蓝牙测试仪-蓝牙射频测试项

蓝牙测试仪-蓝牙射频测试项
蓝牙测试仪-蓝牙射频测试项

TESCOM 蓝牙射频测试项

蓝牙一致性测试,(蓝牙射频测试),验证蓝牙产品的射频性能是否符合蓝牙射频规范。许多OEM 厂家直接购买已经获得蓝牙认证的蓝牙芯片或模块,进而开发蓝牙产品,如移动电话、个人数字助理(PDA)、电脑、打印机、MP3 播放器等。由于不同类型产品的需要,可能需要更换天线,或者由于其它无线模块或时钟模块的影响,以及电源的变化,这些都会导致蓝牙最终产品的射频性能发生变化,因此在研发和生产过程中必须对该产品的射频性能进行测试,以保证其无线指标符合蓝牙射频规范的要求。

蓝牙射频测试方法和指标

蓝牙无线测试规范的版本定义了蓝牙无线测试指标及其测试方法。蓝牙无线测试配置包括一台测试仪和被测设备(EUT,Equipment Under Test),其中测试仪作为主单元,EUT 作为从单元。两者之间可以通过射频电缆相连也可以通过天线经空中传输相连(需要可靠的耦合以及屏蔽箱)。测试仪发送LMP 指令,激活EUT 进入测试模式,并对测试仪与EUT 之间的蓝牙链路的一些参数进行配置。如测试方式是环回还是发送方式,是否需要进行跳频,分组是单时隙分组还是多时隙分组。

下面介绍蓝牙无线指标及其测试方法。

发射测试

(1)输出功率

测试仪在低、中、高三个频点,对整个突发范围内测量峰值功率和平均功率。规范要求峰值功率和平均功率各小于23dBm 和20dBm,并且满足以下要求:如果EUT 的功率等级为1,平均功率> 0dBm;如果EUT 的功率等级为2,-6dBm<平均功率<4dBm;如果EUT 的功率等级为3,平均功率<0dBm。

(2)功率密度

测试仪通过扫频,在240MHz 频带范围内找到对应最大功率的频点,然后以此频点进行时域扫描(扫描时间为1 分钟),测出最大值,要求小于20dBm/100kHz。

(3)功率控制

初始状态为环回,非跳频。EUT 分别工作在低、中、高三个频点,回送调制信号为DH1 分组。测试仪通过LMP 信令控制EUT 输出功率,并测试功率控制步长的范围,规范要求在2dB 和

8dB 之间。

北京联华行

(4)频率范围

测试仪对EUT 回送的DH1 分组扫频测量。当EUT 工作在最低频点时,测试仪找到功率密度下降为-80dBm/Hz(-30dBm 100KHz 带宽)时的频点fL;当EUT 工作在最高频点时,测试仪找到功率密度下降为-80dBm/Hz(-30dBm 100KHz 带宽)时的频点fH。要求fL、fH 位

于2.4~2.4835GHz范围内。

(5)20dB 带宽

EUT 分别工作在低、中、高三个频点,回送调制信号DH1 分组。测试仪扫频找到对应最大功率的频点,并且找到其左右两侧对应功率下降20dB 时的fL 和fH,20dB 带宽Df = | fH - fL |,要求Df小于1MHz。

北京联华行(6)相邻信道功率

EUT 工作频点分别为第0 信道、第39 信道和第78 信道,回送净荷为PN9 的DH1 分组。测试

扫描整个蓝牙频段,测试各个信道的功率。要求相邻第 2 道的泄漏功率小于-20dBm,相邻第3道及其以上的泄漏功率小于-40dBm。

(7)调制特性

EUT 分别工作在低、中、高三个频点。测试仪以所支持的最大分组长度发送为11110000 的分组,并对EUT 回送的分组计算频率偏移的峰值和均值,分别记为Df1max 和Df1avg。测试仪以所支持的最大分组长度发10101010 的分组,并对EUT回送的分组计算频率偏移的峰值和均值,分别记为Df2max 和Df2avg,要求满足以下条件:至少99.9%的Df1max 满足140kHz< Df1max <175kHz;至少99.9%的Df2max 3115kHz;Df2avg /Df1avg 30.8。

