C_芳基糖苷类SGLT2抑制剂的合成研究进展_杜铁奇

C_芳基糖苷类SGLT2抑制剂的合成研究进展_杜铁奇
C_芳基糖苷类SGLT2抑制剂的合成研究进展_杜铁奇

收稿日期:2014-03-11

基金项目:国家自然科学基金资助项目(No.21276238)。

作者简介:杜铁奇(1989-),男,硕士研究生,主要从事药物及中间体的合成。E-mail:perfectdtq@https://www.360docs.net/doc/0b8311468.html, 。

C-芳基糖苷类SGLT2抑制剂的合成研究进展

杜铁奇,郑亿,朱灵龙,钟为慧

(浙江工业大学药学院长三角绿色制药协同创新中心,浙江

杭州310014)

摘要:钠-葡萄糖协同转运蛋白2(SGLT2)抑制剂是目前Ⅱ型糖尿病药物研究的热点之

一。通过抑制这种在肾脏特异性表达的钠-葡萄糖协同转运蛋白2(SGLT2),可以减少肾脏对葡萄糖的重吸收,增加葡萄糖在尿中的排泄,从而降低血糖。本文将针对已上市的C-芳基糖苷类SGLT2抑制剂伊格列净和恩格列净的合成路线进行简要评述。

关键词:SGLT2抑制剂;钠-葡萄糖协同转运蛋白;Ⅱ型糖尿病;合成方法文章编号:1006-4184(2015)9-0019-05

医药化工

糖尿病主要分为Ⅰ型糖尿病和Ⅱ型糖尿病,前者是由于胰岛β细胞不能产生足够的胰岛素(胰岛素绝对缺乏)所致,后者是由于胰岛素分泌不足或胰岛素抵抗(胰岛素相对缺乏)所致[1]。糖尿病患者中约有90%~95%属于Ⅱ型糖尿病。目前在全球大部分国家,糖尿病发病率都在上升。据最新数据显示,2014年世界糖尿病患者达到3.87亿,而中国糖尿病患者已达1.14亿,约占全球糖尿病人总数的三分之一,已成为全球患糖尿病人数最多的国家。糖尿病已成为全球性严重的公共卫生问题。

虽然目前有多种可用的抗糖尿病药物,但大多数情况下,高血糖的症状仍不能得到有效控制,而且还伴有不少副作用[2]。因此,开发一类新作用机制的抗糖尿病药物非常迫切。近年来,研究者们发现通过抑制钠-葡萄糖协同转运蛋白(SGLT2)的活性,可抑制肾小球对葡萄糖的重吸收,增加葡萄糖在尿液中的排泄来达到降低血糖的目的,这是一种控制血糖的新的作用机制[3~6]。

SGLT2抑制剂成为抗糖尿病药物研究的新靶点[7]。目前,SGLT2抑制剂主要分为O-芳基糖苷类抑制剂、C-芳基糖苷类抑制剂、C ,O-螺环芳基糖苷类抑制剂、N-芳基糖苷类抑制剂和非糖类抑制剂五大类[8]。其中,C-芳基糖苷类抑制剂因具有非常好的降血糖活性且不易被体内β-葡萄糖苷酶降解等优点[9]而被广泛研究。现已上市的药物有卡纳格列净、达格列净、恩格列净、伊格列净、托格列净、鲁格列净。本文将针对已上市的C-芳基糖苷类SGLT2抑制剂伊格列净和恩格列净的合成研究进展作一综述。

1伊格列净的合成研究

伊格列净(1,Ipragliflozin ,ASP-1941),C AS

No:[761423-87-4],由日本安斯泰来制药有限公

司(Astellas Pharma )和日本寿制药株式会社(Ko -

tobuki Pharmaceutical )两家公司联合开发,于2014年1月17日在日本获得上市(商品名:Sug -lat ),成为首个在日本上市的SGLT2抑制剂[10]。伊

格列净对SGLT2的IC 50=7.4nmol/L ,hSGLT2/hS -

GLT1=254[11-12]。其结构式如图1。

图1

伊格列净1的结构

Figure 1The structure of Ipragliflozin 12004年,安斯泰来制药有限公司Imamura 等

人[13-14]以苯并[b ]噻吩2为起始原料,在n-BuLi 作用下与2-氟-5-溴苯甲醛发生亲核加成,得中间体3,3上的醇羟基用TBDMSCl 保护,再经n-Bu -

Li 拔溴后与苄基保护的D-葡萄糖内酯5亲核加

成,然后在TBAF 作用下脱去TBDMS 保护基,制得中间体6。6用Et 3SiH/BF 3·Et 2O 体系还原脱去两个羟基,得到中间体8,8再经脱苄基得到伊格列净1(Scheme 1)。该方法总收率不到7%,同时在后处理过程中多次用到柱层析分离提纯,不利于大规模制备。

Scheme 1

2007年,安斯泰来制药有限公司Komenoi [15-16]

等人对路线Scheme 1进行了改进,即以苯并[b ]噻吩2为起始原料,在n-BuLi 作用下与2-氟-5-溴苯甲醛发生亲核加成反应,得到中间体3,经醇羟基氯代、NaBH 4/NaOH 体系还原得到中间体10,再经n-BuLi 拔溴后与糖11发生亲核加成,得到中间体12,12未经分离提纯,随即用醋酐选择性地保护糖苷上的4个羟基,紧接着用TBDMSiH/

CF 3SO 3H 体系还原脱去异头碳上的羟基,最后水解脱保护得到伊格列净1(Scheme 2)。该路线总收率较高,达49.7%,且在后处理过程中避免了使用柱层析,有工业化应用前景。与Scheme 1相比,改进之处在于:(1)中间体3先经氯代后还原,得到关键中间体10,从而调整了反应顺序;(2)采用

乙酰基替代苄基保护羟基,提高了后续反应的收率。

Scheme 2

2012年,Imamura [17]等人对伊格列净的合成路

线做了一些改进,他们以苯并[b ]噻吩2为原料,在n-BuLi 作用下与2-氟-5-溴苯甲醛发生亲核加成,接着用Et 3SiH/BF 3·Et 2O 体系进行还原,得到中间体10,10接着经n-BuLi 拔溴,与苄基保护的D-葡萄糖内酯5亲核加成,再次用Et 3SiH/BF 3·Et 2O 体系进行还原,得到中间体8,最后通过脱保护基得到伊格列净1(Scheme 3)。与Scheme 2相比,改进之处在于:(1)中间体3上羟基未经氯代,直接还原得到中间体10;(2)直接用苄基保护的糖5与中间体10发生亲核加成,省去了糖苷上羟基上保护的步骤,从而使该工艺路线缩短了两步,但各步收率有所下降,使总收率下降了一半,仅为25%。

Scheme 3

2恩格列净的合成研究

恩格列净(14,Empagliflozin ,EBI-10773),

CAS No:[864070-43-9],是由勃林格殷格翰公司

(Boehringer Ingelheim )和礼来公司(Eli Lilly and

Company )联合研发,于2014年8月获得美国FDA 认证,成为目前最新一个进入市场的SGLT2

抑制剂(商品名:Jardiance )[18]。恩格列净对SGLT2的IC 50为3.1nmol/L (注:达格列净(Dapagliflozin )为1.2nmol/L ,卡纳格列净(Canagliflozin )为2.7

nmol/L ,伊格列净(Ipragliflozin )为5.3nmol/L )。恩

格列净的SGLT2/SGLT1选择性最高(>2500倍),其次是达格列净(>1200倍),伊格列净(>550倍),卡纳格列净(>250倍)。根据以上数据可知,恩格列净是目前选择性最好的SGLT2抑制剂[19]。其结构式如图2。

