(情绪管理)液体动压润滑径向轴承油膜压力和特性曲线

(情绪管理)液体动压润滑径向轴承油膜压力和特性曲线
(情绪管理)液体动压润滑径向轴承油膜压力和特性曲线

液体动压润滑径向轴承油膜压力和特性曲线

(二) HZS —Ⅰ型试验台

一. 实验目的

1. 观察滑动轴承液体动压油膜形成过程。

2. 掌握油膜压力、摩擦系数的测量方法。

3. 按油压分布曲线求轴承油膜的承载能力。

二. 实验要求

1. 绘制轴承周向油膜压力分布曲线及承载量曲线,求出实际承载量。

2. 绘制摩擦系f 与轴承特性 λ 的关系曲线。

3. 绘制轴向油膜压力分布曲线

三. 液体动压润滑径向滑动轴承的工作原理 当轴颈旋转将润滑油带入轴承摩擦表面,由于油的粘性作用,当达到足够高的旋转速度时,油就被带入轴和轴瓦配合面间的楔形间隙内而形成流体动压效应,即在承载区内的油层中产生压力。当压力与外载荷平衡时,轴与轴瓦之间形成稳定的油膜。这时轴的中心相对轴瓦的中心处于偏心位置,轴与轴瓦之间处于液体摩擦润滑状态。因此这种轴承摩擦小,寿命长,具有一定吸震能力。

液体动压润滑油膜形成过程及油膜压力分布形状如图8-1所示。

滑动轴承的摩擦系数f 是重要的设计参数之一,它的大小与润滑油的粘度η (Pa ?s)、轴的转速n (r/min)和轴承压力p (MP a)有关,令

(7) 式中:λ—轴承特性数

观察滑动轴承形成液体动压润滑的过程,摩擦系数f 随轴承特性数 λ 的变化如图8-2所示。图中相应于f 值最低点的轴承特性数 λc 称为临界特性数,且 λc 以右为液体摩擦润滑区,λc 以左为非液体摩擦润滑区,轴与轴瓦之间为边界润滑并有局部金属接触。因此f 值随 λ 减小而急剧增加。不同的轴颈和轴瓦材料、加工情况、轴承相对间隙等,f —λ曲线不同,λc 也随之不同。

四. HZS —I 型试验台结构和工作原理 1. 传动装置

如图8-7所示,被试验的轴承2和轴1支承于滚动轴承3上,由调速电机6通过V 带5带动变速箱4,从而驱动轴1逆时针旋转并可获得不同的转速。

λη=

n p

2. 加载装置

该试验台采用静压加载装置,如图图8-8所示。图中4为静压加载板,它位于被试轴承上部,并固定于箱座上,当输入压力油至加载板的油腔时,载荷即施加在轴承上,轴承载荷为:

F = 9.18 (p o A+Go) N (8) 式中: p o — 油腔供油压力,p o = 3 kg/cm 2 ;

A — 油腔在水平面上投影面积,

2 Go — 初始载荷(包括压力表、平衡重及轴瓦的自重)Go = 8 kgf 。 3. 摩擦系数测量装置

摩擦系数是通过测量轴承摩擦力矩而得到的。如图8-8 所示:在轴承6上联出一水平测力杆2,当轴5旋转后,作用在轴承6上的摩擦力矩,通过测力杆2上的测力计1,测出杆端的Q 力,由平衡得:

(9)

fF d QL ?=2

1—轴 2—试验轴承 3—滚动轴承 4—变速箱 5—V 带传动 6—调速电机

图8-7 传动装置示意图

则有: (10) 式中:L — 测力杆力臂长度 (mm);

d — 轴颈直径 (mm); Q — 测力杆端的平衡力; Q = 0.0098Qo N ;

Qo — 重锤式拉力计读数 (gf)。 4. 油膜压力测量装置(如图8-9所示)

在轴瓦上半部承载区、轴瓦宽度的中间剖面上,沿圆周方向均布钻有7个小孔,每个小孔联接一只压力表(即联接1~7表),当轴承形成动压油膜时,就可以通过压力表测得周向压力分布曲线。在轴瓦轴向有效宽度B 的1/4处钻有一个小孔,供联接压力表用(即联接表8),这样根据轴向压力分布的对称原理,可测得轴向压力分布曲线。图8-9是轴瓦小孔分布的位置。

五. 轴承性能参数

轴颈直径d = 60 mm 轴瓦宽度B = 60 mm

轴瓦材料为青铜,配合表面粗糙度 Ra6.3 μm 轴颈材料为45钢,配合表面粗糙度Ra3.2 μm 相对间隙 ψ — (1-1.5)‰

润滑油牌号及供油方式 N15机械油循环供油 油的粘度 η = 0.024 Pa ?s

初始载荷 Go = 78 N (8kgf ) 测力杆力臂长度 L = 150 mm 加载范围 F = 0~3000 N

调速范围 n = 20~1200 r/min 电动机型号JZT12-4

电动机功率 0.8 kW

六. 实验方法及步骤 1. 油膜压力分布的测定

图8-9 轴瓦小孔分布示意图

f L

d Q F

=?2

先用卡板3(见图8-8)卡住测力杆2,以免测力计损坏。旋动油泵开关13(见图8-10)启动油泵。调节溢流阀5和减压阀3,使供油压力表2指示值为 0.5 kgf/cm 2。将变速箱8的手柄放在低速档(左斜位置),转动调速旋钮11旋至最低速,开启主电机开关14和转速控制开关12,指示红灯亮。转动调速旋钮11,使转速读数100~200 r/min 之间,再将变速手柄扳到高速档(右斜位置),逐渐升速到600 r/min (800 r/min ),调节溢流阀5,使加载油腔压力表指示值为 p 0=4 kgf/cm 2(轴承载荷F=2432 N ),运转几分钟待稳定后,依次自左至右记录七只压力表及轴向压力表的读数。重新调节加载油腔压力p 0 =3 kgf/cm 2(F=1844 N ),待稳定后记录压力表的值于实验报告表图8-1中。

2. 摩擦系数 ? 及特性系数 λ 的测定

特性系数λ的获得主要是测定η、p 及n 各项参数。粘度 η 主要根据轴承平均工作温度t m 来决定。轴承压力p 可根据轴承载荷确定。转速可从(图8-10)转速表10上测得。

实验时,使加载油腔压力p 0 = 4 kgf/cm 2 时保持不变,将卡板7(见图8-8)打开,使测力杆3可以自由转动,依次将主轴转速调至600、500、400、300、200、100、50r/min ,记录各转速时的测力计读数于表2中。由经验得出轴承的平均工作油温t m 为:

t m = 9.32+0.85t 1 0C (11) 根据轴承平均油温可查得粘度 η = 0.024(Pa ?S)。

改变轴承载荷,使加载油腔压力p 0 = 2 kgf/cm 2,重复上速过程,将所测得之?—λ曲线与第一次试验相比较(两次试验曲线应基本重合)以证明 ? 仅与 λ 有关。

测试完毕,应注意先卸载、降速再停机。 七. 数据处理 1. 绘制轴承周向油膜压力分布曲线与承载量曲线。

1—试验轴承箱 2—供油压力表 3—减压阀 4—加载油腔压力表 5—液流阀 6—油箱 7—总开关 8—变速箱 9—V 带传动 10—转速表 11—转速调节旋纽 12—转速控制开关 13—油泵开关 14—主电机开关 15 调速电动机 图8-10 HZS —I 型试验总体外观图

