【函数解析式】的七种求法

【函数解析式】的七种求法
【函数解析式】的七种求法

函 数 解 析 式 的 七 种 求 法

一、 待定系数法:在已知函数解析式的构造时,可用待定系数法。

例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 解:设b

ax x f +=)( )0(≠a ,则

b

ab x a b b ax a b x af x f f ++=++=+=2

)()()]([

∴???=+=342b ab a ∴?????

?=-===32

1

2b a b a 或 32)(12)(+-=+=∴x x f x x f 或

三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定

义域的变化。

例3 已知x x x f 2)1(+=+,求)1(+x f 解:令1+=

x t ,则1≥t ,2)1(-=t x x x x f 2)1(+=+∴,1)1(2)1()(22-=-+-=t t t t f

1)(2

-=∴x x f )1(≥x x x x x f 21)1()1(2

2

+=-+=+∴ )0(≥x

四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。

例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式 解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点

则??

???=+'-=+'3222y y x

x ,解得:???-='--='y y x x 64 , 点),(y x M '''在)(x g y =上 x x y '+'='∴2

把???-='--='y

y x x 64代入得:)4()4(62--+--=-x x y 整理得672---=x x y ∴67)(2

---=x x x g 五例5 设,)1

(2)()(x x

f x f x f =-满足求)(x f

解 x x

f x f =-)1

(2)( ① 显然,0≠x 将x 换成

x

1,得:x

x f x

f 1)(2)1(=

- ②

解① ②联立的方程组,得:x

x x f 323

)(--=

例6 设)(x f 为偶函数,)(x g 为奇函数,又,1

1)()(-=+x x g x f 试求)()(x g x f 和的解析式

解 )(x f 为偶函数,)(x g 为奇函数,)()(),()(x g x g x f x f -=-=-∴ 又1

1)()(-=

+x x g x f ① ,

用x -替换x 得:11)()(+-

=-+-x x g x f 即1

1)()(+-

=-x x g x f ②

解① ②联立的方程组,得 1

1

)(2

-=

x x f , x

x x g -=2

1)(

六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体

化、简单化,从而求得解析式。

例7 已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f

解 对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,

不妨令0x =,则有1)1(1)1()0()(2+-=-+=+--=-y y y y y y f y f 再令 x y =- 得函数解析式为:1)(2++=x x x f

七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得

函数解析式。

例8 设)(x f 是定义在+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有ab b a f b f a f -+=+)()()(,求)(x f 解 +∈-+=+N b a ab b a f b f a f ,)()()(,,∴不妨令1,==b x a ,得:x x f f x f -+=+)1()1()(, 又1)()1(,1)1(+=-+=x x f x f f 故 ① 分别令①式中的1,21x n =- 得:

<1,t <0),则x =a t .因此f (t )=

1

2

-a a (a t -a -t )∴f (x )=

1

2

-a a (a x -a -x )(a >1,x >0;0

(2)由f (1)=a +b +c ,f (-1)=a -b +c ,f (0)=c

得并且f (1)、f (-1)、f (0)不能同时等于1或-1,所以所求函数为:f (x )=2x 2-1或f (x )=-2x 2+1或f (x )=-x 2-x +1或f (x )=x 2-x -1或f (x )=-x 2+x +1或f (x )=x 2+x -1.

)=-x +2

综上可知:f (x )=??

?

??≥+-<<---≤+1,211,21

,12x x x x x x 作图由读者来完成.

,设x 表示P 点的行程,f (x )表示P A 的长,g (x )表示△ABP 的面积,求f (x )和g (x ),并作出g (x )的简图.

.∴f [f (x )]=334434--?-?

x mx x mx

m =x ,整理比较系数得m =3.答案:A

2.解析:利用数形结合,x ≤1时,f (x )=(x +1)2-1的对称轴为x =-1,最小值为-1,又y =f (x )关于x =1对称,故在x >1上,f (x )的对称轴为x =3且最小值为-1.答案:B

二、3.解析:由f (x )+2f (x

1

)=3x 知f (x

1

)+2f (x )=3x

1

.由上面两式联立消去f (x

1

)可得f (x )=x

2

-x .

答案:f (x )= x

2

-x 4.解析:∵f (x )=ax 2+bx +c ,f (0)=0,可知c =0.又f (x +1)=f (x )+x +1,

t 2

)·(2-t 2

)≤(

3

2222

22t

t t -+-+)3=

27

64,当且仅当2t 2=2-t 2,即t =

3

6时取等号.∴S 2≤

27

864?即S ≤

9

6

16,

∴S max =96

16.

7.解:(1)如原题图,当P 在AB 上运动时,P A =x ;当P 点在BC 上运动时,由Rt △ABD 可得P A =2

)

1(1-+x ;

当P 点在CD 上运动时,由Rt △ADP 易得P A =

2

)

3(1x -+;当P 点在DA 上运动时,P A =4-x ,故f (x )的表达

如原题图,当P 在线段AB 上时,△ABP 的面积S =0;当P 在BC 上时,即1<x ≤2时,S △ABP =2

1

AB ·BP =2

1

(x -1);当P 在CD 上时,即2<x ≤3时,S △AB P =2

1

·1·1=2

1

;当P 在DA 上时,即3<x ≤4时,S △ABP =2

1(4

-x ).

故g (x )=???

