基于PLC控制的锅炉供热控制系统设计

基于PLC控制的锅炉供热控制系统设计
基于PLC控制的锅炉供热控制系统设计

1 引言

1.1 技术综述

自70年代以来,由于工业过程控制的需要,特别是在电子技术的迅猛发展,以及自动控制理论和设计方法发展的推动下,国外温度控制系统发展迅速,并在智能化自适应参数自整定等方面取得成果。在这方面以日本、美国、德国、瑞典等国技术领先,并且都生产出了一批商品化的性能优异的温度控制器及仪器仪表,在各行业广泛应用。

目前,国外温度控制系统及仪表正朝着高精度智能化、小型化等方面快速发展。温度控制系统在国内各行各业的应用虽然已经十分广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同国外的日本、美国、德国等先进国家相比,仍然有着较大的差距。目前,我国在这方面总体技术水平处于20世纪80年代中后期水平。成熟产品主要以“点位”控制及常规的PID控制器为主,它只能适应一般温度系统控制,难于控制滞后复杂时变温度系统控制,而且适应于较高控制场合的智能化、自适应控制仪表国内技术还不十分成熟,形成商品化并广泛应用的控制仪表较少。现在,我国在温度等控制仪表业与国外还有着一定的差距。

温度控制系统大致可分别用3种方式实现,一种是用仪器仪表来控制温度,这种方法控制的精度不高。另一种是基于单片机进行PID控制,然而单片机控制的DDC 系统软硬件设计较为复杂, 特别是涉及到逻辑控制方面更不是其长处, 而PLC 在这方面却是公认的最佳选择。随着PLC功能的扩充在许多PLC控制器中都扩充了PID 控制功能。因此本设计选用西门子S7-300PLC来控制加热炉的温度。

1.2 系统工作原理

加热炉温度控制系统基本构成如图1-1所示,它由PLC主控系统、固态继电器、加热炉、温度传感器等4个部分组成。

PLC主控系统

加热炉温度控制实现过程是:首先温度传感器将加热炉的温度转化为电压信号,PLC主控系统内部的A/D将送进来的电压信号转化为西门子S7-300PLC可识别的数字量,然后PLC将系统给定的温度值与反馈回来的温度值进行比较并经过PID运算处理后,给固态继电器输入端一个控制信号控制固态继电器的输出端导通与否从而使加热炉开始加热或停止加热。既加热炉温度控制得到实现。其中PLC主控系统为加热炉温度控制系统的核心部分起着重要作用。

1.3 系统组成

本系统的结构框图如图2-3所示。

由图1-2可知,温度传感器采集到数据后送给S7-300PLC,S7-300PLC通过运算后给固态继电器一个控制信号从而控制加热炉的导通与否。上位机是编写PLC程序以及监控温度的变化。

1.4 系统设计目标及技术要求

本系统应能够控制在设定值的±5℃的误差范围内并且具有温度上下限报警功能和故障报警功能。

由学校提供,模拟真实锅炉的温度检测和控制模块,可自行将0~10V模拟信号转化为占空比对锅炉进行加热。输出的模拟信号也是0~10V,锅炉外接24V直流电源。

2 下位机硬件系统设计

随着微处理器、计算机和数字通信技术的飞速发展,计算机控制已经广泛地应用

在所有的工业领域。现代社会要求制造业对市场需求作出迅速反应,生产出小批量、

多品种、多规格、高质量的产品。为了满足这一要求,生产设备和自动化生产线的控

制系统必须具有极高的可靠性和灵活性。可编程序控制器(Programmable Logic Controller)正是顺应这一要求出现的,它是以微处理器为基础的通用控制装置。本系

统控制软件设计分为PLC的软件和工控机的软件设计两部分,其中下位机使用的软件

为siemens公司的step7。本章主要介绍西门子S7-300系列PLC以及其它硬件的组成

与选型。

2.1 硬件接线图

硬件接线图如下图2-1。

FU1

2.2 传感器

温度是一个基本的物理量,自然界中的一切过程无不与温度密切相关。温度传感器是最早开发,应用最广的一类传感器。根据美国仪器学会的调查,1990年,温度传感器的市场份额大大超过了其他的传感器。从17世纪初伽利略发明温度计开始,人们开始利用温度进行测量。真正把温度变成电信号的传感器是1821年由德国物理学家赛贝发明的,这就是后来的热电偶传感器。50年以后,另一位德国人西门子发明了铂电阻温度计。在半导体技术的支持下,本世纪相继开发了半导体热电偶传感器、PN 结温度传感器和集成温度传感器。与之相应,根据波与物质的相互作用规律,相继开发了声学温度传感器、红外传感器和微波传感器。这里我们主要介绍热电阻和热电偶。

2.2.1 热电阻

热电阻是中低温区最常用的一种温度测量元件。热电阻是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。当电阻值变化时,二次仪表便显示出电阻值所对应的温度值。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精度是最高的。

铂热电阻根据使用场合的不同与使用温度的不同,有云母、陶瓷、簿膜等元件。作为测温元件,它具有良好的传感输出特性,通常和显示仪、记录仪、调节仪以及其它智能模块或仪表配套使用,为它们提供精确的输入值。若做成一体化温度变送器,可输出4-20mA标准电流信号或0-10V标准电压信号,使用起来更为方便。

热电阻大都由纯金属材料制成,目前应用最多的是铂和铜。此外,现在已开始采用铬、镍、锰和铑等材料制造热电阻。根据使用场合的不同,热电阻也有铠装式热电阻、装配式热电阻、隔爆式热电阻等种类,与热电偶类似。

铂电阻的工作原理是,在温度作用下,铂热电阻丝的电阻值随温度变化而变化,且电阻与温度的关系即分度特性符合IEC标准。分度号Pt100的含义为在0℃时的名义电阻值为100Ω,目前使用的一般都是这种铂热电阻。此外还有Pt10、Pt200、Pt500和Pt1000等铂热电阻,Cu50、Cu100的铜热电阻等。

2.2.2 热电偶

工业热电偶作为测量温度的传感器,通常和显示仪表、记录仪表和电子调节器配套使用,它可以直接测量各种生产过程中不同范围的温度。若配接输出4-20mA、0-10V 等标准电流、电压信号的温度变送器,使用更加方便、可靠。对于实验室等短距离的

热电偶的工作原理是,两种不同成份的导体,两端经焊接,形成回路,直接测量端也叫工作端(热端),接线端子端也叫冷端,当热端和冷端存在温差时,就会在回路里产生热电流,这种现象称为热电效应;接上显示仪表,仪表上就会指示所产生的热电动势的对应温度值,电动势随温度升高而增长。热电动势的大小只和热电偶的材质以及两端的温度有关,而和热电偶的长短粗细无关。

根据使用场合的不同,热电偶有铠装式热电偶、装配式热电偶、隔爆式热电偶等种类。装配式热电偶由感温元件(热电偶芯)、不锈钢保护管、接线盒以及各种用途的固定装置组成。铠装式热电偶比装配式热电偶具有外径小、可任意弯曲、抗震性强等特点,适宜安装在装配式热电偶无法安装的场合,它的外保护管采用不同材料的不锈钢管,可适合不同使用温度的需要,内部充满高密度氧化绝缘体物质,非常适合于环境恶劣的场合。隔爆式热电偶通常应用于生产现场伴有各种易燃、易爆等化学气体的场合,如果使用普通热电偶极易引起气体爆炸,则在这种场合必须使用隔爆热电偶。

热电偶传感器有自己的优点和缺陷,它灵敏度比较低,容易受到环境干扰信号的影响,也容易受到前置放大器温度漂移的影响,因此不适合测量微小的温度变化。由于热电偶温度传感器的灵敏度与材料的粗细无关,用非常细的材料也能够做成温度传感器。也由于制作热电偶的金属材料具有很好的延展性,这种细微的测温元件有极高的响应速度,可以测量快速变化的过程,如燃烧和爆炸过程等。对一般的工业应用来说,为了保护感温元件避免受到腐蚀和磨损,总是装在厚厚的护套里面,外观就显得笨大,对于温度场的反应也就迟缓得多。使用热电偶的时候,必须消除环境温度的波动对测量带来的影响。有的把它的自由端放在不变的温度场中,有的使用冷端补偿器抵消这种影响。当测量点远离仪表时,还需要使用热电势率和热电偶相近的导线来传输信号,这种导线称为补偿导线。

本设计选用镍铬-镍硅N型热电偶,选用其型号为WRM-101。

2.3 PLC的基本概念

可编程序控制器简称为PLC,它的应用面广、功能强大、使用方便,已经成为当代工业自动化的主要支柱之一。PLC已经广泛地应用在各种机械设备和生产过程的自动控制系统中,PLC在其它领域,例如在民用和家庭自动化设备中的应用也得到了迅速的发展。

2.3.1 S7-300简介

模块、信号模块和功能模块能满足各种领域的自动控制任务,用户可以根据系统的具体情况选择合适的模块,维修时更换模块也很方便。S7-300有很高的电磁兼容性和抗振动抗冲击能力,有350多条指令,其编程软件STEP7功能强大,可以使用多种编程语言。S7-300采用紧凑的、无槽位限制的模块结构,各个模块都安装在导轨上,用螺栓锁紧即可。