当形成压力油膜后,压力表稳定在某一位置时,表中读数即表示轴承该点之周向油膜压力。由左向右即为1、2、~7号压力表,然后依次将各压力表的压力值记录在表1中。根据测出的压力大小按一定的比例绘制周向油膜压分布曲线,如图8-11所示。具体画法是:以轴径d作一个圆,取中线为0—0水平线,沿着上半圆从左向右画出角度为30?、50?、70?、90?、110?、130?、150?等分,得出油孔点1、2、3、4、5、6、7位置。通过这些点与圆心连成径向线,在它们延长线上,将压力表测出的压力值按比例(比例:0.1MP a =1cm)

画出压力向量1—1'、2—2'、…7—7'。将1' 、2'….7 '各点连成光滑曲线,这就是位于轴承中部截面的油膜周向压力分布曲线。如图8-11所示。

为了确定轴承承载量,可以用作图法确定轴承中间剖面上的平均单位压力P m值。作图如下:将图8-11上部圆周上各点0、1、2、……7、8投影到0'—0'水平直线上(见图8-11下部)得到0、1、2、……7、8点,在相应点的垂线上标出对应压力值在垂直方向的分量,从而在垂线上得到0、1"、2"、3"……7"、8点,将各点连成光滑曲线即为承载量曲线。用数方格方法求出此曲线所围的面积,与在纵向上取P m值使其与0—8所围的矩形面积相等,此P m值经原比例换算后既为轴承中间剖面上的平均单位压力。

轴承处在液体摩擦工作状态时,轴承内油膜的承载量可用下式求出:

P = k? P m?B?d (12)式中:k为轴瓦在宽度方向的端泄对油膜压力的影响系数。

一般认为轴向油压近似呈二次抛物线规律分布,k=2/3 。将求得的载荷P与实际载荷F 加以分析比较。

2.绘制轴承轴向油膜压力分布曲线

通过压力表8可测出轴向B/4处的压力p8,用坐标纸绘制轴向油膜压力分布曲线,画一条水平线取长度0—0为B = 60mm,在中点4的垂线上按前述比例尺标出该点的压力值为4—4'= p4(端点为p4),在距两端B/4 =15 mm处(即8点)沿垂线方向各标出压力值8—8'= p8,轴承两端压力为零,0、8'、4'、8'、0五点可连成一光滑曲线如图8-12所示。如果轴向油膜压力符合抛物线分布规律,根据计算,则有p8 =3/4 p max,其中p max= p4,将实测的p8与此值进行分析比较。

图8-12

轴向油膜压力分布曲线

3.绘制轴承摩擦特性曲线

滑动轴承的摩擦系数是润滑油粘度η,轴的转速n、轴承压力p的函数,λ值称为滑动轴承的特性系数。其最小值是液体摩擦和非液体摩擦的临界点。其特性系数λ由式(7)表示。

记算出不同压力及转速下的摩擦系数,在坐标纸上以λ为横坐标,f为纵坐标绘制f—λ曲线,如图8-2所示。f由式(10)计算。

八.计算机辅助实验及数据处理①

在该轴瓦的上半部沿周向、轴向承载区测试压力部位安装压力传感器,设计一套测试系统,通过A/D转换,编制有关程序,实现了计算机对油膜压力实验数据的采集(对于摩擦特性曲线实验,采用“人机对话”方式输入实验数据)。然后,利用计算机进行计算和数据处理,直接在屏幕上显示,由打印机打印输出实验结果、实验数据表格、绘制油膜压力分布和摩擦特性曲线。

实验装置的系统框图如图8-13所示。

图8-13计算机辅助实验框图

实验前首先检查试验台压力传感器及各设备联接是否正确,然后进行实验,按规定要求调整主轴转速并加载,待油膜压力稳定后操作机算机。

计算机操作步骤如下:

1.直接双击桌面滑动轴承图标。

2.点击读取压力,然后返回主菜单。

3.在轴系加载栏填入你所加的载荷(机器面板上的载荷数)。

4.在主轴转速栏填入你调的转速数。

5.点击显示压力

6.在显示的桌面上点击计算压力数据

7.在显示的桌面上点击计算压力分布图。

8.返回主菜单,进入实验报告输出。

九.实验报告

液体动压润滑径向轴承油膜压力和特性曲线实验报告

(一)实验目的

(二) 轴承简图及主要参数

(1) 主要参数

型号

轴颈直径 d = mm

轴承宽度 B = mm

测力杆力臂长度L = mm

轴瓦材料

轴径材料

润滑油牌号

润滑油粘度η = Pa?s

初始载荷(或轴瓦、压力计与自重) Go = N

(2) 轴承简图

(三) 实验结果

(4)f—λ摩擦特性曲线图(用两张16开坐标纸绘出附于报告后面)。

(5) 油膜压力数据处理及绘制油膜径向压力和轴向压力分布曲线与承载量曲线。

(四) 实验结果分析

(五) 思考题

1. 那些因素影响液体动压轴承能力及油膜的形成?形成动压油膜的必要条件是什么?

2. 当轴转速增大或减小时,油膜压力分布曲线的变化如何?

3. f—λ曲线说明什么?试解释当λ增加时,为什么在非液体摩擦区和液体摩擦区f会随之下降和增大?

油膜+滚动轴承

油膜轴承的基础知识 一、什么是油膜轴承? 油膜轴承是液体摩擦轴承的一种形式;按润滑系统供油压力的高低可分为静压轴承、静—动压轴承、动压轴承,通常习惯称动压轴承为油膜轴承。油膜轴承由锥套、衬套、滚动止推轴承、回转密封、轴端锁紧装置等部分组成;或者说是轧辊一端所安装的全 部零、部件的统称。 油膜轴承(动压轴承)是一种流体动力润滑的闭式滑动轴承。在轴承工作时,带锥形 内孔的锥套(锥度约1:5的锥形内孔与轧辊相联接)与轴承衬套(固定在轴承座内)工作面之间形成油楔(即收敛的楔形间隙);当轧辊旋转时,锥套的工作面将具有一 定粘度的润滑油带入油楔,润滑油产生动压力;当沿接触区域的动压力之和与轴承上 的径向载荷相平衡时,锥形轴套与轴承衬套被一层极薄的动压油膜隔开,轴承在液体 摩擦状态下工作。动压轴承的压力分布是不均匀的,而且,由于相对间隙、滑动速度、润滑油粘度及锥、衬套的表面变形等不同而不同,其峰值压力区越小(即压力分布尖锐)承载能力就越低。美国的摩根工程公司研制的Morgoil油膜轴承是其技术发展的典型代表,太原重工则是国内制造大型油膜轴承的唯一生产厂家。 二、油膜轴承形成的机理 动压轴承油膜的形成与轴套表面的线速度、油的粘度、间隙、径向载荷等外界条件有 密切关系。可用雷诺方程描述: —油的绝对粘度 —轴套表面的线速度 ★动压轴承(油膜轴承)保持液体摩擦的条件: 1、楔形间隙、即h-hmin≠常数 2、足够的旋转速度v 3、合适的间隙