????????≤<-≤<≤<-≤≤)43( )4(2

1)32( 21

)21( )1(2

1

)

10( 0x x x x x x 8.(1)证明:∵y =f (x )是以5为周期的周期函数,∴f (4)=f (4-5)=f (-1),又y =f (x )(-1≤x ≤1)是奇函数,∴f (1)=-f (-1)=-f (4),∴f (1)+f (4)=0.

(2)解:当x ∈[1,4]时,由题意,可设f (x )=a (x -2)2-5(a ≠0),由f (1)+f (4)=0得a (1-2)2-5+a (4-2)2-5=0,解得a =2,∴f (x )=2(x -2)2-5(1≤x ≤4).

(3)解:∵y =f (x )(-1≤x ≤1)是奇函数,∴f (0)=-f (-0),∴f (0)=0,又y =f (x ) (0≤x ≤1)是一次函数,∴可设f (x )=kx (0≤x ≤1),∵f (1)=2(1-2)2-5=-3,又f (1)=k ·1=k ,∴k =-3.∴当0≤x ≤1时,f (x ) =-3x ,当-1≤x <0时,f (x )=-3x ,当4≤x ≤6时,-1≤x -5≤1,∴f (x )=f (x -5)=

-3(x -5)=-3x +15, 当6<x ≤9时,1<x -5≤4,f (x )=f (x -5)=2[(x -5)-2]2-5=2(x -7)2-5.∴

f (x )=?

??≤<--≤≤+-)96( 5)7(2)

64( 1532

x x x x .

高中数学函数解析式求法

函数解析式的表示形式及五种确定方式 函数的解析式是函数的最常用的一种表示方法,本文重点研究函数的解析式的表达形式与解析式的求法。 一、解析式的表达形式 解析式的表达形式有一般式、分段式、复合式等。 1、一般式是大部分函数的表达形式,例 一次函数:b kx y += )0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y = )0(≠k 2、分段式 若函数在定义域的不同子集上对应法则不同,可用n 个式子来表示函数,这种形式的函数叫做分段函数。 例1、设函数(]() ???+∞∈∞-∈=-,1,log 1,,2)(81x x x x f x ,则满足41)(=x f 的x 的值为 。 解:当(]1,∞-∈x 时,由4 12= -x 得,2=x ,与1≤x 矛盾; 当()+∞∈,1x 时,由4 1log 81=x 得,3=x 。 ∴ 3=x 3、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例2、已知3)(,12)(2 +=+=x x g x x f ,则[]=)(x g f ,[]=)(x f g 。 解:[]721)3(21)(2)(2 2+=++=+=x x x g x g f [][]4443)12(3)()(222 ++=++=+=x x x x f x f g 二、解析式的求法 根据已知条件求函数的解析式,常用待定系数法、换元法、配凑法、赋值(式)法、方程法等。 1待定系数法 若已知函数为某种基本函数,可设出解析式的表达形式的一般式,再利用已知条件求出系数。

函数解析式的七种求法(讲解)之令狐文艳创作

函数解析式的七种求法 令狐文艳 一、待定系数法:在已知函数解析式的构造时,可用待定系数法。 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求 )(x f 解:设b ax x f +=)()0(≠a ,则 二、配凑法:已知复合函数 [()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时, 常用配凑法。但要注意所求函数 ()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 例2已知221)1(x x x x f +=+)0(>x ,求 ()f x 的解析式。 解:2)1()1(2-+=+x x x x f , 21≥+x x 三、换元法:已知复合函数 [()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。

例3已知 x x x f 2)1(+=+,求)1(+x f 解:令1+=x t ,则1≥t ,2)1(-=t x 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一 般用代入法。 例4已知:函数 )(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式。 解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点 )3,2(-的对称点 则?????=+'-=+'322 2y y x x ,解得:???-='--='y y x x 64, 点),(y x M '''在)(x g y =上 把???-='--='y y x x 64代入得: 整理得 672---=x x y 五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。 例5设,)1(2)()(x x f x f x f =-满足求 )(x f 解 x x f x f =-)1(2)(① 显然,0≠x 将x 换成x 1 ,得:

求函数解析式常用的方法

求函数解析式常用的方法 求函数解析式常用的方法有:待定系数法、换元法、配凑法、消元法、特殊值法。 以下主要从这几个方面来分析。 (一)待定系数法 待定系数法是求函数解析式的常用方法之一,它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目,它在函数解析式的确定中扮演着十分重要的角色。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。 例1:已知()f x 是二次函数,若(0)0,f =且(1)()1f x f x x +=++试求()f x 的表达式。 解析:设2()f x ax bx c =++ (a ≠0) 由(0)0,f =得c=0 由(1)()1f x f x x +=++ 得 22(1)(1)1a x b x c ax bx c x ++++=++++ 整理得22(2)()1ax a b x a b c ax b c x c +++++=++++ 得 212211120011()22 a a b b a b c c b c c f x x x ?=?+=+????++=+?=????=?=??? ∴=+ 小结:我们只要明确所求函数解析式的类型,便可设出其函数解析式,设法求出其系数即可得到结果。类似的已知f(x)为一次函数时,可设f(x)=ax+b(a≠0);f(x)为反比例函数时,可设f(x)= k x (k≠0);f(x)为