2.3.2 模块式PLC 的基本结构

这里我们主要介绍的是西门子S7-300,S7-300属于模块式PLC 。西门子的PLC 以其极高的性价比,在国内占有很大的市场份额,在我国的各行各业得到了广泛的应用。S7-300模块式PLC ,主要由机架、CPU 模块、信号模块、功能模块、接口模块、通信处理器、电源模块和编程设备组成,各种模块安装的机架上。通过CPU 模块或通信模块上的通信接口,PLC 被连接到通信网络上,可以与计算机、其它PLC 或其它设备通信。图2-2是PLC 控制系统的示意图。

图2-2 PLC 控制系统示意图

CPU 模块:CPU 模块主要由微处理器和存储器组成,S7-300将CPU 模块简称为CPU 。在PLC 控制系统中,CPU 模块相当于人的大脑和心脏,它不断的采集输入信号,执行用户程序,刷新系统的输出,模块中的存储器用来存储程序和数据。

信号模块:输入(Input )模块和输出(Output )模块一般简称为I/O 模块,开关量输入/输出模块简称为DI 模块和DO 模块,模拟量输入/输出模块简称为AI 模块和AO 模块,在S7-300中统称为信号模块。信号模块是系统的眼、耳、手、脚,是联系

接触器

电磁阀 指示灯 电源

外部现场设备和CPU模块的桥梁。输入模块用来接收和采集输入信号,开关量输入模块用来接收从按钮、选择开关、数字拨码开关、限位开关、接近开关等来的开关量输入信号;模拟量输入模块用来接收电位器、测速发电机和各种变送器提供的连续变化的模拟量电流电压信号。开关量输出模块用来控制接触器、电磁阀、电磁铁、指示灯、数字显示装置和报警装置等输出设备,模拟量输出模块用来控制电动调节阀、变频器等执行器。在信号模块中,用光耦合器、光敏晶闸管、小型继电器等器件来隔离PLC的内部电路和外部的输入、输出电路。

功能模块:为了增强PLC的功能,扩大应用领域,减轻CPU的负担,PLC厂家开发了各种各样的功能模块。主要用于完成某些对实时性和存储容量要求很高的控制任务。

接口模块:CPU模块所在的机架称为中央机架,如果一个机架不能容纳全部模块,可以增设一个或多个扩展机架。接口模块用来实现中央机架和扩展机架之间的通信,有的接口模块还可以为扩展机架供电。

通信处理器:通信处理器用于PLC之间、PLC与远程I/O之间、PLC与计算机和其他智能设备之间的通信,可以将PLC接入MPI、PROFIBUS-DP、AS-i和工业以太网,或者用于点对点通信。

电源模块:PLC一般使用AC 220V电源或DC 24V电源,电源模块用于将输入电压转换为DC 24V和背板总线上的DC 5V电压,供其他模块使用。

编程设备:S7-300使用安装了编程软件STEP7的个人计算机作为编程设备,在计算机屏幕上直接生成和编辑各种文本程序或图形程序,可以实现不同编程语言之间的相互转换。程序被编译后下载到PLC,也可以将PLC中的程序上传到计算机。程序可以存盘或打印,通过网络,可以实现远程编程。编程软件还具有对网络和硬件组态、参数设置、监控和故障诊断等功能。

2.4 硬件配置

2.4.1 s7-300硬件配置

(1)如图2-4,选中一槽,并双击SIMA TIC—300——PS—300中的PS 307 5A (电源模块)。

(2) 2号槽为CPU模块,选用CPU314C-2DP。

(3) 3号槽为空。

击,完成数字量输入模块的配置。

图2-4 电源模块

图2-5 数字量输入模块

图2-6 数字量输出模块

(5)如图2-6,选中5槽,选择“SM-300--DO-300--SM 322 DO16×DC24V/0.5A”并双击,完成数字量输出模块的配置。

(6)如图2-7,将M3.0~M3.7设置为脉冲信号。

2.5 I/O分配表

表2-1 I/O分配表

3 下位机软件系统设计

3.1 PID控制器

PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量来进行控制。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时、控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合采用PID控制技术。

3.1.1 PID控制器的参数整定

PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性,确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有理论计算整定法和工程整定法,其中工程整定法主要有临界比例法、反应曲线法和衰减法。

本设计选用临界比例法,利用该方法进行PID控制器参数的整定步骤如下:

(1)首先预选择一个足够短的采样周期让系统工作;

(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;

(3)在一定的控制度下通过公式计算得到PID控制器的参数。

3.1.2 PID控制器的主要优点

PID控制器成为应用最广泛的控制器,它具有以下优点:

(1)PID算法蕴涵了动态控制过程中过去、现在、将来的主要信息,而且其配置几乎最优。

(2)PID控制适应性好,有较强的鲁棒性,对各种工业应用场合,都可在不同的程度上应用。特别适于“一阶惯性环节+纯滞后”和“二阶惯性环节+纯滞后”的过程控制对象。

(3)PID算法简单明了,各个控制参数相对较为独立,参数的选定较为简单,形成了完整的设计和参数调整方法,很容易为工程技术人员所掌握。

列改进的PID算法。这些改进算法在一些应用场合取得了很好的效果。同时当今智能控制理论的发展,又形成了许多智能PID控制方法。

3.1.3 PID控制器的选取

PID控制器的性能和处理速度只与所采用的CPU的性能有关。对于任意给定的CPU,控制器的数量和每个控制器被调用的频率是相互矛盾的。控制环执行的速度,也即在每个时间单元内操作值必须被更新的频率决定了可以安装的控制器的数量。对要控制的过程类型没有限制,迟延系统(温度、液位等)和快速系统(流量、电机转速等)都可以作为被控对象。

过程分析时应注意:控制过程的静态性能(比例)和动态性能(时间延迟、死区和重设时间等)对被控过程控制器的构造和设计以及静态(比例)和动态参量(积分和微分)的维数选取有着很大的影响。准确地了解控制过程的类型和特性数据是非常必要的。

控制器选取时应注意:控制环的特性由被控过程或被控机械的物理特性决定,并且设计中可以改变的程度不是很大。只有选用了最适合被控对象的控制器并使其适应过程的响应时间,才能得到较高的控制质量。不用通过编程就可以生成控制器的大部分功能(构造、参数设置和在程序中的调用等),前提是必须已经掌握STEP 7的编程基础知识。

3.1.4 PID参数的设定

PID调节器参数是根据控制对象的惯量来确定的。大惯量如大烘房的温度控制,一般P可在10以上,I=3-10,D=1左右。小惯量如一个小电机带一个水泵进行压力闭环控制,一般只用PI控制,P=1-10,I=0.1-1,D=0,这些要在现场调试时进行修正,主要是靠经验及对生产工艺的熟悉,参考对测量值的跟踪与设定值的曲线,从而调整P、I、D的大小。

3.1.5 闭环控制系统特点

PID就是应用最广泛的闭环控制器。如图3-1所示系统是用于电加热炉温度控制系统的闭环控制系统的PID闭环控制系统,系统目标设定值为期望的加热炉温度,闭环控制器的反馈值通过温度传感器测得,并经A/D变换转换为数字量;目标设定值与温度传感器的反馈信号相减,其差送入PID控制器,经比例、积分、微分运算,得到叠加的一个数字量;该数字量经过上限、下限限位处理后进行D/A变换,输出一个电压信号去控制固态继电器,以控制加热炉的温度。该系统的PID控制器一般采用PLC

提供的专用模块(本系统采用FB58模块),也可以采用编程的方法(如PLC编程、高级语言编程或组态软件编程等)生成一个数字PID控制器。同时,其它功能如A/D、D/A都由PLC实现,加热炉的反馈信号直接送PLC采集,控制固态继电器的电压信号也由PLC送出,从而控制加热炉的温度。

图3-1电加热炉温度控制系统的闭环控制系统应用实例

3.2S7-300程序设计流程图

3.3基于PLC的软件设计

FB41是S7-300系统自带的PID运算控制模块。在P,I,D这三种控制作用中,比例部分与误差部分信号在时间上时一致的,只要误差一出现,比例部分就能及时地产生与误差成正比例的调节作用,具有调节及时的特点。比例系数越大,比例调节作用越强,系统的稳态精度越高;但是对于大多数的系统来说,比例系数过大,会使系统的输出振荡加剧,稳定性降低。

调节器中的积分作用与当前误差的大小和误差的历史情况都有关系,只要误差不为零,控制器的输出就会因积分作用而不断变化,一直要到误差消失,系统处于稳定状态时,积分部分才不再变化,因此,积分部分可以消除稳态误差,提高控制精度。但是积分作用的动作缓慢,可能给系统的动态稳定性代来不良影响,因此很少单独使用。

积分时间常数增大时,积分作用减弱,系统的动态性能(稳定性)可能有所改善,但是,消除稳态误差的速度减慢。

根据误差变化的速度(即误差的微分),微分部分提前给出较大的调节作用,微分部分反映了系统变化的趋势,它较比例调节更为及时,所以微分部分具有预测的特点。微分时间常数增大时,超调量减小,动态性能得到改善,但抑制高频干扰的能力下降。如果微分时间常数过大,系统输出量在接近稳态值时上升缓慢。