(8)初始载波容限

测试仪根据4 个前导码计算载波频率f0,要求与标称频率fTX 的差小于75kHz。

(9)载波频率漂移

要求载波瞬时漂移小于40kHz。规范还要求载波漂移速率小于4000Hz/10μs。

1.2 接收测试

以上介绍了蓝牙发射的无线指标及其测试。对于接收测试来说,所有指标的测试都是基于误码率的统计,并且至少要统计1600000 个比特。下面介绍蓝牙接收的测试。

(1)单时隙灵敏度

EUT 分别工作在低、中、高三个频点,回送调制信号的DH1 分组。依照蓝牙规范的要求,测试仪控制其输出功率,以使EUT 的收信功率为-70dBm。蓝牙规范允许EUT 发送的射频信号具有75kHz的初始误差和40kHz 的频率漂移,即总共允许有115kHz 的误差。此外,还要考虑调制、符号定时等引起的误差。假如EUT 的收信机性能由一个输出“完美”信号的测试仪来测试,其测试结果不足以提供冗余度来适应真正的无线传输环境,用户将得到一个关于收信机质量的错误结果。经验告诉我们,对于有扰测试,蓝牙收信机的灵敏度一般会劣化4~10dB,具体值与分组长度和蓝牙芯片种类有关。测试仪必须支持有扰发射(dirty transmitter),,将干扰加入到发送的蓝牙信号中,每20ms 一组,从第一组依次到第十组,再返回第一组,不断重复。。测试仪对误码率进行统计,要求误码率BER<0.1%。

(2)多时隙灵敏度

类似于单时隙灵敏度的测试,不过分组类型为DH3、DH5。北京联华行

(3)最大输入电平

即蓝牙接收机的饱和电平。EUT 工作于低、中、高频点。测试仪发送DH1 分组信号,并控制其发射功率,以使EUT 收信机入口处的电平为-20dBm。测试仪统计误码率,要求BER〈0.1%。

2 蓝牙无线测试仪TC-3000A

以上介绍了蓝牙无线测试的基本指标。作为蓝牙测试仪必须满足以下要求:为了与EUT 建立蓝牙链路,测试仪必须具备蓝牙协议栈;为了进行蓝牙无线测试,测试仪必须完全支持蓝牙测试模式协议;必须能每秒进行1600 次跳频;必须支持“dirty transmitter”。

一些公司推出的蓝牙测试仪可以测试8 项蓝牙射频指标:输出功率、功率控制、初始载频、载频漂移、调制;单时隙灵敏度、多时隙灵敏度、最大输入电平。北京联华行

(完整版)射频指标测试介绍

目录 1GSM部分 (1) 1.1常用频段介绍 (1) 1.2 发射(transmitter )指标 (2) 1.2.1发射功率 (2) 122 发射频谱(Output RF spectrum) (4) 1.2.2.1调制频谱 (4) 1.2.2.2开关频谱 (5) 1.2.3 杂散(spurious emission) (5) 1.2.4 频率误差(Frequency Error) (6) 1.2.5 相位误差( Phase Error) (6) 1.2.6功率时间模板(PVT) 7 1.2 接收(receiver) 指标 (8) 1.2.1接收误码率(BER (8) 2 WCDMA (9) 2.1常用频段介绍 (9) 2.2 发射(Transmitter )指标 (9) 2.3 接收(receiver) 指标 (15) 3 CDMA2000 (15) 3.1常用频段介绍 (15) 3.2 发射(transmitter )指标 (16) 3.3 接收(receiver) 指标 (19) 4 TD-SCDMA 部分 (20) 4.1常用频段介绍 (20) 4.2 发射(transmitter )指标 (20) 4.3 接收指标( Receiver) (26) 1GS M部分 1.1常用频段介绍

1.2 发射(transmitter)指标 1.2.1发射功率 定义:发射机载波功率是指在一个突发脉冲的有用信息比特时间上内,基站传送 到手机天线或收集及其天线发射的功率的平均值。 测量目的:测量发射机的载波输出功率是否符合GSM规范的指标。如果发射功 率在相应的级别达不到指标要求,会造成很难打出电话的毛病,即离基站近时容易打出而离基站远时打出困难,往往表现出发射时总是提示用户重拨号码。如果 发射功率在相应的级别超出指标的要求,则会造成邻道干扰。 测试方法: 手机发射部分由发射信号形成电路、功率放大电路、功率控制电路三个单元组成。 GSM频段分为124个信道,功率级别为5----33dBm,即卩LEVEL5--LEVEL19共15 个级别;DCS频段分为373个信道(512----885),功率级别为0----30dBm,即LEVEL0---LEVEL15共15个级别;每个信道有15个功率等级,测试时选上、中、下三个信道对每个功率等级进行测试,每个功率等级以2dBm增减。 功率控制:由于手机不断移动,手机和基站之间的距离不断变化,因此手机的发射功率不是固定不变的,基站根据距离远近的不同向手机发出功率级别信号,手机收到功率级别信号后会自动调整自身的功率,离基站远时发射功率大,离基站 近时发射功率小。具体过程如下:手机中的数据存储器存放有功率级别表,当手 机收到基站发出的功率级别要求时,在CPU的控制下,从功率表中调出相应的 功率级别数据,经数/模转换后变成标准的功率电平值,而手机的实际发射功率经取样后也转换成一个相应的电平值,两个电平比较产生出功率误差控制电压,去调节发射机激励放大电路、预放、功放电路的放大量,从而使手机的发射功率调整到要求的功率级别上。 测试指标: DCS1 800 Power con trol Nomi nal Output Toleranee (dB) for con diti ons

