具反馈控制和Beddington-DeAngelis功能反应的离散竞争系统的概周期解

具反馈控制和Beddington-DeAngelis功能反应的离散竞争系统的概周期解
具反馈控制和Beddington-DeAngelis功能反应的离散竞争系统的概周期解

继电器控制电路模块及原理讲解

继电器控制电路模块及原理讲解 发布: 2011-9-8 | 作者: —— | 来源:huangguohai| 查看: 564次| 用户关注: 能直接带动继电器工作的CMOS集成块电路在电子爱好者认识电路知识的的习惯中,总认为CMOS 集成块本身不能直接带动继电器工作,但实际上,部分CMOS集成块不仅能直接带动继电器工作,而且工作还非常稳定可靠。本实验中所用继电器的型号为JRC5M-DC12V微型密封的继电器(其线圈电阻为750Ω)。现将CD4066CMOS集成块带动继电器的工作原理分析如下:CD4066是一个四双向模拟开关,集成块SCR1~SCR4为控制端,用于控制四双向模拟开关的 能直接带动继电器工作的CMOS集成块电路 在电子爱好者认识电路知识的的习惯中,总认为CMOS集成块本身不能直接带动继电器工作,但实际上,部分CMOS集成块不仅能直接带动继电器工作,而且工作还非常稳定可靠。本实验中所用继电器的型号为JRC5M-D C12V微型密封的继电器(其线圈电阻为750Ω)。现将CD4066CMOS集成块带动继电器的工作原理分析如下: CD4066是一个四双向模拟开关,集成块SCR1~SCR4为控制端,用于控制四双向模拟开关的通断。当SCR1接高电平时,集成块①、②脚导通,+12V→K1→集成块①、②脚→电源负极使K1吸合;反之当SCR1输入低电平时,集成块①、②脚开路,K1失电释放,SC R2~SCR4输入高电平或低电平时状态与SCR1相同。 本电路中,继电器线圈的两端均反相并联了一只二极管,它是用来保护集成电路本身的,千万不可省去,否则在继电器由吸合状态转为释放时,由于电感的作用线圈上将产生较高的反电动势,极容易导致集成块击穿。并联了二极管后,在继电器由吸合变为释放的瞬间,线圈将通过二极管形成短时间的续流回路,使线圈中的电流不致突变,从而避免了线圈中反电动势的产生,确保了集成块的安全。 低电压下继电器的吸合措施

倒立摆系统状态反馈控制器的设计全套设计论文

开题报告 电气工程及自动化 倒立摆系统状态反馈控制器的设计 一、综述本课题国内外研究动态,说明选题的依据和意义 倒立摆作为一个研究控制理论的实验装置,其系统具有高阶次、不稳定、多变量、非线性和强耦合等特性,现代控制理论的研究人员将它视为典型的研究对象,这是因为倒立摆的控制过程能有效地反映控制中的许多关键问题,问题、随动问题以及跟踪问题。并且可以不断从中发掘出新的控制策略和控制方法。二十世纪九十年代以来,更加复杂多种形式的倒立摆系统成为控制理论研究领域的热点。随着摆杆上端继续再铰链另外的摆杆,控制难度将不断增大。因此,多级倒立摆的高度非线性和不确定性,使其控制稳定成为控制界公认的难题。 许多新的控制理论,都通过倒立摆实验加以验证,如模糊控制、神经网络控制、拟人控制都受到倒立摆的检验。通过对倒立摆的控制,我们能用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。因此倒立摆具有重要的理论价值。该课题的研究一直受到国内外者的广泛关注,成为控制热门研究课题之一。 在国外,对倒立摆系统稳定控制的研究始于60年代,我国则从70年代中期开始研究。对倒立摆系统的研究,主要是对两个问题进行考虑。一个是如何使倒立摆起摆;另一个是如何使倒立摆稳定摆动。目前,对这两个问题的研究非常热门。很多学者已对这两个问题提出了不同的控制方法。 倒立摆起摆就是倒立摆系统从一个平衡状态转移到另一个平衡状态。在这个过程中既要起摆快速,又不能有过大的超调。倒立摆起始摆动有许多控制方法,其中最主要的是能量控制、最优控制、智能控制。目前有已有几种方法成功实现倒立摆的起摆控制,这些方法都是基于非线性理论的控制方法。 倒立摆稳定控制的研究也一样热门,且也有一定的成果。国内外专家学者根据经典控制理论与现代控制理论应用极点配置法,设计模拟控制器,先后解决了单级倒立摆与二级倒立摆的稳定控制问题。随着计算机的广泛应用,又陆续实现了数控二级倒立摆的稳定控制。目前对四级倒立摆的控制的研究也已经开始研究并取得了一定的成就。 用不同的控制方法控制不同类型的倒立摆,已经成为了最具有挑战性的课题