采样时间按常规来说应越小越好,但是时间间隔过小时,会增加CPU的工作量,相邻两次采样的差值几乎没有什么变化,所以也不易将此时间取的过小,另外,假如此项取比运算时间短的时间数值,则系统无法执行。S7-300PLC自带的FB41默认的采样时间是0.1秒,而OB1的循环扫描时间一般远低于0.1秒,而且不固定,故一般在OB35(默认0.1秒周期执行)中调用。

3.3.1 FB41部分端口定义

EN:使能,高电平有效

COM_RST:初始化,高电平清除所用中间值与输出值

MAN_ON:高电平手动工作,低电平闭环工作

P_SEL、I_SEL、D_SEL:PID三种运算使能,高电平采用该运算

CYCLE:采样时间,一般取100MS

GAIN:比例参数,实数

SP_INT:给定值,实数

PV_IN:反馈值,实数

DEADB:死区,差值的百分数

LMN_PER:PID运算输出,0-6C00

3.3.2 控制程序

(1)初次上电,读入模拟信号,并把数值转化显示锅炉的当前电压,判断炉温是否在正常范围,打亮正常运行指示灯/温度越上限报警指示灯。

(2)输入设定温度、把设定温度、P值、I值、D值都导入PID、每100ms中断一次子程序进行PID运算。

(3) 输出限幅:因为PLC模拟量输出电压范围为0-10V(0-600),而加热驱动器输入电压范围为0-5V。

4 控制系统上位机设计

某高校锅炉控制系统上位机使用SIEMENS公司丌发的与STEP7-300配套的上位

机开发软件,并使用MPI卡与下位机STEP7之间的通信,同时为了适应现在集约型自动化控制的需要,采用与WINCC配套的WEB NAVIGATOR软件来实现远程WEB浏览功能,从而可以进行远程系统监测与控制。

4.1 WINCC软件介绍

WINCC(Windows Control Center)是SIEMENS公司的一种功能强大的工业控制软件,是“真正开放的”人机界面SCADA(数据采集与监视控制系统)软件。它是第一个使用最新的32位技术的过程监控系统,具有良好的开放性和灵活性、分布式多任务的特点,适合于对过程事件的快速反应。无论是单用户系统还是冗余多服务器/多用户系统、还是针对复杂的或特定的任务,WINCC均能够很好的处理;WINCC集成ODBC/SQL 数据库,具有OLE,ActiveX,OPC等标淮接口、开放的API程序接口以及针对所有主要PLC厂商的通讯接口程序。WINCC编程语言为ANSI C语言,易于组态,能够在组态和在线运行环境中切换语言;WINCC支持分布式系统结构,有广泛的应用,可以连接到已存在的自动化环境中;WINCC是模块化结构,可运行于Windows98/2000或NT,用户只需要选择购买应用所需要的部分。WINCC具有控制自动化过程的强大功能,是基于个人计算机、同时具有极高性价比的SCADA级的操作监控系统。WINCC容易结合标准的和用户的程序建立人机界面,精确的满足生产实际要求。系统集成商可应用WINCC作为其系统扩展的基础,通过开放接口开发自己的应用软件。

4.1.2 WINCC的特点

台,充分利用了Windows图形功能完备、界面一致性好、易学易用的特点。WINCC的图形编辑器提供了强大的图形库,设计人员可高效快捷地绘制出各种工艺画面,并可方便进行编辑,使采用PC机比以往使用专用机开发的工业控制系统更有通用性,减少了工控软件开发者的重复工作。另外WINCC支持丰富的动画连接如“闪烁”、“旋转”、“填充”、“移动”等,使画面生动直观。

2.支持脚本语言:从使用脚本语方面,组态软件均使用脚本语言提供二次开发。脚本语言也称命令语言、控制语言。用户可根据自己需要编写程序。组态软件在脚本语言功能及提供的脚本函数数量上不断提高。WINCC内部提供了很多标准函数和内部函数,编程人员可直接调用这些函数,另外WINCC提供C脚本编辑器,设计人员可根据任务自行设计项目函数,或修改标准函数和内部函数。

3.全集成自动化:WINCC与SIMATIC产品家族中的组件一起使用时可能进行广泛的集成。这种集成有利于:全局组态和编程;全局数据维护;全局通讯。因此,在使用WINCC进行工作时,可对STEP7中所定义的符号表直接进行访问。在用户S7自动化系统中可用的所有变量的列表将显示在WINCC变量选择对话框中。用户既可从该列表选择所需的变量,也可在WINCC中重新创建变量。

4.开放性:WINCC提供了开放的界面用于用户解决方案,这使得将WINCC集成入复杂、广泛的自动控制解决方案成为可能。可以集成通过ODBC和SOL方式的归档数据访问,以及通过OLE2。和ActiveX控件的对象和文档的链接。

5.强大的数据库:组态软件均有一个实时数据库作为整个系统数据处理、数据组织和管理的核心。负责整个应用系统的实时数据处理、历史数据存储、报警处理,完成与过程的双向数据通讯。WINCC通过变量记录和报警记录等编辑器对过程值进行归档,自动存入数据库。

6.丰富的功能模块:组态软件以模块形式挂接在基本模块上,互相独立提高了系统可靠性和可扩展性。WINCC利用图形编辑器、变量记录编辑器、报警记录编辑器、报表编辑器和脚本编辑器等功能模块,完成实时监控、报表生成、实时曲线、历史曲线、提供报警等功能。

4.1.3 项目组态

本系统上位机监控软件选用西门子工控组态软件WINCC SP2 7.0英文版设计。WINCC是用于Microsoft Windows NT和Windows 2000的一种高效HMI(Human Machine Interface。人机界面)的组态工具。其自动化过程(As)保持对过程的实际控制,

一方面实现WINCC和操作员之间的通讯,另一方面,实现WINCC和自动化系统之问的通讯。

系统上位机由两个操作站构成,两台操作员站具有同样的功能并互为备用,当一台操作站死机,另一台操作站可完全替代它的功能。操作站设置的画面有锅炉系统流程图,分系统流程图,可形象的显示整个锅炉系统的控制过程,另外还设计有总貌画面、报警显示画面、棒图显示画面,报表打印画面、实时趋势、历史趋势画面和系统自检画面等。监控系统完成的任务如下:

1.参数设定:对模拟量标度变换参数的设定以及控制回路中控制参数设定。

2.数据监视:监视每台锅炉运行汽包水位、蒸汽压力、炉膛负压、炉膛温度、出水流量等模拟量参数以及电机转速和输出电压、电流信号的变化。数据以直接显示、趋势图和在线表格三种形式显示在图形界面上供用户查看。

3.数据归档:所有模拟量信号均通过变量记录编辑器进行短期归档,而对于一些重要参数(如汽包水位)和统计量(如耗煤量、蒸汽流量等)则需长期归档。

4.报警记录:系统中采集到的模拟量信号都必须设定上下限,当系统运行过程中模拟量发生超限报警时,报警记录编辑器记录报警时间,并提示报警信息。对于超温超压报警,必要时要停止风机和水泵等电机。

5.报表打印:WINCC通过报表编辑器产生趋势图、报警记录和数据记录报表等。自动记录交接班情况,记录每一班锅炉运行时间,实现实时数据记录,报警记录的打印,班(日)报、月报报表记录与打印,耗煤量、供热量、统计与打印等。

4.2 系统监控软件设计

WINCC在组态期间,界面系统用于创建在运行系统中对过程进行显示的画面。界面系统由组态和运行期组件组成。图形编辑器是界面系统的组态组件,它用于创建画面的编辑器。图形运行系统是界面系统的运行组件,它将显示运行系统中的画面上的图片,并管理所有的输入与输出。根据项目设计的任务,本系统需要设计很多图形界面,下面是具体实现步骤:

1.启动WINCC,建立新的WINCC项目,如图4-1所示:

图4-1 建立WINCC项目

2.在变量管理中右键击选择添加新的PLC驱动程序,选择支持S7协议的通信驱动

程序SIMATICS7ProtocolSuite.chn添加到变量管理器如图4-2所示:

图4-2 添加S7协议的通信驱动程序

供暖系统自动化控制方案

XXXXXX有限公司供热管网自动控制系统方案 同方股份有限公司 2010年6月

目录 1 大滞后控制对象自动化系统要点分析................................. 2分时、分温、分区供暖自动控制模式................................. 3供暖节能自动控制系统的构成....................................... 供热自动控制系统总体架构............................................ 节能自控系统的组成.................................................. 监控中心的主要功能.................................................. 设备配置....................................................... 监控管理软件................................................... 监控管理主机................................................... 系统组态功能................................................... 人机界面的特点................................................. 各换热站的设备功能.................................................. 数据采集....................................................... DDC智能控制器.................................................. 触摸式操作显示屏............................................... GPRS无线数据传输器............................................. 供暖节能自动控制系统的设备配置...................................... 4节能自动控制系统拟选设备简介..................................... DDC智能控制器....................................................... 一体化彩色液晶触摸屏(工控机)...................................... GPRS无线数据传输器.................................................. 5热网监控系统解决的问题和产生的效益...............................