蓝牙测试仪-蓝牙射频测试项

TESCOM 蓝牙射频测试项 蓝牙一致性测试,(蓝牙射频测试),验证蓝牙产品的射频性能是否符合蓝牙射频规范。许多OEM 厂家直接购买已经获得蓝牙认证的蓝牙芯片或模块,进而开发蓝牙产品,如移动电话、个人数字助理(PDA)、电脑、打印机、MP3 播放器等。由于不同类型产品的需要,可能需要更换天线,或者由于其它无线模块或时钟模块的影响,以及电源的变化,这些都会导致蓝牙最终产品的射频性能发生变化,因此在研发和生产过程中必须对该产品的射频性能进行测试,以保证其无线指标符合蓝牙射频规范的要求。 蓝牙射频测试方法和指标 蓝牙无线测试规范的版本定义了蓝牙无线测试指标及其测试方法。蓝牙无线测试配置包括一台测试仪和被测设备(EUT,Equipment Under Test),其中测试仪作为主单元,EUT 作为从单元。两者之间可以通过射频电缆相连也可以通过天线经空中传输相连(需要可靠的耦合以及屏蔽箱)。测试仪发送LMP 指令,激活EUT 进入测试模式,并对测试仪与EUT 之间的蓝牙链路的一些参数进行配置。如测试方式是环回还是发送方式,是否需要进行跳频,分组是单时隙分组还是多时隙分组。 下面介绍蓝牙无线指标及其测试方法。 发射测试 (1)输出功率 测试仪在低、中、高三个频点,对整个突发范围内测量峰值功率和平均功率。规范要求峰值功率和平均功率各小于23dBm 和20dBm,并且满足以下要求:如果EUT 的功率等级为1,平均功率> 0dBm;如果EUT 的功率等级为2,-6dBm<平均功率<4dBm;如果EUT 的功率等级为3,平均功率<0dBm。 (2)功率密度 测试仪通过扫频,在240MHz 频带范围内找到对应最大功率的频点,然后以此频点进行时域扫描(扫描时间为1 分钟),测出最大值,要求小于20dBm/100kHz。 (3)功率控制 初始状态为环回,非跳频。EUT 分别工作在低、中、高三个频点,回送调制信号为DH1 分组。测试仪通过LMP 信令控制EUT 输出功率,并测试功率控制步长的范围,规范要求在2dB 和 8dB 之间。 北京联华行 (4)频率范围 测试仪对EUT 回送的DH1 分组扫频测量。当EUT 工作在最低频点时,测试仪找到功率密度下降为-80dBm/Hz(-30dBm 100KHz 带宽)时的频点fL;当EUT 工作在最高频点时,测试仪找到功率密度下降为-80dBm/Hz(-30dBm 100KHz 带宽)时的频点fH。要求fL、fH 位

蓝牙测试项及其标准详细(清晰整齐)

蓝牙测试项及其标准 1 输出功率 Output Power 通过50 ohm射频线或者耦合器件连接,设置 EUT工作在test mode loop back 或者TX mode.,Hopping on;如果EUT支持功率控制, 设置EUT以最大功率输出;使用DH5,包长度 12500μs,payload为PRBS 9;频点 2402,2441,2480MHz每次至少测量burst周期 的20%到80%; -6

蓝牙测试项及其标准

蓝牙测试项及其标准

蓝牙无线指标及其测试方法。 1.1发信机测试 (1) 输出功率 测试仪对初始状态设置如下:链路为跳频,EUT置为环回(Loop back )。测试仪发射净 荷为PN9分组类型为所支持的最大长度的分组,EUT对测试仪发出的分组解码,并使用相 同的分组类型以其最大输出功率将净荷回送给测试仪。测试仪在低、中、高三个频点,对整个突发范围内测量峰值功率和平均功率。规范要求峰值功率和平均功率各小于23dBm和 20dBm并且满足以下要求:如果 EUT的功率等级为1,平均功率> OdBm如果EUT的功率等级为2,-6dBm<^均功率<4dBm如果EUT的功率等级为3,平均功率<0dBm (2) 功率密度

