砷化镓

砷化镓
砷化镓

镓在地壳中的含量不算太少,约占十万分之二,比锡还多。可是,提炼镓却比提炼锡困难得多,这是因为镓在大自然中很分散,没有形成集中的镓矿。平时,在某些煤灰、铁矿、锑铅矿、铜矿中,含有少量镓。

镓在常温下,看上去象一块锡,如果你想把它放在手心里,它马上就熔化了,成为银亮的小珠。原来镓的熔点很低,只有29.8℃。镓的熔点虽然很低,可是沸点却非常高,竟高达2070℃!人们就利用镓的这个特性来制造测量高温的温度计,人们常用这种温度计来测量反应炉、原子反应堆的温度。

镓具有较好的铸造特性,由于它“热缩冷胀”,被用来制造铅字合金,使字体清晰。在原子能工业中,用镓作为热传导介质,把反应堆中的热量传导出来。

镓与许多金属,如铋、铅、锡、镉,铟、铊等,生成熔点低于60℃的易熔合金。其中如含铟25%的镓铟合金(熔点16℃),含锡8%的镓锡合金(熔点20℃),可以用在电路熔断器和各种保险装置上,温度一高,它们就会自动熔化断开,起到安全保险的作用。

砷化镓

(gallium arsenide)化学式 GaAs。黑灰色固体,熔点 1238℃。它在600℃以下,能在空气中稳定存在,并且不为非氧化性的酸侵蚀。砷化镓可作半导体材料,性能比硅更优良。它的禁带宽度大,电子迁移率高,介电常数小,能引入深能级杂质,电子有效质量小,能带结

构特殊,具有双能谷导带,可以制备发光器件、半导体激光器、微波体效应器件、太阳能电池和高速集成电路等,广泛用于雷达、电子计算机、人造卫星、宇宙飞船等尖端技术中。

GaAs拥有一些比Si还要好的电子特性,如高的饱和电子速率及高的电子移动率,使得GaAs可以用在高于250 GHz的场合。如果等效的GaAs和Si元件同时都操作在高频时,GaAs会拥有较少的噪声。也因为GaAs有较高的崩溃电压,所以GaAs比同样的Si元件更适合操作在高功率的场合。因为这些特性,GaAs电路可以运用在移动电话、卫星通讯、微波点对点连线、雷达系统等地方。GaAs曾用来做成Gunn diode (中文翻做甘恩二极管或微波二极管,中国大陆地区叫做耿氏二极管) 以发射微波。

GaAs的的另一个优点:它是直接能隙的材料,所以可以用来发光。而Si是间接能隙的材料,只能发射非常微弱的光。(但是,最近的技术已经可以用Si做成LED和运用在雷射。)

砷化镓在当代微电子和光电子产业中发挥着重要的作用,其产品50%应用在军事、航天方面,30%用于通信方面,其余用于网络设备、计算机和测试仪器。由于砷化镓优良的高频特性,它被广泛用于制造无线通信和光通信器件,半绝缘砷化镓单晶已经成为制造大功率微波、毫米波通信器件和集成电路的主要材料。

在半导体产业的发展中,一般将硅、锗称为第一代半导体材料;将砷化镓、磷化锢、磷化镓、砷化锢、砷化铝及其合金等称为第二代半导体材料;而将宽禁带(Eg>2.3eV)的氮化镓、碳化硅、硒化锌和金

刚石等称为第三代半导体材料。上述材料是目前主要应用的半导体材料,三代半导体材料代表品种分别为硅、砷化镓和氮化镓。

砷化镓材料的电子迁移率是硅的6倍多,其器件具有硅器件所不具有的高频、高速和光电性能,并可在同一芯片同时处理光电信号,被公认是新一代的通信用材料。随着高速信息产业的蓬勃发展,砷化镓成为继硅之后发展最快、应用最广、产量最大的半导体材料。同时,其在军事电子系统中的应用日益广泛,并占据不可取代的重要地位。

砷化镓的国内外市场需求

目前,砷化镓单晶和抛光片处于卖方市场,4英寸和6英寸产品供不应求。国际各大通讯厂商纷纷将砷化镓芯片产能扩大,并在全球抢购砷化镓抛光片与外延片。根据硅谷Strategies公司的测算,2005年全球基于砷化镓材料的无线通信器件市场需求为25亿美元,其中砷化镓抛光片与外延片的需求为10亿美元,年增长率达到30%。

砷化镓的国内外生产情况

国外情况

美国主要产商M/A-COM,RFMD,Raytheon,Anadigics, Conexant;欧洲主要产商Infineon and Filtronics;日本主要公司Matsushita, Mitsubishi, NEC and Fujitsu;韩国主要公司CTI, Eoncom, Telfron, ASB, Knowledge-On, FCI, Neosemtek, KMK Tech等,都纷纷积极寻求成本低的代工制造商。

国内情况

总投资2500万美元的中科晶电公司,目前已经形成月产2—3英

寸砷化镓晶片5万片,4—6英寸砷化镓晶片5000片的产能,扩产后预计月产达到2—3寸砷化镓晶片10万片,4—6英寸砷化镓晶片5万片。国芯半导体公司投资2980万美元的4英寸砷化镓化合物半导体芯片工业生产线是我国首条砷化镓芯片工业生产线,年生产能力为4.2万片。佳昌科技计划项目总投资21936万元,年生产能力为5万片6英寸砷化镓单晶片,产值1.5亿美元,利税6300万美元。

砷化镓产业特点

一是环保无污染;二是属于受扶持高科技产业;三是利润税收高;四是市场前景好。

技术:属成熟技术。

GaAs生产方式有别于传统的硅晶圆生产方式,GaAs生产需要采用磊晶技术,这种磊晶圆的直径通常为4―6英寸,比硅晶圆的12英寸要小得多,因此,制备其磊晶圆需要特别的机台。目前,常用于GaAs 制备的技术有几种,主要有LPE和MOVPE等。