燃气蒸汽锅炉DCS控制系统方案

xxx工业有限责任公司 锅炉房3台10T蒸汽锅炉自控系统 控 制 方 案 xxxx电气系统

一:概述 xxxx电气是暖通、供暖节能、锅炉、热能设备等领域自动化控制的高科技股份制公司,是国最大的锅炉电脑控制器厂家。 xx公司于1995年在全国率先推出锅炉电脑控制器,至今已发展到全系列燃煤、燃油(气)和电热锅炉的电脑控制、PLC控制、小型和大型DCS控制和供暖节能控制,控制锅炉的吨位达到150t/h,并且始终保持技术领先地位。目前xx公司产品已遍布全国,部分出口国外,近1000家国锅炉厂和11家外资锅炉厂配套使用,已成为我国锅炉控制的主流产品和著名品牌,是中国锅炉行业“工业锅炉控制标准”起草单位。 公司资质: 中国锅炉行业“工业锅炉控制标准”起草单位 省级高新技术企业 国家级高新区企业 计算机软件企业 中国锅炉行业协会团体会员 二、控制对象和设备 10T燃油气两用饱和蒸汽锅炉3台,每台包括: ●程控器外置式燃烧器1台;风机功率12KW, ●给水泵2台,功率15kw(一主一备); ●循环泵 ●节能泵 由上述设备组成锅炉补水及蒸汽负荷输出系统。 三、关于标准 1、目前尚无锅炉控制器的国家标准或行业标准,我公司执行的是xxxx公司企业标准Q/3201RTG01-2000,是 目前国唯一具有企业标准的锅炉电脑控制厂家。 2、我国工业锅炉控制装置的行业标准正在制定中,我公司为该标准的第一起草单位。 3、本控制方案依照国家有关标准和规程及xxxx公司企业标准编制,全面满足招标方要求。 四:系统设计原则 我方在进行本控制系统设计时,将严格遵循以下系统设计原则:

安全性原则:由于锅炉属于压力容器,而且工作环境比较恶劣,因此,控制系统首先要保证的就是锅炉系统运行的安全性,这是首要设计原则。为了达到安全的目的,在一次仪表和二次仪表的选型上,要严格遵循行业规,从根源上保证系统的安全。 可靠性原则:可靠性原则是针对控制系统的安全而言的,同样是为了保证锅炉的安全运行,在控制系统设计时,要注意控制的层次和相应层次的操作等级、权限。目前,国际上普遍认同的可靠控制系统分为三个等级:计算机上位监控子系统、实时控制子系统和就地强电手动操作子系统,本项目也将严格按这种方式来设计整体控制系统。 科学性原则:科学性原则是指控制系统中选用的一次、二次仪表、PLC等产品都属于目前国和国际上的主流产品,同时,控制系统的结构是合理的,具有行业针对性的。 先进性原则:先进性原则是指在系统科学设计和元器件经济合理的前提下,要尽量保证控制系统符合国际上自动化控制系统的发展方向,保证本控制系统在5-10年仍属于比较先进的锅炉控制系统。 五、控制方案 根据燃气锅炉的运行特点,锅炉控制系统控制采用小型分布式控制系统,本系统由一个工程师站,两个操作员站作为集中监控平台;S7-300作为锅炉及辅机控制系统,一次仪表信号分别送入PLC ,由PLC 经智能逻辑运算后驱动燃烧、循环泵等相关设备;上位系统一方面接收下位机上传的现场信号进行数据显示及报表和记录生成,另一方面,根据数据分析结果对下位机进行管理,实时监控锅炉系统运行以保证整个锅炉控制系统绝对安全可靠。拓扑图如下: 上位机: I/O数据处理、回路控制和顺序控制、完成面向过程的全部监测、调节和运算功能。包括温度、压力的显示、各种复杂调节和先进控制算法,各种电机的起停等控制,相关设备运行状态的监控及连锁保护等。 PLC柜:现场数据采集及简单处理、现场执行机构驱动。 操作员站及工程师站:工控机采用研华品牌,P4,512MB存,250G硬盘,DVD光驱,显示器采用22寸DELL 液晶显示器

工业锅炉控制系统设计

工业锅炉控制系统设计 The following text is amended on 12 November 2020.

工业锅炉控制方案设计 学生学号: 学生姓名:曹新龙 专业班级:自动化12102班指导老师:赵莹萍 目录

引言 锅炉是国民经济中主要的供热设备之一。电力,机械,冶金,化工,纺织,造纸,食品等工业和民用采暖都需要锅炉供给大量的蒸汽。各种工业的生产性质与规模不同,工业和民用采暖的规模大小也不一样,因此所需的锅炉容量,蒸汽参数,结构,性能方面也不尽相同。锅炉是供热之源,锅炉机器设备的任务在于安全,可靠,有效地把燃料的化学能转化成热能,进而将热能传递给水,以生产热水和蒸汽。为了提高热量及效率,锅炉向着高压,高温和大容量等方向发展。供热锅炉,除了生产工艺有特殊要求外,所生产的热水不需要过高温的压力和温度,容量也无需很大。 随着生产的发展,锅炉日益广泛的应用于工业生产的各个领域,成为发展国民经济的重要热工设备之一。在现代化的建设中,能源的需求是非常大的,然而我国的能源利用率极低,所以提高锅炉的热效率,具有极为重要的实际意义。此外,锅炉是否能应地制宜地有效地燃用地方燃料,并满足环境保护的各项要求而努力解决烟尘污染问题,以提高操作管理水平,减轻劳动强度,保证锅炉额定运行及运行效率,安全可靠地供热等课题。 锅炉微机控制,是近年来开发的一项新技术,它是微型机软件、硬件、自动控制、锅炉节能等几项技术紧密结合的产物。工业锅炉数量大、分布广,我国现有中、小型锅炉30多万台,每年耗煤量占我国原煤产量的1/3,大多数工业锅炉仍处于能耗高、浪费大、环境污染严重的生产状态。因此,提高热效率,提高自动化水平及防止环境污染, 降低耗煤量与耗电量,均是设计工业锅炉需考虑的重要因素。用微机进行控制是一件具有深远意义的工作。 本课题的主要方向就是采用过程控制对工业锅炉进行控制,采用先进的控制算法,以达到优化技术指标、提高经济效益和社会效益、提高劳动生产率、节约能源、改善劳动条件、保护环境卫生、提高市场竞争能力的作用。

锅炉控制系统的组态设计

; 济南铁道职业技术学院 电气工程系 毕业设计指导书 课题名称: 锅炉控制系统的组态设计《 专业电气自动化 班级电气0831 姓名 cmy ~ 设计日期至 指导教师 ly ? 2010、11

济南铁道职业技术学院电气工程系 毕业设计指导书 2010、11 一、设计课题: ! 锅炉控制系统的组态设计 锅炉设备是工业生产中典型的控制对象,而组态控制技术是当今自动化系统应用广泛的技术之一。本课题采用组态王组态软件设计上位机监控画面,实时监控液位参数,并采用实时趋势曲线显示液位的实时变化。由此组成一个简单的液位控制系统。 二、设计目的: 通过本课题的设计,培养学生利用组态软件、PLC设计控制系统的能力,理解、掌握工业中最常用的PID控制算法,有利于进一步加深《自动控制原理》、《组态软件》和《过程控制》等课程的理解,为今后工作打好基础。 三、设计内容: 掌握锅炉生产工艺,实现锅炉自动控制的手段,利用“组态王”软件做出上位机监控程序,具体有主监控画面、实时曲线、历史曲线;掌握PID参数调整方法。 — 四、设计要求及方法步骤: 1.设计要求: (1)监控系统要有主监控画面和各分系统的控制画面,包括实时曲线、历史曲线和报表等。 (2)各控制画面要有手/自动切换。

(3)掌握PID控制算法。 2.运用的相关知识 (1)组态控制技术。 (2)过程控制技术。 ~ 3.设计步骤: (1)熟悉、掌握锅炉的生产工艺。 (2)设计各分系统的控制方案。 (3)构思系统主监控画面和分画面,包括实时曲线、历史曲线和报表等。 (4)编写设计论文。 五、设计时间的安排: 熟悉题目、准备资料 1周 @ 锅炉控制系统的工艺了解 1周 监控画面的设计 2周 控制算法的编制和系统调试 3周 论文的编写 2周 准备毕业设计答辩 1周 六、成绩的考核 在规定时间内,学生完成全部的设计工作,包括相关资料的整理,然后提交给指导教师,指导教师审阅学生设计的全部资料并初步通过后,学生方可进入毕业答辩环节,若不符合设计要求,指导教师有权要求学生重做。 … 答辩时,设计者首先对自己的设计进行10分钟左右的讲解,然后进行答辩,时间一般为30分钟。 成绩根据学生平时的理论基础、设计水平、论文质量和答辩的情况综合考虑而定。 成绩按优秀、良好、中、及格、不及格五个等级进行评定。