4、足够的粘度、适当的纯净润滑油 5、轴套外表面和轴承衬的内表面应有足够的精度和光洁度 在可逆式中厚板轧机上能否使用油膜轴承,在最大载荷的前提下取决于最低的咬入速 度和轧制节奏;中厚板轧机的油膜轴承使用的均为高粘度的润滑油,油膜的消失滞后 于轧机的制动,只要轧机可逆运转的间隔时间小于油膜消失的时间,油膜轴承就能满 足使用。 三、油膜轴承的发展 二十世纪三十年代美国摩根工程公司首先把油膜轴承应用于轧机上至今,油膜轴承的 技术已发生了巨大的进步。 1、结构上的改变 A、油膜轴承锥套与轧辊的联接,从最初的承载区的键联接发展到今天的承载区无键联接,消除了锥套在键联接处受力的作用产生变形而导致的板厚呈周期性的波动; B、油膜轴承的轴向锁紧装置由机械锁紧发展到液压锁紧,极大的方便了油膜轴承的拆装,减轻了装配的劳动强度; C、油膜轴承的轴向定位方式,由止推法兰演变到单端止推轴承加轴向拉杆的方式,再发展到目前的双端止推轴承的结构形式,有效地控制了辊的轴向窜动,改善了密封效果。 注:采用滚动轴承止推的注意事项:滚动轴承的外座圈与轴承箱之间要有足够的间隙,保证在油膜厚度(或者说偏心率)变化的任何时刻,在径向自由移动不承受径向力; 单独的供油系统,根据轧制速度供给充足的润滑油。 D、环保型的巴氏合金的开发、使用极大地改善了材料的蠕变性能,使衬套的寿命更长。 E、锥套结构尺寸的改变提高了油膜轴承的承载能力(即承载区的有键连接发展到无键连接)。 2、密封结构型式的进步 油膜轴承密封的作用,其一,防止油膜轴承的润滑油外泄,其二是避免轧辊冷却水、 润滑乳化液及氧化铁皮等进入到润滑系统中,污染润滑油导致润滑失效;任何形式的 接触密封随着服役期的延长,其密封效果都将下降,直至失效;油膜轴承的密封式消 耗件。当今油膜轴承普遍使用的密封是DF密封,摩根油膜轴承在DF密封的基础上又开发出新一代的HD密封加挡水板的组合结构。

推力轴承润滑计算书

目录 一、基本数据 二、润滑计算 三、推力盘计算 编制: 校对: 日期: 一、基本数据 1、额定转速: n= 1000r/min 2、轴向推力: P=6000Kg=60000N 3、推力瓦块数: Z =8块 4、单个推力瓦扇形夹角: θ=45° 5、推力瓦块外径: D=40cm 6、推力瓦块内径: d=24cm 7、推力瓦块宽度: b=(D-d)/2 =(40-24)/2 =8 cm 8、系数: Kσ=b×(1+ b/(2×r))×θ/ r =8×(1+8/(2×12))×45×π/(180×12) =0.7

9、每个推力瓦块工作面积: F= Kσ×r2 = 0.7×122 =100.8 cm2 10、每个推力瓦块承受的轴向推力: P 1=P/ Z =6000/8 =750Kg =7500N 11、每个推力瓦块承受的单位压力: P pj=P1/ F =750/100.8 =7.44(Kg/cm2) =0.744MPa 12、推力瓦块平均直径: D pj=(D+d)/2 =(40+24)/2 =32cm 13、单个推力瓦平均周长: l=π×D pj×θ/360 =π×32×45/360 =12.6 cm 14、平均周速: v pj=π×D pj×n/6000 =π×32×1000/6000 =16.76(m/s) 15、根据θ值和b/r比值查曲线得计算系数: K1=1.8

K2=0.07 K3=0.3 K4=1 K5=0.008 二、润滑计算 1、轴承工作时润滑油层中的温升: △t= P pj/(K1×γ×C) 式中: γ—润滑油的比重,γ=0.9克/厘米3。 C—润滑油比热:C=0.47千卡/公斤.度。 △t= 7.44/(1.8×0.9×0.47) =9.8℃ 2、假定油膜平均温度为 t pj= 50℃(一般为40℃~55℃) 3、润滑油的进油温度: t1= t pj-△t/2 =50-9.8/2 =45.1℃ 4、润滑油的出油温度: t2= t1+△t =45.1+9.8 =54.9℃ 5、最小油膜厚度: δmin= K2×(F×n×u/(γ×C×△t))1/2 式中: u—润滑油粘性系数,u=0.0027公斤.秒/米2。 δmin =0.07×(100.8×1000×0.0027×10-4/(0.9×0.47×9.8))1/2 =0.0057(cm)

滑动轴承习题与参考答案

习题与参考答案 一、选择题(从给出的A 、B 、C 、D 中选一个答案) 1 验算滑动轴承最小油膜厚度h min 的目的是 A 。 A. 确定轴承是否能获得液体润滑 B. 控制轴承的发热量 C. 计算轴承内部的摩擦阻力 D. 控制轴承的压强P 2 在题2图所示的下列几种情况下,可能形成流体动力润滑的有 B 、E 。 3 巴氏合金是用来制造 B 。 A. 单层金属轴瓦 B. 双层或多层金属轴瓦 C. 含油轴承轴瓦 D. 非金属轴瓦 4 在滑动轴承材料中, B 通常只用作双金属轴瓦的表层材料。 A. 铸铁 B. 巴氏合金 C. 铸造锡磷青铜 D. 铸造黄铜 5 液体润滑动压径向轴承的偏心距e 随 B 而减小。 A. 轴颈转速n 的增加或载荷F 的增大 B. 轴颈转速n 的增加或载荷F 的减少 C. 轴颈转速n 的减少或载荷F 的减少 D. 轴颈转速n 的减少或载荷F 的增大 6 不完全液体润滑滑动轴承,验算][pv pv ≤是为了防止轴承 B 。 A. 过度磨损 B. 过热产生胶合 C. 产生塑性变形 D. 发生疲劳点蚀 7 设计液体动力润滑径向滑动轴承时,若发现最小油膜厚度h min 不够大,在下列改进设计的措施中,最有效的是 A 。 A. 减少轴承的宽径比d l / B. 增加供油量 C. 减少相对间隙ψ D. 增大偏心率χ 8 在 B 情况下,滑动轴承润滑油的粘度不应选得较高。 A. 重载 B. 高速 C. 工作温度高 D. 承受变载荷或振动冲击载荷 9 温度升高时,润滑油的粘度 C 。 A. 随之升高 B. 保持不变 C. 随之降低 D. 可能升高也可能降低 10 动压润滑滑动轴承能建立油压的条件中,不必要的条件是 D 。 A. 轴颈和轴承间构成楔形间隙 B. 充分供应润滑油 C. 轴颈和轴承表面之间有相对滑动

滑动轴承的润滑

滑动轴承的润滑 润滑剂的作用是减小摩擦阻力、降低磨损、冷却和吸振等,润滑剂有液态的、固态的和气体及半固态的,液体的润滑剂称为润滑油,半固体的、在常温下呈油膏状为润滑脂。 一、润滑油 润滑油是主要的润滑剂,润滑油的主要物理性能指标是粘度,粘度表征液体流动的内摩擦性能,粘度越大,其流动性愈差。润滑油另一物理性能是油性,表征润滑油在金属表面上的吸附能力。油性愈大,对金属的吸附能力愈强,油膜愈容易形成。润滑油的选择应综合考虑轴承的承载量、轴颈转速、润滑方式、滑动轴承的表面粗糙度等因素。 一般原则如下: 1.在高速轻载的工作条件下,为了减小摩擦功耗可选择粘度小的 润滑油; 2.在重载或冲击载荷工作条件下,应采用油性大、粘度大的润滑 油,以形成稳定的润滑膜; 3.静压或动静压滑动轴承可选用粘度小的润滑油; 4.表面粗糙或未经跑合的表面应选择粘度高的润滑油。 二、润滑脂 轴颈速度小于1m/s~2m/s的滑动轴承可以采用润滑脂,润滑脂是用矿物油、各种稠化剂(如钙、钠、锂、铝等金属皂)和水调和而成,润滑脂的稠度(针入度)大,承载能力大,但物理和化