二次函数时,根据条件可设①一般式:f(x)=ax2+bx+c(a≠0) ②顶点式:f(x)=a(x-h)2+k(a≠0) ③双根式:f(x)=a(x-x1)(x-x2)(a≠0) (二)换元法 换元法也是求函数解析式的常用方法之一,它主要用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表示的问题。它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。 例2 :已知1)1,f x =+求()f x 的解析式。 解析: 1视为t ,那左边就是一个关于t 的函数()f t , 1t =中,用t 表示x ,将右边化为t 的表达式,问题即可解决。 1t = 2220 1 ()(1)2(1)1()(1)x t f t t t t f x x x ≥∴≥∴=-+-+=∴=≥ 小结:①已知f[g(x)]是关于x 的函数,即f[g(x)]=F(x),求f(x)的解析式,通常令g(x)=t ,由此能解出x=(t),将x=(t)代入f[g(x)]=F(x)中,求得f(t)的解析式,再用x 替换t ,便得f(x)的解析式。 注意:换元后要确定新元t 的取值范围。 ②换元法就是通过引入一个或几个新的变量来替换原来的某些变量的解题方法,它的基本功能是:化难为易、化繁为简,以快速实现未知向已知的转换,从而达到顺利解题的目的。常见的换元法是多种多样的,如局部换元、整体换元、三角换元、分母换元等,它的应用极为广泛。 (三)配凑法 已知复合函数[()]f g x 的表达式,要求()f x 的解析式时,若[()]f g x 表达式右边易配成()g x 的运算形式,则可用配凑法,使用

高考求函数解析式方法及例题

高考求函数解析式方法 及例题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

函数专题之解析式问题 求函数解析式的方法 把两个变量的函数关系,用一个等式来表示,这个等式叫函数的解析式,简称解析式。 求函数解析式的题型有: (1)已知函数类型,求函数的解析式:待定系数法; (2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法; (3)已知函数图像,求函数解析式; (4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式:解方程组法; (5)应用题求函数解析式常用方法有待定系数法等。 ,求f(x)的解, 待定系数法 ()f x 22(2)f x -=(2)f x --设二次函数满足且图象在轴上的截距为1,在轴截得的线段长为,求的解析式。 x y ()f x 例题:

解法一、 1222x x a ? -= =2248b ac a ∴-=21 ()21 2f x x x ∴=++1 c =又1 ,2,12a b c = ==解得2 ()(0)f x ax bx c a =++≠设(2)(2)f x f x -=--由40 a b -=得 解法二、 (0)1f =41 a k ∴+=12 22x x -=222k a -∴=1 ,12 a k ∴= =-22 1 ()(2)121212 f x x x x ∴= +-=++()y f x =2 x =-得的对称轴为 (2)(2)f x f x -=--由∴2()(2)f x a x k =++设 二 【换元法】(注意新元的取值范围) 已知))((x g f 的表达式,欲求)(x f ,我们常设)(x g t =,从而求得)(1t g x -=,然后代入 ))((x g f 的表达式,从而得到)(t f 的表达式,即为)(x f 的表达式。 三【配凑法(整体代换法)】 若已知))((x g f 的表达式,欲求)(x f 的表达式,用换元法有困难时,(如)(x g 不存在反函数)可把)(x g 看成一个整体,把右边变为由)(x g 组成的式子,再换元求出)(x f 的式子。

浅议函数解析式的几种求法

浅议函数解析式的几种求法 一、 待定系数法:在已知函数解析式的构造时,可用待定系数法。 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 解:设b ax x f +=)( )0(≠a ,则 b ab x a b b ax a b x af x f f ++=++=+=2)()()]([ ∴???=+=342b ab a ∴? ?????=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或 二、 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 例2 已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式 解:2)1()1(2-+=+x x x x f , 21≥+x x 2)(2-=∴x x f )2(≥x 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例3 已知x x x f 2)1(+=+,求)1(+x f 解:令1+=x t ,则1≥t ,2)1(-=t x x x x f 2)1(+=+ ∴,1)1(2)1()(22-=-+-=t t t t f 1)(2-=∴x x f )1(≥x x x x x f 21)1()1(22+=-+=+∴ )0(≥x 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。 例4已知:函数)(2 x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式