砷化镓材料国内外现状及发展趋势

砷化镓材料国内外现状及发展趋势 中国电子科技集团公司第四十六研究所纪秀峰 1 引言 化合物半导体材料的研究可以追溯到上世纪初,最早报导的是1910年由Thiel等人研究的InP材料。1952年,德国科学家Welker首次把Ⅲ-Ⅴ族化合物作为一种新的半导体族来研究,并指出它们具有Ge、Si等元素半导体材料所不具备的优越特性。五十多年来,化合物半导体材料的研究取得了巨大进展,在微电子和光电子领域也得到了日益广泛的应用。 砷化镓(GaAs)材料是目前生产量最大、应用最广泛,因而也是最重要的化合物半导体材料,是仅次于硅的最重要的半导体材料。由于其优越的性能和能带结构,使砷化镓材料在微波器件和发光器件等方面具有很大发展潜力。目前砷化镓材料的先进生产技术仍掌握在日本、德国以及美国等国际大公司手中,与国外公司相比国内企业在砷化镓材料生产技术方面还有较大差距。 2 砷化镓材料的性质及用途 砷化镓是典型的直接跃迁型能带结构,导带极小值与价带极大值均处于布里渊区中心,即K=0处,这使其具有较高的电光转换效率,是制备光电器件的优良材料。 在300 K时,砷化镓材料禁带宽度为1.42 eV,远大于锗的0.67 eV和硅的1.12 eV,因此,砷化镓器件可以工作在较高的温度下和承受较大的功率。 砷化镓(GaAs)材料与传统的硅半导体材料相比,它具电子迁移率高、禁带宽度大、直接带隙、消耗功率低等特性,电子迁移率约为硅材料的5.7倍。因此,广泛应用于高频及无线通讯中制做IC器件。所制出的这种高频、高速、防辐射的高温器件,通常应用于无线通信、光纤通信、移动通信、GPS全球导航等领域。除在I C产品应用以外,砷化镓材料也可加入其它元素改变其能带结构使其产生光电效应,制成半导体发光器件,还可以制做砷化镓太阳能电池。 表1 砷化镓材料的主要用途

用于太阳能光伏发电的高倍聚光系统

第32卷第3期2011年5月 应 用 光 学 Journal of Applied Optics Vol 132No.3M ay 2011 文章编号:1002-2082(2011)03-0389-06 用于太阳能光伏发电的高倍聚光系统 张 平1,2 ,洪剑麟1 ,夏 念1 ,金小伟 1 (1.杭州永莹光电有限公司,浙江杭州310051;2.华中科技大学,湖北武汉430074) 摘 要:研究了基于三结型(InGaP/InGaAs/Ge)高效太阳能电池的太阳能光伏发电的高倍聚光系统。该系统采用高次非球面光学玻璃卡塞格林系统,运用Zem ax 和Tr acepro 光学设计软件完成200~500倍太阳能聚光系统的设计,同时设计了单片型高倍太阳能聚能光学组件,用热压成型方法研制了太阳能聚能透镜(副镜)。采用16个性能相同的聚光光学组件和相同数量的三结型太阳能电池组成高倍聚光型太阳能光伏组件,极大地提高了聚光比,为太阳能光伏发电的高倍聚光器设计提供参考和依据。 关键词:太阳能;高倍聚光器;热压成型;非球面透镜;光伏发电 中图分类号:T N29;T H 706 文献标志码:A Solar photovoltaic power generation with high -concentration -ratio system ZH ANG Ping 1,2,H ONG Jian -lin 1,XIA Nian 1,JIN Xiao -w ei 1 (1.Hang zhou Y ongy ing O pt ic &Electr onic Co.,L td.,H ang zho u 310051,China;2.Huazho ng U niver sity of Science and T echnolog y,W uhan 430074,China) Abstract:Based on three -junctio n (InGaP/InGaAs/Ge)high efficient solar cell,the PV conver -sion of a hig h pow er optical system w as achiev ed,which used hig h -order precision aspheric Cassegrain sy stem.Tw o so lar PV systems of 200-500times co ncentratio n -ratio w ere o btained w ith Zemax and Tracepro.One o f them w as a monolithic system w ith solar condenser compo -nent.Seco ndary m ir ror o f high pow er solar PV sy stem w as m anufactured using ho t -pr ess for ming.16sets of optical concentration elem ents co mbined w ith three -junction (InGaP/In -GaAs/Ge)hig h efficient solar cells of the same volumes w ere used to form a com plete unit of a hig h pow er solar condenser PV system.T he solar concentration ratio is greatly increased,w hich pr ovides a g ood refer ence for the desig n of solar PV pow er generation and high -conver -g ence -ratio facilities. Key words:solar energ y;high -pow er condenser;hot -press forming;aspheric lens;photovoltaic pow er generation 收稿日期:2010-10-16; 修回日期:2010-11-16 基金项目:浙江省重大科技专项(优先主题)研究与产业化项目(2008C11038)。作者简介:张平(1946-),女,浙江杭州人,教授、技术顾问,主要从事光电工程、光电光学系统设计和非球面光学应用研究工作。E -mail pzhang8@https://www.360docs.net/doc/018947415.html, 引言 光伏发电经历了第一代晶硅电池(17%左右的转换效率)和第二代薄膜电池,第三代高效H CPV 系统发电。CPV 采用多结的III -V 族化合物电池,具有全光谱、高转换效率(可达36%左右 的转换效率)等优点,采用廉价的聚光型光伏系统可减少给定功率所需的太阳能电池面积。 为了大幅度降低太阳能光伏发电成本,我们致力于太阳能光伏发电高倍聚光系统及采用热压成型方法研制500倍聚光太阳能聚能透镜(副镜),

砷化镓

镓 镓在地壳中的含量不算太少,约占十万分之二,比锡还多。可是,提炼镓却比提炼锡困难得多,这是因为镓在大自然中很分散,没有形成集中的镓矿。平时,在某些煤灰、铁矿、锑铅矿、铜矿中,含有少量镓。 镓在常温下,看上去象一块锡,如果你想把它放在手心里,它马上就熔化了,成为银亮的小珠。原来镓的熔点很低,只有29.8℃。镓的熔点虽然很低,可是沸点却非常高,竟高达2070℃!人们就利用镓的这个特性来制造测量高温的温度计,人们常用这种温度计来测量反应炉、原子反应堆的温度。 镓具有较好的铸造特性,由于它“热缩冷胀”,被用来制造铅字合金,使字体清晰。在原子能工业中,用镓作为热传导介质,把反应堆中的热量传导出来。 镓与许多金属,如铋、铅、锡、镉,铟、铊等,生成熔点低于60℃的易熔合金。其中如含铟25%的镓铟合金(熔点16℃),含锡8%的镓锡合金(熔点20℃),可以用在电路熔断器和各种保险装置上,温度一高,它们就会自动熔化断开,起到安全保险的作用。 砷化镓 (gallium arsenide)化学式 GaAs。黑灰色固体,熔点 1238℃。它在600℃以下,能在空气中稳定存在,并且不为非氧化性的酸侵蚀。砷化镓可作半导体材料,性能比硅更优良。它的禁带宽度大,电子迁移率高,介电常数小,能引入深能级杂质,电子有效质量小,能带结