学性质不稳定,不宜在温度变化大的条件下使用,多用于低速重载或摆动的轴承中。 三、固体润滑剂和气体润滑剂 固体润滑剂有石墨、二硫化钼(MoS2)和聚四氟乙烯(PTFE)等多种品种。一般在重载条件下,或在高温工作条件下使用。气体润滑剂常用空气,多用于高速及不能用润滑油或润滑脂处。四、润滑方法 向轴承提供润滑剂是形成润滑膜的必要条件,静压轴承和动静压轴承是通过油泵、节流器和油沟向滑动轴承的轴瓦连续供油,形成油膜使得轴瓦与轴颈表面分开。动压滑动轴承的油膜是靠轴颈的转动将润滑油带进轴承间隙,其供油方式有间歇供油和连续供油。 1、间歇供油:可采用油壶注油和提起针阀通过油杯注油,脂润滑只能采用间歇供应。 它的结构特点是有一针阀,如图所示,油经过针阀流到摩擦表面上,靠手柄的卧倒或竖立以控制针阀的启闭,从而调节供油量或停止供油。它使用可靠,可以观察油的供给情况,但要保持均匀供油,必须经常加以观察和调节。 2、连续供油: 芯捻火线纱油杯,装在轴承的润滑孔上的油杯,其中有一管子内装有毛线或棉线做成的芯捻,芯捻的一端装在油杯内,另一端在管子内和轴颈不接触。这样,利用毛细管作用,把油吸到摩擦面

油膜轴承

油膜轴承是一种主要表面加工精度、表面粗糙度以及相关参数匹配非常理想的滑动轴承,它的主要特点有: 1、承载能力大,轴承的外径相同油膜轴承的承载能力要远大于滚动轴承。 2、使用寿命长:从原理上讲,油膜轴承是不会发生磨损的。但是实际上,即使正确的使用和妥善地维护,也是要发生磨损的,只是很轻微而已。其理论上寿命可达15年左右,一般实际由于润滑和轧机设备等原因,寿命在5-10年左右。 3、速度范围宽:轧机油膜轴承可以在很低的速度下工作,也可以在很高的速度下运行,还可以使用可逆轧机:有正转速到零,再由零到负转速的状态下工作,速度范围十分之宽。 4、结构尺寸小:在相同的承载能力下,油膜轴承轮廓尺寸要比滚动轴承小。 5、摩擦系数低:油膜轴承轴承的摩擦系数一般在0.001-0.005之间,摩擦系数低,从而摩擦损耗低。 6、抗冲击能力强:油膜轴承中的油膜的挤压效应对于冲击载荷的承受能力,使得油膜轴承能很好地承受冲击载荷。 16系列轴承 16系列轴承 使用部位摩根图号轴承类型制造型号备注 二齿轮增速机A 162250 成对球轴承MRC 7334D1B 二齿轮及三轴高速增速机B 162250 滚子轴承MCS-140-160 三轴增速机及锥箱长轴C 162250 成对球轴承MRC 7226D10E CA 162250 球轴承MRC 7226D11S 三轴增速机D 162250 滚子轴承MRC-128-107 DA 162250 滚子轴承MRC-128-108 锥箱长轴E 162250 成对球轴承MRC 7224D10E F 162250 滚子轴承U-1024-EMR-305 从动轴及锥箱长轴G 162250 滚子轴承MRC MR126KC10 滚子轴承U-1026-EMR-103 从动轴GA 162250 滚子轴承MRC MR126KC11 GB 162250 滚子轴承MRC MR126KC9 GO 162250 滚子轴承MRC R126KC9 GD 162250 滚子轴承MRC R126KC7 GE 162250 滚子轴承MRC R126KC8 从动轴及惰轴H 162250 滚子轴承MRC MR312C4 HA 162250 滚子轴承MRC MR312C4 HB 162250 滚子轴承MRC R3122011 HC 162250 滚子轴承U-1211-EMR-107 HD 162250 滚子轴承MRC MR215C5 HE 162250 滚子轴承MRC MR210KC1 HF 162250 滚子轴承MRC MR211C3 HG 162250 滚子轴承MRC MR319C2 HH 162250 滚子轴承MRC R312C12 HJ 162250 滚子轴承MRC MR212C6

油润滑滑动轴承常用润滑方法

油润滑滑动轴承常用润滑方法 (1)手动润滑 在发现轴承的润滑油不足时,适时用加油器供油,这是最原始的方法。这种方法难以保持油量一定,因疏忽而忘记加油的危险较大,通常只用于轻载、低速或间歇运动的场合。最好在加油孔上设置防尘盖或球阀,并用毛毡、棉、毛等作过滤装置。 (2)滴油润滑 从容器经孔、针、阀等供给大致为定量的润滑油,最经典的是滴油油杯。滴油量随润滑油粘度、轴承间隙和供油孔位置不同有显著变化。用于圆周速度小于4~5 m/s的轻载和中载轴承。 (3)油环润滑 仅能用于卧轴的润滑方法。靠挂在轴上并能旋转的环将油池的润滑油带到轴承中。适用于轴径大于50mm的中速和高速轴承。油环最好是无缝的,轴承宽径比小于2时,可只用一个油环,否则需用两个油环。 (4)油绳润滑 靠油绳的毛细管作用和虹吸作用将油杯中的润滑油引到轴承中,用于圆周速度小于4~5m/s的轻载和中载轴承。油绳还有过滤作用。 (5)油垫润滑 利用油垫的毛细管作用,将油池中的润滑油涂到轴径表面。此方法能使摩擦表面经常保持清洁,但尘埃也会堵塞毛细孔造成供油不足。油垫润滑的供油量通常只有油润滑的1/20。 (6)油浴润滑 将轴承的一部分浸入润滑油中的润滑方法。这种方法常用于竖轴的推力轴承,而不宜用于卧轴的径向轴承。

(7)飞溅轴承 靠油箱中旋转件的拍击而飞溅起来的润滑油供给轴承,适用于较高速度的轴承。(8)喷雾润滑 将润滑油雾化喷在摩擦表面的润滑方法,适用于高速轴承。 (9)压力供油润滑 靠润滑泵的压力向轴承供油,将从轴承流出的润滑油回收到油池以便循环使用,是供油量最多,且最稳定的润滑方法,适用于高速、重载、重要的滑动轴承。