图2恩格列净14的结构

Figure 2The structure of Empagliflozin 142005年,勃林格殷格翰公司Eckhardt [20-21]等

人首次报道了恩格列净的合成方法,即以2-氯-

5-溴苯甲酸15为起始原料,经酰氯化、傅克酰基

化、羰基还原三步反应得到中间体17,苯甲醚经过酸性水解得到苯酚衍生物18,18中酚羟基用

TBDMSCl 保护后,在n-BuLi 作用下,与糖11发

生亲核加成,接着甲醚化,用Et 3SiH/BF 3·Et 2O 体系还原消除异头碳上的羟基,得到中间体20,再

用醋酐保护糖苷上的羟基,乙醇重结晶提纯,碱性条件下脱去乙酰基保护,得到中间体21;最后

21上的酚羟基与化合物22发生亲核取代,得到

最终产品恩格列净14(Scheme 4)。该工艺路线较长,总收率为11.9%。

2014年,Latli [22]等人报道了一种制备恩格列

净的新方法,与Scheme 4最大的区别是首先在苯环上引入(R )-四氢呋喃-3-氧基,得到中间体

24,再与15经酰氯化后的产物发生傅克反应,得

到中间体25,然后用Et 3SiH/BF 3·Et 2O 体系还原得到中间体26,再经n-BuLi 拔溴后与糖11亲核加成,未经分离提纯,随即进行甲醚化,得到中间体27,最后用Et 3SiH/BF 3·Et 2O 体系还原得到恩格列净14,总收率为13.6%(Scheme 5)。与Scheme 1路线相比,该路线收率略有提高,最关键的是缩短了路线,反应步骤由原来的十一步缩减至七步。

Scheme 5

同年,Wang 等人[23]报道了另一种合成恩格列净的新方法,即以2-氯-5-碘苯甲酸28为原料,经酰氯化后,与氟苯发生傅克反应,再与化合物

23发生亲核取代,得到中间体30,接着30用1,1,3,3-四甲基二硅氧烷/三氯化铝体系还原得

到中间体31,后与格氏试剂Mg/I 交换后与糖

11

Scheme 4

Scheme 6

发生亲核取代,接着甲醚化,未经分离提纯,用

Et 3SiH/AlCl 3体系还原得到恩格列净14(Scheme 6)。与Scheme 5相比,该工艺总收率提高了将近3倍,达54.6%,且均已做到百克级别,具有较好

的工业化参考价值。

与前面报道的路线相比,该路线最大的亮点在于:(1)在甲醚化过程中,葡萄糖苷32在5mol/L HCl/MeOH 体系40℃作用下,可以先完全转化成α/β构型为1:1的呋喃糖苷33,在3~

5h 后33可进一步立体选择性转化为光学活性

纯度高的甲基-β-吡喃糖苷27(Scheme 7)。

(2)用Et 3SiH/AlCl 3体系替代Et 3SiH/BF 3·Et 2O 还原中间体27时,收率更高,更适合工业化生产,主要原因是Lewis 酸BF 3·Et 2O 对水敏感,遇水易产生杂质34(Scheme 8)。

Scheme 7

Scheme 8

3总结与展望

本文主要综述了已上市的SGLT2抑制剂伊

格列净和恩格列净的合成研究进展。SGLT2抑制剂以其独特有效的作用机制赢得了科学家们的广泛关注,成为近年来抗糖尿病药物中一大研究热点。至今,用于合成列净类药物的的方法已有很多,但不少方法都存在一定的不足。故开发经济、方便、无污染的合成方法,对于合成列净类药物具有重大意义,也将促进糖尿病药物市场的迅速发展。目前研究者们正在努力探索合成各种新的SGLT2抑制剂,相信在不久的将来我们将能见

到新的SGLT2抑制剂争相上市。

参考文献:

[1]

徐鸽,沈玫,吕彬华,等.2型糖尿病治疗新靶点SGLT2抑制剂的研究进展[J].现代生物医学进展,2009,9(13):

2569-2578.[2]孟艳秋,刘文虎,刘凤鑫,等.抗2型糖尿病药物研究进展[J].现代药物与临床,2013,28(3):461-464.[3]

周立飞,李兰涛,黄娟,等.钠-葡萄糖协同转运蛋白2(SGLT2)抑制剂的研究进展[J].中国药物化学杂志,2011,

21(4):322-327.[4]臧丽,吴敏.钠-葡萄糖共转运蛋白2抑制剂的临床应用[J].中国实用内科杂志,2013,33(1):73-76.[5]王晶,刘哲.钠-葡萄糖同向转运蛋白2(SGLT2)及其抑制剂研究进展[J].延安大学学报,2011,9(3):4-5.[6]

张富东,李玲.新型抗2型糖尿病药物钠.葡萄糖协同转运蛋白2抑制剂研究进展[J].国际药学研究杂志,2011,

38:375-380.

[7]

李原,王尧.钠-葡萄糖协同转运蛋白2(SGLT2)抑制剂:2型糖尿病治疗新靶点[J].中国糖尿病杂志,2011,

19:873-876.[8]

万惠新,沈竞康.2型糖尿病治疗靶点钠-葡萄糖共转运蛋白2抑制剂研究进展[J].药学学报,2012,47:716-

724.[9]

陈福欣,龚频,周安宁.基于SGLT2受体蛋白的新型糖尿病药物的研究进展[J].中国现代应用药学,2012,29:

687-692.

[10]Poole R M ,Dungo R T.Ipragliflozin:First Global Ap -

proval[J].Drugs 2014,74:611-617.

[11]Schwartz S ,Akinlade B ,Zhang W ,et al.Safety ,pharma -cokinetic ,and pharmacodynamic profiles of ipragliflozin

(ASP1941),a novel and selective inhibitor of sodium-de -

pendent glucose co-transporter 2,in patients with type 2diabetes mellitus[J].Diabetes Technology &Therapeutics ,

2011,13:1219-1227.

[12]Kadokura T ,Zhang W H ,Krauwinkel W ,et al.Clinical

pharmacokinetics and pharmacodynamics of the novel sglt2inhibitor ipragliflozin [J].Clin Pharmacokinet ,2014,53:975-988.

[13]Imamura M ,Murakami T ,Shiraki R ,et al.C -glycoside

derivatives and salts thereof:WO ,2004080990A1[P].2004-09-23.

[14]今村雅一,村上猛,白木良太,等.C-糖苷衍生物及其

盐:CN ,1802366B[P].2010-12-22.

[15]Komenoi K ,Nakamura A ,Kasai M ,et al.Method for pro -ducing C -glycoside derivative and synthetic intermediate thereof:WO ,2008075736A1[P].2008-06-26.

[16]米乃井孝辅,中村纯,笠井良,等.C-糖苷衍生物的制造

方法及其合成中间体:CN ,101568537A[P].2009-10-28.

[17]Imamura M ,Nakanishi K ,Suzuki T ,et al.Discovery of

Progress in Synthesis of C-Aryl Glucosides Sodium Glucose

Co-Transporter 2Inhibitors

DU Tie-qi,ZHENG Yi,ZHU Ling-long,ZHONG Wei-hui

(Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals,College of Pharmaceutical Sciences,Zhejiang University of Technology,Hangzhou,Zhejiang 310014,China)Abstract:Sodium glucose Co-transporter 2(SGLT2)has been a hot spot of research on the treatment for type II diabetes.Inhibiting SGLT2,which works in the kidney specially,can reduce renal glucose reab -sorption,excrete excess glucose through the urine and lower the plasma glucose.This paper briefly reviews the synthetic routes to the C-aryl glucosides sodium glucose Co-transporter 2inhibitors on the market,such as Ipragliflozin,Empagliflozin.

Keywords:SGLT2inhibitors ;sodium glucose Co-transporter ;type II diabetes ;synthesis method

ipragliflozin (ASP1941):A novel C-glucoside with ben -zothiophene structure as a potent and selective sodium glu -cose co-transporter 2(SGLT2)inhibitor for the treatment of type 2diabetes mellitus[J].Bioorg.Med.Chem.,2012,20:3263-3279.

[18]Volino L R ,Pan E Y ,Mansukhani R P.Sodium glucose

co-transporter 2(SGLT2)inhibitors in type 2diabetes:a literature review of approved products[J].Pharmacology &Pharmacy ,2014,5:1029-1058.