采暖供热系统的应用

采暖供热系统的应用 采暖供热系统的应用 摘要:随着环保要求的提高和电力峰谷差的拉大,燃煤锅炉采暖受到严格限制,而其他采暖形式,如燃气采暖、电动采暖和蓄热的应用,开始受到关注。本文对热电联产、燃气锅炉、电炉、电动热泵以及蓄热的应用前景做初步的分析与探讨。关键词:采暖蓄热应用 中图分类号:F407.61文献标识码:A 文章编号: 一、引言近年来,我国大气污染日益严重,人们要求保护环境、净化天空的呼声日益增高,而北方冬季城市空气污染的重要来源是采暖燃煤锅炉所排放的粉尘和有害气体。与此同时,许多地区电力出现了相对过剩、电力峰谷差不断拉大的现象。例如,东北电网系统的最大峰谷差已是最大负荷的37%,而华北电网已达峰负荷的40%[1]。为解决电力系统的这种供需矛盾,电力系统用户侧和发电侧均采取了一定措施。在发电方面,一大批初投资巨大的抽水蓄能电站、运行费昂贵的燃油燃气尖峰电站相继建成并投入调峰运行,甚至一些高参数的大型火电厂也以被迫降低发电效率为代价而参与电力调峰。同时,电力系统也加强了用户侧管理。例如,采取分时电价,鼓励用户在电力低谷时多用电,在电力高峰时少用电。因此,在环保要求高的城市采暖供热中,燃煤锅炉房或燃煤炉灶将严格限制使用,取而代之的几种可能的采暖形式主要有集中供热的电锅炉、大型电动热泵和燃气锅炉房以及分散在用户房间内的家用燃气炉、电暖器。同时,为减小电力网发电的峰谷差,也可考虑在供热系统中设置蓄热装置,使得在满足采暖要求的同时,对电力负荷起到削峰填谷的作用。为此,本文将对上述采暖系统形式的应用作初步的分析与探讨。 二、各采暖系统应用分析1.传统采暖供热系统 传统的采暖供热系统主要有锅炉采暖系统和热电联产集中供热系统。

基于DCS的锅炉控制系统设计

DCS控制系统设计 一.被控对象: 图1 锅炉设备工艺 二.工艺要求 燃料和热空气按一定比例送入燃烧室燃烧,生成热量传递给蒸汽发生系统,产生饱和蒸汽Ds,然后经过热器,形成一定气温的过热蒸汽D,汇集至蒸汽母管。压力为Ph的过热蒸汽经负荷设备调节阀供给生产设备负荷用。与此同时,燃烧过程中产生的烟气,除将饱和蒸汽变成过热蒸汽外,还经省煤器预热锅炉给水和空气预热器预热空气,最后经引风机送往烟囱,排入大气。 三.DCS选型 本控制系统选择浙大中控Webfield JX-300XP系统。 四.硬件 ①控制站硬件 1.机柜:SP202 结构:拼装 尺寸:2100*800*600 ESD:防静电手腕 散热:两风扇散热 接地:工作接地,安全接地 2.机笼 电源机笼:四个电源模块,型号:XP521 I/O机笼:20个槽位,用于固定卡件 3.接线端子板 冗余端子板:XP520R 4.端子转接板 5.主控卡:XP243X 地址范围:2到127。 后备锂电池模块:JP2,保持参数不丢失。 6.数据转发卡:XP233

地址范围:0到15 7.I/O卡件 (a)I/O点数计算 Ⅰ.锅炉控制系统中数字量输入点数: 启动;停止;点火;手动关闭蒸汽阀 以上共计四个数字量输入。 Ⅱ.锅炉控制系统中数字量输出点数: 给风;1号风机;给燃料;2号风机;蒸汽阀 以上共计五个数字量输出。 Ⅲ.锅炉控制系统中模拟量输入点数: 汽包液位、温度、压力。 以上共有三个模拟量输入(为了使模拟信号可以远传,变送器均选择电压式)。 (b)卡件选择 Ⅰ.XP363:触点型开关量输入卡。8路输入,统一隔离。 Ⅱ.XP362:触点型开关量输出卡。8路输出,统一隔离。 Ⅲ.SP314X:电压信号输入卡。4 路输入,点点隔离,可冗余 Ⅳ.XP221:电源指示灯。 ②操作员站硬件 1.PC机: 显示器;主机;操作员键盘,鼠标;操作员站狗; 2.Windows XP操作系统 3.安装Advan Trol-Pro实时监控软件。 ③工程师站硬件 1.PC机 显示器;主机;工程师键盘,鼠标;工程师站狗 2.工程师站硬件可以取代操作员站硬件 3.Windows XP操作系统 4.安装Advan Trol-Pro实时监控软件 5.安装组态软件包 ④通信网络 (a)信息管理网 通讯介质:双绞线(星形连接),50Ω细同轴电缆、50Ω粗同轴电缆(总线形连接,带终端匹配器),光纤等; 通讯距离:最大 10km; 传输方式:曼彻斯特编码方式; (b)过程控制网络(SCnet Ⅱ网) 传输方式:曼彻斯特编码方式; 通讯控制:符合 TCP/IP 和 IEEE802.3 标准协议; 通讯速率:10Mbps; 节点容量:最多 15个控制站,32个操作站、工程师站或多功能站; 通讯介质:双绞线,50Ω细同轴电缆、50Ω粗同轴电缆、光缆;

燃气热水锅炉控制方案要求

基于PLC的锅炉供热控制系统及节能管理平台的设计需求一、需求目的: 一个锅炉监控系统应主要包含以下几个部分: (1)各种设备状态和系统状态的采集; (2)锅炉和各种执行机构的控制。 设备状态的采集主要是锅炉输出的状态点,循环泵和补水泵给出的状态点,以及水箱等设备的状态点。锅炉的状态点主要包括锅炉的运行状态点、水箱的液位状态点、锅炉故障状态点、锅炉出水温度、锅炉回水温度、锅炉排烟温度;循环泵、补水泵以及电动调节阀等辅助其工作的变频设备的状态点。 系统状态的采集主要分为一次侧和二次侧。一次侧是锅炉到换热器之间的水循环系统,二次侧是到末端的水循环系统主要是指换热器循环系统。一次侧采集的状态包括一次侧供水温度、一次侧回水温度、一次侧供水压力、一次侧回水压力、烟温及燃烧机的工作状态及水箱水位、;二次侧采集的状态包括二次侧供水温度、二次侧回水温度、二次侧供水压力、二次侧回水压力;还有室外温度的采集,即可根据室外温度实现锅炉监控系统的自动控制。 锅炉和各种执行机构的控制主要是对锅炉本体的启停控制和各种电动阀门的控制。将锅炉房内各个设备、仪器仪表、传感器、执行机构及通讯模块组成在线监控系统,通过完成对锅炉房和其它现场设备的数据采集和控制功能从而实现锅炉房的全自动控制,能够安全启停机组,达到无人值守。 供热管网通过控制系统的在线监测应实现以下目的: (1)监控各管网节点的实时数据,为系统管理和科学管理进行调度提供参数数据;(2)系统平衡功能计算,供热管网内的热水流动需要一定的水泵做功来完成,不合理的管网设计和建造将带来极大的能源浪费,通过对管网的相关部位的压力检测、增设压力调节阀,对管网的各部分压力进行合理的平衡分配(水平衡、热平

组态王课程设计锅炉温度控制系统

锅炉温度控制系统上位机设计 1.设计背景 锅炉是化工、炼油、发电等工业生产过程中必不可少的重要的动力设备。它所产生的高压蒸汽,既可以作为风机、压缩机、大型泵类的驱动透平的动力源,又可作为蒸馏、化学反应、干燥和蒸发等过程的热源。随着工业生产规模的不断扩大,生产设备的不断创新,作为全厂动力和热源的锅炉,办向着大容量、高参数、高效率发展。为了确保安全,稳定生产,锅炉设备的控制系统就显得愈加重要。随着经济的迅猛发展,自动化控制水平越来越高,用户对锅炉控制系统的工作效率要求也越来越高,为了提高锅炉的工作效率,较少对环境的污染问题,所以利用计算机与组态软件技术对锅炉生产过程进行自动控制有着重要的意义。 2.任务要求 (1) 按照题目设计监控画面及动态模拟; (2) 在数据字典中定义需要的内存变量和I/O变量; (3) 实现监控系统的实时、历史曲线及报警界面显示; (4) 实现保存数据和参数报表打印功能; (5) 实现登陆界面和帮助界面。 3. 界面功能 3.1 系统说明 本系统的目的是实现锅炉的温度控制,所以在监控界面设置了加热部分和降温部分,同时通过观察相应仪表,操作者手动的实现对锅炉温度的控制,而且在加热过程和降温过程中有信号灯可以清楚地显示系统工作在什么阶段。此外,在监控界面加入了液位控制部分,通过对进水量和出水量的控制实现液位平衡。实时曲线和历史曲线可以让操作者清楚地观察到锅炉内液体的液位高度和温度,从而更加准确的操作系统,达到控制要求。实时报警界面可以随时进行提醒,防止发生意外情况。帮助界面可以让初次登陆该系统的用户快速学会如何操作系统。登陆界面中加入用户登陆部分,只有有相应权限的操作者也可以控制系统。该系统还加入历史曲线打印功能和对系统相关变量的保存功能,用户可以随时查看历史记录。 3.2主监控界面 主控界面实现的是操作者观察仪表,得到锅炉内液体温度和液位的实时信息,通过调节电磁阀1、2,使得锅炉内液体液位保持在要求范围内,通过加热按钮和降温按钮对