油膜轴承故障机理与诊断

油膜轴承的故障机理与诊断 油膜轴承因其承载性能好,工作稳定可靠、工作寿命长等优点,在各种机械、各个行业中都得到了广泛的应用,对油膜轴承故障机理的研究工作也比较广泛和深入。 一、油膜轴承的工作原理 油膜轴承按其工作原理可分为静压轴承与动压轴承两类。 静压轴承是依靠润滑油在转子轴颈周围形成的静压力差与外载荷相平衡的原理进行工作的。不论轴是否旋转,轴颈始终浮在压力油中,工作时可以保证轴颈与轴承之间处于纯液体摩擦状态。因此,这类轴承具有旋转精度高、摩擦阻力小、承载能力强的特点,并且对转速的适应性和抗振性非常好。但是,静压轴承的制造工艺要求较高,还需要一套复杂的供油装置,因此,除了在一些高精度机床上应用外,其他场合使用尚少。 动压轴承油膜压力是靠轴本身旋转产生的,因此供油系统简单,设计良好的动压轴承具有很长的使用寿命,因此,很多旋转机器(例如膨胀机、压缩机、泵、电动机、发电机等)均广泛采用各类动压轴承。 在旋转机械上使用的液体动压轴承有承受径向力的径向轴承和承受轴向力的止推轴承两类,本节主要讨论径向轴承的故障机理与诊断。 在动压轴承中,轴颈与轴承孔之间有一定的间隙(一般为轴颈直径的千分之几),间隙内充满润滑油。轴颈静止时,沉在轴承的底部,如图1-1 (a )所示。当转轴开始旋转时,轴颈依靠摩擦力的作用,沿轴承内表面往上爬行,达到一定位置后,摩擦力不能支持转子重量就开始打滑,此时为半液体摩擦,如图1-1(b)所示。随着转速的继续升高,轴颈把具有黏性的润滑油带入与轴承之间的楔形间隙(油楔)中,因为楔形间隙是收敛形的,它的入口断面大于出口断面,因此在油楔中会产生一定油压,轴颈被油的压力挤向另外一侧,如图1-1(c)所示。如果带入楔形间隙内的润滑油流量是连续的,这样油液中的油压就会升高,使入口处的平均流速减小,而出口处的平均流速增大。由于油液在楔形间隙内升高的压力就是流体动压力,所以称这种轴承为动压轴承。在间隙内积聚的油层称为油膜,油膜压力可以把转子轴颈抬起,如图1-1(d)所示。当油膜压力与外载荷平衡时,轴颈就在与轴承内表面不发生接触的情况下稳定地运转,此时的轴心位置略有偏移,这就是流体动压轴承的工作原理。

油膜轴承变形和压力分析

第44卷 第3期 2009年3月 钢铁 Iron and Steel  Vol.44,No.3 March 2009 油膜轴承变形和压力分析 Thomas E Simmons , Andrea Contarini , Nonino G ianni (达涅利油膜轴承公司) 摘 要:轧机油膜轴承最新试验结果表明,实测油膜厚度比计算机模型预测值大3~5倍。这意味着,油膜厚度增加是由于锥套和衬套变形的结果,这种变形会导致锥套和衬套压力场扩大,进而导致油膜厚度增加。如果油膜厚度真的比预想的高3~5倍,则不但可以充分利用轴承固有的安全系数,而且还可以提高轴承的最大运行负荷。为确认试验结果,DanOil 油膜轴承工程师构建了因液体动压场变化而导致的锥套变形模型,然后将这种变形用于复杂的计算机轴承模拟程序,来计算新的压力场。对压力场和锥套变形进行重复迭代计算,直到计算结果收敛为止。介绍了这一分析方法和计算结果。 关键词:油膜轴承;油膜厚度;压力场;变形 中图分类号:T H13313 文献标识码:A 文章编号:04492749X (2009)0320093204 Deflection and Pressure Analysis of Oil Film B earings Thomas E Simmons , Andrea Contarini , Nonino G ianni (Danieli DanOil ) Abstract :Recent tests on rolling mill oil film bearings have indicated that the oil film thickness is three to five times greater than predicted by computer models.It has been implied that the increase in oil film thickness is due to the deflection of the sleeve and bushing ,which would spread out the pressure field increasing the oil film thickness.I f the oil film thickness is three to five times greater than expected ,the maximum operating load can be increased tak 2ing advantage of the inherent safety factor in the bearing.To confirm the test results ,DanOil engineers modeled the sleeve deflection produced by the hydrodynamic pressure field and then used this deflection in a sophisticated bearing computer program to calculate the new pressure field.The iteration of the pressure field and deflection was contin 2ued until the model converged.The paper presents the method of analysis and the results.K ey w ords :oil film bearing ;oil film thickness ;pressure field ;deformation 联系人:苏宏蕾,女; E 2m ail :h 1su @china 1danieli 1com ; 修订日期:2008209219 油膜轴承广泛用于世界各地数以百计的板带轧机上。这种轴承可用在中板轧机、热轧机、冷轧机、平整机上等,使用寿命长,可实现无故障运行。轴承工作时,其表面覆盖一层薄薄的油膜,具有很小的摩擦力。这是轴承使用寿命长的原因。由于没有金属之间的直接接触,因此轴承几乎没有磨损。轧机上使用的油膜轴承由一个锥套(辊颈)和一个衬套(轴承)组成,如图1所示。 辊颈和轴承表面之间由一层油膜将其分隔开来,形成一小间隙,在载荷作用下,辊颈中心线和轴承中心线不会重合,但它们之间会存在一定的距离,这一距离称为偏心距e 。偏心距和滑动表面之间的相对运动,将建立起一个会聚楔;由于油膜内的粘性作用而形成一个压力场。正是这个压力场支撑着轴承的载荷,如图2所示。图中表示的是一个标准圆柱形滑动表面。 其中,x =R θ,u =R ω;R 为辊颈半径;C 为半径图1 支撑辊轴承 Fig 11 B ackup roll bearing

油膜轴承维护知识

摩根油膜轴承使用维护培训教材 发布日期:[2006-6-29] 共阅[2505]次目录 第一章概述 第二章油膜轴承的组装与使用 第三章油膜轴承的维护 第四章油膜轴承的润滑 第五章参考图以及资料

说明:本教材仅供参考和掌握基本知识使用,部分内容并不全面,如有疑问,请致电摩根油膜轴承(上海)有限公司,摩根油膜轴承(上海)有限公司拥有对于本教材内容的全部解释权利。 第一章概述 一、油膜轴承原理及摩根油膜轴承的历史

二、摩根油膜轴承的构造 三、摩根油膜轴承的型号含义 四、摩根油膜轴承的特性 一、油膜轴承原理及摩根油膜轴承的历史 、油膜轴承工作原理 油膜轴承又称液体摩擦轴承,它是利用液体润滑在锥套与衬套间形成一个完整的压力油膜,分离两个工作表面,而不发生直接的金属接触,达到液体摩擦状态。它被广泛地应用与轧机轴承中,按其油膜形成的条件,可分为动压油膜轴承,静压油膜轴承和动静压油膜轴承。 目前多数轧机使用的为动压或动静压油膜轴承,它是基于粘滞流体动压效应(也称为楔形效应):当把油从楔形的大间隙带入小间隙时,油液受到挤压,而液体本身是不可压缩的,于是就产生抗力实现承载。而应用于轴承中,由于轴比轴承小,只要轴与轴承不同心,就存在不相等的间隙,只要轴转动,就能带动轴颈附近的油顺转动方向运动,从而把油带入收敛的楔形间隙内,实现油膜轴承的正常工作。而静压油膜轴承的工作原理是基于液体的静压效应,在轴承的工作区开设油腔,并通入压力油,将轴抬起。动静压油膜轴承是在动压轴承的承载区域内开设很小的压力油腔,并通入高压油,即具备静压和动压双重效应,具备两者的特点。 1.2、油膜形成的条件

轧机油膜轴承技术的说明范本

工作行为规范系列 轧机油膜轴承技术的说明(标准、完整、实用、可修改)

