – 5μs

?

Designed for frequency inverters for washing machines, fans, pumps and vacuum cleaners ? TrenchStop ?

technology for 600 V applications offers :

- very tight parameter distribution

- high ruggedness, temperature stable behavior - very high switching speed

? Positive temperature coefficient in V CE(sat)

? Low EMI

? Low Gate Charge

? Qualified according to JEDEC 1

for target applications ? Pb-free lead plating; RoHS compliant

? Complete product spectrum and PSpice Models : https://www.360docs.net/doc/017868514.html,/igbt/ Type

V CE

I C

V CE(sat ),Tj=25°C

T j,max Marking Code

Package

IKB15N60T 600V 15A 1.5V 175°C K15T60 PG-TO263-3-2

Maximum Ratings

Parameter Symbol Value Unit Collector-emitter voltage

V C E

600 V DC collector current, limited by T jmax T C = 25°C T C = 100°C

I C

30 15

Pulsed collector current, t p limited by T jmax

I C p u l s 45 Turn off safe operating area (V CE ≤ 600V, T j ≤ 175°C) - 45 Diode forward current, limited by T jmax T C = 25°C T C = 100°C

I F

30 15

Diode pulsed current, t p limited by T jmax I F p u l s 45 A

Gate-emitter voltage V G E ±20 V Short circuit withstand time 2)

V GE = 15V, V CC ≤ 400V, T j ≤ 150°C t S C 5

μs

Power dissipation T C = 25°C P t o t 130 W Operating junction temperature T j -40...+175 Storage temperature

T s t g -55...+175 Soldering temperature (reflow soldering, MSL1)

-

245

°C

1

J-STD-020 and JESD-022

2)

Allowed number of short circuits: <1000; time between short circuits: >1s.

Thermal Resistance Parameter Symbol Conditions Max. Value Unit

Characteristic

IGBT thermal resistance, junction – case

R t h J C

1.15 Diode thermal resistance, junction – case R t h J C D 1.9 Thermal resistance, junction – ambient R t h J A 6cm2 Cu

40

K/W

Electrical Characteristic, at T j = 25 °C, unless otherwise specified

Value

Parameter Symbol Conditions min. Typ. max. Unit

Static Characteristic

Collector-emitter breakdown voltage V (B R )C E S V G E =0V, I C =0.2mA 600 - - Collector-emitter saturation voltage

V C E (s a t )

V G E = 15V, I C =15A T j =25°C T j =175°C

- - 1.5 1.9 2.05 - Diode forward voltage

V F

V G E =0V, I F =15A T j =25°C T j =175°C

- - 1.65 1.6 2.05 - Gate-emitter threshold voltage V G E (t h ) I C =210μA,V C E =V G E 4.1 4.9 5.7

V Zero gate voltage collector current

I C E S V C E =600V , V G E =0V T j =25°C T j =175°C

- -

- -

40 1000

μA

Gate-emitter leakage current I G E S V C E =0V,V G E =20V - - 100 nA Transconductance g f s V C E =20V, I C =15A - 8.7 - S Integrated gate resistor R G i n t

- ?

Dynamic Characteristic Input capacitance C i s s - 860 - Output capacitance

C o s s - 55 - Reverse transfer capacitance C r s s V C E =25V, V G E =0V, f =1MHz

- 24 - pF Gate charge

Q G a t e V C C =480V, I C =15A V G E =15V

- 87 - nC

Internal emitter inductance

measured 5mm (0.197 in.) from case L E - 7 - nH Short circuit collector current 1)

I C (S C )

V G E =15V,t S C ≤5μs

V C C = 400V, T j ≤ 150°C

- 137.5 - A

1)

Allowed number of short circuits: <1000; time between short circuits: >1s.

Switching Characteristic, Inductive Load, at T j =25 °C

Value

Parameter Symbol Conditions min. Typ. max. Unit

IGBT Characteristic Turn-on delay time t d (o n ) - 17 - Rise time

t r - 11 - Turn-off delay time t d (o f f ) - 188 - Fall time t f - 50 - ns Turn-on energy E o n - 0.22 - Turn-off energy E o f f - 0.35 - Total switching energy

E t s

T j =25°C,

V C C =400V,I C =15A,V G E =0 /15V, R G =15?, L σ1)

=154nH, C σ1)

=39pF

Energy losses include “tail” and diode reverse recovery.