锅炉温度控制系统设计方案

锅炉温度控制系统设计方案 第1章绪论 1.1课题背景及研究的意义 锅炉是工业生产中最常用的能量转换设备之一,它通过转化燃料中的化学能或利用电能转化为能,成为人们广为依赖的采暖工具。在电锅炉中,利用电阻在通电流状态下发热的原理,通过对电流的大小的控制对温度的控制。由于电流易控制的特点,电锅炉在小型锅炉和精密控温的到使用者的青睐。但是,在大部分城市中,由于国家实行“西气东输”计划,燃气价格为普通人家所接受,经数据统计和计算,燃气锅炉更便宜,比电锅炉应用更受欢迎。 锅炉温度的稳定是锅炉性能的一项重要指标,温度过高和温度过低都会给锅炉的稳定运行和生产造成重大的的影响,甚至发生安全事故。温度过高,导致锅炉金属材料和相关部件的超温过热,加速管材金属氧化,降低锅炉和相关部件的使用寿命;温度过低,假定在保持锅炉蒸发量不变的情况下,锅炉的损耗将大幅上升,能源利用率因此下降,而且负荷也将受到限制。所以,限定锅炉在安全温度成为每一个温度控制系统的核心部分。 随着科技发展,人们对采暖方式和热水方式渐渐发生变化,家用燃气锅炉进入寻常百姓家,但是国燃气锅炉的开发与应用还处于较落后的阶段,市场上的大多数此类商品还是以国外为主,所以燃气锅炉依然有广大市场与研究价值。 本设计以家用燃气锅炉为研究目标,使用AT89C51单片机为控制核心组成温度控制系统,采用热电阻感应温度的变化,单片机实现收集数据、处理数据、发送控制命令的功能,从各方面详细的说明单片机在温度控制的应用。 1.2 温度传感技术 自工业时代以来,随着大型机械的出现和广泛应用,温度对机械工作性能的影响越来越被人们所重视,对温度的未知可能造成机械损坏或发生重大事故。于是温度传感器便应运而生。温度传感器用在生活的方方面面,从冶金行业到每一个人身边中的一部分,它已经随着时代的步伐在进步。 目前使用的较为先进的温度传感器是数字传感器。数字传感器的优点是不需要像传统方式一样加入转换部分,利用当今成熟的集成技术,在其部已经集成了感应温度系统和温度转换系统,尤其是它单端数据输出的功能,极大减少对主控

PLC在工业锅炉自动控制系统中的应用

1 引言 锅炉是发电厂及其它工业企业中最普遍的动力设备之一,它的功能是把燃料中的贮能,通过燃烧转化成热能,以蒸汽或热水的形式输向各种设备。目前,国内大多数工业锅炉都是人工控制的,或简单的仪表单回路调节系统,燃料浪费很大。工业锅炉作为一个设备总体,有许多被控制量与控制量,扰动因数也很多,许多参数之间明显地存在着复杂的耦合关系。对于工业锅炉这个复杂的系统,由于其内部能量转换机理过于复杂,采用常规的方式进行控制,难以达到理想的控制效果,因此,必须采用智能控制方式控制,才能获得最佳控制效果。 2 系统的组成 系统运行的示意图如图1所示。 图1 系统运行示意图 由图1可知,燃料和空气按一定比例进入燃烧室燃烧,产生的热量传递给蒸汽发生系统,产生饱和蒸汽,经负荷设备调节阀供给负荷设备使用。与此同时,燃烧过程中产生的烟气,除将饱和蒸汽变成过热蒸汽外,还经省煤器预热锅炉给水和空气预热器预热空气,最后经引风机送往烟囱排入大气。 锅炉是个较复杂的调节对象,为保证提供合格的蒸汽以适应负荷的需要,生产过程各主要工艺参数必须加以严格控制。主要调节项目有;负荷、锅炉给水、燃烧量、减温水、送风等。主要输出量是:汽包水位、蒸汽压力、过热蒸汽温度、炉膛负压、过剩空气等。这些输入量与输出量之间是互相制约的,例如,蒸汽负荷变化时,必然会引起汽包水位、蒸汽压力和过热蒸汽温度的变化;燃料量的变化不仅影响蒸汽压力,同时还会影响汽包水位、过热蒸汽温度、空气量和炉膛负压等。对于这样复杂的对象,工程处理上作了一些简化,将锅炉控制系统划分为若干个调节系统。主要的调节系统有: (1) 汽包水位调节系统 被调量是汽包水位,调节量是给水流量,它主要考虑汽包内部物料平衡,使给水量适应锅炉的蒸发量,维持汽包水位在工艺允许范围内。 (2) 过热蒸汽温度调节系统 维持过热器出口温度在允许范围之内,并保证管壁温度不超过允许工作温度。 (3) 燃烧调节系统

燃气锅炉供暖系统

燃气锅炉供暖系统 1 燃气锅炉供热的某些特点 燃气锅炉供热将有较广泛应用,理由为:我国能源结构调整,煤炭将主要用于大型电厂发电,中小容量供热锅炉将由燃煤改为燃油、燃气;西气东输、引进液化天然气等,将使广大地区用天然气这种清洁能源成为现实;天然气Nm 3热值约是人工煤气的2倍,而价格将不到2倍,“照付不议”和其它一些政策会陆续出台,平衡天然气产、供、销各部门利益,使消费者利益也得到保障;我国城市化正处于高速发展阶段,将有大量新建与改建房屋采用非集中供热系统,燃气是非集中供热系统最佳能源;市场经济体制建立使开发商、物业管理公司、业主更多考虑小区、自家利益,更注重经济核算,国家与单位补贴将逐步取消;经济发展地区大中城市和小城镇大量兴建的住宅小楼和城郊别墅多为非标建筑等等,这些因素都促使燃气非集中供热应用量不断增大。我国早在解放前的上海、天津等城市少层小洋房里就已应用独立式自然循环热水供暖系统,例如:上海延安中路昇平街里的原上海纺织同业会所(1965年上海房地局四清工作团团部所在地)三层小楼就装有独立式供暖供热水系统。其特点是简单、可靠,供电中断不会影响供热。但设计时要求精确做水力计算,管径较机械循环系统大,耗金属多,垂直顺流式单组散热器难有效调节。解放后我国 集中供热事业有了很大发展,现在随西气东输,除独户式燃气供热会增加外,更多的将是小区式燃气非集中供热,或称为自治式热源供热。它的特点有:采用机械循环,要求不间断供电;锅炉燃烧及整个系统控制的自动化程度高,用户端用热量个别调节时整个系统仍能保持较好的水力稳定性;用户数量多,住宅可达100户,可既有住宅、旅馆供暖供热水的生活用热,又有游泳池地板供暖、池水加热、通风空调空气加热、食品机制各种生产工艺用热水等等不同类型用户;供暖系统的热负荷变化与室外气温成线性关系,不同国家设计工况(标准工况)下供回水温度95/70℃,90/70℃,80/60℃,供暖调节最简单方法是定流量质调法,但采用变流量调节法越来越多,散热器装热静力型温控阀可使个性化要求更能得到满足;当实际热负荷减小,供回水温度降低时,尤其是在有低温地板辐射供暖应用时,要保证非冷凝式燃气锅炉入口水温不过低,以免烟气中生成凝水损坏锅炉部件甚至发生事故,还要保证水流量不小于锅炉要求的额定流量G,以免锅炉构件局部过热;热水供应用热高峰影响供暖等等。这些非集中燃气锅炉供热的特点,尤其后几点值得重视。

锅炉供热系统节能控制措施

锅炉供热系统节能控制措施 锅炉供热系统节能控制措施 选择合适的燃料和燃烧形式 在锅炉的使用中消耗最多的就是燃料,要做好节能措施首先必须从燃料的选择开始。在目前的社会经济条件下,主要的锅炉燃料有 三种,分别是固体燃料、气体燃料和液体燃料,这三种不同的燃料 其产生的热量不一样,对于环境的危害程度也是不一样的。从整体 上来看,气体燃料无论在加热质量,还是环境保护方面都有很大的 优势,在选择燃料的时候应该优先选择。但是在一些锅炉加热系统 中因为生产工艺以及燃料供应能力的影响,选用气体燃料还受到一 定的限制。在燃油的选择中,因为成本较高,在锅炉加热中选择这 种燃料往往成本较高。目前比较可行的就是可以采用型煤,将它汽 化之后使用,这样燃烧之后的残留物较少,在燃烧的过沉重排放出 来的废气量也较小,而且型煤汽化之后燃烧的热值是比较高的,所 以在锅炉加热中使用比较合算。 从燃烧方式来说,不同形态的燃料的燃烧形式是不一样的:气体燃料主要是有焰燃烧和无焰燃烧,有焰燃烧也就是气相燃烧,火焰 较长,并且有明显的轮廓,有焰燃烧的速度与空气的混合速度有很 大的关系。无焰燃烧指的是固相燃烧,燃烧速度较快,燃烧的温度 较高,不足之处是燃烧能力较小。液体燃料具有的燃烧形式也有两种,分别是高压雾化和低压雾化。高压雾化比较适用于一些较大的 锅炉中,虽然能有效回收烟气的余热,但是运行的费用和能耗相对 较高。而低压雾化主要适用于中小型锅炉中,使用的能耗和费用较高,虽然收集烟气不方便,但是仍然可以采用相应的方法收集余热。固体燃料燃烧形式中,最好的是煤气化燃烧,燃烧最差的是薄煤层。在锅炉选择中要根据实际的情况,对各种条件进行对比,确定最合 适的燃料和燃烧方式。 合理的风量调节和回收冷凝水的热量