控制理论作业二答案

第三章 3-1 已知二阶系统闭环传递函数为 36 936 2 ++= s s G B 。 试求单位阶跃响应的t r , t m ,δ% , t s 的数值? 解:[题意分析]这是一道典型二阶系统求性能指标的例题。解法是把给定的闭环传递函数与二阶系统闭环传递函数标准形式进行对比,求出n ω参数,而后把n ω代入性能指标公式中求出r t ,m t ,%δ,s t 和N 的数值。 )/(6 36秒弧度==n ω (弧度) 秒(弧度72.041.411) /97.3166 .0175.0292 1 2 2 =?=-==-?==-== -ζ ζ θζωωζ ωζtg n d n 上升时间 t r 秒61.097.372 .014.3=-=-=d r t ωθπ 峰值时间t m 秒79.097 .314.3=== d m t ωπ 过度过程时间t s %)2(89.06 75.04 4 秒=?= = n s t ωζ %)5(70.06 75.03 3 秒=?= =n s t ωζ 超调量δ% %8.2%100%100%66 .075 .012 =?=?=- -- πζ πζδe e 3-2 设单位反馈系统的开环传递函数为 ) 1(1 )(+= s s s G K 试求系统的性能指标,峰值时间,超调量和调节时间。

解:[题意分析]这是一道给定了开环传递函数,求二阶系统性能指标的练习题。在这里要抓住二阶系统闭环传递函数的标准形式与参数(ζ,n ω)的对应关系,然后确定用哪一组公式去求性能指标。 根据题目给出条件可知闭环传递函数为 1 1 )()()(2 ++== s s s X s Y s G B 与二阶系统传递函数标准形式2 222n n n s s ωζωω++相比较可得12,12 ==n n ζωω,即n ω=1,ζ=0.5。由此可知,系统为欠阻尼状态。 故,单位阶跃响应的性能指标为 秒秒秒 61 5.03 3 %)5(815.04 4 %)2(%4.16%100%63.312 12 =?= = =?===?==-?= --n s n s n m t t e t ζωζωδζ ωπζπζ 3-3 如图1所示系统,假设该系统在单位阶跃响应中的超调量%δ=25%,峰值时间 m t =0.5秒,试确定K 和τ的值。 图1 解:[题意分析]这是一道由性能指标反求参数的题目,关键是找出:K,τ与ζ,n ω的关系;%δ,m t 与ζ,n ω的关系;通过ζ,n ω把%δ,m t 与K,τ联系起来。 由系统结构图可得闭环传递函数为 K s K s K s K s s K s X s Y s G B +++=+++== )1()1()1()()()(2ττ 与二阶系统传递函数标准形式相比较,可得 2 2 1 212; n n n n K K ωζωττζωω-= +==或

电气控制电路基础原理图

电气控制电路基础(电气原理图) 电气控制系统图一般有三种:电气原理图、电器布置图和电气安装接线图。 这里重点介绍电气原理图。 电气原理图目的是便于阅读和分析控制线路,应根据结构简单、层次分明清晰的原则,采用电器元件展开形式绘制。它包括所有电器元件的导电部件和接线端子,但并不按照电器元件的实际布置位置来绘制, 也不反映电器元件的实际大小。 电气原理图一般分主电路和辅助电路(控制电路)两部分。 主电路是电气控制线路中大电流通过的部分,包括从电源到电机之间相连的电器元件;一般由组合开关、主熔断器、接触器主触点、热继电器的热元件和电动机等组成。 辅助电路是控制线路中除主电路以外的电路,其流过的电流比较小和辅助电路包括控制电路、照明电路、信号电路和保护电路。其中控制电路是由按钮、接触器和继电器的线圈及辅助触点、热继电器触点、保护电器触点等组成。 电气原理图中所有电器元件都应采用国家标准中统一规定的图形符号和文字符号表示。 电气原理图中电器元件的布局 电气原理图中电器元件的布局,应根据便于阅读原则安排。主电路安排

在图面左侧或上方,辅助电路安排在图面右侧或下方。无论主电路还是辅助电路,均按功能布置,尽可能按动作顺序从上到下,从左到右排列。 电气原理图中,当同一电器元件的不同部件(如线圈、触点)分散在不同位置时,为了表示是同一元件,要在电器元件的不同部件处标注统一的文字符号。对于同类器件,要在其文字符号后加数字序号来区别。如两个接触器,可用KM、KMZ文字符号区别。 电气原理图中,所有电器的可动部分均按没有通电或没有外力作用时的状态画出。 对于继电器、接触器的触点,按其线圈不通电时的状态画出,控制器按手柄处于零位时的状态画出;对于按钮、行程开关等触点按未受外力作用时的状态画出。 电气原理图中,应尽量减少线条和避免线条交叉。各导线之间有电联系时,在导线交点处画实心圆点。根据图面布置需要,可以将图形符号旋转绘制,一般逆时针方向旋转900,但文字符号不可倒置。 图面区域的划分 图纸上方的1、2、3…等数字是图区的编号,它是为了便于检索 电气线路,方便阅读分析从而避免遗漏设置的。图区编号也可设置在图 的下方。 图区编号下方的的文字表明它对应的下方元件或电路的功能,使读者能清楚地知道某个元件或某部分电路的功能,以利于理解全部电路的工作原理。