[19]宋金芝,王玉丽,徐为人.新型钠–葡萄糖协同转运蛋

白2抑制剂empagliflozin[J].现代生物与临床,2013,28(5):791-795

[20]Eckhardt M ,Eickelmann P ,Himmelsbach F ,et al.Glu -copyranosyl -substituted phenyl derivatives ,medicaments containing such compounds ,their use and process for their

manufacture:US ,20050209166A1[P].2005-09-22.[21]Himmelsbach F ,Schmid S ,Martin H J ,et al.Crystalline

form of 1-choloro-4-(beta-D-glucopyranos-1-yl )-2-[4-((S )-tetrahydrofuran -3-yloxy)-benzyl]-benzene ,A

method for its preparation and the use therof for preparing medicaments :US ,20100099641A1[P].2010-04-22.[22]Hrapchak M ,Latli B ,Wang X J ,et al.Synthesis of em -pagliflozin ,a novel and selective sodium -glucose co -transporter-2inhibitor ,labeled with carbon-14and car -bon-13[J]https://www.360docs.net/doc/0b8311468.html,pd.Radiopharm ,2014,57:687-694.

[23]Wang X J ,Zhang L ,Byrne D ,et al.Efficient synthesis of

empagliflozin,an inhibitor of SGLT-2,utilizing an AlCl 3-promoted silane reduction of a β-glycopyranoside[J].Org.Lett.,2014,16:4090-4093.

甲醇制丁烯联产丙烯万吨级项目通过鉴定

9月14日,中国石油和化学工业联合会在京召开“甲醇制丁烯联产丙烯技术(CMTX )万吨级工业试

验”科技成果鉴定会。与会专家认为,CMTX 技术工艺合理,技术指标先进,拥有自主知识产权,处于国际先进水平,具有良好的应用前景,同意该项目通过科技成果鉴定。鉴定委员会认为,该技术创新性地开发了甲醇制丁烯联产丙烯的流化床工艺,开发了CMTX 技术专用催化剂;该催化剂选择性高,生焦率低,水热稳定性好,粒度分布合理,流化性能好,耐磨强度高,具有较好的适应性;开发了循环流化床反应工艺,具有空速高、水醇比低等特点,装置处理能力强、投资省、能耗低;首次开发了催化剂“低温”再生新工艺。甲醇制丁烯联产丙烯技术由陕西煤业化工技术研究院有限责任公司、上海碧科清洁能源技术有限公司和上海河图工程股份有限公司三方共同开发。该技术万吨级工业试验装置7月24~27日通过了中国石油和化学工业联合会组织的72h 连续运行考核。

(来源:https://www.360docs.net/doc/0b8311468.html,/htmlnews/2015/9/327089.shtm)

二甲醚的生产工艺

二甲醚及生产工艺 摘要:综述了二甲醚的性质、用途、生产方法及使用二甲醚时候的注意事项。 关键词:二甲醚化工产品合成气一步法甲醇液相法甲醇气相法 一、产品说明 1、二甲醚的基本概况 二甲醚别名:甲醚 英文名称:methyl ether;dimethyl ether;DME CAS编号:115-10-6 分子式:C2H6O 结构式:CH3—O—CH3 二甲醚又称甲醚,简称DME。二甲醚在常压下是一种无色气体或压缩液体,具有轻微醚香味。相对密度(20℃)0.666,熔点-14 1.5℃,沸点-24.9℃,室温下蒸气压约为0.5MPa,与石油液化气(LPG)相似。溶于水及醇、乙醚、丙酮、氯仿等多种有机溶剂。易燃,在燃烧时火焰略带光亮,燃烧热(气态)为1455kJ/mol。常温下DME具有惰性,不易自动氧化,无腐蚀、无致癌性,但在辐射或加热条件下可分解成甲烷、乙烷、甲醛等。 二甲醚是醚的同系物,但与用作麻醉剂的乙醚不一样,毒性极低;能溶解各种化学物质;由于其具有易压缩、冷凝、气化及与许多极性或非极性溶剂互溶特性,广泛用于气雾制品喷射

剂、氟利昂替代制冷剂、溶剂等,另外也可用于化学品合成,用途比较广泛。 2 生产原理 2.1 生产方法简介 目前国外二甲醚生产方法主要有合成气一步法和甲醇法。甲醇法又分为甲醇气相法和甲醇液相法。合成气一步法的工业化技术尚未成熟,理由是: ①现有的技术未经装置检验; ②即使按现有技术,其生产成本也高于甲醇气相法 2.2 反应方程式 合成气一步法以合成气(CO + H2 )为原料,合 成甲醇反应和甲醇脱水反应在一个反应器中完成, 同时伴随CO的变换反应。其反应式如下。 2CO + 4H2 = 2CH3OH CO +H2O =CO2 +H2 2CH3OH =CH3OCH3 +H2O 总反应: 3CO + 3H2 =H3COCH3 +CO2 甲醇液相法: 甲醇脱水反应在液相、常压或微正压、130 ~130 ℃下进行。其化学反应式如下: 2CH3OH =H3COCH3 +H2O 甲醇气相法:

甲醚生产工艺

二甲醚及生产工艺 1、二甲醚的基本概况 二甲醚别名:甲醚 英文名称:methyl ether;dimethyl ether;DME CAS编号:115-10-6 分子式:C2H6O 结构式:CH3—O—CH3 二甲醚又称甲醚,简称DME。二甲醚在常压下是一种无色气体或压缩液体,具有轻微醚香味。相对密度(20℃)0.666,熔点 -141.5℃,沸点-24.9℃,室温下蒸气压约为0.5MPa,与石油液化气(LPG)相似。溶于水及醇、乙醚、丙酮、氯仿等多种有机溶剂。易燃,在燃烧时火焰略带光亮,燃烧热(气态)为1455kJ/mol。常温下DME具有惰性,不易自动氧化,无腐蚀、无致癌性,但在辐射或加热条件下可分解成甲烷、乙烷、甲醛等。 二甲醚是醚的同系物,但与用作麻醉剂的乙醚不一样,毒性极低;能溶解各种化学物质;由于其具有易压缩、冷凝、气化及与许多极性或非极性溶剂互溶特性,广泛用于气雾制品喷射剂、氟利昂替代制冷剂、溶剂等,另外也可用于化学品合成,用途比较广泛。 2 生产原理 生产方法简介

目前国内外二甲醚生产方法主要有合成气一步法和甲醇法。甲醇法又分为甲醇气相法和甲醇液相法。合成气一步法的工业化技术尚未成熟,理由是: ①现有的技术未经装置检验; ②即使按现有技术,其生产成本也高于甲醇气相法 反应方程式 合成气一步法以合成气(CO + H2 )为原料,合 成甲醇反应和甲醇脱水反应在一个反应器中完成, 同时伴随CO的变换反应。其反应式如下。 2CO + 4H2 = 2CH3OH CO +H2O =CO2 +H2 2CH3OH =CH3OCH3 +H2O 总反应: 3CO + 3H2 =H3COCH3 +CO2 甲醇液相法: 甲醇脱水反应在液相、常压或微正压、130 ~130 ℃下进行。其化学反应式如下: 2CH3OH =H3COCH3 +H2O 甲醇气相法: 催化剂为ZSM分子筛、磷酸铝或γ2Al2O3。 甲醇脱水反应的化学反应式如下。 主反应: 2CH3OH =H3COCH3 +H2O