构特殊,具有双能谷导带,可以制备发光器件、半导体激光器、微波体效应器件、太阳能电池和高速集成电路等,广泛用于雷达、电子计算机、人造卫星、宇宙飞船等尖端技术中。 GaAs拥有一些比Si还要好的电子特性,如高的饱和电子速率及高的电子移动率,使得GaAs可以用在高于250 GHz的场合。如果等效的GaAs和Si元件同时都操作在高频时,GaAs会拥有较少的噪声。也因为GaAs有较高的崩溃电压,所以GaAs比同样的Si元件更适合操作在高功率的场合。因为这些特性,GaAs电路可以运用在移动电话、卫星通讯、微波点对点连线、雷达系统等地方。GaAs曾用来做成Gunn diode (中文翻做甘恩二极管或微波二极管,中国大陆地区叫做耿氏二极管) 以发射微波。 GaAs的的另一个优点:它是直接能隙的材料,所以可以用来发光。而Si是间接能隙的材料,只能发射非常微弱的光。(但是,最近的技术已经可以用Si做成LED和运用在雷射。) 砷化镓在当代微电子和光电子产业中发挥着重要的作用,其产品50%应用在军事、航天方面,30%用于通信方面,其余用于网络设备、计算机和测试仪器。由于砷化镓优良的高频特性,它被广泛用于制造无线通信和光通信器件,半绝缘砷化镓单晶已经成为制造大功率微波、毫米波通信器件和集成电路的主要材料。 在半导体产业的发展中,一般将硅、锗称为第一代半导体材料;将砷化镓、磷化锢、磷化镓、砷化锢、砷化铝及其合金等称为第二代半导体材料;而将宽禁带(Eg>2.3eV)的氮化镓、碳化硅、硒化锌和金

高倍聚光光伏电池作为第三代太阳能发电技术

高倍聚光光伏(HCPV)电池作为第三代太阳能发电技术正逐渐成 为太阳能领域的新焦点 经过30多年的发展,高倍聚光光伏(HCPV)电池作为第三代太阳能发电技术正逐渐成为太阳能领域的新焦点,引起了行业内企业的追逐。在日光照射较好的几个欧美国家,已通过了优惠的上网电价法,随着具有40%转换效率的Ⅲ-V 族半导体多结太阳能电池的普及和成本下降,高倍聚光光伏电池市场进入快速增长期。与前两代电池相比,HCPV采用多结的砷化镓电池,具有宽光谱吸收、高转换效率、良好的温度特性、低耗能的制造过程等优点,使它能在高倍聚焦的高温环境下仍保持较高的光电转换效率。高倍聚光光伏系统技术门槛较高且行业跨度大,涵盖半导体材料及工艺制造、半导体封装、光学设计制造、自动化控制、机械设计制造、金属加工等领域。HCPV行业的产品包括了多结电池片外延材料、光电转换芯片、光接收器组件、聚光器、光伏模组、双轴跟踪器等。 电池芯片采用多结技术大幅提高光电转换效率 与硅基材料相比,基于III-V族半导体多结太阳能电池具有最高的光电转换效率,大致要比硅太阳能电池高50%左右。III-V族半导体具有比硅高得多的耐高温特性,在高照度下仍具有高的光电转换效率,因此可以采用高倍聚光技术,这意味着产生同样多的电能只需要很少的太阳电池芯片。多结技术一个独特的方面就是材料——可选择不同的材料进行组合使它们的吸收光谱和太阳光光谱接 近一致,相对晶硅,这是巨大的优势。后者的转换效率已近极限(25%),而多结器件理论上的转换效率可达68%。目前最多使用的是由锗、砷化镓、镓铟磷3种不同的半导体材料形成3个p-n结,在这种多结太阳能电池中,不但这3种材料的晶格常数基本匹配,而且每一种半导体材料具有不同的禁带宽度,分别吸收不同波段的太阳光光谱,从而可以对太阳光进行全谱线吸收。 HCPV芯片的生产过程如下,首先利用MOCVD技术在4英寸锗衬底上外延砷化镓和铟镓磷形成3结电池片的材料,然后在外延片上利用光刻、PECVD、蒸镀等技术,制备减反膜以及主要成份为银的金属电极,再经划片清洗等工艺,生产出HCPV芯片。HCPV芯片的主要生产商有美国的Spectrolab、Emcore,德国的Azurspace,加拿大Cyrium,中国台湾Arima、Epistar等。衬底剥离的芯片和量子点技术是目前HCPV芯片领域的新热点。 接收器要安全可靠稳定地应用于系统 聚光太阳能电池芯片被封装到光接收器中,接收器封装对太阳能电池进行保护,对会聚光均匀化,同时起到散热的作用。接收器组件还包括旁路二极管和引线端子。芯片的主要焊接工艺有回流焊和共晶焊,二者最主要的区别在于前者使用助焊剂焊接,在焊接后需要清洗去除残留助焊剂,而共晶焊使用无助焊剂的焊片焊接。为了将电从芯片导出,需要进行金带键合将芯片和外围电路连接起来。接收器组件的检验指标主要包括空洞率和电性能测试,空洞率是检验焊接良好与否的标准。电性能方面,5.5mm×5.5mm接收器组件在500倍太阳光下的光电 转换率高达38.5%以上。在实际使用中,还需要将接收器组件与二次光学器件、散热器封装在一起,组成完整的接收器。二次光学器件可以降低对跟踪器高精准度的要求,并使通过涅尔透镜聚焦后的光斑更加均匀地照射到电池芯片上。 二次光学元件通常是光学玻璃棱镜或中空的倒金字塔金属反射器。为了最大限度地利用太阳能资源,节省芯片材料以降低成本,可以提高电池的聚光倍数,