现代控制理论实验五、状态反馈控制器设计河南工业大学

河南工业大学《现代控制理论》实验报告 专业: 自动化 班级: F1203 姓名: 蔡申申 学号:201223910625完成日期:2015年1月9日 成绩评定: 一、实验题目: 状态反馈控制器设计 二、实验目的 1. 掌握状态反馈和输出反馈的概念及性质。 2. 掌握利用状态反馈进行极点配置的方法。学会用MATLAB 求解状态反馈矩阵。 3. 掌握状态观测器的设计方法。学会用MATLAB 设计状态观测器。 三、实验过程及结果 1. 已知系统 u x x ??????????+??????????--=111100020003. []x y 3333 .02667.04.0= (1)求解系统的零点、极点和传递函数,并判断系统的能控性和能观测性。 A=[-3 0 0;0 2 0;0 0 -1];B=[1;1;1];C=[0.4 0.266 0.3333]; [z p k]=ss2zp(A,B,C,0) 系统的零极点: z = 1.0017 -1.9997 p = -3 -1 2 k = 0.9993

[num den]=ss2tf(A,B,C,0) num = 0 0.9993 0.9973 -2.0018 den = 1 2 -5 -6 系统的传递函数: G1=tf(num,den) G1 = 0.9993 s^2 + 0.9973 s - 2.002 ----------------------------- s^3 + 2 s^2 - 5 s - 6 Continuous-time transfer function. Uc=ctrb(A,B); rank(Uc) ans = 3 满秩,系统是能控的。 Vo=obsv(A,C); rank(Vo) ans = 3 满秩,系统是能观的。 (2)分别选取K=[0 3 0],K=[1 3 2],K=[0 16 /3 –1/3](实验中只选取其中一个K为例)为状态反馈矩阵,求解闭环系统的零点、极点和传递函数,判断闭环系统的能控性和能观测性。它们是否发生改变?为什么? A=[-3 0 0;0 2 0;0 0 -1];B=[1;1;1];C=[0.4 0.266 0.3333];K=[0 3 0]; [z p k]=ss2zp(A-B*K,B,C,0) z = 1.0017 -1.9997 p = -3 -1 -1 k = 0.9993 [num den]=ss2tf(A-B*K,B,C,0);G2=tf(num,den) G2 =

控制理论作业二答案.docx

第三章 3-1已知二阶系统闭环传递函数为G B36。 s29s 36 t r , t m ,δ% , t s 的数值? 试求单位阶跃响应的 解:[ 题意分析 ] 这是一道典型二阶系统求性能指标的例题。解法是把给定的闭环传递函数与二阶系统闭环传递函数标准形式进行对比,求出n 参数,而后把n 代入性能指标公式中求出 t r, t m,% ,t s和 N 的数值。 n366(弧度 /秒) 9 0.75 2 n 120.66 d n tg 1 1 1 2 3.97(弧度/秒) 2 41.410.72 (弧度) 上升时间t r t r d 峰值时间t m 3.140.72 秒 0.61 3.97 t m 3.14 0.79秒 3.97 d 过度过程时间 t s 44 0.89秒(2%) t s 0.756 n 33 0.70秒(5 %) t s 0.756 n 超调量δ% % e 12 0.75 e 0.66100% 2.8% 100% 3-2设单位反馈系统的开环传递函数为 G K (s) 1 s(s1) 试求系统的性能指标,峰值时间,超调量和调节时间。

解: [ 题意分析 ] 这是一道给定了开环传递函数 , 求二阶系统性能指标的练习题。在这里 要抓住二阶系统闭环传递函数的标准形式与参数 ( , n ) 的对应关系,然后确定用哪一组 公式去求性能指标。 根据题目给出条件可知闭环传递函数为 G B (s) Y (s) 1 X (s) s 2 s 1 2 2 与二阶系统传递函数标准形式 n 2 相比较可得 1, 2 n 1 , 即 2 2 n s n s n n =1, =。由此可知,系统为欠阻尼状态。 故,单位阶跃响应的性能指标为 t m 秒 3.63 n 1 2 1 2 % e 100% 16.4% t s ( 2%) 4 4 秒 0.5 1 8 n 3 3 秒 t s (5%) 0.5 6 n 1 3-3 如图 1 所示系统,假设该系统在单位阶跃响应中的超调量 % =25%,峰值时间 t m = 秒,试确定 K 和τ的值。 X(s) Y(s) k s( s 1) s 1 图 1 解: [ 题意分析 ] 这是一道由性能指标反求参数的题目,关键是找出: K, τ与 , n 的 关系; % , t m 与 , n 的关系;通过 , n 把 % , t m 与 K, τ联系起 来。 由系统结构图可得闭环传递函数为 Y (s) K K G B ( s) s(s 1) K ( s 1) s 2 (1 K )s K X (s) 与二阶系统传递函数标准形式相比较,可得 2 K ; 2 n 1 K 或 2 n 1 n 2 n