醛固酮

醛固酮 简介 是人体内调节血容量的激素,通过调节肾脏对钠的重吸收,维持水平衡。醛固酮是调节细胞外液容量和电解质的激素,醛固酮的分泌,是通过肾素一血管紧张素系统实现的。当细胞外液容量下降时,刺激肾小球旁细胞分泌肾素,激活肾素-血管紧张素-醛固酮系统、醛固酮分泌增加,使肾脏重吸收钠增加,进而引起水重吸收增加,细胞外液容量增多;相反细胞外液容量增多时,通过上述相反的机制,使醛固酮分泌减少,肾重吸收钠水减少,细胞外液容量下降。血钠降低,血钾升高同样刺激肾上腺皮质,使醛固酮分泌增加。 原理 醛固酮进入远曲小管和集合管上皮细胞后,与胞浆内受体结合,形成激素-受体复合体,后者通过核膜,与核中DNA特异性结合位点相互作用,调节特异性mRNA转录,最终合成多种醛固酮诱导蛋白,进而使关腔膜对Na+的通透性增大,线粒体内ATP合成和管周膜上钠泵的活动性增加。从而导致对Na+的重吸收增强,对水的重吸收增加,K+的排出量增加。 醛固酮的分泌与血压的关系 醛固酮的分泌主要受肾素—血管紧张素调节,即肾的球旁细胞感受血压下降和钠量减少的刺激,分泌肾素增多,肾素作用于血管紧张素原,生成血管紧张素。血管紧张素可刺激肾上腺皮质球状带合成和分泌醛固酮。当循环血量减少时,醛固酮的分泌量会增加,使钠和水的重吸收增强,以此维持水盐代谢的平衡。 醛固酮aldosterone C21H28O5。11β,21-二羟-3.20-二氧-4-孕烯-18-醛(11→18)乳醛(Ⅰ)。是肾上腺皮质激素的一种。具有代表性的强电解质代谢作用的盐皮质类固醇。其作用是促进Na+在体内贮留,同时排出K+。是由肾上腺皮质球状带生成,并受肾脏分泌的血管紧张肽原酶,即血管紧张肽(renin即angiotensin)的调节。另也有11β-羟-18-醛型(Ⅱ)。 螺内酯 其受体拮抗剂是螺内酯,又称安体舒通,与醛固酮竞争结合人体内相应的受体,为保钾利尿剂,螺内酯的降压作用也是源于此。 螺内酯 一、药品简介 通用名:螺内酯片 别名:安体舒通 商品名: 英文名:Spironolactone Tablets 汉语拼音:Luoneizhi Pian 本品主要成分及其化学名称为:

农药化学的期末考试

农药:用于防治为害农作物及农副产品的病虫害、杂草及其它有害生物的化学药剂的统称。 急性毒性:药剂一次进入人体后短时间引起的中毒现象。 慢性毒性:药剂长时间作用于有机体后,引起药剂在体内的积蓄,或者造成有机体机能损害的积累而引起的中毒现象。 LD50:致死中量,或半致死量。 经口LD50:一次口服急性中毒死亡死亡半数的剂量。 经皮LD50:通过皮肤摄入极性中毒死亡半数的剂量。 农药残留:在农业生产中施用农药后一部分农药直接或间接残存于谷物、蔬菜、果品、畜产品、水产品以及土壤和水体中的现象。 农药代谢:农药的代谢是指作为农药进人生物体后,生物体利用自身的多种酶,对这些外源化合特产生化学作用,以达到排泄目的的过程,这类作用也称为生物转化。 初级代谢:一般将微生物从外界吸收各种营养物质,通过分解代谢和合成代谢生成维持生命活动的物质和能量的过程,称为初级代谢 农药选择性:是指仅对某种或某几种病、虫、草害有防治效果的农药。 杀虫剂的主要类型: 按作用方式可分类为: ①胃毒剂。②触杀剂。③熏蒸剂。④内吸杀虫剂。 按毒理作用可分为: ①神经毒剂。②呼吸毒剂。③物理性毒剂。④特异性杀虫剂。 制备反应:有机磷杀虫剂合成,吡虫啉合成

化学除草剂的发展过程:19世纪末:无机除草剂;1932年:有机除草剂二硝酚;1942年:第一个内吸性的有机除草剂2,4-D;1980s:磺酰脲类除草剂的发现,掀起了超高效除草剂研究的热潮。这是除草剂发展史上新的里程碑。 抑制植物氨基酸生物合成的除草剂。目前,主要有两类氨基酸的生物合成过程已经被开发为除草剂的作用靶标: (1)支链氨基酸的生物合成:缬氨酸、亮氨酸、异亮氨酸 (2)芳香氨基酸的生物合成:苯丙氨酸、色氨酸、酪氨酸 为什么杀虫剂马拉硫磷会具有高效低毒的特点? 杀虫剂马拉硫磷具有选择性, 马拉硫磷在昆虫体内转变为更 毒代谢产物, 温血动物体内的转变为无毒代谢产物

蔗糖酯合成研究进展 综述

蔗糖酯的合成研究进展及应用 李** 西南大学化学化工学院,重庆 400715 摘要:蔗糖酯是一种良好的表面活性剂,有着广泛的用途,它的应用领域还在不断开发;蔗糖聚酯是新型的低热量油脂,可作为脂肪代用品及高血脂、高胆固醇的治疗预防药物。本文介绍了蔗糖酯的性质、合成方法和应用。关键词:蔗糖酯;合成;应用 Progress in research of synthesis and application of sucrose ester LI *-* School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715, China Abstract:As a good kind of non-ionic surfactant,sucros esters are used extensively;sucrose polyester is a new kind of low-calorie lipin,which is regarded as fat substitute and medication of high cholesterol.This article introduces propertise,synthetic methods and application of sucrose esters. Key words:Sucrose esters;Synthesis;Application 蔗糖脂肪酸酯简称蔗糖酯( Sucrose Esters, 简称SE) , 是一种新型的多元醇型非离子型表面活性剂。其外观为白色至黄褐色的粉末状、块状或无色至微黄色的粘稠树脂状。蔗糖酯的蔗糖部分为亲水基, 长链脂肪酸部分为亲油基。蔗糖酯具有良好的乳化、分散、增溶、润滑、渗透、起泡、粘度调节、防老化、抗菌等性能。同时, 它还具有无毒、易生物降解等特性。现已被批准作为食品添加剂。蔗糖酯还广泛应用于医药、化工、石油开采、化肥、化妆品、制糖和果蔬保鲜等工业中。 我们通常所说的蔗糖酯是单、二、三酯组成的混合物。蔗糖多酯( Sucrose Polyester, SPE) 通常指的是三酯以上的蔗糖酯。确切地讲, 蔗糖多酯是蔗糖分子中8 个羟基有6 个以上的羟基发生酯化反应时( 即酯化度n= 6~ 8) 生成的一类蔗糖酯。多酯具有许多特殊的性质, 饱和度和脂肪酸链长都会对其有影响。一般地, 多酯在室温下是金黄色透明的油状液体, 物理性质类似于食用油酯, 其色、香、味均与植物油脂一样, 但不被人体内的脂肪酶水解, 不产生热量, 不会被消化系统吸收, 无毒、副作用, 是一种理想的脂肪替代品和减肥剂 , 还可降低血清中的胆固醇, 治疗冠心病,是高附加值产品。 1 蔗糖酯的合成 世界各国科学家研究出了很多种合成方法:从反应方式分有酰氯法、直接脱水法、酯交换法和酶法,从反应状态分有均相法和非均相法,从工艺条件分有溶剂法、微乳化法和无溶剂法等。 1.1 酰氯酯化法