砷化镓晶片表面损伤层分析 - 中国科学院半导体研究所机构

稀有金属 CHINEXE JOURNAL OF RARE METALS 1999年7月 第23卷 第4期 vol.23 No.4 1999 砷化镓晶片表面损伤层分析 郑红军 卜俊鹏 曹福年 白玉柯 吴让元 惠 峰 何宏家 摘 要: 采用TEM观测与X射线双晶回摆曲线检测化学腐蚀逐层剥离深度相结合的方法,分析了SI-GaAs晶片由切、磨、抛加工所引入的损伤层深度。比较两种方法测量结果上的差异,得出了TEM观测到的只是晶片损伤层厚度,而X射线双晶回摆曲线检测化学腐蚀逐层剥离所得的深度是晶片损伤层及其形成应力区的总厚度的结论。 关键词: 砷化镓 切片 磨片 抛光片 表面损伤层 Analyses of Surface Damage in SI-GaAs Wafers Zheng Hongjun, Bu Junpeng, Cao Funian, Bai Yuke, Wu Rangyuan, Hui Feng and He Hongjia (Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China) Abstract: The surface damage Layer in the SI-GaAs wafer induced by cutting, grining and polishing was analyzed by means of transmission electron microscopy and X-ray rocking curve measurements after the wafer was chemically etched. A method for determining the depth of surface damage layer of SI-GaAs wafer according to the quantitative difference in the results obtained by the two methods is proposed. Key Words: SI-GaAs, Cutting wafer, Grinding wafer, Polishing wafer, Surface damage 许多重要的砷化镓器件及砷化镓高速数字电路、微波单片电路均在砷化镓晶片表面制造, 集成度越高,对表面的要求越严格。所以,材料表面加工的质量直接影响着器件的性能、成品率及寿命等。 半导体材料表面因切、磨、抛加工而引入的损伤层深度一直是人们深入研究的工作。加工后的晶片表面损伤层可能是由非晶层、多晶层、嵌镶块层和弹性畸变层等构成的多层结构[1]。 测定这些表面损伤层厚度的通常方法有恒定化学腐蚀速率法[2,3]、椭圆偏振仪[4]、透射电子显微镜[5]、光背散射[6]以及Knudsen[7]提出的X射线双晶摆动曲线观测腐蚀剥层晶片表面损伤层法。但这些方法都有一定的局限性。本文采用X射线双晶回摆曲线检测化学腐蚀逐层剥离损伤层深度与TEM观测相结合的方法,定量地分析了材料加工过程中 (切、磨、抛) 引入的损伤层深度。根据两种测量结果的差异,得出了TEM观测到的只是晶片损伤层厚度,而X射线双晶回摆曲线检测化学腐蚀逐层剥离损伤层深度是晶片损伤层及其形成应力层的总厚度的结论。

2018年砷化镓太阳能电池行业分析报告

2018年砷化镓太阳能电池行业分析报告

目录 一、太阳能电池行业的基本情况与发展趋势 (4) 1、太阳能电池简介 (4) 2、太阳能电池产业链 (5) 3、不同材料太阳能电池适用性的比较 (5) 4、太阳能电池市场规模与发展趋势 (6) (1)全球太阳能电池市场容量 (6) (2)国内太阳能电池行业发展现状 (7) (3)太阳能电池行业发展趋势 (8) ①产品结构趋向多元化 (8) ②技术创新成为未来竞争的核心 (8) 二、砷化镓太阳能电池市场分析与发展趋势 (9) (1)空间用砷化镓太阳能电池 (10) (2)地面聚光砷化镓太阳能电池 (11) (3)国际砷化镓太阳能电池的市场状况 (13) (4)国内砷化镓太阳能电池的市场状况 (13) 2、国内砷化镓太阳能电池市场的发展趋势 (14) (1)空间用砷化镓太阳能电池市场稳定且潜力巨大 (14) (2)地面聚光砷化镓太阳能电池目前处于市场导入期,未来可能快速增长 (15) 三、进入砷化镓太阳能电池领域的主要壁垒 (15) 1、技术壁垒 (15) 2、资本壁垒 (16) 3、客户资源壁垒 (16) 四、砷化镓太阳能电池利润水平的影响因素与变化趋势 (17) 五、砷化镓太阳能电池技术发展趋势 (17) 1、空间用砷化镓太阳能电池技术发展趋势 (17) 2、地面聚光砷化镓太阳能电池技术发展趋势 (18)

六、行业的季节性与周期性 (19)

一、太阳能电池行业的基本情况与发展趋势 1、太阳能电池简介 太阳能电池是利用光伏效应将太阳能通过半导体物质转变为直流电能的一种器件。目前,已商业化的太阳能电池主要有晶体硅太阳能电池(单晶硅太阳能电池和多晶硅太阳能电池)、薄膜太阳能电池和半导体化合物太阳能电池(以砷化镓太阳能电池为主)三大类。 晶体硅太阳能电池目前占据绝大部分太阳能电池市场份额,广泛应用于发电;薄膜太阳能电池近年来因技术的迅速发展,具备了相对于晶体硅太阳能电池的成本优势;相比于晶体硅和薄膜太阳能电池产品,砷化镓太阳能电池是新能源、新材料的典型代表之一,在太阳能电池产品中光电转换效率最高、科技含量最高、技术难度最高,产品问世初期主要应用于空间飞行器电源和其他高端用途,近年来随着聚光技术和跟踪技术的发展,产品应用范围逐步扩展,砷化镓聚光电池应用于地面发电系统的比较经济优势已开始显现。 光电转换效率是衡量太阳能电池技术水平最重要的指标,不同种类太阳能电池最高光电转换效率情况如下表: 不同种类太阳能电池光电转换效率比较表

2020砷化镓材料国内外市场供应生产厂家及需求现状

砷化镓材料国内外市场供应现状及主要需求 1国内外砷化镓材料发展现状 半绝缘砷化镓材料主要用于高频通信器件,受到近年民用无线通信市场尤其是手机市场的拉动,半绝缘砷化镓材料的市场规模也出现了快速增长的局面。20RR~20RR年,半绝缘砷化镓市场需求增长了54%。目前微电子用砷化镓晶片市场主要掌握在日本住友电工(SumitomoElectric)、费里伯格(FreibergerCompoundMaterials)、日立电线(HitachiCable)和美国ART等四家大公司手中。主要以生产4、6英寸砷化镓材料为主。费里伯格公司供应LEC法生长的3、4、6英寸半绝缘砷化镓衬底,供应VGF法生长的4、6英寸半绝缘砷化镓衬底。住友供应VB法生长的4、6英寸半绝缘砷化镓衬底。日立电线供应LEC法生长的2、3、4、6英寸半绝缘砷化镓衬底。ART供应VGF法生长的2、3、4、6英寸半绝缘砷化镓衬底。 表1国际砷化镓材料主要生产厂商