自动控制原理试题与答案解析

课程名称: 自动控制理论 (A/B 卷 闭卷) 一、填空题(每空 1 分,共15分) 1、反馈控制又称偏差控制,其控制作用是通过 给定值 与反馈量的差值进行的。 2、复合控制有两种基本形式:即按 输入 的前馈复合控制和按 扰动 的前馈复合控制。 3、两个传递函数分别为G 1(s)与G 2(s)的环节,以并联方式连接,其等效传递函数为()G s ,则G(s)为 G 1(s)+G 2(s)(用G 1(s)与G 2(s) 表示)。 4、典型二阶系统极点分布如图1所示, 则无阻尼自然频率=n ω , 阻尼比=ξ , 该系统的特征方程为 , 该系统的单位阶跃响应曲线为 。 5、若某系统的单位脉冲响应为0.20.5()105t t g t e e --=+, 则该系统的传递函数G(s)为 。 6、根轨迹起始于 极点 ,终止于 零点或无穷远 。 7、设某最小相位系统的相频特性为101()()90()tg tg T ?ωτωω--=--,则该系统的开环传递函数为 。 8、PI 控制器的输入-输出关系的时域表达式是 , 其相应的传递函数为 ,由于积分环节的引入,可以改善系统的 性能。 二、选择题(每题 2 分,共20分) 1、采用负反馈形式连接后,则 ( ) A 、一定能使闭环系统稳定; B 、系统动态性能一定会提高; C 、一定能使干扰引起的误差逐渐减小,最后完全消除; D 、需要调整系统的结构参数,才能改善系统性能。 2、下列哪种措施对提高系统的稳定性没有效果 ( )。 A 、增加开环极点; B 、在积分环节外加单位负反馈; C 、增加开环零点; D 、引入串联超前校正装置。 3、系统特征方程为 0632)(23=+++=s s s s D ,则系统 ( ) A 、稳定; B 、单位阶跃响应曲线为单调指数上升; C 、临界稳定; D 、右半平面闭环极点数2=Z 。

铣床电路控制原理图

铣床控制电路:

一、铣床的结构原理: 1、铣床的工作台及夹具

2、铣床的外形 3、铣床结构: ①、主轴;②、悬梁;③、刀杆支架;④、工件工作台;⑤、(工件工作台)左右进给操作手柄; ⑥、(工件工作台)前后进给操作手柄;⑦、(工件工作台)上下操作手柄;⑧、进给变速手柄及变速盘; ⑨、升降工作台;⑩、主轴变速盘及变速手柄;⑾、主轴电动机及进给电动机等等。

4、铣床的运动形式: ①、主轴运动:主轴带动铣刀作旋转运动,由M1拖动(为减小负载波动对加工质量影响,主轴上装有飞轮); ②、进给运动:指工作台带动工件作上下、左右、前后6个方向的直线运动(由三根进给丝杆实现),及圆形工作台的旋转运动,由M2拖动; ③、辅助运动:指工作台带动工件作上下、左右、前后6个方向的快速运动,由M2与电磁离合器YC3(YC3又叫快速电磁离合器)联合拖动。 5、铣床对各运动形式的要求: ①、主轴旋转平稳,以保证加工质量(采用飞轮); ②、铣削加工时,工件同一时刻只能作某一个方向的进给运动; ③、用圆形工作台加工时,不能移动,只能旋转; ④、主轴变速、进给变速用机械变速实现,为保证变速易于齿合,应有变速冲动控制; ⑤、据工艺要求,先主轴旋转后再进给运动; ⑥、为操作方便,应有两地控制。(机械离合器) 6、机床进给运动示意图:圆形工作台旋转传动链 横向移动传动链 (电磁离合器) YC2(正常进给) 垂直移动传动链 M2——— YC3(快速进给)纵向移动传动链 7、铣床的加工功能: ①、加工平面; ②、加工斜面; ③、加工沟槽; ④、(装上分度盘)可以铣切齿轮和螺旋面; ⑤、(装上园工作台)可以铣切凸轮和弧形槽。 二、铣床电路控制原理: 1、电路图(见上)