醛固酮增多症

醛固酮增多症

醛固酮增多症 醛固酮(aldosterone)是肾上腺皮质球状带分泌的最重要的盐皮激素,在维持机体钠平衡中起着十分重要的作用。醛固酮分泌过多导致钠潴留和钾丢失,称为醛固酮增多症(hyperaldosteronism,aldosteronism),分为原发性和继发性两类。若因肾上腺以外的原因使有效血容量降低,肾血流量减少等引起肾素-血管紧张素-醛固酮系统功能亢进者,则称为继发性醛固酮增多症(简称继醛);而由于肾上腺皮质腺瘤或增生,分泌过多的醛固酮,导致水钠潴留,体液容量扩增导致血压升高并抑制肾素-血管紧张素系统者,称为原发性醛固酮症增多症(简称原醛)。本章主要讨论原发性醛固酮增多症。1955年,ConnJW报道了第一例由肾上腺腺瘤所引起的原发性醛固酮增多症,故本症又称为Conn综合征。本病的发病率在未经选择的高血压患者中<1%。多见于成人,腺瘤者女性较男性多见,特发性等其他病因者男性多于女性。各种年龄儿童也可发生原醛,并可出现生长迟缓,病因为腺瘤者其年龄通常低于特发性者。 【病因】 多种原因可致原发性醛固酮增多症,其临床类型与相对发病率见下表。 1.分泌醛固酮的肾上腺皮质腺瘤分泌醛固酮的肾上腺皮质腺瘤 (aldosterone-producingadenoma,APA)又称Conn综合征,最多见,约占原醛症的60%~90%。多为单侧腺瘤,左侧较右侧多见;大多数为单个,直径多在2cm以下,包膜完整,切面呈金黄色,在光镜下可见四种细胞:小和大的具有球状带和束状带细胞特征的杂交细胞以及其他的如同束、球状带的细胞,在电镜下,瘤细胞具有如同球状带细胞特征的线粒体管状嵴,若经螺内酯治疗后可发现螺内酯小体,常同时伴球状带增生或伴结节性增生。仅1%左右为双侧或一侧有2个以上腺瘤。70%的腺瘤见于女性,腺瘤形成的原因至今不明。 2.特发性原醛症(IHA)本型的肾上腺球状带通常为弥漫性或局灶性增生,超微结构基本正常,若伴有结节则多为微小结节,直径不一,可大致2cm,典型的细胞呈现来自束状带的透明样细胞。免疫组化研究表明:这些细胞均显示对细胞

二甲醚的生产方法有多种

二甲醚的生产方法有多种,工业装置以甲醇法为主。甲醇法分为气相催化脱水法和液相催化脱水法。其代表分别为西南院和山东久泰。合成气一步法直接合成二甲醚的生产技术尚不完善。 最近有两套10万吨/年二甲醚装置刚刚投产,分别是湖北天茂和河北中捷石化,设计单位分别是西南院和东华工程公司(大连化物所技术),都是甲醇气相法。 总体来讲,甲醇气相脱水法是用的比较广的一项技术。 二甲醚的生产方法主要有硫酸法、甲醇气相催化脱水法、合成气一步法直接合成二甲醚法。硫酸法虽然反应条件温和,甲醇单程转化率高(>85%),可间歇或连续生产,但设备腐蚀严重,残液及废水对环境污染严重,操作条件苛刻,产品难以脱除微量杂质,有异味,产品质量差,属淘汰工艺;而以合成气(H2+CO)直接法合成二甲醚的生产技术目前尚不成熟。二甲醚国内外现有大型工业生产装置主要采用成熟的甲醇气相催化脱水法。 表4-6 二甲醚生产工艺技术比较 对比项目甲醇气相催化脱水法合成气一步成法甲醇液相催化脱水法备注 [wiki]催化剂[/wiki] 固体酸催化剂(γ-Al2O3) 多功能催化剂以硫酸为主的复合催化剂(含磷酸) 原料精甲醇、粗甲醇富CO的合成气, 理想合成气组份H2/CO=1 精甲 醇气相法以粗甲醇为原料,成本大幅降低 技术成熟程度成熟技术有待完善成熟 流程长短流程略长,二甲醚的分离和精馏简单流程略短,二甲醚的分离和精馏较复杂流程长 甲醇单程转化率 78~88% 88~95% 反应温度,℃ 230~360 250~300 160~200 反应压力,MPa 0.1~0.5 2.5~6.0 0.04~0.15 反应系统材质碳钢或普通不锈钢石墨等耐酸腐蚀材料 甲醇消耗 1.40~1.43/tDME 1.41~1.45/tDME 电力消耗≤10kw.h≥100kw.h液相法电耗太高 水蒸汽 消耗 1.45t/tDME 1.44 t/tDME 投资比较低,投资系数100%(基准) 软件费及专利设备费高,总体投资较高/105%(按现有资料估算)高,投资系数/30~300% 液相投资高 产品质量≥99.9 ~99 ~99 工程放大简单,反应系统单系列在缺乏足够试验数据情况下,建设大规模装置,工程风险很大难度大,反应器需多套并联 毒性除甲醇外无其他有毒介质甲醇、一氧化碳等磷酸、磷酸盐毒性大、中间产物硫酸氢甲酯为极度危害介质 废酸处理无废酸处理问题无废酸处理问题需处理硫酸、磷酸等废酸 环境保护无“三废”有废水处理投资、能耗高

国内外二甲醚场和生产工艺分析

国内外二甲醚市场和生产工艺分析 国内外二甲醚市场和生产工艺分析 目前二甲醚组成的合资公司将在澳大利亚建设140-240万吨/年的大规模二甲醚装置,定于2006年投产。 目前二甲醚的主要消费领域是作溶剂和气雾剂的推动剂,其它方面的消费不多。2002年

二甲醚的的合成及其应用前景

学号:3510020031泰山医学院毕业设计(论文) 题目:二甲醚的的合成及其应用前景 院(部)系化工系 所学专业应用化工技术 年级、班级10级1班 完成人姓名 指导教师姓名 专业技术职称 年月日

论文原创性保证书 我保证所提交的论文都是自己独立完成,如有抄袭、剽窃、雷同等现象,愿承担相应后果,接受学校的处理。 专业: 班级: 签名: 年月日

摘要 二甲醚是一种重要的精细化工产品,因其良好的理化性质在化工和医药行业中一直被广泛用作甲基化剂、气雾剂、致冷剂和各种有机合成原料。近年来国内外的研究发现它还具有优良的燃烧性能,可直接用作发动机燃料和民用燃料,被誉为“21世纪的清洁燃料”。本论文将介绍二甲醚的性质,二甲醚的制备方法,二甲醚的应用及市场发展前景,国内二甲醚的生产及研究现状。 关键字:二甲醚;燃料;化工产品;制备方法

Abstrac Two ether is an important fine chemical product, because of its physical and chemical properties in the chemical and pharmaceutical industries has been widely used as a methylating agent, aerosol, refrigerant and various organic synthesis of raw materials. In recent years, the domestic and foreign research found that it also has excellent combustion properties, can be directly used as engine fuel and civilian fuel, known as "the twenty-first Century clean fuel". This paper will introduce the properties of two ether, preparation method of two ether, application and market prospect of the two ether, present situation of production and research of the two ether. Keywords: two ether; fuel; chemical products; preparation method

合成气直接制取二甲醚工艺简介

合成气直接制取二甲醚工艺简介 中国科学院大连化学物理研究所 天然气化工与应用催化研究室 1. 前言 随着煤化工、天然气化工和C1 化学的发展,人们竞相寻找除合成气制合成氨和甲醇外的加工途径,合成气(煤基或天然气)直接制取二甲醚已成为关注焦点。由于二甲醚是具有多种用途的环保产品,许多发达国家投入巨资进行合成气直接制取二甲醚合成技术及其下游产品的开发研究。 与国外相比,我国对二甲醚的研究工作起步较晚,大连化学物理研究所则是国内最早从事合成气直接制取二甲醚研究的科研单位之一。合成气直接制取二甲醚是国家“八五”科技攻关项目“合成气经由二甲醚制取低碳烯烃”的子课题,该项目历经实验室研究和中试放大,于1995年八月完成全部工艺开发工作。“合成气经由二甲醚制取低碳烯烃”项目分别获1996年度中国科学院科技进步特等奖、国家“八五”科技攻关重大科技成果奖(国家计委、国家科委及财政部颁发),使建设万吨级二甲醚工业示范装置成为可能。 2.二甲醚的性质与用途 二甲醚的分子式CH3OCH3,常压下沸点:-24.9 ℃,20℃时饱和蒸汽压0.5 MPa,爆炸极限3.4-18℅,自燃温度350℃.二甲醚无毒、无味、易挥发,它不易形成过氧化物,在空气中十分稳定。二甲醚与水及有