初始状态同(1),测试仪通过扫频,在240MHz频带范围内找到对应最大功率的频点,然后以此频点进行时域扫描(扫描时间为1分钟),测出最大值,要求小于20dBm/100kHz (3)功率控制 初始状态为环回,非跳频。EUT分别工作在低、中、高三个频点,回送调制信号为PN9 的DH1分组。测试仪通过LMP言令控制EUT1出功率,并测试功率控制步长的范围,规范要求在2dB 和8dB之间。 (4)频率范围 初始状态同(3),测试仪对EUT回送的净荷为PN9的DH1分组扫频测量。当EUT工作在最低频点时,测试仪找到功率密度下降为-80dBm/Hz时的频点fL ;当EUT工作在最高频点时,测试仪找到功率密度下降为-80dBm/Hz时的频点fH。对于79信道的系统,要求fL、fH位于2.4 ?2.4835GHz 范围内。 (5) 20dB带宽 初始状态同(3),EUT分别工作在低、中、高三个频点,回送调制信号为 PN9的 DH1分组。测试仪扫频找到对应最大功率的频点,并且找到其左右两侧对应功率下降20dB时的fL 和 fH,20dB带宽 Df = | fH - fL | ,要求 Df 小于 1MHz (6)相邻信道功率 初始状态同(3) , EUT X作频点分别为第3信道、第39信道和第75信道,回送净荷为 PN9的DH1分组。测试仪扫描整个蓝牙频段,测试各个信道的功率。要求相邻第2道的 泄漏功率小于-20dBm相邻第3道及其以上的泄漏功率小于-40dBm。(7)调制特性 初始状态同(3) , EUT分别工作在低、中、高三个频点。测试仪以所支持的最大分组长度发送净荷为11110000的分组,并对EUT回送的分组计算频率偏移的峰值和均值,分别记为Df1max和Df1avg。测试仪以所支持的最大分组长度发送净荷为10101010的分组,并对EUT回送的分组计算频率偏移的峰值和均值,分别记为Df2max和Df2avg,要求满足以下条件:

射频测量指标参数

射频指标 1)频率误差 定义 :发射机的频率误差是指测得的实际频率与理论期望的频率之差。它是通过测量手机的I/Q 信号并通过相位误差做线性回归,计算该回归线的斜率即可得到频率误差。频率误差是唯一要求在衰落条件下也要进行测试的发射机指标。 测试目的 :通过测量发射信号的频率误差可以检验发射机调制信号的质量和频率稳定 度。频 率误差小,则表示频率合成器能很快地切换频率,并且产生出来的信号足够稳 定。只有信号 频率稳定,手机才能与基站保持同步。若频率稳定达不到要求 (±0.1ppm),手机将出现信 号弱甚至无信号的故障,若基准频率调节范围不 够,还会出现在某一地方可以通话但在另一 地方不能正常通话的故障。 条件参数 : GSM 频段选 1、62、124 三个信道,功率级别选 最大LEVEL5 ;DCS 频段选 512、698、885 三个信道,功率级别选最 大LEVEL0 进行测试。 GSM 频段的频率误差范围为+90HZ —— -90HZ ,频率误差小 于40HZ 时为最好,大于40HZ 小于 60HZ 时为良好,大于60HZ 小于 90HZ 时为一般,大 于90HZ 时为不合格; DCS 频段的频率误差范围为 +180HZ —— -180HZ ,频率误差小于 80HZ 时为最好,大于 80HZ 小于 100HZ 时为良好,大 于100HZ 小于 180HZ 时为一般,大于180HZ 时为不合格。 2)相位误差 定义 :发射机的相位误差是指测得的实际相位与理论期望的相位之差。理论上的相位 轨迹可 根据一个已知的伪随机比特流通过0.3 GMSK 脉冲成形滤波器得到。相位轨迹可看作与载 波 相位相比较的相位变化曲线。连续的1 将引起连续的 90 度相位的递减,而连续的0 将引起连续的 90 度相位的递 增。 峰值相位误差表示的是单个抽样点相位误差中最恶略的情况,而均方根误差表示的是所有 点 相位误差的恶略程度,是一个整体性的衡量。 测试目的 :通过测试相位误差了解手机发射通路的信号调制准确度及其噪声特性。可以看出 调制器是否正常工作,功率放大器是否产生失真,相位误差的大小显示了I 、Q 数位类比转 换器和高斯滤波器性能的好坏。发射机的调制信号质量必须保持一定的指标,才能当存在着各种外界干扰源时保持无线链路上的低误码率。 测试方法 :在业务信道( TCH )激活 PHASE ERROR 即可观测到相位误差值。测试时通过 综合测试仪 MU200 产生比特流进行调制后送给手机,并指令手机处于环回模式。然后去捕 捉 手机的一个突发信号,对其进行均匀相位抽样,抽样周期为调制信号周期的1/2,最后根据