中频炉控制电路原理

控制电路原理 整个控制电路除逆变末级触发电路板外,做成一块印刷电路板结构,从功能上分为 整流触发部分、调节器部分、逆变部分、启动演算部分。详细电路见《控制电路原理图》。 1. 1 整流触发工作原理 这部分电路包括三相同步、数字触发、末级驱动等电路。触发部分采用的是数字 触发,具有可靠性高、精度高、调试容易等特点。数字触发器的特征是用计(时钟脉冲)数的办法来实现移相,该数字触发器的时钟脉冲振荡器是一种电压控制振荡器,输出脉 冲频率受移相控制电压Uk 的控制,Uk 降低,则振荡频率升高,而计数器的计数值是固 定的(256),计数器脉冲频率高,意味着计一定脉冲数所需时间短,也即延时时间短, α角小,反之α角大。计数器开始计数时刻同样受同步信号控制,在α=0 时开始计数。 现假设在某Uk 值时,根据压控振荡器的控制电压与频率间的关系确定输出振荡频率为 25KHZ,则在计数到256 个脉冲所需的时间为(1/25000)×256=10.2(ms)相当于约180 °电角度,该触发器的计数清零脉冲在同步电压〔线电压〕的30°处,这相当于三相 全控桥式整流电路β=30°位置, 从清零脉冲起,延时10.2ms 产生的输出触发脉冲, 也 即接近于三相桥式整流电路某一相晶闸管α=150°位置,如果需要得到准确的α=150° 触发脉冲, 可以略微调节一下电位器W4。显然有三套相同的触发电路,而压控振荡器和Uk 控制电压为公用,这样在一个周期中产生6 个相位差60°的触发脉冲。 数字触发器的优点是工作稳定,特别是用HTL 和CMOS 数字集成电路,可以有很强 的抗干扰能力。 IC16A 及其周围电路构成电压----频率转换器,其输出信号的周期随调节器的输出 电压Uk 而线性变化。W4 微调电位器是最低输出频率调节(相当于模拟电路锯齿波幅值调节)。 三相同步信号直接由晶闸管的门极引线K4、K6、K2 从主回路的三相进线上取得, 由R23、C1、R63、C40、R102、C63 进行滤波、移相,经6 只光电耦合器进行电位隔离,获得6 个相位互差60°、占空比略小于50%的矩形同步信号。 IC3、IC8、IC12(4536 计数器)构成三路数字延时器。三相同步信号对计数器进行 复位后,对电压---频率转换器的输出脉冲每计数256 个脉冲便输出一个延时脉冲,因计 数脉冲的频率是受Uk 控制的, 换句话说Uk 控制了延时脉冲。 计数器输出的脉冲经隔离、微分后变成窄脉冲,送到后级的NE556,它既有同步分 频器功能,亦有定输出脉冲宽度的功能。输出的窄脉冲经电阻合成为双窄脉冲,再经晶 体管放大,驱动脉冲变压器输出。具体时序图见附图。 1.2 调节器工作原理 调节器部分共有四个调节器:中频电压调节器、电流调节器、阻抗调节器、逆变角 调节器。 其中电压调节器、电流调节器组成常规的电压、电流双闭环系统。在启动和运行 的整个阶段,电流调节器始终参与工作,而电压环仅工作于运行阶段。另一阻抗调节器 从输入上看,它与电流调节器LT2 的输入完全是并联关系,区别仅在于阻抗调节器的负 反馈系数较电流调节器略大,再者就是电流调节器的输出控制的是整流桥的输出直流电压,而阻抗调节器的输出控制的是中频电压与直流电压的比例关系,即逆变功率因数角。调节器电路的工作过程可以分为两种情况:一种是在直流电压没有达到最大值的 时候,由于阻抗调节器的反馈系数略大,阻抗调节器的给定小于反馈,阻抗调节器便工 作于限幅状态,对应的为最小逆变θ角,此时可以认为阻抗调节器不起作用,系统完全 西是一个标准的电压、电流双闭环系统。另一种情况是直流电压巳经达到最大值,电流调节器开始限幅不再起作用,电压调节器的输出增加,而反馈电流却不变化,对阻抗调节

(精选)现代控制理论作业题答案

第九章 线性系统的状态空间分析与综合 9-1 设系统的微分方程为 u x x x =++23&&& 其中u 为输入量,x 为输出量。 ⑴ 设状态变量x x =1,x x &=2,试列写动态方程; ⑵ 设状态变换211x x x +=,2122x x x --=,试确定变换矩阵T 及变换后的动态方程。 解:⑴ u x x x x ??????+????????????--=???? ??1032102121&&,[]??????=2101x x y ; ⑵ ??????=??????2121x x T x x ,??????--=2111T ;?? ????--=-11121 T ;AT T A 1-=,B T B 1-=,CT C =; 得,??????--=2111T ;u x x x x ??????-+??????????? ?-=??????1110012121&&,[]??????=2111x x y 。 9-2 设系统的微分方程为 u y y y y 66116=+++&&&&&& 其中u 、y 分别系统为输入、输出量。试列写可控标准型(即A 为友矩阵)及可观标准型(即A 为友矩 阵转置)状态空间表达式,并画出状态变量图。 解:可控标准型和可观标准型状态空间表达式依次为, []x y u x x 00610061161 00010=??????????+??????????---=&;[]x y u x x 100 006610 1101600=???? ? ?????+??????? ???---=&; 可控标准型和可观标准型的状态变量图依次为, 9-3 已知系统结构图如图所示,其状态变量为1x 、2x 、3x 。试求动态方程,并画出状态变量图。 解:由图中信号关系得,31x x =&,u x x x 232212+--=&,32332x x x -=&,1x y =。动态方程为 u x x ?? ?? ? ?????+??????????---=020*********&,[]x y 001;

常用电动机控制电路原理图.

三相异步电机启动常见方法 1、定时自动循环控制电路 说明:(技师一) 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控 制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮SB2

串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。

北理工《自动控制理论2》在线作业1答案

北理工《自动控制理论2》在线作业 -0001 试卷总分:100 得分:0 一、单选题(共10 道试题,共30 分) 1.基于能量的稳定性理论是由()构建的。 A.Lyapunov B.Kalman C.Routh D.Nyquist 正确答案:A 2.引入状态反馈的目的是()。 A.配置系统的极点 B.改变系统的能控性 C.改变系统的能观性 D.使得系统能观 正确答案:A 3.齐次状态方程就是指状态方程中不考虑()的作用。 A.输入 B.输出 C.状态 D.系统 正确答案:A 4.对于单变量系统,特征方程的根就是传递函数的()。 A.零点 B.极点 C.拐点 D.死点 正确答案:B 5.齐次状态方程的解就是系统在无外力作用下由初始条件引起的()。 A.自由运动 B.强迫运动 C.离心运动 D.旋转运动 正确答案:A 6.线性系统的系数矩阵A如果是非奇异的,则系统存在()平衡点。

A.一个 B.两个 C.三个 D.无穷多个 正确答案:A 7.原系统的维数是n,则全维状态观测器的维数是()。 A.2n B.n C.3n D.n-1 正确答案:A 8.能够完整的描述系统运动状态的最小个数的一组变量称为()。 A.状态变量 B.状态空间 C.状态方程 D.输出方程 正确答案:A 9.由初始状态所引起的自由运动称为状态的()。 A.零输入响应 B.零状态响应 C.输入响应 D.输出响应 正确答案:A 10.以状态变量为坐标轴所构成的空间,称为()。 A.状态变量 B.状态空间 C.状态方程 D.输出方程 正确答案:B 二、多选题(共10 道试题,共30 分) 1.由动态方程导出可约传递函数时,表明系统是()。 A.可控不可观测 B.可观测不可控 C.不可控不可观测

只要一分钟,教你看懂电气控制电路图!