经典函数解析式求法

求函数定义域的方法 一.已知函数解析式求函数的定义域 如果只给出函数解析式(不注明定义域),其定义域是指使函数解析式有意义的自变量的取值范围(称为自然定义域),这时常通过解不等式或不等式组求得函数的定义域。主要依据是:(1)分式的分母不为零,(2)偶次根式的被开方数为非负数,(3)零次幂的底数不为零,(4)对数的真数大于零,(5)指数函数和对数函数的底数大于零且不等于1,(6)三角函数中的正切函数y=tanx ,{x ︱x ∈R 且 x ≠2 k ππ+, k ∈z } 例1 求下列函数的定义域: (1) y=2)0+㏒(x —2)x 2 解:(1)欲使函数有意义,须满足 2≠0 x —1≥0 x —2>0 解得:x >2 且 x ≠3 ,x ≠5 x —2≠1 ∴ 函数的定义域为(2,3)∪(3,5)∪(5,+∞) x ≠0 二. 复合函数求定义域 求复合函数定义域应按从外向内逐层求解的方法。最外层的函数的定义域为次外层函数的值域,依次求,直到最内层函数定义域为止。多个复合函数的求和问题,是将每个复合函数定义域求出后取其交集。 例2 (1)已知函数f (x )的定义域为〔-2,2〕,求函数y=f (x 2-1)的定义域。 (2)已知函数y=f (2x+4)的定义域为〔0,1〕,求函数f (x )的定义域。 (3)已知函数f (x )的定义域为〔-1,2〕,求函数y=f (x+1)—f (x 2-1)的定义域。 分析:(1)是已知f (x )的定义域,求f 〔g (x )〕的定义域。其解法是:已知f (x )的定义域为〔a ,b 〕,求f 〔g (x )〕的定义域是解a ≤g (x )≤b ,即得所求的定义域。 (2)是已知f 〔g (x )〕的定义域,求f (x )的定义域。其解法是:已知f 〔g (x )〕的定义域为〔a ,b 〕,求f (x )的定义域的方法为:由a ≤x ≤b ,求g (x )的值域,即得f (x )的定义域。 解:(1)令-2≤X 2—1≤2 得-1≤X 2≤3,即 0≤X 2≤3,从而 x ∴函数y=f (x 2-1)的定义域为〔。 (2)∵y=f (2x+4)的定义域为〔0,1〕,指在y=f (2x+4)中x ∈〔0,1〕,令t=2x+4, x ∈〔0,1〕,则t ∈〔4,6〕,即在f (t )中,t ∈〔4,6〕∴f (x )的定义域为〔4,6〕。 (3)由 -1≤x +1≤2 -1≤X 2—1≤2 得 x ≤1

一元二次函数解析式的8种求法

二次函数解析式的8 种求法 二次函数的解析式的求法是数学教学的难点,学不易掌握.他的基本思想方法是待定系数法,根据题目给出的具体条件,设出不同形式的解析式,找出满足解析式的点,求出相应的系数.下面就不同形式的二次函数解析式的求法归纳如下,和大家共勉: 一、定义型: 此类题目是根据二次函数的定义来解题,必须满足二个条件:1、a ≠0;2、x 的最 高次数为 2 次. 例1、若y =( m2+ m )x m2 –2m 1是二次函数,则m = . 2 解:由m + m≠0得:m ≠0,且m ≠-1 2 由m2–2m –1 = 2 得m =-1 或m =3 ∴ m = 3 . 二、开放型此类题目只给出一个条件,只需写出满足此条件的解析式,所以他的答案并不 唯一. 例2、(1)经过点A(0,3)的抛物线的解析式是. 分析:根据给出的条件,点 A 在y 轴上,所以这道题只需满足y a 2b c中的C=3,且a≠0即可∴ y 2 3 (注:答案不唯一) 三、平移型:将一个二次函数的图像经过上下左右的平移得到一个新的抛物线.要借此类题目,应先将已知函数的解析是写成顶点式y = a( x –h)2 + k,当图像向左(右)平移n 个单位时,就在x –h 上加上(减去)n;当图像向上(下)平移m 个单位时,就在k 上加上(减去)m.其平移的规律是:h 值正、负,右、左移;k 值正负,上下移.由于经过平移的图像形状、大小和开口方向都没有改变,所以 a 得值不变. 1 2 5 1 2 例3、二次函数y 23 的图像是由y 2的图像先向平移 2 2 2 个单位,再向平移个单位得到的. 1 5 1 2

二次函数解析式的8种求法

二次函数解析式的8种求法 河北 高顺利 二次函数的解析式的求法是数学教学的难点,学不易掌握.他的基本思想方法是待定系数法,根据题目给出的具体条件,设出不同形式的解析式,找出满足解析式的点,求出相应的系数.下面就不同形式的二次函数解析式的求法归纳如下,和大家共勉: 一、定义型: 此类题目是根据二次函数的定义来解题,必须满足二个条件:1、a ≠0; 2、x 的最高次数为2次. 例1、若 y =( m 2+ m )x m 2 – 2m -1是二次函数,则m = . 解:由m 2+ m ≠0得:m ≠0,且 m ≠- 1 由m 2–2m –1 = 2得m =-1 或m =3 ∴ m = 3 . 二、开放型 此类题目只给出一个条件,只需写出满足此条件的解析式,所以他的答案并不唯一. 例2、(1)经过点A (0,3)的抛物线的解析式是 . 分析:根据给出的条件,点A 在y 轴上,所以这道题只需满足c b a y ++=χχ2 中的C =3,且a ≠0即可∴32++=χχy (注:答案不唯一) 三、平移型: 将一个二次函数的图像经过上下左右的平移得到一个新的抛物线.要借此类题目,应先将已知函数的解析是写成顶点式y = a ( x – h )2 + k ,当图像向左(右)平移n 个单位时,就在x – h 上加上(减去)n ;当图像向上(下)平移m 个单位时,就在k 上加上(减去)m .其平移的规律是:h 值正、负,右、左移;k 值正负,上下移.由于经过平移的图像形状、大小和开口方向都没有改变,所以a 得值不变.