- 0.57 -

mJ Anti-Parallel Diode Characteristic Diode reverse recovery time t r r - 34 - ns Diode reverse recovery charge Q r r - 0.24 - μC Diode peak reverse recovery current I r r m

- 10.4 - A Diode peak rate of fall of reverse recovery current during t b

di r r /dt

T j =25°C,

V R =400V, I F =15A, di F /dt =825A/μs

- 718 - A/μs

Switching Characteristic, Inductive Load, at T j =175 °C

Value

Parameter Symbol Conditions min. Typ. max. Unit

IGBT Characteristic Turn-on delay time t d (o n ) - 17 - Rise time

t r - 15 - Turn-off delay time t d (o f f ) - 212 - Fall time t f - 79 - ns Turn-on energy E o n - 0.34 - Turn-off energy E o f f - 0.47 - Total switching energy

E t s T j =175°C,

V C C =400V,I C =15A,V G E =0/15V, R G = 15 ? L σ1)

=154nH, C σ1)

=39pF

Energy losses include “tail” and diode reverse recovery. - 0.81 - mJ Anti-Parallel Diode Characteristic Diode reverse recovery time t r r - 140 - ns Diode reverse recovery charge Q r r - 1.0 - μC Diode peak reverse recovery current I r r m

- 14.7 - A Diode peak rate of fall of reverse recovery current during t b

di r r /dt

T j =175°C

V R =400V, I F =15A, di F /dt =825A/μs

- 495 - A/μs

1)

Leakage inductance L σ and Stray capacity C σ due to dynamic test circuit in Figure E.

I C , C O L L E C T O R C U R R E N T

10Hz

100Hz

1kHz

10kHz

100kHz

0A

10A

20A

30A

40A

I C , C O L L E C T O R C U R R E N T

1V

10V

100V 1000V

0.1A

1A

10A

f , SWITCHING FREQUENCY

V CE , COLLECTOR -EMITTER VOLTAGE

Figure 1. Collector current as a function of

switching frequency

(T j ≤ 175°C, D = 0.5, V CE = 400V, V GE = 0/+15V, R G = 15?) Figure 2. Safe operating area

(D = 0, T C = 25°C, T j ≤175°C; V GE =15V)

P t o t , P O W E R D I S S I P A T I O N

25°C

50°C 75°C 100°C 125°C 150°C

0W 20W 40W 60W 80W 100W 120W

I C , C O L L E C T O R C U R R E N T

0A

10A

20A

30A

T C , CASE TEMPERATURE

T C , CASE TEMPERATURE

Figure 3. Power dissipation as a function of

case temperature (T j ≤ 175°C)

Figure 4. Collector current as a function of

case temperature

(V GE ≥ 15V, T j ≤ 175°C)

I C , C O L L E C T O R C U R R E N T

0V

1V

2V 3V 0A

5A 10A 15A 20A 25A

30A 35A

40A I C , C O L L E C T O R C U R R E N T

0V 1V

2V 3V

0A

5A

10A 15A 20A 25A

30A 35A

40A

V CE , COLLECTOR -EMITTER VOLTAGE

V CE , COLLECTOR -EMITTER VOLTAGE

Figure 5. Typical output characteristic

(T j = 25°C)

Figure 6. Typical output characteristic

(T j = 175°C)

I C , C O L L E C T O R C U R R E N T

0A

5A 10A

15A 20A 25A 30A 35A

V C E (s a t ), C O L L E C T O R -E M I T T S A T U R A T I O N V O L T A G E

0°C

50°C

100°C

150°C

0.0V

0.5V

1.0V

1.5V

2.0V

2.5V

V GE , GATE-EMITTER VOLTAGE

T J , JUNCTION TEMPERATURE

Figure 7. Typical transfer characteristic

(V CE =20V)

Figure 8. Typical collector-emitter

saturation voltage as a function of junction temperature (V GE = 15V)

t , S W I T C H I N G T I M

E S

0A

5A

10A

15A

20A

25A

t , S W I T C H I N G T

I M E S

10?

20?

30?

40?

50?

I C , COLLECTOR CURRENT

R G , GATE RESISTOR

Figure 9. Typical switching times as a

function of collector current (inductive load, T J =175°C,

V CE = 400V, V GE = 0/15V, R G = 15?, Dynamic test circuit in Figure E) Figure 10. Typical switching times as a

function of gate resistor (inductive load, T J = 175°C,

V CE = 400V, V GE = 0/15V, I C = 15A, Dynamic test circuit in Figure E)

t , S W I T C H I N G T I

M E S

25°C 50°C

75°C

100°C 125°C 150°C

V G E (t h ), G A T E -E M I T T T R S H O L D V O L

T A G E

-50°C

0°C 50°C 100°C 150°C

T J , JUNCTION TEMPERATURE

T J , JUNCTION TEMPERATURE

Figure 11. Typical switching times as a

function of junction temperature (inductive load, V CE = 400V, V GE = 0/15V, I C = 15A, R G =15?, Dynamic test circuit in Figure E)

Figure 12. Gate-emitter threshold voltage as

a function of junction temperature (I C = 0.21mA)

E , S W I T C H I N G E N E R G Y L O S S E S

0A

5A 10A 15A 20A 25A

0.0m

0.4m 0.8m 1.2m 1.6m E , S W I T C H I N G E N E R G Y L O S S E S

0?10?20?30?40?50?60?70?80?