只要一分钟,教你看懂电气控制电路图! 看电气控制电路图一般方法是先看主电路,再看辅助电路,并用辅助电路的回路去研究主电路的控制程序。电气控制原理图一般是分为主电路和辅助电路两部分。其中的主电路是电气控制线路中大电流流过的部分,包括从电源到电机之间相连的 、“顺 除了合理地选择拖动、控制方案外,在控制线路中还设置了一系列电气保护和必要的电气联锁。在电气控制原理图的分析过程中,电气联锁与电气保护环节是一个重要内容,不能遗漏。 总体检查:经过“化整为零”,逐步分析了每一局部电路的工作原理以及各部分之间的控制关系之后,还必须用“集零为整”的方法检查整个控制线路,看是否有遗漏。

特别要从整体角度去进一步检查和理解各控制环节之间的联系,以达到正确理解原理图中每一个电气元器件的作用。 1、看主电路的步骤 第一步:看清主电路中用电设备。用电设备指消耗电能的用电器具或电气设备,看图首先要看清楚有几个用电器,它们的类别、用途、接线方式及一些不同要求等。 2 则可先排除照明、显示等与控制关系不密切的电路,以便集中精力进行分析。 第一步:看电源。首先看清电源的种类。是交流还是直流。其次。要看清辅助电路的电源是从什么地方接来的,及其电压等级。电源一般是从主电路的两条相线上接来,其电压为380V.也有从主电路的一条相线和一零线上接来,电压为单相220V;此外,也可以从专用隔离电源变压器接来,电压有140、127、36、6.3V等。辅助电

路为直流时,直流电源可从整流器、发电机组或放大器上接来,其电压一般为24、12、6、4.5、3V等。辅助电路中的一切电器元件的线圈额定电压必须与辅助电路电源电压一致。否则,电压低时电路元件不动作;电压高时,则会把电器元件线圈烧坏。 第二步:了解控制电路中所采用的各种继电器、接触器的用途。如采用了一些特殊 而是相互联系、相互制约的。这种互相控制的关系有时表现在一条回路中,有时表现在几条回路中。 第五步:研究其他电气设备和电器元件。如整流设备、照明灯等。 综上所述,电气控制电路图的查线看图法的要点为: (1)分析主电路。从主电路人手,根据每台电动机和执行电器的控制要求去分析各

空调控制电路原理图

美的KFR-26/33GW/CBPY型变频空调电路原理分析 单元电路原理简析 美的变频空调主要包括“数智星”、“数智星S”、“数智星R”挂机系列:“数智星R”、“数智星M”、“数智星F”柜机系列等。美的KFR-26/33GW/CBPY型变频空调。属“数智星”变频系列。其主要机型包括:KFR-26/33GW/CBPY、KFR-26/33GW/I1BPY等。它们的电路原理基本相似。结合图1~图6电路原理图,对整机单元电路作简要分析。 1.室内机主电源电路 电路见上图,由电源捅头L、N两端输入AC220V交流电压,经保险管FS1、压敏电阻ZNR1、电容 C1和C2、T2过流保护和高频滤波后。一路经接线柱L、N两端送到室外机主电源电路的输入端。其中N 端与通讯电路的S端组成室内、室外机的通讯传输线路;另一路经A、B两端送到电源变压器T1的初级线圈;第三路送到室内风机控制电路。 2.室内机辅助电源电路 电路见中图,由电源变压器T1次级线圈输出的两路低压交流电,一路经捕件CN5(3)、(4)脚送到整流桥堆IC6(1)、(2)脚,经IC6、C8和C35整流、滤波后,输m+13V电压,给换气风机(M2)供电;另一路经插件CN5(1)、(2)脚送到整流桥堆IC7(1)、(2)脚,经整流桥堆IC7、三端稳压块IC4(7812)和IC5(7805)、C9~C11和C32~C34整流、滤波、稳压后。输出稳定的+12V和+5V 电压,分别给继电器控制、室内风机控制、步进电机控制、蜂鸣器、主控芯片、复位、过零检测、驱动、温度传感器、通讯、存储器、按键和显示等电路供电。 3.室内风机控制电路 电路见上图、下图。在主控芯片IC3(UPD780021)内部程序的控制下,由(1)脚输出室内风机控制信号,并由三极管04和双向可控硅光耦IC11(3526)进行控制,可实现室内风机(FAN)的运转、停转及无级调速等功能。当IC3(1)脚输出高电平时,Q4导通,IC11内部发光管导通。其发光强度控制内部双向可控硅的导通程度。从而进一步控制室内风机(FAN)的工作状态和运转速度。同时室内风机(FAN)的转速还受反馈电路控制,当风机转速信号通过R23、C20反馈到IC3(53)脚后,其内部风机转速检测电路则按照风机运转状况来确定风机转速。从而准确控制风机(FAN)的转速。 4.换气风机控制电路 电路见下图,为了让用户室内保持新鲜的空气,该空调设计了换气功能。由IC3(2)脚输出换气风机控制信号,当输出高电平时,经R10送到Q1的b极,Q1导通,驱动换气风机(M2)运转。从而实现与室外空气进行交换。 5.过零检测电路 电路见中图、下图,该电路一是检测供电电压是否正常;二是为双向可控硅提供同步触发信号。南电源变压器T1次级输出低压交流电,经D7和D8整流,输出频率约为100Hz脉动电压,经R43~R45 分压后的正弦交流信号,送到三极管Q3的b极,当b极电压大于0.7V时,Q3导通,C31通过Q3进行放电,主控芯片IC3(UPD780021)(51)脚便得到一个低电平;当b极电压小于0.7V时,Q3截止,+5V 电压通过R7对C31进行充电,于是IC3(51)脚便得到周期为10ms的(高电平)过零触发信号。 6.室内机晶振电路 电路见下图,由主控芯片IC3(48)、(49)脚内部电路与晶体XT1组成晶振电路,产生4.19MHz 主振荡频率信号。