例3、二次函数 253212++=χχy 的图像是由22 1χ=y 的图像先向 平移 个 单位,再向 平移 个单位得到的. 解: 253212++= χχy = ()232 12-+χ, ∴二次函数 253212++=χχy 的图像是由221χ=y 的图像先向左平移3个单位,再向下平移2个单位得到的. 这两类题目多出现在选择题或是填空题目中 四、一般式 当题目给出函数图像上的三个点时,设为一般式c b a y ++=χχ2 ,转化成一个三元一次方程组,以求得a ,b ,c 的值; 五、顶点式 若已知抛物线的顶点或对称轴、极值,则设为顶点式()k h x a y +-=2.这顶点坐标为( h ,k ),对称轴方程x = h ,极值为当x = h 时,y 极值=k 来求出相应的系数; 六、两根式 已知图像与 x 轴交于不同的两点()()1200x x ,,, ,设二次函数的解析式为()()21x x x x a y --=,根据题目条件求出a 的值. 例4、根据下面的条件,求二次函数的解析式: 1.图像经过(1,-4),(-1,0),(-2,5) 2.图象顶点是(-2,3),且过(-1,5) 3.图像与x 轴交于(-2,0),(4,0)两点,且过(1,- 29) 解:1、设二次函数的解析式为:c b a ++=χχγ2,依题意得: 40542a b c a b c a b c -=++??=-+??=-+? 解得:?? ???-=-==321c b a

求函数解析式的六种常用方法

求函数解析式的九种常用方法 一、换元法 已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式, 把g (x )看成一个整体t ,进行换元,从而求出f (x )的方法。 例1 已知f (x x 1 +)= x x x 112 2++,求f (x )的解析式. 解: 设 x x 1+= t ,则 x= 1 1-t (t ≠1), ∴f (t )= 1 11)11(1 )11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2 -x+1 (x ≠1). 评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域. 二、配凑法 例2 已知f (x +1)= x+2x ,求f (x )的解析式. 解: f (x +1)= 2 )(x +2x +1-1=2)1(+x -1, ∴ f (x +1)= 2 )1(+x -1 (x +1≥1),将x +1视为自变量x ,则有 f (x )= x 2 -1 (x ≥1). 评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错. 三、待定系数法 已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程,从而求出函数解析式的方法。 例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2 +bx+c ,则 f (0)= c= 0 ①

f (x+1)= a 2)1(+x +b (x+1)= ax 2 +(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ???=++=+822b a b b a 解得 ?? ?==. 7,1b a 故f (x )= x 2 +7x. 评注: 已知函数类型,常用待定系数法求函数解析式. 四、消去法(方程组法) 例4 设函数f (x )满足f (x )+2 f ( x 1 )= x (x ≠0),求f (x )函数解析式. 分析:欲求f (x ),必须消去已知中的f (x 1),若用x 1 去代替已知中x ,便可得到另一个方程,联立方 程组求解即可. 解:∵ f (x )+2 f ( x 1 )= x (x ≠0) ① 由x 1代入得 2f (x )+f (x 1)=x 1 (x ≠0) ② 解 ①② 构成的方程组,得 f (x )=x 32 -3 x (x ≠0). 评注:方程组法求解析式的关键是根据已知方程中式子的特点,构造另一个方程 练习:已知定义在R 上的函数满足 ,求 的解析式。 五、特殊值法 例5 设是定义在R 上的函数,且满足f (0)=1,并且对任意的实数x ,y ,有 f (x -y )= f (x )- y (2x -y+1),求f (x )函数解析式. 分析:要f (0)=1,x ,y 是任意的实数及f (x -y )= f (x )- y (2x -y+1),得到 f (x )函数解析式,只有令x = y. 解: 令x = y ,由f (x -y )= f (x )- y (2x -y+1) 得 f (0)= f (x )- x (2x -x+1),整理得 f (x )= x 2+x+1.

函数解析式求法总结及练习题

2[()]()()f f x af x b a ax b b a x ab b =+=++=++函 数 解 析 式 的 七 种 求 法 一、 待定系数法:在已知函数解析式的构造时,可用待定系数法. 它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f . 解:设b ax x f +=)()0(≠a ,则 ∴?? ? =+=3 42b ab a , ∴????? ?=-===3 2 1 2b a b a 或 . 32)(12)(+-=+=∴x x f x x f 或 . 二、配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法.但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域. 例2 已知221 )1(x x x x f + =+ )0(>x ,求 ()f x 的解析式. 解:2)1()1(2-+=+x x x x f , 21≥+x x , 2)(2-=∴x x f )2(≥x . 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解 析式.用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表 示的问题。它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。 例3 已知x x x f 2)1(+=+,求)1(+x f . 解:令1+=x t ,则1≥t ,2)1(-=t x . x x x f 2)1(+=+, ∴,1)1(2)1()(22-=-+-=t t t t f 1)(2-=∴x x f )1(≥x , x x x x f 21)1()1(22+=-+=+∴ )0(≥x . 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法. 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式. 解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点. 则 ?????=+'-=+'32 22y y x x ,解得:???-='--='y y x x 64 , 点),(y x M '''在)(x g y =上 , x x y '+'='∴2. 把???-='--='y y x x 64代入得:)4()4(62--+--=-x x y . 整理得672---=x x y , ∴67)(2---=x x x g . 五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置