I C , COLLECTOR CURRENT

R G , GATE RESISTOR

Figure 13. Typical switching energy losses

as a function of collector current (inductive load, T J = 175°C,

V CE = 400V, V GE = 0/15V, R G = 15?, Dynamic test circuit in Figure E) Figure 14. Typical switching energy losses

as a function of gate resistor (inductive load, T J = 175°C,

V CE = 400V, V GE = 0/15V, I C = 15A, Dynamic test circuit in Figure E)

E , S W I T C H I N G E N E R G Y L O S S E S

E , S W I T C H I N G E N E R G Y L O S S E S

0.0m 0.2m 0.4m 0.6m 0.8m 1.0m 1.2m

T J , JUNCTION TEMPERATURE

V CE , COLLECTOR -EMITTER VOLTAGE

Figure 15. Typical switching energy losses

as a function of junction temperature

(inductive load, V CE = 400V,

V GE = 0/15V, I C = 15A, R G = 15?, Dynamic test circuit in Figure E)

Figure 16. Typical switching energy losses

as a function of collector emitter voltage

(inductive load, T J = 175°C,

V GE = 0/15V, I C = 15A, R G = 15?, Dynamic test circuit in Figure E)

V G E , G A T E -E M I T

T E R V O L T A G E

0V

5V

10V

15V

c , C A P A C I T A N C

E

Q GE , GATE CHARGE

V CE , COLLECTOR -EMITTER VOLTAGE

Figure 17. Typical gate charge

(I C =15 A)

Figure 18. Typical capacitance as a function

of collector-emitter voltage (V GE =0V, f = 1 MHz)

I C (s c ), s h o r t c i r c u i t C O L L E C T O R C U R R E N T

12V

14V 16V 18V

0A 50A

100A

150A

200A

t S C , S H O R T C I R C U I T W I T

H S T A N D T I M E

10V

11V 12V 13V 14V

0μs

2μs

4μs

6μs

8μs

10μs

12μs

V GE , GATE -EMITTETR VOLTAGE

V GE , GATE -EMITETR VOLTAGE

Figure 19. Typical short circuit collector

current as a function of gate-emitter voltage

(V CE ≤ 400V, T j ≤ 150°C)

Figure 20. Short circuit withstand time as a

function of gate-emitter voltage (V CE =600V , start at T J =25°C, T Jmax <150°C)

Z t h J C , T R A N S I E N T T H E R M A L R E S I S T A N C E

1μs

10μs 100μs 1ms 10ms 100ms 10-2

K/W

10-1

K/W

100

K/W

Z t h J C , T R A N S I E N T T H E R M A L R E S I S T A N C E

1μs

10μs 100μs 1ms 10ms 100ms

10-2

10-1

100

t P , PULSE WIDTH

t P , PULSE WIDTH

Figure 21. IGBT transient thermal resistance

(D = t p / T )

Figure 22. Diode transient thermal

impedance as a function of pulse width (D =t P /T )

t r r , R E V E R S E R E C O V E R Y T I M E

0ns

40ns

80ns

120ns

160ns

200ns

Q r r , R E V E R S E R E C O V E R Y C H A R G E

400A/μs

600A/μs 800A/μs

0.0μC

0.2μC

0.4μC

0.6μC

0.8μC

1.0μC

di F /dt , DIODE CURRENT SLOPE

di F /dt , DIODE CURRENT SLOPE

Figure 23. Typical reverse recovery time as

a function of diode current slope (V R =400V, I F =15A,

Dynamic test circuit in Figure E)

Figure 24. Typical reverse recovery charge

as a function of diode current slope

(V R = 400V, I F = 15A,

Dynamic test circuit in Figure E)

I r r , R E V E R S E R E C O V E R Y C U R R E N T

400A/μs 600A/μs 800A/μs

0A

2A 4A 6A 8A 10A 12A 14A 16A

r r D I O D E P E A K R A T E O F F A L L O F R E V E R S E R E C O V E R Y C U R R E N

T

di F /dt , DIODE CURRENT SLOPE

di F /dt , DIODE CURRENT SLOPE

Figure 25. Typical reverse recovery current

as a function of diode current slope

(V R = 400V, I F = 15A,

Dynamic test circuit in Figure E) Figure 26. Typical diode peak rate of fall of

reverse recovery current as a function of diode current slope (V R =400V, I F =15A,

Dynamic test circuit in Figure E)

I F , F O R W A R D C U R R

E N T

0V 1V 2V

0A

10A

20A

30A

40A

V F , F O R W A R D V O L T A G

E

0°C

50°C 100°C 150°C

0.0V

0.5V

1.0V

1.5V

2.0V

V F , FORWARD VOLTAGE

T J , JUNCTION TEMPERATURE

Figure 27. Typical diode forward current as

a function of forward voltage

Figure 28. Typical diode forward voltage as a

function of junction temperature

PG-TO263-3-2

Leakage inductance Lσ =60nH and Stray capacity Cσ =40pF.

Edition 2006-01

Published by

Infineon Technologies AG

81726 München, Germany

? Infineon Technologies AG 11/6/07.

All Rights Reserved.

Attention please!

The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (https://www.360docs.net/doc/017868514.html,).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support

and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

相关主题
相关文档
最新文档