状态反馈控制器设计习题

Chapter5 状态反馈控制器设计 控制方式有“开环控制”、“闭环控制”。“开环控制”就是把一个确定的信号(时间的函数)加到系统输入端,使系统具有某种期望的性能。然而,由于建模中的不确定性或误差、系统运行过程中的扰动等因素使系统产生一些意想不到的情况,这就要求对这些偏差进行及时修正,这就是“反馈控制”。在经典控制理论中,我们依据描述控制对象输入输出行为的传递函数模型来设计控制器,因此只能用系统输出作为反馈信号,而在现代控制理论中,则主要通过更为广泛的状态反馈对系统进行综合。 通过状态反馈来改变和控制系统的极点位置可使闭环系统具有所期望的动态特性。利用状态反馈构成的调节器,可以实现各种目的,使闭环系统满足设计要求。参见138P 例5.3.3,通过状态反馈的极点配置,使闭环系统的超调量%5≤p σ,峰值时间(超调时间)s t p 5.0≤,阻尼振荡频率10≤d ω。 5.1 线性反馈控制系统的结构与性质 设系统),,(C B A S =为 Bu Ax x += Cx y = (5-1) 图5-1 经典控制-输出反馈闭环系统 经典控制中采用输出(和输出导数)反馈(图5-1): v Fy u +-= F 为标量,v 为参考输入 (5-2) Bv x BFC A v Fy B Ax Bu Ax x +-=+-+=+=)()( 可见,在经典控制中,通过适当选择F ,可以利用输出反馈改善系统的动态性能。 现代控制中采用状态反馈(图5-1): v Kx u +-=,n m K ?~ (K 的行=u 的行,K 的列=x 的行)称为状态反馈增益矩阵。 状态反馈后的闭环系统),,(C B A S K K =的状态空间表达式为 Bv x A Bv x BK A x K +=+-=)( Cx y = (5-3) 式中: BK A A K -≡ (5-4)

PWM控制电路的基本构成及工作原理

基于DSP的三相SPWM变频电源的设计 变频电源作为电源系统的重要组成部分,其性能的优劣直接关系到整个系统的安全和可靠性指标。现代变频电源以低功耗、高效率、电路简洁等显著优点而备受青睐。变频电源的整个电路由交流-直流-交流-滤波等部分构成,输出电压和电流波形均为纯正的正弦波,且频率和幅度在一定范围内可调。 本文实现了基于TMS320F28335的变频电源数字控制系统的设计,通过有效利用TMS320F28335丰富的片上硬件资源,实现了SPWM的不规则采样,并采用PID算法使系统产生高品质的正弦波,具有运算速度快、精度高、灵活性好、 系统扩展能力强等优点。 系统总体介绍 根据结构不同,变频电源可分为直接变频电源与间接变频电源两大类。本文所研究的变频电源采用间接变频结构即交-直-交变换过程。首先通过单相全桥整流电路完成交-直变换,然后在DSP控制下把直流电源转换成三相SPWM波形供给后级滤波电路,形成标准的正弦波。变频系统控制器采用TI公司推出的业界首款浮点数字信号控制器T MS320F28 335,它具有150MHz高速处理能力,具备32位浮点处理单元,单指令周期32位累加运算,可满足应用对于更快代码开发与集成高级控制器的浮点处理器性能的要求。与上一代领先的数字信号处理器相比,最新的F2833x浮点控制器不仅可将性能平均提升50%,还具有精度更高、简化软件开发、兼容定点C28x TM控制器软件的特点。系统总体框图如 图1所示。 图1 系统总体框图 (1)整流滤波模块:对电网输入的交流电进行整流滤波,为变换器提供波纹较小的直流电压。 (2)三相桥式逆变器模块:把直流电压变换成交流电。其中功率级采用智能型IPM功率模块,具有电路简单、可 靠性高等特点。 (3)LC滤波模块:滤除干扰和无用信号,使输出信号为标准正弦波。 (4)控制电路模块:检测输出电压、电流信号后,按照一定的控制算法和控制策略产生S PWM控制信号,去控制IPM开关管的通断从而保持输出电压稳定,同时通过SPI接口完成对输入电压信号、电流信号的程控调理。捕获单元完 成对输出信号的测频。 (5)电压、电流检测模块:根据要求,需要实时检测线电压及相电流的变化,所以需要三路电压检测和三路电流检测电路。所有的检测信号都经过电压跟随器隔离后由TMS320F28335的A/D通道输入。