目前中国的砷化镓材料生产企业主要以LED用低阻砷化镓晶片为代表的低端市场为主,利润率较高的微电子用4~6英寸半绝缘晶片还没有形成产业规模。中国大陆从事砷化镓材料研发与生产的公司主要有:北京通美晶体技术有限公司(ART)、中科晶电信息材料(北京)有限公司、天津晶明电子材料有限责任公司(中电集团46研究所)、北京中科镓英半导体有限公司、北京国瑞电子材料有限责任公司、扬州中显机械有限公司、山东远东高科技材料有限公司、大庆佳昌科技有限公司、新乡神舟晶体科技发展有限公司(原国营542厂)等九家。 北京通美是美国ART独资子公司,其资金、管理和技术实力在国内砷化镓材料行业首屈一指,产品主要以VGF法4、6英寸半绝缘砷化镓材料为主。其在高纯镓、高纯砷、高纯锗以及氮化硼坩埚等方面均有投资,有效地控制了公司成本,20RR年销售收入8000万美元,短期内国内其它各公司还难以和北京通美形成真正的竞争。 中科晶电成立于20RR年,主要从事VGF砷化镓单晶生长和抛光片生产,该公司为民营企业,总投资为2500万美元,在高纯砷和高纯镓方面也已投资建厂。20RR年月产2英寸砷化镓晶片10万片,20RR年月产达到15万片。该公司是目前国内发展速度最快的砷化镓企业。 天津晶明公司成立于20RR年,由中国电子科技集团公司第四十六研究所投资,注册资本1400万元,总投入约5000万元。主要产品为2英寸LED用VB法低阻砷化镓晶体及抛光片,兼顾少量3~4英寸半绝缘砷化镓单晶材料。目前拥用LEC单晶炉4台,VB单晶炉60台,已建成一条完整的单晶生长及抛光片加工生产线,目前月产约为3万片。 中科镓英公司成立于20RR年,晶体生长只有两台LEC单晶炉,目前主要在国内购买HB或VGF砷化镓单晶进行抛光片加工,销售对象主要是国内的LED外延企业,月产约2~3

聚光光伏发电系统的技术

聚光光伏发电系统的技术 摘要:聚光光伏发电系统的技术 关键字:CPV, 聚光光伏发电系统, 原理, 单晶硅 一、前言 太阳能发电系统的价格一直居高不下!主要原因是因为太阳能的密度低!太阳照射到地面上的平均光强为1千瓦/平米;单晶硅的转化率可以达到23%,多晶可以达到16%,薄膜只能可以达到8%。转换效率最高的砷化镓电池片能到35%以上,但是用砷化镓制造的太阳能发电系统整体转换效率只有25%左右。 所以为了降低太阳能发电系统的价格,增加太阳光强是一个好的解决办法,要想增大光强需要用凸透镜或者菲尼尔透镜或者反光板把光聚集起来;这样就能大大降低硅与砷化镓的使用量,从而降低太阳能发电系统的价格;这就是CPV(聚光光伏发电系统)的由来。来源:大比特半导体器件网 二、CPV系统的技术难点 CPV太阳能发电系统原理比较简单,为什么到现在全世界也没有几家公司做出特别稳定且便宜的发电系统呢!在CPV领域原则上讲聚光倍数越高造价就越便宜但是使用聚光的方式就会出现以下问题。 1、让单晶硅承受较高倍聚光 虽然砷化镓可以承受1000倍的光强,但是现在砷化镓价格昂贵,并且砷化镓中的砷是剧毒物质,不可能大幅度的降低制造成本,另外在以环保为主题的国际环境下也不可能大量使用,最后只能是单晶硅;但是单晶硅一般只能承受3到5倍的光强,在CPV领域3到5倍的聚光几乎不怎么能降低成本,要想大幅度降低成本必须达到10左右。为了达到10倍的聚光必须用特制的单晶硅。 2、散热: 普通的硅光电池板在夏日中午时温度能到75度以上,普通的硅电池板在两倍太阳光强下时间一长就会起泡,在5倍太阳光强下10分钟就会就会起泡,在10倍太阳光强下5分钟就会起泡,起泡后太阳能电池片就会被氧化,在很短的时间内就会大幅降低效率,另外起泡后由于受热不均匀,常常有电池片炸裂的,这样系统就完全不可用。来源:大比特半导体器件网

砷化镓材料发展和市场前景

砷化镓是Ⅲ-Ⅴ族化合物半导体中最重要、用途最广的半导体材料。它是由两种元素组成的化合物,和单元素的硅、锗半导体材料有很多不同点,其中适于制造高频、高速和发光器件是它的最大特征。此外,GaAs材料还具有耐热、耐辐射及对磁场敏感等特性。所以,用该材料制造的器件也具有特殊用途和多样性,其应用已延伸到硅、锗器件所不能达到的领域。即使在1998年世界半导体产业不景气的状况下,GaAs材料器件的销售市场仍然看好[1]。当然,GaAs材料也存在一些不利因素,如:材料熔点蒸气压高、组分难控制、单晶生长速度慢、材料机械强度弱、完整性差及价格昂贵等,这都大大影响了其应用程度。然而,GaAs材料所具有的独特性能及其在军事、民用和产业等领域的广泛用途,都极大地引起各国的高度重视,并投入大量资金进行开发和研究。本文对发达国家GaAs材料器件的发展动态、产销情况和世界市场前景进行综述。希望从中能得到一些有益的启示。 1 GaAs材料应用民用化 GaAs材料的电子迁移率比硅高约5倍,其器件的运算速度也比硅高得多。数字GaAsLSI用于开发超高速计算机是很理想的器件。在七八十年代,人们纷纷预测GaAs材料将在超高速计算机中发挥极大作用,并投入相当的财力、人力进行研究。但自从开发出硅材料的互补型金属氧化物半导体集成电路(CMOS),由于其工作电压较低、功耗较低、速度较高、价格便宜,致使GaAsIC开发超高速计算机暂时放慢了速度。 随着冷战的结束,很多军用技术研究将转入民用开发。当今,科学的高速发展,技术的频繁交流及商务的往来,极需迅速传送及处理情报信息。如何满足如此专用和大量的情报高速传递?首先需要将信号作高频化和数字化处理,为此要求半导体器件满足高频、高速、低噪声、低工作电压。这正是GaAs材料器件自身所具备的独特性能。所以用GaAs材料制作的电子器件如:金属半导体场效应晶体管(MESFET)、高迁移率晶体管(HEMT)、微波单片集成电路(MMIC)、异质结双极晶体管(HBT)等在移动通讯、光纤通讯、卫星广播、情报处理及汽车防碰撞系统等领域发挥着硅器件不能替代的作用,这大大推动了半绝缘GaAs材料的发展。 在光电器件方面:由于体积小、节能、响应快、寿命长,广泛用于家电、办公设备、广告牌、交通信号灯、汽车尾灯等的可见光发光二极管(LED),用于作摇控器、光隔离器、编码器及个人电脑、办公设备的无线连接、近距离情报传送的红外发光二极管,以及广泛用于CD、MD、DVD 及医疗、工业等领域的激光器(LD)及卫星通讯用的太阳电池,其应用都是面向民用和产业,这都将极大推动掺杂导电型GaAs材料的发展。表1列出了GaAs材料器件的分类和用途[2~4]。 表1 砷化镓材料器件的种类和用途