机溶剂互容性好。 二甲醚是一种在制药、染料、农药、涂料及日用化学等领域有着非常广泛用途的精细化工产品。随着人们环保意识的增强,目前世界各国都在寻求对环境无害的气雾剂来替代氯氟烃。二甲醚作为气雾剂有其独特的优点-对金属无腐蚀、易液化以及它的溶解能力使二甲醚在配制气雾剂产品中具有双重功能:推进剂和溶剂。由于它水溶性好,可以大幅度降低气雾剂中乙醇及其他有机物的含量,从而减少对环境的污染,因此二甲醚在气溶胶工业中已得到广泛的应用,尤其在欧美发达国家。广东省中山精细化工实业有限公司已建立规模为5000吨/年二甲醚的装置,其全部产品用作气雾剂。此外,精品二甲醚还可用作制冷剂和发泡剂等。我们认为二甲醚最大宗用途是作为民用燃料代替石油液化气及作为车用燃料部分取代柴油,在缺油富气(或多煤)地区可采用合成气经二甲醚制取汽油及乙烯、丙烯等低碳烯烃,以减少对石油资源的依赖,在我国更具迫切性和重要性。 3.合成气直接制取二甲醚 由合成气合成甲醇已实现工业化生产,最大的工业装置已超过100万吨/年,但甲醇的合成反应受热力学平衡限制,单程转化率较低,而由合成气一步法制二甲醚反应的平衡转化率很高,基本不受热力学平衡限制。目前国内外众多科研机构从事合成气制二甲醚生产工艺的研究,按生产步骤分为一步法和两步法两种,现在人们经常提到的合成气制二甲醚生产工艺,实际上已特指一步法(或直接法)而言;按合成气生产所采用的原料来源化分:煤制气、油制气、天然气制气等。

二甲醚生产工艺流程

合成气制二甲醚工艺 目前合成气合成二甲醚的生产工艺主要有两步法和一步法两种,两步法是经过甲醇合成和甲醇脱水两步过程得到DME,一步法是合成气直接生产DME,新开发的工艺有二氧化碳加氢合成二甲醚和生物质间接液化制取二甲醚。 1、两步法制二甲醚 两步法制二甲醚是以合成气为原料由低压法制得甲醇后,甲醇再经脱水制得DME,其主要过程如图1所示: 图1两步法合成二甲醚流程简图 其中甲醇脱水制二甲醚的方法又包括液相甲醇脱水法和气相甲醇脱水法液相甲醇脱水是将甲醇与浓硫酸混合加热使甲醇脱水得到二甲醚,浓硫酸起到催化剂的作用该工艺具有反应温度低,原料转化率和二甲醚的选择性高的优点,但是产品后处理比较困难,而且浓硫酸的存在使设备腐蚀严重,并且产生大量的废液,带来很大的环境污染,限制了此工艺的发展"目前国内仅有武汉硫酸厂和山东久泰化工科技有限公司开发此工艺。 在液相脱水制DME基础上,为了避免液体酸作为甲醇脱水剂时产生的设备腐蚀问题,美孚公司和意大利的ESSO公司开发了以固体酸为催化剂的甲醇气相脱水技术,气相甲醇脱水法的基本原理是将甲醇蒸汽通过固体酸催化剂脱水生成二甲醚,目前常用的催化剂主要有沸石、氧化铝、二氧化硅/氧化铝、阳离子交换树脂等,由于甲醇脱水反应是放热反应,因此维持适宜的反应温浙江大学博士学位论文合成气合成二甲醚和乙二醇研究综述度是气相甲醇脱水法的关键,两步法制二甲醚的反应条件温和,副反应少,二甲醚的选择性和产品的纯度高,但是由于需要从合成气开始生产甲醇,导致合成气的转化率低,生产流程长,并且需要经过甲醇分离精制过程,使得整个工艺的成本增加,即使购买成品甲醇直接脱水制得二甲醚,也容易受到甲醇价格的影响,而使成本难以控制。 2、一步法制二甲醚 合成气直接制二甲醚被称为“一步法”,一步法合成二甲醚由甲醇合成和甲醇脱水两个过程组成,同时还存在水汽变换反应,由于受到热力学的限制,甲醇合成反应的单程转化率一般较低,而由合成气一步法合成二甲醚,采用具有合成甲醇和甲醇脱水两种功能的复合催化剂,由于催化剂的协同效应,反应系统内各个反应相互祸合,生成的甲醇不断转化为二甲醚,合成甲醇不再受热力学的限制,与传统的经甲醇合成和甲醇脱水两步得到DME两步法,相比,一步法具有流程短、操作压力低、设备规模小、单程转化率高等优点,经济上更加合理,但缺点在于二甲醚的选择性低,产物的纯度不高。 目前国内外一步法合成二甲醚的反应工艺主要包括固定床工艺和浆态床工艺两大类:(1)固定床工艺 该工艺采用固定床作为合成二甲醚的反应器,合成反应在固体催化剂表面进行,在此工艺中,若采用贫氢合成气为原料气,催化剂表面会很快积碳,因此须使用富氢合成气为原料气,固定床一步法制取二甲醚的优点是具有较高的CO转化率,该方法具有简单高效的优点,但由于二甲醚合成反应是强放热反应,反应所产生的热量如果无法及时移走,致使催化剂床层局部区域产生热点,进而导致催化剂铜晶粒长大,从而导致催化剂活性降低甚至失去活性,同时,在目前所使用的催化剂上,具有催化甲醇合成的功能团和具有催化甲醇脱水功能的酸

醛固酮缺乏症

疾病名:醛固酮缺乏症 英文名:aldosterone deficiency 缩写: 别名:hypoaldosteronism;低醛固酮血症;醛固酮减少症;醛固酮缺乏 ICD号:E34.8 分类:内分泌科 概述:醛固酮缺乏症(aldosterone deficiency)又称为低醛固酮血症(hypoaldosteronism),是由于醛固酮(aldosterone,ALD)分泌减少或者外周作用缺陷所致的一种内分泌疾病。临床上以高血钾、低钠血症、低血容量、体位性低血压和尿盐丢失为主要表现。醛固酮缺乏可能是全肾上腺皮质功能减退症的表现之一,也可能是单纯的选择性醛固酮缺乏。前者包括Addison病、先天性肾上腺皮质增生症、慢性垂体功能减退症、感染、出血或转移瘤破坏肾上腺,手术切除肾上腺后等;后者指醛固酮选择性分泌不足,肾上腺其他激素(如糖皮质激素)正常,而或ALD的外周作用缺陷所致。流行病学:曾认为选择性醛固酮缺乏症是一种罕见病,但随着对该病的重视以及诊断技术的提高,近年来报道的病例渐趋增多。有人估计在高钾血症中约占10%,在不明原因的高钾血症中可达50%。病因:根据病因和发病机制不同,可将醛固酮缺乏症分为4类:即先天性原发性醛固酮缺乏症,获得性原发性醛固酮缺乏症,获得性继发性醛固酮缺乏症,以及假性醛固酮缺乏症。原发性与继发性是根据血浆肾素活性(PRA)与醛固酮的比值来划分的。原发性醛固酮缺乏症的比值低于正常(高肾素性低醛固酮血症),而继发性的比值正常(低肾素性低醛固酮血症),见表1。 C D D C D D C D D C D D

发病机制:获得性继发性醛固酮缺乏症是本症最常见的类型,主要病因有各种肾脏疾病,如慢性肾小球肾炎、间质性肾炎、慢性肾小球肾炎、肾脏淀粉样变性、肾结石、肾囊肿等;系统性疾病引起的肾脏损害如糖尿病肾病、狼疮性肾炎、多发性骨髓瘤、痛风肾等;其他疾病如肝硬化、镰状细胞贫血、血色病、急性呼吸窘迫综合征等;长期服用β受体阻断剂、前列腺素抑制剂(如吲哚美辛)也可引起本症。醛固酮缺乏继发于肾素水平降低是此型的病理生理特征,故称为低肾素性低醛固酮血症。 获得性原发性醛固酮缺乏症的病灶在肾上腺,多种原因毁损皮质组织,导致肾上腺皮质功能减退,故多数病人可合并有糖皮质激素的缺乏,选择性原发性获得性醛固酮缺乏症少见。自身免疫性肾上腺皮质功能不全、感染(结核常见)、脓毒血症、转移性肿瘤等可引起肾上腺组织结构破坏;肝素可直接抑制醛固酮生物合成。先天性原发性醛固酮缺乏症与遗传有关,是由于有关酶缺陷导致醛固酮合成障碍。胆固醇碳链酶缺乏使胆固醇转变为△5孕烯醇酮发生障碍,故不能生成任何一种类固醇激素。C D D C D D C D D C D D