状态反馈控制系统的设计与实现

控制工程学院课程实验报告: 现代控制理论课程实验报告 实验题目:状态反馈控制系统的设计与实现 班级自动化(工控)姓名曾晓波学号2009021178 日期2013-1-6 一、实验目的及内容 实验目的: (1 )掌握极点配置定理及状态反馈控制系统的设计方法; (2 )比较输出反馈与状态反馈的优缺点; (3 )训练程序设计能力。 实验内容: (1 )针对一个二阶系统,分别设计输出反馈和状态反馈控制器;(2 )分别测出两种情况下系统的阶跃响应; (3 )对实验结果进行对比分析。 二、实验设备 装有的机一台 三、实验原理 一个控制系统的性能是否满足要求,要通过解的特征来评价,也就是说当传递函数是有理函数时,它的全部信息几乎都集中表现为它的极点、零点及传递函数。因此若被控系统完全能控,则可以通过状态反馈任意配置极点,使被控系统达到期望的时域性能指标。

闭环系统性能与闭环极点(特征值)密切相关,在状态空间的分析和综合中,除了利用输出反馈以外,主要利用状态反馈来配置极点,它能提供更多的校正信息。 (一) 利用状态反馈任意配置闭环极点的充要条件是:受控系统可控。 设( )受控系统的动态方程为 状态向量x 通过状态反馈矩阵k ,负反馈至系统参考输入v ,于是有 这样便构成了状态反馈系统,其结构图如图1-1所示 图1-1 状态反馈系统结构图 状态反馈系统动态方程为 闭环系统特征多项式为 ()()f I A bk λλ=-+ (1-2) 设闭环系统的期望极点为1λ,2λ,…,n λ,则系统的期望特征多项式 x b v u 1 s C A k - y x &

为 )())(()(21*n f λλλλλλλ---=Λ (1-3) 欲使闭环系统的极点取期望值,只需令式(1-2)和式(1-3)相等,即 )()(* λλf f = (1-4) 利用式(1-4)左右两边对应λ的同次项系数相等,可以求出状态反馈矩阵 []n k k k Λ 2 1 =k (二) 对线性定常连续系统∑(),若取系统的输出变量来构成反馈,则所得到的闭环控制系统称为输出反馈控制系统。输出反馈控制系统的结构图如图所示。 开环系统状态空间模型和输出反馈律分别为 H 为r *m 维的实矩阵,称为输出反馈矩阵。 则可得如下输出反馈闭环控制系统的状态空间模型: 输出反馈闭环系统可简记为H(),其传递函数阵为: (s)()-1B B ? A C H y - x u v + + + x ' 开环系统 A B C H '=+?? =?=-+x x u y x u y v ()A BHC B C '=-+??=? x x v y x

自动控制原理C作业(第二章)答案

第二章 控制系统的数学模型 2.1 RC 无源网络电路图如图2-1所示,试采用复数阻抗法画出系统结构图,并求传递函数 U c (s )/U r (s )。 图2-1 解:在线性电路的计算中,引入了复阻抗的概念,则电压、电流、复阻抗之间的关系,满足广义的欧姆定律。即: )() () (s Z s I s U = 如果二端元件是电阻R 、电容C 或电感L ,则复阻抗Z (s )分别是R 、1/C s 或L s 。 (1) 用复阻抗写电路方程式: s C S I S V R S U S U S I s C S I S I S U R S U S U S I c c c c C r 2222 21212111 111)()(1)]()([)(1)]()([)(1)]()([)(? =-=? -=?-= (2) 将以上四式用方框图表示,并相互连接即得RC 网络结构图,见图2-1(a )。 2-1(a )。 (3) 用梅逊公式直接由图2-1(a) 写出传递函数U c (s )/U r (s ) 。 ? ?= ∑K G G K 独立回路有三个:

S C R S C R L 11111 11-= ?- = S C R S C R L 22222111-= ?- = 回路相互不接触的情况只有L 1和L 2两个回路。则 2 221121121 S C R C R L L L == 由上式可写出特征式为: 2 2211122211213211 1111)(1S C R C R S C R S C R S C R L L L L L ++++ =+++-=? 通向前路只有一条 221212*********S C C R R S C R S C R G =???= 由于G 1与所有回路L 1,L 2, L 3都有公共支路,属于相互有接触,则余子式为 Δ1=1 代入梅逊公式得传递函数 1 )(1 111111 21221122121222111222112 221111++++=++++= ??=s C R C R C R s C C R R s C R C R s C R s C R s C R s C R C R G G 2-2 已知系统结构图如图2-2所示,试用化简法求传递函数C (s )/R (s )。 图2-2 解:(1)首先将含有G 2的前向通路上的分支点前移,移到下面的回环之外。如图2-2(a )所示。 (2)将反馈环和并连部分用代数方法化简,得图2-2(b )。 (3)最后将两个方框串联相乘得图2-2(c )。 S C R R S C L 12213111-= ?- =

相关文档
最新文档