砷化镓材料

砷化镓材料 1 引言 化合物半导体材料的研究可以追溯到上世纪初,最早报导的是1910年由Thiel等人研究的InP材料。1952年,德国科学家Welker首次把Ⅲ-Ⅴ族化合物作为一种新的半导体族来研究,并指出它们具有Ge、Si等元素半导体材料所不具备的优越特性。五十多年来,化合物半导体材料的研究取得了巨大进展,在微电子和光电子领域也得到了日益广泛的应用。 砷化镓(GaAs)材料是目前生产量最大、应用最广泛,因而也是最重要的化合物半导体材料,是仅次于硅的最重要的半导体材料。由于其优越的性能和能带结构,使砷化镓材料在微波器件和发光器件等方面具有很大发展潜力。目前砷化镓材料的先进生产技术仍掌握在日本、德国以及美国等国际大公司手中,与国外公司相比国内企业在砷化镓材料生产技术方面还有较大差距。 2 砷化镓材料的性质及用途 砷化镓是典型的直接跃迁型能带结构,导带极小值与价带极大值均处于布里渊区中心,即K=0处,这使其具有较高的电光转换效率,是制备光电器件的优良材料。 在300 K时,砷化镓材料禁带宽度为1.42 eV,远大于锗的0.67 eV和硅的1.12 eV,因此,砷化镓器件可以工作在较高的温度下和承受较大的功率。 砷化镓(GaAs)材料与传统的硅半导体材料相比,它具电子迁移率高、禁带宽度大、直接带隙、消耗功率低等特性,电子迁移率约为硅材料的5.7倍。因此,广泛应用于高频及无线通讯中制做IC器件。所制出的这种高频、高速、防辐射的高温器件,通常应用于无线通信、光纤通信、移动通信、GPS全球导航等领域。除在I C产品应用以外,砷化镓材料也可加入其它元素改变其能带结构使其产生光电效应,制成半导体发光器件,还可以制做砷化镓太阳能电池。 表1 砷化镓材料的主要用途

聚光光伏发电系统的技术难点分析(20210212095808)

聚光光伏发电系统的技术难点分析 因为太阳能的密度低!太阳照射到地面上的平均光强为1千瓦/平米:单晶硅的转化率可以达到23%,多晶可以达到16%,薄膜只能可以达到8眼转换效率最高的碎化稼电池片能到35$以上,但是用揶化稼制造的太阳能发电系统整体转换效率只有25%左右。 所以为了降低太阳能发电系统的价格,增加太阳光强是一个好的解决办法,要想增大光强需要用凸透镜或者菲尼尔透镜或者反光板把光汇聚起来:这样就能大大降低硅与碎化镣的使用量,从而降低太阳能发电系统的价格;这就是CPV(聚光光伏发电系统)的由来。 CPV系统的技术难点 CPV太阳能发电系统原理比较简单,为什么到现在全世界也没有几家公司做岀特别稳立且便宜的发电系统呢!在CPV领域原则上讲聚光倍数越髙造价就越便宜但是使用聚光的方式就会出现以下问题。 1、让单晶硅承受较高倍聚光 虽然砌化稼可以承受1000倍的光强,但是现在呻化稼价格昂贵,并且碑化繚中的碎是剧毒物质,不可能大幅度的降低制造成本,另外在以环保为主题的国际环境下也不可能大量使用,最后只能是单晶硅;但是单晶硅一般只能承受3到5倍的光强,在CPV领域3 到5倍的聚光几乎不怎么能降低成本,要想大幅度降低成本必须达到10左右。为了达到10 倍的聚光必须用特制的单晶硅。 2、散热: 普通的硅led/'' target二''_blank'' >光电池板在夏日中午时温度能到75度以上,普通的硅电池板在两倍太阳光强下时间一长就会起泡,任5倍太阳光强下10分钟就会就会起泡,在10倍太阳光强下5分钟就会起泡,起泡后太阳能电池片就会被氧化,在很短的时间内就会大幅降低效率,另外起泡后由于受热不均匀,常常有电池片炸裂的,这样系统就完全不可用。 如果太阳能电池板使用铝或者铜制的散热片进行自然散热,需要大量的散热片,造价特别贵,贵到比硅光片还要贵;如果使用强制风冷,就要使用大量的电能,得不偿失, 并且风扇的寿命与可靠性不高,要想达到高可靠性必须有错误检査与冗余设置,这样就会成几倍增加造价,如果在夏天的中午风扇坏了,整个硅光电池板有可能被彻底烧坏。如果使用水冷除了

年产1000万片砷化镓晶片项目可行性研究报告

年产1000万片砷化镓晶片项目 可行性研究报告 第一章砷化镓晶片项目总论 第二章砷化镓晶片项目建设背景及必要性 第三章砷化镓晶片报告编写说明 第四章砷化镓晶片建设规模及产品方案 第五章砷化镓晶片项目节能分析 第六章砷化镓晶片环境保护 第七章砷化镓晶片项目进度规划 第八章砷化镓晶片投资估算与资金筹措 第九章砷化镓晶片经济效益分析 第十章砷化镓晶片项目评价

第一章项目总论 一、项目提出理由 目前,由于经济增速放缓,总体需求不足,我国钢铁、水泥、电解铝、平板玻璃等原材料工业仍存在严重产能过剩,我国在2016年将持续进行经济结构转型政策,将对原材料工业的需求进一步带来不利影响,在当前很多传统行业仍在低效运行的情况下,给企业在明年转型升级带来巨大压力,化解产能过剩仍然成为传统原材料工业发展的重点任务。2015年,钢铁行业处于全行业亏损状态,10月钢铁行业PMI指数仅为42.20%,尤其是国有及控股企业亏损严重并仍在恶化。2015年5月,工信部发布印发了《部分产能严重过剩行业产能置换实施办法的通知》,以遏制产能严重过剩行业盲目扩张,深入推进化解产能过剩工作并取得了一定成效,水泥、平板玻璃、钢铁等行业固定资产投资增速处于不断放缓的态势。 面对企业发展条件、发展环境的变化,面对激烈的国际竞争,面对第三次工业革命的浪潮,面对中国制造业发展过程中遇到的效率下降、核心技术缺乏、产能过剩等诸多问题,我们的企业必须进行转型升级,实施中国制造2025。二、项目基本情况 (一)项目名称 年产1000万片砷化镓晶片项目 (二)项目选址