浅议二甲醚的合成工艺

浅议二甲醚的合成工艺 【摘要】二甲醚(简称DME)习惯上简称甲醚,为最简单的脂肪醚,分子式C2H6O,是乙醇的同分异构体,结构式CH3―O―CH3,分子量46.07,是一种无色、无毒、无致癌性、腐蚀性小的产品。DME因其良好的理化性质而被广泛地应用于化工、日化、医药和制冷等行业,近几年更因其燃烧效果好和污染少而被称为“清洁燃料”,引起广泛关注。 【关键词】二甲醚;设计;工艺 1.DME的用途[1] 1.1用作制冷剂和发泡剂 由于DME的沸点较低,汽化热大,汽化效果好,其冷凝和蒸发特性接近氟氯烃,因此DME作制冷剂非常有前途。国内外正在积极开发它在冰箱、空调、食品保鲜剂等方面的应用,以替代氟里昂。关于DME作发泡剂,国外已相继开发出利用DME作聚苯乙烯、聚氨基甲酸乙酯、热塑聚酯泡沫的发泡剂。发泡后的产品,孔的大小均匀,柔韧性、耐压性、抗裂性等性能都有所增强。 1.2 DME用作燃料 由于DME具有液化石油气相似的蒸气压,在低压下

DME 变为液体,在常温、常压下为气态,易燃、毒性很低,并且DME的十六烷值(约55)高,作为液化石油气和柴油汽车燃料的代用品条件已经成熟。由于它是一种优良的清洁能源,已日益受到国内外的广泛重视。在未来十年里,DME 作为燃料的应用将有难以估量的潜在市场,其应用前景十分乐观。可广泛用于民用清洁燃料、汽车发动机燃料、醇醚燃料。 1.3 DME用作化工原料 DME作为一种重要的化工原料,可合成多种化学品及参与多种化学反应:与SO3反应可制得硫酸二甲酯;与HCL 反应可合成烷基卤化物;与苯胺反应可合成N,N-二甲基苯胺;与CO反应可羰基合成乙酸甲酯、醋酐,水解后生成乙酸;与合成气在催化剂存在下反应生成乙酸乙烯;氧化羰化制碳酸二甲酯;与H2S反应制备二甲基硫醚。此外,利用DME还可以合成低烯烃、甲醛和有机硅化合物。 2.DME工艺说明及设计 2.1设计依据 本项目基于教科书上的教学案例,通过研读大量的关于DME性质、用途、生产技术及市场情况分析的文献,对生产DME的工艺过程进行设计的。 2.2设计方法[2] 2.2.1液相甲醇脱水法制DME

水热与溶剂热合成技术研究进展综述

水热与溶剂热合成技术研究进展综述 摘要:水热与溶剂热合成是无机合成中的重要技术,在大多技术领域得到广泛的研究和应用,是近年来十分活跃的研究领域。本文概述了水热与溶剂热合成的基本特点和反应类型,综述近年来水热与溶剂热合成技术的应用以及研究进展。关键词:水热合成;溶剂热合成;无机合成技术;应用;研究进展;现状。 1 前言 水热和溶剂热合成研究工作经久不衰并逐步演化出新的研究课题如水热条件下的生命起源问题以及与环境友好的超临界水氧化过程。由于水热与溶剂热合成化学在材料领域的广泛应用,世界各国越来越重视这一领域的研究。 水热与溶剂热合成是指在一定温度(100~1000℃)和压强(1~100MPa)条件 下利用溶液中物质化学反应所进行的合成,是研究物质在高温和密闭高压溶液条件下的化学行为与规律的化学分支。水热法是模拟自然界中某些矿石的形成过程而发展起来的一种软化学合成法,已被广泛地应用于材料制备、化学反应和处理,不仅在实验室里得到了应用和持续的研究,而且实现了产业规模的人工水晶水热生长,成为十分活跃的研究领域。溶剂热反应是近年来材料领域的一大研究热点,它是水热反应的发展,与水热反应的不同之处在于所使用的溶剂为有机溶剂而不是水。与其它制备路线相比,溶剂热反应的显著特点在于反应条件非常温和,可以稳定亚稳物相、制备新物质、发展新的制备路线等。 2水热与溶剂热合成基础 2.1 水热与溶剂热合成的基本特点 水热法是指在密闭的不锈钢反应釜中,以水为溶剂,在一定温度下,在水自身产生的压强(即水的自生压强)下,反应混合物进行反应生成产物的合成方法。溶剂热反应是水热反应的发展,该法以非水溶剂代替水,不仅扩大了水热技术的应用范围,而且由于溶剂处在近临界的状态下,能够实现通常条件下无法实现的许多反应,合成通常条件下无法制得的物相或物种,并且能生成介稳态结构的材料,很大程度上扩展了纳米功能材料合成的领域[1]。 水热与溶剂热合成研究特点之一是,在高温高压条件下,水或其它溶剂处于临界或超临界状态,反应活性提高。物质在高温高压溶剂中的物理性能与化学反

蛋白质的生物合成

第十五章蛋白质的生物合成 一:填空题 1.蛋白质的生物合成是以________________作为模板,________________作为运输氨基酸的工具, ________________作为合成的场所。 2.细胞内多肽链合成的方向是从________________端到________________端,而阅读mRNA的方向是从________________端到________________端。 3.核糖体上能够结合tRNA的部位有________________部位、________________部位和 ________________部位。 4.ORF是指________________,已发现最小的ORF只编码________________个氨基酸。 5.蛋白质的生物合成通常以________________作为起始密码子,有时也以________________作为起始密码子,以________________、________________和________________作为终止密码子。 6.SD序列是指原核细胞mRNA的5′-端富含________________碱基的序列,它可以和16SrRNA的3′-端的________________序列互补配对,而帮助起始密码子的识别。 7.含硒半胱氨酸的密码子是________________。 8.原核生物蛋白质合成的起始因子(IF)有________________种,延伸因子(EF)有________________种,终止释放因子(RF)有________________种;而真核生物细胞质蛋白质合成的延伸因子通常有 ________________种,真菌有________________种,终止释放因子有________________种。 9.密码子的第2个核苷酸如果是嘧啶核苷酸,那么该密码子所决定氨基酸通常是________________。 10.原核生物蛋白质合成中第一个被参入的氨基酸是________________。 11.真核生物细胞质蛋白质合成对起始密码子的识别主要通过________________机制进行。 12.无细胞翻译系统翻译出来的多肽链通常比在完整的细胞中翻译的产物要长,这是因为 ________________。 13.蛋白质的半寿期通常与________________端的氨基酸性质有关。 14.tmRNA是指________________。 15.同工受体tRNA是指________________。 16.疯牛病的致病因子是一种________________。 17.已发现体内大多数蛋白质正确的构象的形成需要________________的帮助,某些蛋白质的折叠还需要________________和________________酶的催化。 18.SRP是指________________,它是一种由________________和________________组成的超分子体系,它的功能是________________。 19.蛋白质定位于溶酶体的信号是________________。 20.分子伴侣通常具有________________酶的活性。 答案:1. 2 3 4