求函数解析式的方法

求函数的解析式的方法 求函数的解析式是函数的常见问题,也是高考的常规题型之一,方法众多,下面对一些常用的方法一一辨析. 一.换元法:已知f (g(x)),求f(x)的解析式,一般的可用换元法,具体为:令t=g(x),在求出f(t)可得f (x )的解析式。换元后要确定新元t 的取值范围。 例题1.已知f(3x+1)=4x+3, 求f(x)的解析式. 令t=3x+1, x= 31-t 3 54)(3314)(-=?+-?=?t t f t t f 练习1.若x x x f -=1)1(,求)(x f . 二.配凑法:把形如f(g(x))内的g(x)当做整体,在解析式的右端整理成只含有g(x)的形式,再把g(x)用x 代替。 一般的利用完全平方公式。 例题2.已知221)1(x x x x f +=-, 求)(x f 的解析式. 练习2.若x x x f 2)1(+=+,求)(x f . 三.待定系数法:已知函数模型(如:一次函数,二次函数,指数函数等)求解析式,首先设出函数解析式,根据已知条件代入求系数 例题3.设)(x f 是一元二次函数, )(2)(x f x g x ?=,且212)()1(x x g x g x ?=-++, 求)(x f 与)(x g . 解;设c bx ax x f =+=2)(,则g(x)=2x (ax 2+bx+c) 练习3.设二次函数)(x f 满足)2()2(--=-x f x f ,且图象在y 轴上截距为1,在x 轴上截得的线段长为22,求)(x f 的表达式. 四.解方程组法:求抽象函数的解析式,往往通过变换变量构造一个方程,组成方程组,利用消元法求f (x )的解析式 例题4.设函数)(x f 是定义(-∞,0)∪(0,+ ∞)在上的函数,且满足关系式 x x f x f 4)1(2)(3=+,求)(x f 的解析式. 解;令x x 1=,x x f x f 14)(2)1(3?=+ 联立方程,得: ??? ????=+=+x x f x f x x f x f 4)(2)1(34)1(2)(3 , 解得x x x f 58512)(-= 练习4.若x x x f x f +=-+1)1()(,求)(x f . 五.利用给定的特性求解析式:一般为已知x>0时, f(x)的解析式,求x<0时,f(x)的解析式。首先求出f(-x)的解析式,根据f (x )=f(-x)或f(x)=-f(-x)求得f(x) 例题5设)(x f 是偶函数,当x >0时, x e x e x f +?=2)(,求当x <0时,)(x f 的表 达式. 由x>0时,x e x e x f +?=2)(,则x x e ex e x e x f --+=+-?=-22)()(

八年级数学 一次函数解析式求法及答案详解

一次函数解析式求法 1.已知52)2(--+=m m x m y 是正比例函数,若A(a,10)在此直线上,求a 的值. 2.已知直线经过原点及另一点A(-2,4),求此直线解析式。 3.已知y 与2x-1成正比例,当x=-1时,y=9,求y 与x 的函数关系式. 4.已知2y-1与3-4x 成正比例,当x=2时,y=-7,求y 与x 的函数关系式.

5.已知y=y1+y2,y1与x2成正比例,y2与x-3成正比例,当x=1时,y=-4;当x=-3时,y= 6.求y与x的函数关系式. 6.如图,已知菱形ABCD在平面直角坐标系中,B(6,2),C(12,6). (1)求D点坐标及菱形ABCD的面积; (2)若直线y=kx始终与线段CD有交点,求k的取值范围. 7.已知直线与坐标轴交于A、B两点,A(-4,0),已知△OAB的面积为12,求直线AB的解析式.

8.已知直线AB,当-2≤x≤4时,函数值y的取值范围为-1≤x≤8,求直线AB的解析式. 9.如图,已知矩形OABC在坐标系中,A(10,0),C(0,6),E在AB上,连接CE,将△BCE沿CE折叠,使B点落在OA的F点处. (1)求F点及E点坐标; (2)求直线CE解析式.

10.已知直线经过点)2321(, A 和点B(1,6). (1)求直线AB 的解析式; (2)求直线AB 与x 轴、y 轴的交点坐标C 和D,并求CD 的长; (3)若点E 在y 轴上,当C 、D 、E 三点围成的三角形是等腰三角形,求满足条件的E 点坐标. 11.如图,直线y=kx+6与x 轴、y 轴分别交于点E,F.点E 的坐标为(-8,0),点A 的坐标为(-6,0). (1)求k 的值; (2)若点P(x,y)是第二象限内的直线上的一个动点.当点P 运动过程中,试写出△OPA 的面积S 与x 的函数关系式,并写出自变量x 的取值范围; (3)探究:当P 运动到什么位置时,△OPA 的面积为8 27,并说明理由.

函数解析式的七种求法(讲解)

函 数 解 析 式 的 七 种 求 法 一、待定系数法:在已知函数解析式的构造时,可用待定系数法。 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求 )(x f 解:设b ax x f +=)( )0(≠a ,则 b ab x a b b ax a b x af x f f ++=++=+=2)()()]([ ∴???=+=342b ab a ∴??????=-===32 12b a b a 或 32)(12)(+-=+=∴x x f x x f 或

求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 例2 已知 221)1(x x x x f +=+ )0(>x ,求 ()f x 的 解析式。 解:2)1()1(2-+=+x x x x f , 21≥+x x 2)(2-=∴x x f )2(≥x

时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例3 已知x x x f 2)1(+=+,求)1(+x f 解:令1+=x t ,则1≥t ,2)1(-=t x x x x f 2)1(+=+ ∴,1)1(2)1()(22-=-+-=t t t t f 1)(2-=∴x x f )1(≥x x x x x f 21)1()1(22+=-+=+∴ )0(≥x