编号:FS-QG-51338轧机油膜轴承技术的说明 Description of rolling mill oil film bearing technology 说明:为规范化、制度化和统一化作业行为,使人员管理工作有章可循,提高工作效率和责任感、归属感,特此编写。 中国轧机油膜轴承技术摘要:渗碳淬火件磨削裂纹形成的原因和防止措施精密加工和超精密加工的发展趋势和技术前沿激光焊接的防侧撞横梁提高安全性能什么是数据库营销?数控车床操作步骤(下)PDM―企业信息化的又一利器拉簧计算公式混粉电火花加工技术在粗加工中的应用研究龙门式加工中心和镗铣床的发展新型线性电机及其在直线运动系统中应用低压电器可靠性概况及其发展21/4Cr-1Mo 厚壁乙烯裂解炉管焊接工艺金刚石砂轮攻关项目通过鉴定E2S4000-MB型机械压力机振动传播及现场实测走近孔加工的挑战鲁南机床创新产品填补国内空白ActiveX技术在刀具CAD中的应用在普通电火花成形机上加工斜齿轮模具型腔可转位普通刀片偏差规定冲模高速走丝线切割加工中夹丝的防止措施技术轴承轧机运行测量我国主要系统制造密封中

国轧机油膜轴承技术独立自主自力更生方针指导发展起来回顾总结研究中国轧机油膜轴承技术认识促进发展中国轧机油膜轴承技术是有益处轧机油膜轴承技术系统工程技术也是领域综合性工程技术发展速度形成配套能力一个侧面反映中国工业发展速度达到水平. 中国轧机油膜轴承技术,是在“独立自主,自力更生”方针指导下发展起来的。回顾总结、研究中国轧机油膜轴承技术,对于认识、促进、发展中国轧机油膜轴承技术是有益处的。 轧机油膜轴承技术,是个系统工程技术,同时,也是个多学科领域的综合性工程技术,它的发展速度和所形成的配套能力,从一个侧面反映了中国工业的发展速度与所达到的水平。兹从运行技术、制造技术、测试技术、理论研究、产品开发、成套能力等几个主要方面进行简要的论述。 1.运行技术,包括轧机油膜轴承零部件的储放、清洗、安装、调试、运转、维修、诊断、管理等一整套知识与技能。运行技术的正确运用,是轴承安全运行的可靠保证。 50年代初期,我国只有鞍钢冷轧厂的可逆轧机装备了油

01摩根油膜轴承培训教材_MS_

摩根油膜轴承使用维护培训教材 摩根油膜轴承(上海)有限公司 二OO七年五月

目录 第一章 概述 第二章 油膜轴承的组装与使用 第三章 油膜轴承的维护 第四章 油膜轴承的润滑 第五章 参考图以及资料 说明说明::本教材仅供参考和掌握基本知识使用本教材仅供参考和掌握基本知识使用,,部分内容并不全面部分内容并不全面,,如有疑问如有疑问,,请致电摩根油膜轴承请致电摩根油膜轴承((上海上海))有限公司有限公司,,摩根油膜轴承摩根油膜轴承((上海上海))有限公司拥有对于本教材内容的全部解释权利对于本教材内容的全部解释权利。。

第一章 概述 一、油膜轴承原理及摩根油膜轴承的历史 二、摩根油膜轴承的构造 三、摩根油膜轴承的型号含义 四、摩根油膜轴承的特性 一、油膜轴承原理及摩根油膜轴承的历史 1.1、油膜轴承工作原理 油膜轴承又称液体摩擦轴承,它是利用液体润滑在锥套与衬套间形成一个完整的压力油膜,分离两个工作表面,而不发生直接的金属接触,达到液体摩擦状态。它被广泛地应用与轧机轴承中,按其油膜形成的条件,可分为动压油膜轴承,静压油膜轴承和动静压油膜轴承。 目前多数轧机使用的为动压或动静压油膜轴承,它是基于粘滞流体动压效应(也称为楔形效应):当把油从楔形的大间隙带入小间隙时,油液受到挤压,而液体本身是不可压缩的,于是就产生抗力实现承载。而应用于轴承中,由于轴比轴承小,只要轴与轴承不同心,就存在不相等的间隙,只要轴转动,就能带动轴颈附近的油顺转动方向运动,从而把油带入收敛的楔形间隙内,实现油膜轴承的正常工作。而静压油膜轴承的工作原理是基于液体的静压效应,在轴承的工作区开设油腔,并通入压力油,将轴抬起。动静压油膜轴承是在动压轴承的承载区域内开设很小的压力油腔,并通入高压油,即具备静压和动压双重效应,具备两者的特点。 1.2、油膜形成的条件 1.2.1、两个工作面间必须形成楔形区域。 在油膜轴承中,锥套外表面直径与衬套的内径的差值即可得到这个楔形。 1.2.2、两个工作面必须存在一定的相对运动。

121-100系列油膜轴承油指标

海联润滑 HIRI 121-100系列油膜轴承油 一、产品用途 本系列产品以深度精制的矿油为基础油,添加多种多效添加剂而制得的。适用于冶金系统高速线材精轧机的油膜轴承、齿轮、调校螺杆以及其它轧钢和支承辊轴承循环系统的润滑。目前根据开发的顺序分为A、B、C三个不同的型号。 二、产品性能 1. 具有良好的粘温性能。 2. 具有良好的抗氧、防锈性能。 3. 具有良好的抗乳化性能。 4. 具有良好的极压和抗磨损性能。 5. 均能用于120米/秒的高速线材。 6. 使用寿命长。 三、产品技术指标 项目 质量指标 试验方法100(A)100(B)100(C) 运动粘度(40℃) mm2/s 90~110 90~110 90~110 GB/T265 粘度指数≥95 GB/T2541 闪点(开口) ℃≥220 GB/T3536 倾点℃≤-12 GB/T3535 铜片腐蚀(100℃×3h) 级≤1b GB/T5096 水分% ≤痕迹GB/T260 抗乳化试验(40-37-3) (54℃) min ≤30 29 27 GB/T7305 泡沫特性(24℃) 消泡时间min ≤10 9 8 GB/T12579 液相锈蚀A法合格B法合格B法合格GB/T11143 破乳试验(405mL油+45mL蒸馏水) 总分水量ml ≥36 36.5 37 GB/T8022 四球试验 烧结负荷P D N ≥ 磨斑直径 D 196N 60min mm ≤ 1470 0.50 1800 0.49 2300 0.48 GB/T3142 SH/T0189 FZG齿轮试验级≥9 10 12 GB/T306 抗氧化试验(旋转氧弹法) min ≥180 200 240 SH/T0193 四、包装:海联标志色200L铁桶