生物化学考题_蛋白质生物合成

蛋白质生物合成 一级要求单选题 1 真核生物在蛋白质生物合成中的启始tRNA 是 A 亮氨酸Trna B 丙氨酸tRNA C 赖氨酸tRNA D 甲酰蛋氨酸tRNA E 蛋氨酸tRNA E 2 原核生物蛋白质生物合成中肽链延长所需的能量来源于 A ATP B GTP C GDP D UTP E CTP B 3 哺乳动物核蛋白体大亚基的沉降常数是 A 40S B 70S C 30S D 80S E 60S E 4 下列关于氨基酸密码的叙述哪一项是正确的 A 由DNA 链中相邻的三个核苷酸组成 B 由tRNA 链中相邻的三个核苷酸组成 C 由mRNA 链中相邻的三个核苷酸组成 D 由rRNA 链中相邻的三个核苷酸组成 E 由多肽链中相邻的三个氨基酸组成 C 5 mRNA 作为蛋白质合成的模板,根本上是由于 A 含有核糖核苷酸 B 代谢快 C 含量少 D 由DNA 转录而来 E 含有密码子 E 6 蛋白质生物合成过程特点是 A 蛋白质水解的逆反应 B 肽键合成的化学反应 C 遗传信息的逆向传递 D 在核蛋白体上以mRNA 为模板的多肽链合成过程 E 氨基酸的自发反应 D 7 关于mRNA,错误的叙述是 A 一个mRNA 分子只能指导一种多肽链生成 B mRNA 通过转录生成 C mRNA 与核蛋白体结合才能起作用 D mRNA 极易降解 E 一个tRNA 分子只能指导一分于多肽链生成 E 8 反密码子是指 A DNA 中的遗传信息 B tRNA 中的某些部分 C mRNA 中除密码子以外的其他部分 D rRNA 中的某些部分 E 密码子的相应氨基酸 B 9 密码GGC 的对应反密码子是 A GCC B CCG C CCC

长链硅烷偶联剂的合成和表征研究进展【文献综述】

毕业论文文献综述 化学工程与工艺 长链硅烷偶联剂的合成和表征研究进展 一、前言部分 纳米粒子,又称超细微粒子(ultra fine powders,简称UFP),统指1-100nm的细微颗粒(结晶的或非结晶的)。纳米粒子既不同于微观原子、分子团簇,又不同于宏观体相材料,是一种介于宏观固体和分子间的亚稳中间态物质。当粒子尺寸进入纳米量级(1-100nm)时,由于纳米粒子的表面原子与体相总原子数之比随粒径尺寸的减少而急剧增大,使其显示出强烈的小尺寸效应或体积效应、表面效应等、量子尺寸效应及宏观量子隧道效应等,从而展现出许多奇特的性质。它断裂强度高、韧性好、耐高温、纳米复合时能提高材料的硬度、弹性模量等,并对热膨胀系数、热导率、抗热震性产生影响。在宇航技术、电子、冶金、化工、生物和医学等方面有广阔的应用前景[1,2]。 纳米SiO2具有粒径小(一般小于100nm)、比表面积大(一般大于100m2/g)等特征,从而以其优越的稳定性、补强性、增稠性和触变性而在橡胶、涂料、医药、胶粘剂等领域中得到广泛的运用。大量的文献表明,SiO2等无机粒子和聚合物复合时,复合时无机粒子的粒径大小以及无机粒子与聚合物基体之间的相互作用是非常重要的。粒径越小,特别是当无机粒子的粒径降至纳米级时,复合物材料的性能的改进将发生本质性的提高。然而无机粒子的粒径越小,表面能越大,表面原子所占比例极高,特别是纳米颗粒表面原子是缺少临近配位原子,具有悬空键,众多的表面基团形成氢键、配位键和静电力、范德华力作用,极易发生颗粒之间、颗粒与聚合物之间的键联。因此纳米粒子与聚合物复合时,团聚现象十分严重,纳米粒子无法在聚合物材料中均匀分散,反而造成材料性能下降。为了提高纳米粒子的分散能力,需要对其表面进行改性。改性的目的为:(1)降低粒子表面能,如减少悬空键和表面活性基团;(2)消除表面电荷;(3)增加分散性能;(4)提高粒子与有机相亲和力[3]。 在常用的纳米SiO2改性剂中,硅烷偶联剂是一种增强无机材料与有机聚合物之间亲和力的有机化合物。通过硅烷偶联剂对纳米SiO2的物理化学处理,可以使其由亲水性表面变成亲油性,从而达到与有机聚合物之间的紧密结合,改进塑料复合材料的各种性能。它不仅能够提高塑料的力学性能,还可以改装其电气性能、耐热性、耐水性和耐候性等性能。因此,硅烷偶联剂已成为目前纳米SiO2改性的一种助剂,它的类型及用量对改性结果影响起着非常重要的作用。

·专题综述· 两亲聚氨酯的合成及研究进展

?专题综述? 两亲聚氨酯的合成及研究进展 胡慧庆 杨建军3 吴庆云 张建安 吴明元 (安徽大学化学化工学院与安徽省绿色高分子材料重点实验室 合肥230039) 摘 要:综述了两亲聚氨酯的合成方法和最新研究进展,阐述了两亲聚氨酯合成中亲水基团的引入方法,介绍了两亲聚氨酯材料在实际中的应用,并指出了两亲聚氨酯领域今后的发展方向。两亲聚氨酯材料中同时含有亲水和疏水组分,结构和性能易于通过改变配方调节,具有优良的综合性能,可用作防水透湿材料、高分子表面活性剂和医用材料等,是一类应用前景十分广泛的两亲性新材料。 关键词:两亲;聚氨酯;合成;进展 聚氨酯材料其最大特点是可通过改变原料品种及配方,在较大范围内对其性能进行调节,在弹性体、涂料和粘合剂等领域已有广泛的应用。两亲聚合物是指同一高分子中同时具有亲水性和亲油性单元的聚合物。这种体系后期改性容易,具有特殊的表面性能,在一定的溶剂或表面上会形成胶束、微乳胶和可吸收性聚合物层,因此备受学术界的关注。 由于异氰酸酯的高度反应性,利用亲水和疏水软段制备两亲聚氨酯不仅在工艺上较容易实现,其组分比例还可以在较大的范围内进行调节。两亲聚氨酯同时具有两亲聚合物材料和聚氨酯材料的优良性能,是一类应用前景十分广泛的两亲性新材料,可用作防水透湿材料、高分子表面活性剂、医用材料及其它方面具有广泛的应用前景。至今,已经有各种新型两亲聚氨酯材料被开发出来并成功得到应用[1]。 1 两亲聚氨酯的制备方法 两亲聚氨酯体系中同时包含亲水和亲油两种性质差别较大的组分,因此需要一些特别的制备技术。其制备方法可分为以下几大类。 1.1 嵌段共聚法 两亲嵌段聚氨酯是指在聚氨酯大分子主链上同时含有疏水链段和亲水链段的嵌段型聚氨酯。是两亲聚氨酯中结构相对简单的体系。常用的嵌段共聚方法有如下几种:(1)连续开环法,即采用杂环化合物连续开环聚合,这种方法合成的产物结构比较容易控制,但是对于单体的选择较苛刻,故这种方法的应用范围较小;(2)基团转移聚合法,即采用阴离子型或路易斯酸性化合物作为催化剂,选用适当的有机溶剂来制备结构和相对分子质量均可以控制的两亲嵌段聚氨酯;(3)其它方法,包括胶束聚合法、聚合后功能化法等。 Ki m J Y等[2~5]对两亲聚氨酯的合成及应用进行了大量而系统的基础研究。用丙烯酸酯为疏水基团,在主链上引入离子型的亲水基团,制备了一种两亲嵌段聚氨酯材料,研究了水和其它极性溶剂对其凝胶溶胀性的影响,并探讨了微相分离程度与宏观溶胀特性的关系;采用UV光固化,使亲水基团为聚氧化乙烯(PE O)的两亲嵌段聚氨酯与钠型蒙脱土(Na2MMT)制备成纳米级插层复合材料,研究发现其具有较好的力学性能;通过无皂乳液聚合方法制备了一种新的对pH敏感的两亲嵌段聚氨酯,发现它具有非常特异的流变性能;通过乳液聚合反应制备了一种纳米级两亲聚氨酯并研究了这种两亲聚氨酯在处理土壤污染中的应用,发现它对受焦煤油污 ? 1 ? 2007年第22卷第5期2007.Vol.22No.5 聚氨酯工业 P OLY URETHANE I N DUST RY 3通信联系人:杨建军,研究员,硕士研究生导师。

相关文档
最新文档