四、代入法:求已知函数关于某点或者某条直 线的对称函数时,一般用代入法。 例4已知:函数 )(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式。 解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点 则?????=+'-=+'32 22y y x x ,解得:???-='--='y y x x 64 , 点),(y x M '''在)(x g y =上 x x y '+'='∴2 把? ??-='--='y y x x 64代入得: )4()4(62--+--=-x x y 整理得672---=x x y ∴67)(2---=x x x g

函数解析式的求法高中

函数解析式的七种求法 一、待定系数法:在已知函数解析式的构造时,可用待定系数法。 例1 设f (x ) 是一次函数,且f [f (x )]=4x +3,求f (x ) 解:设f (x ) =ax +b (a ≠0) ,则 f [f (x )]=af (x ) +b =a (ax +b ) +b =a 2x +ab +b ?a =2?a 2=4?a =-2或∴?∴??b =1b =3ab +b =3??? ∴f (x ) =2x +1或 f (x ) =-2x +3 二、配凑法:已知复合函数f [g (x )]的表达式,求f (x ) 的解析式,f [g (x )]的表达式容易配成g (x ) 的运算形式时,常用配凑法。但要注意所求函数f (x ) 的定义域不是原复合函数的定义域,而是g (x ) 的值域。例2 已知f (x +11) =x 2+2 (x >0) ,求 f (x ) 的解析式x x 解:f (x +111) =(x +) 2-2,x +≥2 x x x ∴f (x ) =x 2-2 (x ≥2) 三、换元法:已知复合函数f [g (x )]的表达式时,还可以用换元法求f (x ) 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例3 已知f (x +1) =x +2x ,求f (x +1) 解:令t =x +1,则t ≥1,x =(t -1) 2 f (x +1) =x +2x ∴f (t ) =(t -1) 2+2(t -1) =t 2-1, ∴f (x ) =x 2-1 (x ≥1) ∴f (x +1) =(x +1) 2-1=x 2+2x (x ≥0) 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。 例4已知:函数y =x +x 与y =g (x ) 的图象关于点(-2, 3) 对称,求g (x ) 的解析式2 解:设M (x , y ) 为y =g (x ) 上任一点,且M "(x ", y ") 为M (x , y ) 关于点(-2, 3) 的对称点 ?x "+x ?2=-2?x "=-x -4 则?,解得:?,y "+y "y =6-y ??=3?2 点M "(x ", y ") 在y =g (x ) 上 ∴y "=x "2+x " 把??x "=-x -4代入得:"?y =6-y 6-y =(-x -4) 2+(-x -4) 整理得y =-x -7x -6 2 ∴g (x ) =-x 2-7x -6

函数解析式的求法

函数解析式的求法 鄢陵一高王连霞 教学目标: 使学生明确待定系数法、换元法、配凑法是求函数解析式常用的方法,并会用这些方法求函数解析式重点、难点: 重点:待定系数法求函数解析式。难点:换元法与配凑法求函数解析式 教学方法:讲练结合法 学情分析 学生已熟悉用待定系数法求一次、二次函数解析式,但用换元法和配凑法求函数解析式并不熟悉,特别是求出函数解析式后要注明函数定义域易被学生忽视,所以通过讲、练要解决好这些问题,特别要使学生明确函数定义域是函数概念中重要组成部分。 教学设计: 新课引入→用待定系数法求函数解析式→用换元法与配凑法求函数解析式→课时小结→随堂练习 教学过程: 1、新课引入: ①复习提问:求函数定义域的关键是什么?函数三要素是什么?(求函数定义域的关键是确定使函数有意义的条件。函数三要素是对应法则、定义域与值域) ②导入新课:如何根据条件,求出函数对应法则即函数解析式是函数又一重要问题。板书课题:《求函数解析式》 2、用待定系数法求函数解析式 例1:已知函数f(x)是一次函数,且满足关系式3f(x+1)-2f(x-1)=2x+17, 求f(x)的解析式。 例2:求一个一次函数f(x),使得f{f[f(x)]}=8x+7 分析:这两个例题的共同点,所求的函数类型已定,都是一次函数。这种函数解析式用什么方法来求?