xxx临港经济开发区 常州,是江苏省地级市,地处长江之南、太湖之滨,处于长江三角洲中心地带,是长江三角洲地区中心城市之一、先进制造业基地和文化旅游名城,江苏长江经济带重要组成部分。与苏州、无锡联袂成片,构成苏锡常都市圈。常州是一座有3200多年左右历史的历史文化名城,曾有过延陵、毗陵、毗坛、晋陵、南兰陵、长春、尝州、武进等名称,隋文帝开皇九年(589年)始有常州之称。于1949年设市。截至2015年,常州辖天宁区、钟楼区、新北区、武进区、金坛区五个行政区和一个县级市溧阳市,21个街道办事处、37个镇、807个行政村、323个居委会,总面积4385平方公里。常州是长江文明和吴文化的发源地之一,也是南朝齐梁故里,被称为“中吴要辅”。常州境内风景名胜、历史古迹较多,有中华恐龙园、嬉戏谷、春秋淹城等主题公园和天目湖、南山、太湖湾、滆湖等自然风景区。常州人属江浙民系,使用吴语。常州有季札、展昭、陈济、吴稚晖、瞿秋白、张太雷、恽代英、赵元任等历史名人,主要特产有萝卜干、大麻糕、芝麻糖、溧阳风鹅、野山笋等。 (三)项目承办单位 某某投资公司 公司自成立以来,坚持“品牌化、规模化、专业化”的发展道路。以人为本,强调服务,一直秉承“追求客户最大满意度”的原则。多年来公司坚持不懈推进战略转型和管理变革,实现了企业持续、健康、快速发展。未来我司将继续以“客户第一,质量第一,信誉第一”为原则,在产品质量上精益求精,追求完美,对

2021砷化镓行业市场调研报告

2021年砷化镓行业市场 调研报告

目录 1.砷化镓行业现状 (4) 1.1砷化镓行业定义及产业链分析 (4) 1.2砷化镓市场规模分析 (6) 2.砷化镓行业前景趋势 (7) 2.1砷化镓集成电路市场持续扩大 (7) 2.2砷化镓制备工艺成熟 (8) 2.3全球砷化镓产业链分工成熟 (8) 2.4砷化镓在半导体上的应用 (9) 2.5砷化镓在太阳能电池上的应用 (9) 2.6砷化镓在芯片上的应用 (10) 2.7砷化镓在5G通讯上的应用 (10) 2.8延伸产业链 (10) 2.9行业协同整合成为趋势 (11) 2.10服务模式多元化 (11) 2.11呈现集群化分布 (11) 2.12需求开拓 (12) 2.13行业发展需突破创新瓶颈 (13) 3.砷化镓行业存在的问题 (14) 3.1砷化镓概念上市企业较少 (14) 3.2行业服务无序化 (14)

3.3供应链整合度低 (14) 3.4基础工作薄弱 (14) 3.5产业结构调整进展缓慢 (15) 3.6供给不足,产业化程度较低 (15) 4.砷化镓行业政策环境分析 (16) 4.1砷化镓行业政策环境分析 (16) 4.2砷化镓行业经济环境分析 (16) 4.3砷化镓行业社会环境分析 (16) 4.4砷化镓行业技术环境分析 (17) 5.砷化镓行业竞争分析 (18) 5.1砷化镓行业竞争分析 (18) 5.1.1对上游议价能力分析 (18) 5.1.2对下游议价能力分析 (18) 5.1.3潜在进入者分析 (19) 5.1.4替代品或替代服务分析 (19) 5.2中国砷化镓行业品牌竞争格局分析 (20) 5.3中国砷化镓行业竞争强度分析 (20) 6.砷化镓产业投资分析 (21) 6.1中国砷化镓技术投资趋势分析 (21) 6.2中国砷化镓行业投资风险 (21) 6.3中国砷化镓行业投资收益 (22)

聚光光伏(CPV)

聚光光伏 聚光光伏(CPV)是指将汇聚后的太阳光通过高转化效率的光伏电池直接转换为电能的技术,CPV是聚光太阳能发电技术中最典型的代表。使用晶硅电池和薄膜电池进行光电转换,分别是第一、第二代太阳能利用技术,均已得到了广泛应用。利用光学元件将太阳光汇聚后再进行利用发电的聚光太阳能技术,被认为是太阳能发电未来发展趋势的第三代技术。 使用晶硅电池和薄膜电池进行光电转换,分别是第一、第二代太阳能利用技术,均已得到了广泛应用。利用光学元件将太阳光汇聚后再进行利用发电的聚光太阳能技术,被认为是太阳能发电未来发展趋势的第三代技术。 技术展望 有别与传统硅晶型以及薄膜型,聚光型太阳光电(HCPV)的技术最显着的优点在于它的高光电转换效率。这种太阳电池芯片在聚焦太阳光500倍左右时它的光电转换效能介于36-40%之间,光电模组的效能在22-28%之间。整个系统的效能在18-20%之间。以年度发电量而言,在相同的条件下,系统(结合双轴追日技术)约是传统硅晶型的1.2-1.4倍左右,此点是HCPV技术的竞争优势。HCPV技术最适合应用于大型电厂,特别是在阳光日照充足、干燥、低湿度的地区。 目前HCPV 的核心技术-三结化合物电池和高倍聚光技术的开发和制造已经突破了国外企业的封锁,目前在国内实现大规模量产的企业有国内上市企业三安光电旗下的日芯光伏,他们已经能够实现1000倍聚光和40%以上的光电转换效率。 日芯光伏科技有限公司参与了我国《聚光型光伏模块和模组设计鉴定和定型》认证技术规范制定工作,为通过本次认证,日芯光伏科技有限公司经过了申请、送样、型式试验、工厂检查、合格评定、发证等认证环节,也为我国今后聚光光伏组件的质量认证工作积累了宝贵经验。 系统效率比较能量转化效率 薄膜型太阳能 7%~9% 晶硅型太阳能 14%~17% 第一代核能电厂 30% 火力发电 36.8% 聚光光伏(CPV) 27%~30% 聚光光热 (CSP) 13%~19%