轧机油膜轴承的使用及维护

轧机油膜轴承的使用及维护 现代轧机的主要特征是大型、高速、重载、连续、自动,现代大型轧机特别是具有板型、板厚自动控制的大型板、带材连轧机大都采用油膜轴承,应用在轧机上作为工作辊轴承或支承辊轴承的称做轧机油膜轴承,这类轴承基本上属于低速重载、中速中载或重载轴承。随着八钢板带系统冷轧、热轧、中厚板项目的陆续建设投产,板材轧机油膜轴承在八钢逐步得到应用,油膜轴承的使用维护成为影响辊系装配使用质量和保证轧线稳定顺行的一项重要环节,由于使用时间较短,现场工作人员对使用维护规范等缺乏了解。 油膜轴承主要由锥套、衬套、止推轴承部分、密封系统、锁紧系统等部分组成。油膜轴承有很多特点:承载能力大,抗冲击能力强;使用寿命长;速度范围宽;结构尺寸小;摩擦系数低。 1.油膜轴承的使用 以八钢公司板材连轧机使用的一种单止推拉杆装配、螺环机械锁紧的动-静压油膜轴承为例,介绍油膜轴承的组装及使用维护、注意事项。 (l)单止推装拉杆形式是在同一轧辊上装配的两个轴承座是不同的,一侧油膜轴承是带止推的轴承,而另一侧则是不带止推轴承的,两轴承座之间靠拉杆固定。带止推轴承的,是将轴承箱与轧辊固定,即轧辊与轴承箱在轧辊的轴向不发生移动。不带止推的轴承,即轧辊与轴承箱没有轴向约束,当轧辊受外界作用,比如受力、受冷、受热等作用而发生轴向长度变化时,锥套与衬套产生轴向相对位移。由于止推轴承的轴承箱与轧机牌坊相连,故当轧辊轴承受轴向力时,完全由止推轴承承受。 (2)油膜轴承座组装时,首先轴承座、油膜轴承锥套、衬套和辅助配件清洗,清洗时不得使用刮刀及磨料。利用翻转机将清洗后的轴承座翻转,使轴承座孔垂直,辊外侧(相对于辊身侧而言)开口向上。 (3)检查和清洁衬套,使用内径、外径千分尺检测衬套内外径尺寸,并做好记录,选择将要使用的承载区域,使用堵头将衬套非承载区域的静压油口堵塞,用洁净的压缩空气吹扫承载区域静压油路,并安装阻尼器和静压弯头,弯头应该与中心线平行。 (4)将轴承座内孔和衬套外径面涂抹润滑油,涂抹用油使用润滑系统同牌号油品。在起吊设备的辅助下,衬套的凸缘处有锥度孔与衬套吊装螺栓配合使用,进行衬套的吊装。安装过程中,须慢速、小心下降衬套使其装入轴承座,确认所选择的衬套承载区域与轴承座承载区域一致,同时在下降过程中旋转衬套,使衬套上的锁定孔与轴承座上的衬套锁定孔方相一致,装入密封及锁定销并固定到位。 (5)将静压软管、快换接头、连接接头及密封预先装配好,然后将静压软管穿过轴承座上的开孔,其一端与衬套静压弯头连接。快换接头安装后,必须低于轴承座表面1/8。 (6)检查锥套,将衬套的内表面和锥套的外表面涂抹润滑油,涂抹用油使用润滑系统同牌号油液。在锥套内安装锥套提升杆。锥套与衬套之间的间隙非常小,必须十分精细的安装。通常的安装方法是在将锥套装入衬套孔的过程中间断性地下降锥套,并测量从轴承座到锥套边部的周向四点,调整起重设备使四点测量值相同,然后将锥套缓慢落放到安装位置。当锥套装入衬套约一半时,旋转锥套使键槽在轴承座的水平中心线上方。 (7)将锥套压环涂抹润滑油并安装到锥套圆柱孔的位置,确认锥套环上的键安装到位和锥套环边部卡入锥套孔内。 (8)将止推轴承盒支撑在木垫块上并确认木垫块未接触内孔。将止推轴承盒内孔清洁和润滑涂油后,放入轴承座内。将止推轴承一外圈清洁和润滑涂油,并装入轴承盒孔内,对安装位置进行适当调整,双列圆锥滚子组清洁和润滑涂油后装入止推轴承盒内,注意使轴承外圈

液体动力润滑径向滑动轴承设计计算

液体动力润滑径向滑动轴承设计计算 流体动力润滑的楔效应承载机理已在第四章作过简要说明,本章将讨论流体动力润滑理论的基本方程(即雷诺方程)及其在液体动力润滑径向滑动轴承设计计算中的应用。 (一)流体动力润滑的基本方程 流体动力润滑理论的基本方程是流体膜压力分布的微分方程。它是从粘性流体动力学的基本方程出发,作了一些假设条件后得出的。 假设条件:流体为牛顿流体;流体膜中流体的流动是层流;忽略压力对流体粘度的影响;略去惯性力及重力的影响;认为流体不可压缩;流体膜中的压力沿膜厚方向不变。 图12-12中,两平板被润滑油隔开,设板A 沿x 轴方向以速度v 移动;另一板B 为静止。再假定油在两平板间沿 z 轴方向没有流动(可视此运动副在z 轴方向的尺寸为无限大)。现从层流运动的油膜中取一微单元体进行分析。 作用在此微单元体右面和左面的压力分别为p 及p p dx x ??? +???? ?, 作用在单元体上、下两面的切应力分别为τ及dy y τ τ???+????? 。根据x 方向的平衡条件,得: 整理后得 根据牛顿流体摩擦定律,得 ,代入上式得 该式表示了压力沿x 轴方向的变化与速度沿y 轴方向的变化关系。 下面进一步介绍流体动力润滑理论的基本方程。 1.油层的速度分布 将上式改写成 (a)

对y 积分后得 (c) 根据边界条件决定积分常数C1及C2: 当y=0时,v= V;y=h(h为相应于所取单元体处的油膜厚度)时,v=0,则得: 代入(c)式后,即得 (d) 由上可见,v由两部分组成:式中前一项表示速度呈线性分布,这是直接由剪切流引起的;后一项表示速度呈抛物线分布,这是由油流沿x方向的变化所产生的压力流所引起的。 2、润滑油流量 当无侧漏时,润滑油在单位时间内流经任意截面上单位宽度面积的流量为: 将式(d)代入式(e)并积分后,得 (f) 设在 p=p max处的油膜厚度为h0(即时 当润滑油连续流动时,各截面的流量相等,由此得 : 整理后得 该式为一维雷诺方程。它是计算流体动力润滑滑动轴承(简称流体动压轴承)的基本方程。可以看出,油膜压力的变化与润滑油的粘度、表面滑动速度和油膜厚度及其变化有关。经积分后可求出油膜的承载能力。由雷诺方程及图示的压力分布也可以看出,在h>h0段,速 度分布曲线呈凹形,,即压力沿x方向逐渐增大;而在h

第十二章 滑动轴承习题解答

第十二章 滑动轴承习题及参考解答 一、选择题(从给出的A 、B 、C 、D 中选一个答案) 1 验算滑动轴承最小油膜厚度h min 的目的是 。 A. 确定轴承是否能获得液体润滑 B. 控制轴承的发热量 C. 计算轴承内部的摩擦阻力 D. 控制轴承的压强P 2 在题5—2图所示的下列几种情况下,可能形成流体动力润滑的有 。 3 巴氏合金是用来制造 。 A. 单层金属轴瓦 B. 双层或多层金属轴瓦 C. 含油轴承轴瓦 D. 非金属轴瓦 4 在滑动轴承材料中, 通常只用作双金属轴瓦的表层材料。 A. 铸铁 B. 巴氏合金 C. 铸造锡磷青铜 D. 铸造黄铜 5 液体润滑动压径向轴承的偏心距e 随 而减小。 A. 轴颈转速n 的增加或载荷F 的增大 B. 轴颈转速n 的增加或载荷F 的减少 C. 轴颈转速n 的减少或载荷F 的减少 D. 轴颈转速n 的减少或载荷F 的增大 6 不完全液体润滑滑动轴承,验算 ][pv pv ≤是为了防止轴承 。 A. 过度磨损 B. 过热产生胶合 C. 产生塑性变形 D. 发生疲劳点蚀 7 设计液体动力润滑径向滑动轴承时,若发现最小油膜厚度h min 不够大,在下列改进设计的措施中,最有效的是 。 A. 减少轴承的宽径比d l / B. 增加供油量 C. 减少相对间隙ψ D. 增大偏心率χ 8 在 情况下,滑动轴承润滑油的粘度不应选得较高。 A. 重载 B. 高速 C. 工作温度高 D. 承受变载荷或振动冲击载荷