(待学生回答后,老师继续讲)如何剥掉抽象的对应法则符号成了解答这两题的关键,如例1:若设f (x)=ax+b(a ≠0)则f(x+1)=? f(x-1)=? 如例2:设f(x)=ax+b(a ≠0)则f{f[f(x)]}=f{f[ax+b]}=f[a(ax+b)+b]=? 解答由学生作出解答) 例1.解:设f(x)=ax+b (a ≠0) 由条件得: 3[a(x+1)+b]-2[a (x-1)+b]=ax+5a+b=2x+17 ∴ ∴ ∴f(x)=2x+7 例2.解:设f(x)=ax+b (a ≠0) 依题意有a[a(ax+b)+b]+b=8x+7 ∴x a 3+b(2a +a+1)=8x+7 ∴ ∴ ∴f(x)=2x+1 评注:待定系数法是一种重要的数学方法,它适用于已知所求函数的类型,求此函数。 3、用换元法与配凑法求函数解析式 例3:已知f( x +1)=x+2x ,求f(x)的解析式 分析:是否知道所求函数f(x)的类型?(待学生回答后,老师继续讲) 若把x +1看作一个整体,该用什么方法作?(待学生回答,让学生作出解答) 解1:令t=x +1≥1 则x=2)1(-t ∴ f(t)= 2)1(-t +2(t-1)= 2t -1 ∴f(x)=2x -1 (x ≥1) 解2:由f(x +1)=x+2x =2)1(+x -1 ∴f(x)=2x -1 (x ≥1) 学生容易忽视函数的定义域,就此例题向学生发问: 师问:f(x)= 2x -1与f(x)= 2x -1 (x ≥1)是否是同一函数?那么求函数解析式后是否要注明函数定义域 评注:(1) f(t)与f(x)只是自变量所用字母不同,本质是一样的。 (2) 求出函数解析式时,一定要注明定义域,函数定义中包括定义域这一要素。 例4:已知f(x-1)= 2x -4x ,解方程f(x+1)=0 分析:如何由f(x-1),求出f(x+1)是解答此题的关键(由老师讲解) 解1:f(x-1)==2)1(-x -2(x-1)-3 ∴ f(x)= 2x -2x-3 f(x+1)= 2)1(+x -2(x+1)-3=2x -4 ∴ 2x -4=0 x=±2 解2:f(x-1)= 2x - 4x ∴f(x+1)=f[(x+2)-1]= 2)2(+x - 4(x+2)= 2x - 4 ∴2x - 4=0, x=±2 解3:令x-1= t+1 则x=t+2 ∴f(t+1)= 2)2(+t -4(t+2)= 2t - 4 ∴ f(x+1)= 2x - 4 ∴2x - 4=0 ∴ x= ±2 评注:只要抓住关键,采用不同方法都可以达到目的。解法1,采用配凑法;解法2,根据对应法则采用整体思想实现目的;解法3,采用换元法,这些不同的解法共同目的是将 f(x-1)的表达式转化为f(x+1)的表达式。

重点高中数学:函数解析式的十一种方法

重点高中数学:函数解析式的十一种方法

————————————————————————————————作者:————————————————————————————————日期:

高中数学:函数解析式的十一种方法 一、定义法 二、待定系数法 三、换元(或代换)法 四、配凑法 五、函数方程组法 七、利用给定的特性求解析式. 六、特殊值法 八、累加法 九、归纳法 十、递推法 十一、微积分法 一、定义法: 【例1】设23)1(2+-=+x x x f ,求)(x f . 2]1)1[(3]1)1[(23)1(22+-+--+=+-=+x x x x x f Θ =6)1(5)1(2++-+x x 65)(2+-=∴x x x f 【例2】设2 1 )]([++= x x x f f ,求)(x f . 【解析】设x x x x x x f f ++=+++=++= 11111 11 21)]([Θ x x f += ∴11)( 【例3】设33221 )1(,1)1(x x x x g x x x x f +=++=+,求)]([x g f . 【解析】2)(2)1(1)1(2222 -=∴-+=+=+x x f x x x x x x f Θ 又x x x g x x x x x x x x g 3)() 1(3)1(1)1(3333 -=∴+-+=+=+Θ 故2962)3()]([24623-+-=--=x x x x x x g f 【例4】设)(sin ,17cos )(cos x f x x f 求=. 【解析】 )2 (17cos )]2[cos()(sin x x f x f -=-=π π

函数解析式的几种基本方法及例题

求函数解析式的几种基本方法及例题: 1、凑配法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 此法较适合简单题目。 例1、(1)已知f(x+1)=x 2+2x,求f(x)及f(x-2). (2) 已知2 2 1)1(x x x x f + =+ )0(>x ,求 ()f x 的解析式 解:(1)f(x+1)=(x+1)2-1,∴f (x )=x 2-1.f(x-2)=(x-2)2-1=x 2-4x+3. (2) 2)1()1(2 -+ =+ x x x x f , 21≥+ x x 2)(2-=∴x x f )2(≥x 2、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例2 (1) 已知x x x f 2)1(+=+,求)1(+x f (2)如果).(,,)(x f x x x x f 时,求则当1011≠-= 解:(1)令1+= x t ,则1≥t ,2)1(-=t x x x x f 2)1(+=+ ∴,1)1(2)1()(2 2 -=-+-=t t t t f 1)(2 -=∴x x f )1(≥x x x x x f 21)1()1(2 2 +=-+=+∴ )0(≥x

(2)设 .)(,,,1 11 1111 11-= ∴-= - = = =x x f t t t f t x t x t )(代入已知得则 3、待定系数法:当已知函数的模式求解析式时适合此法。应用此法解题时往往需要解恒等式。 例3、已知f(x)是二次函数,且满足f(x+1)+f(x-1)=2x 2-4x,求f(x). 解:设f(x)=ax 2+bx+c(a ≠0),∴f(x+1)+f(x-1)=a(x+1)2+b(x+1)+c +a(x-1)2+b(x-1)+c=2ax 2+2bx+2a+2c=2x 2-4x, 则应有.)(12121 0224 2222 --=∴?? ???-=-==∴?????=+-==x x x f c b a c a b a 四、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。 例4 设,)1 (2)()(x x f x f x f =-满足求)(x f 解 x x f x f =-)1 (2)( ① 显然,0≠x 将x 换成 x 1,得: x x f x f 1 )(2)1(=- ② 解① ②联立的方程组,得: x x x f 323)(-- = 五、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。 例5 已知:1)0(=f ,对于任意实数x 、y ,等式

相关文档
最新文档