锅炉过热蒸汽温度控制系统设计

课程设计任务书 题目: 锅炉过热蒸汽温度控制系统设计 摘要 本文是针对锅炉过热蒸汽温度控制系统进行的分析和设计。控制系统采用串级控制以提高系统的控制性能,在系统中采用了主控-串级控制的切换装置,使系统可以适用于不同的工作环境。通过使用该系统,可以使得锅炉过热器出口蒸汽温度在允许的范围内变化,并保护过热器营壁温度不超过允许的工作温度。 关键字:过热蒸汽控制串级控制系统自动控制主控-串级切换 目录 1 生产工艺介绍 .................................................. 错误!未定义书签。 1.1 锅炉设备介绍............................................................................ 3 1.2 蒸汽过热系统的控制................................................................ 52控制原理简介 ..................................................................................... 6 2.1控制方案选择............................................................................. 6 2.1.1单回路控制方案................................................................. 6

电锅炉采暖方案

电锅炉供暖方案 一、工程概况 供暖采用电热水锅炉采暖系统 二、参照标准、依据 1、蓄热式电锅炉房设计施工图集。 2、常压蓄热水箱。 三、系统工作原理 1、蓄热系统直接向采暖系统供热,简称直接供热。直接供热在蓄热系统和采暖系统中不设热交换器,采暖系统中的循环水也回到蓄热水箱中。由于直接供热系统中不设热交换器、补水泵、定压装置,减少了设备,锅炉房管道也较为简单。 2、谷电、平电、峰电时间段(以北京地区为例) 谷电时间:23:00~7:00共计8小时;平电时间:7:00~8:0011: 00~18:00共计8小时;峰电时间:8:00~11:0018:00~23:00共计8小时。 电锅炉蓄热式供暖系统的运行,全部使用谷电: 23:00~7:00开启电锅炉加热水箱中的水,加热至95℃,向系统供热;7:00~23:00关闭电锅炉,由蓄热水箱向系统供热。 3、电网电价: 谷电0.21元/度 平电0.52元/度 峰电0.84元/度 4、自控:

蓄热状态和供热状态,蓄热水箱中的热水温度不断的在变化。但是锅炉房采暖供水温度却不能随蓄热水箱温度的变化而变化。为使锅炉房采暖供水温度保持在设定范围内,采取有效的温度调控装置是必须的。对直接供热的系统,采用合流三通阀来调控锅炉房采暖供水温度。淋浴系统出水管设温度自动控制阀。 5、蓄热式电锅炉房系统单独设置系统控制柜,系统控制柜一般应具备以下功能: ①控制蓄热箱是否达到蓄热温度。 ②控制锅炉在23:00自动启动,7:00达到蓄热温度后自动停炉。 ③控制电动三通阀,调控锅炉房采暖供水温度。 ④控制蓄热泵的启停,保证先启泵,后启炉,先停炉,后停泵。 6、电气部分: ①电锅炉的电源应由配电室直接供给,可用电缆或金属排输送。 ②锅炉控制柜及系统控制柜宜单独设置在控制室内。 ③所有设备外壳均应有可靠接地,接地电阻按有关要求执行。 四、设计参数 1、采暖系统: 采暖室外计算温度:-9℃ 采暖室内设计温度:20~22℃ 建筑物总耗热量:350KW 设计采暖天数:120天 采暖系统总阻力:60Kpa

供热系统节能技术措施方案

整体解决方案系列 供热系统节能技术措施(标准、完整、实用、可修改)

编号:FS-QG-15021供热系统节能技术措施 Energy-saving technical measures for heating systems 说明:为明确各负责人职责,充分调用工作积极性,使人员队伍与目标管理科学化、制度化、规范化,特此制定 1.安装热工仪表,掌握系统的实际运行情况 供热系统安装所需的热工仪表是掌握系统运行工况、准确了解和分析系统存在的问题、采取正确方法与措施以达到节能挖潜目的重要手段。目前热工仪表安装不全、不准的情况比较普遍,因此,必须要按照规定补齐所有热工仪表,并保证仪表的完好和准确。 2.加强锅炉房的运行管理,是投资少、效果显著的节能措施 1.司炉人员及水处理人员必须经国家劳动部门或技术监督部门培训并考试合格; 2.建立正确、完善、切实可行的运行操作规程; 3.锅炉房水处理(包括软化水或脱盐、除氧)设备处理后的水质,必须达到而易见国家规程规定的水质标准,严禁锅

炉直接补自来水或河水; 4.严格执行定期维修,停炉保养制度,保证设备完好,杜绝跑、冒、滴、漏。 3.采用分层燃烧技术,改善锅炉燃烧状况 目前城市集中供热锅炉房多采用链条炉排,燃煤多为煤炭公司供应的混煤,着火条件差,炉膛温度低,燃烧不完全,炉渣含碳量高,锅炉热效率普遍偏低。采用分层燃烧技术对减少炉渣含碳量、提高锅炉热效率,有明显的效果。 沈阳惠天公司一台10.5MW的热水炉,采用分层燃烧后,热效率由70.2%提高到75.1%,炉渣含碳量由13%下降为10%。唐山热力公司采用该技术,使锅炉热效率提高10~15%,炉渣含碳量降低至10%以下,而且锅炉燃烧系统的设备故障大大减少,提高了锅炉运行的可靠性和安全性。 对于粉末含量高的燃煤,可以采用分层燃烧及型煤技术。该技术是将原煤在入料口先通过分层装置进行筛分,使大颗粒煤直接落至炉排上,小颗粒及粉末送入炉前型煤装置压制成核桃大小形状的煤块,然后送入炉排,以提高煤层的透气性,从而强化燃烧,提高锅炉热效率和减少环境污染。中原

锅炉蒸汽温度自动控制系统——模糊控制

锅炉蒸汽温度自动控制系统 摘要: 电厂实现热力过程自动化,能使机组安全、可靠、经济地运行。锅炉是火力 发电厂最重要的生产设备,过热蒸汽温度是锅炉运行质量的重要指标之一,过热蒸汽温度控制是锅炉控制系统中的重要环节。在实现过程控制中,由于电站锅炉系统的被控对象具有大延迟,大滞后、非线性、时变、多变量耦合的复杂特性,无法建立准确的数学模型,对这类系统采用常规PID控制难以获得令人满意的控制效果。在这种情况下,先进的现代控制理论和控制方法已经越来越多地应用在锅炉汽温控制系统。 本文以电厂锅炉汽温系统为研究对象,对其进行了计算机控制系统的改造。考虑到锅炉汽温系统的被控对象特点,本文分别采用了常规PID控制器和模糊-PID 控制器,对两种控制系统对比研究,同时进一步分析了一般模糊-PID控制器的控制特点,在此基础之上给出了一种改进算法,通过在线调整参数,实现模糊-自调整比例常数PID控制。在此算法中,比例常数随着偏差大小而变化,有效地解决了在小偏差范围内,一般的模糊-PID控制器无法实现的静态无偏差的问题,提高了蒸汽温度控制系统的控制精度。 关键词:锅炉蒸汽温度模糊控制 随着我国经济的高速发展,对重要能源“电”的要求快速增长,大容量发电机组的投入运行以及超高压远距离和赢流输电的混和电网的建设,以三峡电网为中心的全国性电力系统的形成,电力系统的不断扩大,对其自动控制技术水平的要求也越来越高。同时,地方性的自备热电厂亦有长足发展,随着新建及改造工程的进行,其生产过程自动控制与时俱进,小容量机组“麻雀虽小,五脏俱全”,自备热电厂其自身特点:自供电、与主电网的关系疏及相互影响小,供热及采暖季节性等,可以提供更多的应用、尝试新技术、新产品的机会和可能性。这样做的重要目标是提高和保证电力,热力及牛产过程的安全可靠、经济高效。为了适应发展并实现上述目标,必须采取最新的技术和控制手段对电力系统的各种运铲状态和设备进行有效的自动控制。 火力发电厂在我国电力工业中占有主要地位,是我国重点能源工业之一。其单元发电机组由锅炉、汽轮发电机和辅助设备组成的庞大的设备群。由于其工艺流程复杂,设备众多,管道纵横交错,大型机组多至上千个参数需要监视、操作或控制,而且电能生产还要求有高度的安全可靠性和经济性,因此,单元机组自动化水平受到特别的重视。 锅炉蒸汽温度自动控制系统的分析: 过热蒸汽温度自动控制是维持过热器出口蒸汽温度在允许范围内,并且保护过热器,使管壁温度不超过允许的工作温度。过热蒸汽温度是锅炉运行质量的重要指标之一,过热蒸汽温度过高或过低都会显著地影响电厂的安全性和经济性。目前,汽包锅炉的过热器侧调温都是以喷水减温方式为主的。它的原理是将洁净的给水直接喷进蒸汽,水吸收蒸汽的汽化潜热,从而改变过热蒸汽温度。汽温的变化通过减温器喷水量的调节加以控制。 影响过热器出口蒸汽温度变化的原因很多,如蒸汽流量变化、燃烧工况变化、