9 温度升高时,润滑油的粘度 。 A. 随之升高 B. 保持不变 C. 随之降低 D. 可能升高也可能降低 10 动压润滑滑动轴承能建立油压的条件中,不必要的条件是 。 A. 轴颈和轴承间构成楔形间隙 B. 充分供应润滑油 C. 轴颈和轴承表面之间有相对滑动 D. 润滑油温度不超过50℃ 11 运动粘度是动力粘度与同温度下润滑油 的比值。 A. 质量 B. 密度 C. 比重 D. 流速 12 润滑油的 ,又称绝对粘度。 A. 运动粘度 B. 动力粘度 C. 恩格尔粘度 D. 基本粘度 13 下列各种机械设备中, 只宜采用滑动轴承。 A. 中、小型减速器齿轮轴 B. 电动机转子 C. 铁道机车车辆轴 D. 大型水轮机主轴 14 两相对滑动的接触表面,依靠吸附油膜进行润滑的摩擦状态称为 。 A. 液体摩擦 B. 半液体摩擦 C. 混合摩擦 D. 边界摩擦 15 液体动力润滑径向滑动轴承最小油膜厚度的计算公式是 。 A. )1(min χψ-=d h B. )1(min χψ+=d h C. 2/)1(min χψ-=d h D. 2/)1(min χψ+=d h 16 在滑动轴承中,相对间隙ψ是一个重要的参数,它是 与公称直径之比。 A. 半径间隙r R -=δ B. 直径间隙d D -=? C. 最小油膜厚度h min D. 偏心率χ 17 在径向滑动轴承中,采用可倾瓦的目的在于 。 A. 便于装配 B. 使轴承具有自动调位能力 C. 提高轴承的稳定性 D. 增加润滑油流量,降低温升 18 采用三油楔或多油楔滑动轴承的目的在于 。 A. 提高承载能力 B. 增加润滑油油量 C. 提高轴承的稳定性 D. 减少摩擦发热 19 在不完全液体润滑滑动轴承中,限制 pv 值的主要目的是防止轴承 。 A. 过度发热而胶合 B. 过度磨损 C. 产生塑性变形 D. 产生咬死 20 下述材料中, 是轴承合金(巴氏合金)。 A. 20CrMnTi B. 38CrMnMo C. ZSnSb11Cu6 D. ZCuSn10P1 21 与滚动轴承相比较,下述各点中, 不能作为滑动轴承的优点。 A. 径向尺寸小 B. 间隙小,旋转精度高 C. 运转平稳,噪声低 D. 可用于高速情况下 22 径向滑动轴承的直径增大1倍,长径比不变,载荷不变,则轴承的压强 p 变为原来的 倍。 A. 2 B. 1/2 C. 1/4 D. 4 23 径向滑动轴承的直径增大1倍,长径比不变,载荷及转速不变,则轴承的pv 值为原来的 倍。 A. 2 B. 1/2 C. 4 D. 1/4

油膜轴承润滑说明

油膜轴承润滑系统 一、概述 油膜轴承亦称液体摩擦轴承和理想滑动轴承,是现代化轧机关键核心部件之一。随着科学技术的不断发展,用户对轧制产品的质量要求越来越高,尤其对薄板精度要求更是苛刻,轧制速度也趋增快,如高速线材已超过100m/s级。因油膜轴承具有承载能力大(比滚动轴承大3倍以上)、使用寿命长(理论寿命为10~15年)、速度范围宽、抗冲击能力强等特点,因此在轧制行业的应用越来越广,同时对与之相配套的油膜轴承稀油润滑系统提出了更高的要求。 因油膜轴承是利用流体的动压润滑原理,即靠轴与轴承元件的相对运动,借助于润滑油的粘性和油在轴承副中的楔型间隙形成的流体动压作用,而形成承载油膜的轴承,因此油品、油质、温度、压力对其油膜的形成是非常重要的,油膜轴承润滑系统必须能对油质、油温、油压进行全面、准确的控制。 而原始的稀油润滑站对油质、压力、温度及其它方面的控制方式已无法满足这种快速发展的需要。 随着科学技术的发展,润滑元件及控制元件正在不断的更新换代,各种先进的控制方式也不断的出现, 近几年在为2800粗轧机油膜轴承润滑系统、3500中厚板轧机油膜轴承润滑系统、1780热轧带钢精轧机油膜轴承润滑系统等设备中应用了很多新技术和先进的控制方式,解决了轧机油膜轴承对润滑的要求,满足了日趋苛刻的工况条件。适应了钢铁企业高速、重载、自动化、大型化和高产的需要。 二、工作原理与结构特点 1、油品清洁度控制 采用各种措施防止铁屑、杂质、空气、泡沫、水分进入系统,并保证油品精度。

2 、系统油温的控制 一般采用闭环控制,控制精度高。 3 、系统工作压力的控制 一般采用闭环控制,控制精度高。 4、事故保险 保证系统在紧急停机的过程中不会因润滑系统供油不足而损坏主机的油膜轴承。 5、电气控制系统 配有全套测控仪表和电控柜,运行中连锁控制、出故障自动报警可确保润滑系统安全、连续、自动可靠地运行。

滑动轴承润滑分类和选择

滑动轴承润滑分类和选择 滑动压滑动轴承的分类 动压滑动轴承是滑动轴承中应用最广泛的一类,包括液体(油与非油润滑介质)与气体动压润滑两种类型。油润滑动压轴承,包括有单油楔(整体式)、双油楔、多油楔(整体或可倾瓦式)、阶梯面等多种类型,润滑特点各有不同。一般要求在回转时产生动压效应,主轴与轴承的间隔较小(高精度机床要求达到1~3μm),有较高的刚度,温升较低等。 滑动轴承润滑剂的选择 滑动轴承一般使用普通矿物润滑油和润滑脂作为润滑剂,在特殊情况下(如高温系统),可选用合成油、水和其它液体。在选择滑动轴承润滑油时应考虑的主要因素 (1)载荷 根据一般规律,重载荷应采用较高粘度的油,轻载荷采用低粘度的油,为了衡量滑动轴承负荷的大小,一般以轴承单位面积所承受的载荷大小来定。 (2)速度 主轴线速度高低是选择润滑油粘度的重要因素。根据油楔形成的理论,高速时,主轴与轴承之间的润滑处于液体润滑的范围,必须采用低粘度的油以降低内摩擦:低速时,处于边界润滑的范围,必须采用高粘度的油。 (3)主轴与轴承间隙 主轴与轴承之间的间隙取决于工作温度、载荷、最小油膜厚度、摩擦损失、轴与轴承的偏心度、轴与轴承的表面粗糙度的要求。间隙小的轴承要求采用低粘度油,间隙大的采用高粘度油。

(4)轴承温度对于普通滑动轴承 影响轴承温度的最重要的性质是润滑剂的粘度。粘度太低,轴承的承载能力不够,粘度太高,功率损耗和运转温度将会不必要地过高。矿物油的粘度随温度升高而降低。润滑脂的性能在很大和程度上决定于在其配制过程中基油的粘度和稠化剂的种类。 (5)轴承结构 载荷、速度、间隙、速度、温度、轴承结构等并不是单一影响因素,在选择滑动轴承润滑油时,要综合考虑这些因素的影响。

相关文档
最新文档