砷化镓封装注意事项

砷化镓晶圆和芯片的包装盒和操作 简介多数情况下,砷化镓电路是用与硅电路相同的设备和技术制造和操作的。在操作和包装砷化镓芯片的时候,只有少数重要的不同需要注意。本应用手册包含对于晶圆和芯片操作,后道工艺和封装的重要信息。主要方面如下: 晶圆有在边缘周围有应该排除的区域(第一节) 砷化镓比硅片易碎,我们为运输容器(第二节,第三节)和切割框架(第四节)提供了指引。 多数 Triquint IC 技术都是生产平坦的表面芯片。但是,特定的应用需要空气桥金属技术。空气桥容易被损伤。第五节包含了空气桥芯片操作指引,用于空气桥芯片的拾取工具不允许触碰芯片表面,特别是在芯片拾取和芯片安放等操作的时候。用于硅芯片的标准拾取工具是用于非空气桥芯片的。 与众多硅电路相同,砷化镓芯片也是静电敏感器件,应该接地操作。 砷化镓不应有高温工艺。因为芯片温度不能超过320C,所以焊接放置芯片(第十一节) 和封盖(第十三节)操作时应特别注意。 砷化镓包含砷元素,是作为有毒材料对待的。报废产品应该放置于合适的容器中(第十五节)。 第十四节包含对在封装件内部的芯片底部接触放置的指引。 6-9 节包含对晶圆减薄,晶圆背部金属化,晶圆粘片带和划片的工艺指引。第 10-13 节包含芯片拾取,放置,引线压焊和密封。 本手册包含的建议不能保证在本手册中提及的工艺的适应性。我们建议你联系你的代工厂以获取最新的信息。 1、芯片边缘的额外区域 在晶圆外围的4mm宽度的区域是不保证的。芯片挑选的电测试应该不包括此区域。这个区域是被特定工艺步骤的工具屏蔽的,并且也受到了工艺设备的机械损伤。 晶圆缺口方向有 8.4m m的平面区域。芯片在此区域也是不保证的。下图表示了这些应该排除的区域。

2019年砷化镓行业分析报告

2019年砷化镓行业分 析报告 2019年9月

目录 一、砷化镓行业概况 (5) 1、砷化镓材料简介 (5) 2、砷化镓单晶片生产流程 (6) 3、砷化镓材料的应用领域 (9) 4、砷化镓产业链概况 (11) 二、砷化镓行业市场规模测算 (13) 1、预计2023年全球砷化镓元件市场规模突破千亿元 (13) 2、砷化镓衬底材料市场规模测算 (15) (1)砷化镓衬底应用领域:光电子器件 (17) (2)砷化镓衬底需求测算:LED器件 (19) 3、预计2023年全球砷化镓衬底市场规模为10.5亿美元,中国3.5亿美元 20 三、砷化镓行业竞争格局 (21) 1、砷化镓产业链各环节呈寡头垄断格局 (21) (1)砷化镓上游衬底到下游元件价值量逐级放大 (21) (2)砷化镓产业链各环节均处于寡头垄断的竞争格局 (22) (3)与国外相比,我国砷化镓产业链竞争格局仍处于弱势 (22) (4)用于射频器件的半绝缘型砷化镓生产目前由国际厂商垄断 (23) (5)国内厂商技术水平和国外差距较大,主要以生产LED用半导体型衬底为主,半绝缘型砷化镓材料渗透率仅为1.3% (23) 2、国内砷化镓衬底生产商盈利能力低于国外 (24) 四、相关企业简况 (25) 1、云南锗业:受益自主可控,砷化镓衬底业务迎来黄金期 (26) (1)公司砷化镓衬底技术领先且产能充足 (26)

(2)光纤用四氯化锗龙头,客户渠道优秀 (27) (3)上游锗战略资源优势明显,支持公司向锗深加工业务转型 (27) (4)公司开拓锗深加工业务,预计未来深加工产品营收占比快速升高 (27) 2、三安光电:行业出清尚需时日,关注Mini/Micro LED布局 (28) (1)布局LED全产业链,龙头地位稳固 (28) (2)芯片持续跌价叠加存货减值等影响,公司19H1业绩承压,预计行业出清仍需时日 (28) (3)LED芯片竞争激烈,公司全面推进Mini/Micro LED新布局 (28) (4)化合物半导体业务进展顺利 (29)

高倍聚光光伏电站

中国首座高倍聚光光伏电站投入运营 source:中国工控网 中国首座商业化运营的并网高倍聚光光伏电站近日正式启动,该电站由上海聚恒太阳能有限公司在哈尔滨工业大学(威海)校园内建设。据悉,国家金太阳认证中心-国家计量科学院鉴衡认证中心也在此挂牌"金太阳高倍聚光光伏示范电站"。 该光伏列阵由48个聚光光伏组件组成, 不同于大家熟悉的通常呈蓝色或黑色的晶体硅平板太阳能电池板,聚光光伏组件是由透明的平板玻璃光学系统和太阳能电池组成的 被称之为第三代光伏技术的高倍聚光光伏发电技术使用高效率的多结三五族太阳能电池,光电转换效率已达41%,理论上可达70%。多结三五族太阳能电池也被称为砷化镓电池,是目前光电转换效率最高,达到晶体硅技术的两倍,同时也是效率增长潜力最大的太阳能电池。由于其价格非常昂贵,最早使用在太空领域为卫星和空间站提供能源,地面使用难以普及。但由于这种电池的转化效率可随着聚光倍数的增加而提高,因此利用低成本的聚光光学系统和此电池结合在一起,就能以低廉的成本获得高效率的发电系统。由于聚光太阳能电池转化效率高,一方面可以降低光伏发电成本,同时也可以大幅减少光伏电站的建设用地;因此,它也是最有希望在大型光伏电站中使用,将发电成本降低到可以和煤电成本相竞争的光伏技术。 由于高倍聚光光伏发电技术在国内才起步,在太阳能光伏几种技术中,参与的企业和影响力还很小。而在欧美聚光光伏已逐步成为主流技术,尤其是2010年以来,高倍聚光光伏已获得数个10MW及以上级别的光伏电站项目,此前,美国加州曾批准建造1GW聚光型太阳能电站。哈工大太阳能研究所的成立,利用哈工大在航 空航天技术领域的优势,及威海光照资源好、地处经济发达区域的特点,将聚光光伏技术的综合应用作为重点,优先开展聚光发电、聚光海水淡化等课题研究,促进高倍聚光光伏技术在中国的快速发展。 在哈尔滨工业大学威海校区建设的峰值功率11KW高倍聚光光伏电站(576倍聚光),是国内第一个按照商业化系统建设且并网发电、投入运营的高倍聚光光伏电站, 也是目前已报道的国内转换效率最高的并网光伏电站(直流效率25%)。据哈工大威海校区马校长透露,接下来会在威海建设1MW的聚光光伏电站,并在此基础上进行聚光太阳能海水淡化等能源综合利用。年内聚恒太阳能会在北京、内蒙古、新疆、吉林、四川、广东等地建设类似规模的聚光光伏试点电站,为在国内各类地区建设大规模聚光光伏电站做储备。

相关文档
最新文档