锅炉燃烧系统的控制系统设计

目录 1锅炉工艺简介 (1) 1.1锅炉的基本结构 (1) 1.2工艺流程 (2) 1.2煤粉制备常用系统 (3) 2 锅炉燃烧控制 (4) 2.1燃烧控制系统简介 (4) 2.2燃料控制 (4) 2.2.1燃料燃烧的调整 (4) 2.2.2燃烧调节的目的 (5) 2.2.3直吹式制粉系统锅炉的燃料量的调节 (5) 2.2.4影响炉内燃烧的因素 (6) 2.3锅炉燃烧的控制要求 (11) 2.3.1 锅炉汽压的调整 (11) 3锅炉燃烧控制系统设计 (14) 3.1锅炉燃烧系统蒸汽压力控制 (14) 3.1.1该方案采用串级控制来完成对锅炉蒸汽压力的控制 (14) 3.2燃烧过程中烟气氧含量闭环控制 (17) 3.2.1 锅炉的热效率 (18) 3.2.2反作用及控制阀的开闭形式选择 (20) 3.2.3 控制系统参数整定 (20) 3.3炉膛的负压控制与有关安全保护保护系统 (21) 3.3.1炉膛负压控制系统 (22) 3.3.2防止回火的连锁控制系统 (23) 3.3.3防止脱火的选择控制系统 (24) 3.4控制系统单元元件的选择(选型) (24) 3.4.1蒸汽压力变送器选择 (24) 3.4.2 燃料流量变送器的选用 (24) 4 DCS控制系统控制锅炉燃烧 (26) 4.1DCS集散控制系统 (26) 4.2基本构成 (27)

锅炉燃烧系统的控制 4.3锅炉自动燃烧控制系统 (31) 总结 (33) 致谢 (34) 参考文献 (35)

1锅炉工艺简介 1.1锅炉的基本结构 锅炉整体的结构包括锅炉本体和辅助设备两大部分。 1、锅炉本体 锅炉中的炉膛、锅筒、燃烧器、水冷壁、过热器、省煤器、空气预热器、构架和炉墙等主要部件构成生产蒸汽的核心部分,称为锅炉本体。锅炉本体中两个最主要的部件是炉膛和锅筒。 炉膛又称燃烧室,是供燃料燃烧的空间。将固体燃料放在炉排上进行火床燃烧的炉膛称为层燃炉,又称火床炉;将液体、气体或磨成粉状的固体燃料喷入火室燃烧的炉膛称为室燃炉,又称火室炉;空气将煤粒托起使其呈沸腾状态燃烧、适于燃烧劣质燃料的炉膛称为沸腾炉,又称流化床炉;利用空气流使煤粒高速旋转并强烈火烧的圆筒形炉膛称为旋风炉。炉膛的横截面一般为正方形或矩形。燃料在炉膛内燃烧形成火焰和高温烟气,所以炉膛四周的炉墙由耐高温材料和保温材料构成。在炉墙的内表面上常敷设水冷壁管,它既保护炉墙不致烧坏,又吸收火焰和高温烟气的大量辐射热。炉膛的结构、形状、容积和高度都要保证燃料充分燃烧,并使炉膛出口的烟气温度降低到熔渣开始凝结的温度以下。当炉内的温度超过灰熔点时,灰便呈熔融状态。熔融的灰渣颗粒在触及炉内水冷壁管或其他构件时会粘在上面。粘结的灰粒逐渐增多,遂形成渣块,称为结渣。结渣会降低锅炉受热面的传热效果。严重时会堵塞烟气流动的通道,影响锅炉的安全和经济运行。一般用炉膛容积热负荷和炉膛截面热负荷或炉排热负荷表示其燃烧强烈程度。炉膛容积热负荷是单位炉膛容积中每单位时间内释放的热量。在锅炉技术中常用炉膛容积热负荷来衡量炉膛大小是否恰当。容积热负荷过大,则表示炉膛容积过小,燃料在炉内的停留时间过短,不能保证燃料完全燃烧,使燃烧效率下降;同时这还表示炉墙面积过小,难以敷设足够的水冷壁管,结果炉内和炉膛出口处烟气温度过高,受热面容易发生结渣。室燃炉的炉膛截面热负荷是单位时间内单位炉膛横截面上燃料燃烧所释放的热量。在炉膛容积确定以后,炉膛截面热负荷过大会使局部区域的壁面温度过高而引起结渣。层燃炉的炉排热负荷是单位时间内燃料燃烧所释放的热量与炉排面积的比值。炉排热负荷过高会使飞灰大大增加。炉膛设计需要充分考虑使用燃料的特性。每台锅炉应尽量燃用原设计的燃料。燃用特性差别较大的燃料时,锅炉运行的经济性和可靠性都可能降低。 锅筒它是自然循环和多次强制循环锅炉中接受省煤器来的给水、联接循环回路,并向过热器输送饱和蒸汽的圆筒形容器。锅筒筒体由优质厚钢板制成,是锅炉中最重的部件之一。锅筒的主要功能是储水,进行汽水分离,在运行中排除锅水中的盐水和泥渣,

集中供热锅炉控制系统的PLC控制

集中供热锅炉控制系统的PLC控制 彭桂力.刘知贵 (西南科技大学信息工程学院,四川绵阳621010) 摘要:针对目前对集中供热锅炉控制中没有远距离控制的现状,基于西门子S7—200系列可编程逻辑控制器PLC(Pmgr锄mablehgicContmller)设计了一种集中供热锅炉自动控制系统,介绍其工作原理:控制现场传感器标准信号经过信号调理模块送到现场控制单元PLC。控制单元通过以太网相连,将需要监控的信号送入上位机,实现人机交互和远程控制。对系统的控制核心S7—200作了详细的介绍.并给出了软、硬件结构设计方案。 中图分类号:TP273文献标识码:B文章编号:1006—6047(2006)09—0075—03 0引言 近年来.大型集中供热锅炉房的控制系统开始采 用可编程逻辑控制器PLC(ProgrammableL0鲥cCon— tmller)控制方式。在集中供热锅炉房,PLC主要用于 输煤、驱动风机及进行比例积分微分PID(Pmponional IntegralDerivative)调节控制系统中[1|。当前国内许 多地方的锅炉控制系统主要是采用分布式控制系统 DCS(DistributedControlSvstem)‘2_。这是由于锅炉系 统的仪表信号较多.采用此系统性价比相对较好,但 随着PLC技术的不断发展.PLC在仪表控制方面的 功能已经不断强化。用于回路调节和组态画面的功 能不断完善.而且PLC的抗干扰能力也很强.对电 源的质量要求比较低。 基于PLC在工业控制系统中的良好应用.本文 将西门子S7—200PLC用于集中供热系统锅炉控制 系统。整个系统的工作原理为:从控制现场传感器 送来的4。20mA或0。5v的标准信号经过信号调 理模块送到现场控制单元(PLC).经过智能运算后 形成控制信号.控制信号再经过信号调理模块返送到 现场执行单元(电磁阀)。各个控制单元通过以太网 相连.将需要监控的信号送人上位机,实现人机交互和 远程控制。 1系统结构和控制方案 系统结构如图1所示。本系统主要是用西门子 图1系统结构图 Fig.1System stmcture 收稿日期:2005—12—13;修回日期:2006—03—04向 户 PLCS7—200CPU224作为控制器进行控制.主要是 对燃煤锅炉进行控制。包括风机、给煤机的开关,根 据液位变化对进出水口阀门的控制.根据锅炉内温度 变化进行自动控制.利用PLC中所带有的PID调节器 进行调节.以控制锅炉内的温度.再利用远程传输的 功能.可以在用户处装上温度传感器.将其温度转成 标准信号传到PLC主机上.观测到的温度根据需要 进行调节,提高或降低锅炉的温度.直接控制传到用 户的温度。在锅炉内装有压力传感器.这是十分必要 的,如果压力过高,可能会降低锅炉的寿命,甚至发生 危险,所以一定要控制压力.当压力超过一定的数值, 需报警。并迅速进行处理.降低锅炉内的压力.以免 发生危险[3-41。 根据系统的要求.选取西门子PLCS7—200CPU224作为控制核心.同时还扩展了2个EM231模拟 量输入模块、1个EM223数字量输入模块和1个CP 243—1以太网模块。CPU224的I/0点数是14/10。 所以要扩展1个EM223的数字量输入/输出模块. 它的I/O点数是16/16.作用是提供附加的输入、输 出点。这样完全可以满足系统的要求。同时.选用了 EM231模块.它是AD转换模块,具有4个模拟量 输入,12位AD,其采样速度25¨s,温度传感器、压 力传感器、流量传感器以及含氧检测传感器的输出信 号经过调理和放大处理后.成为0。5V的标准信号. EM231模块自动完成AD转换。 PLC通过检测温度、水位、压力、流量和气体中的含氧量给出控制信号控制燃烧机、真空泵、给媒机、 电磁阀等输出设备[5-刚。为实现人机对话功能.如系统 状态以及变量图形显示、参数修改等。还扩展了一块 TD200触摸显示屏,操作控制简单、方便,可用于设置 系统参数。显示锅炉温度等。还有一个以太网模块 CP243—1.其作用是可以让S7—200直接连入以太网. 通过以太网进行远距离交换数据.与其他的S7—200 进行数据传输.通信基于TCP/IP,安装方便、简单。 机组控制系统如图2所示j

相关文档
最新文档