BT测试方案_Agilent经典射频测试方案

BT测试方案_Agilent经典射频测试方案 1.1. 蓝牙的无线单元 蓝牙被定义为一种用于无线连接的全球性规范。由于它要取代电缆,所以成本要低、操作要直观而且要稳定可靠。对蓝牙的这些需求带来了许多挑战。蓝牙技术通过多种方式满足这些挑战性的需求。首先,蓝牙选择无需执照的ISM频段;其次,蓝牙的设计强调低功率和极低成本。为了在干扰非常强的ISM频段正常工作,蓝牙采用跳频技术。 蓝牙设备采用的框图有很多种。对于发射而言,在末级射频结构中采用的技术包括直接VCO 调制和IQ混合技术。在接收机中,主要采用了传统的鉴频器或与模数转换结合的IQ下变频器。有许多设计可以满足蓝牙无线规范,但如果不小心行事,每种设计都会有所差异。蓝牙系统由无线单元、基带链路控制单元和链路管理软件组成。另外,还包括高层应用软件。 图1是蓝牙系统的框图,图中显示了基带、射频发射机、射频接收机等不同部分。 图1. 1.2. 蓝牙链路控制单元和链路管理 蓝牙链路控制单元,或称链路控制器,决定蓝牙设备的状态。它不仅负责功率的有效管理、

数据纠错和加密,还负责建立网络连接。 链路管理软件和链路控制器一起工作。蓝牙设备之间通过链路管理器进行通信。蓝牙设备可以工作成主设备(Master Unit)或者从设备(Slave Unit)。从设备间建立连接,同时决定从设备的省电模式。主设备可以主动与最多7个从设备同时进行通信;同时,另外200多个从设备可以登记成非通信、省电的模式。这样的一个控制区域定义成一个匹克网(piconet)。同样,不同匹克网的主设备可以同时控制一个从设备。这时,匹克网组成的网络称为散射网(scatternet)。图2描述了由两个匹克网组成的一个散射网。不属于任何一个匹克网的设备处于待机模式Standby Mode) 链路管理器在主蓝牙无线技术是一种针对无线个人区域网(PAN)的公开规范。它为信息设备之间的声音和数据传送提供有限范围内的无线连接。蓝牙无线技术使得设备之间无需电缆便可实现相互连接。与大多数无线通信系统所不同的是,蓝牙设备之间可以实现即时组网,而不需要网络设施如基站或接入点(AP)的支持。 本测试建议书描述了用来验证蓝牙射频设计的收发信机测试方法。测试过程既有手动控制和软件自动控制,又有方便的单键测试。安捷伦科技关于蓝牙测试的解决方案清单请见附录D。本建议书适用于对射频测试有基本了解的读者。若想更多了解射频测试的基础知识,请参阅附录C推荐的阅读清单。

探讨射频电缆的各种指标和性能

探讨射频电缆的各种指标和性能 射频电缆组件的正确选择除了频率范围,驻波比,插入损耗等因素外,还应考虑电缆的机械特性,使用环境和应用要求,另外,成本也是一个永远不变的因素。在本文中,详细讨论了射频电缆的各种指标和性能,了解电缆的性能对于选择最佳的射频电缆组件是十分有益的。射频同轴电缆是用于传输射频和微波信号能量的。它是一种分布参数电路,其电长度是物理长度和传输速度的函数,这一点和低频电路有着本质的区别。射频同轴电缆分为半刚,半柔和柔性电缆三种,不同的应用场合应选择不同类型的电缆。半刚和半柔电缆一般用于设备内部的互联;而在测试和测量领域,应采用柔性电缆。 半刚性电缆 顾名思义,这种电缆不容易被轻易弯曲成型,其外导体是采用铝管或者铜管制成的,其射频泄露非常小(<-120dB),在系统中造成的信号串扰可以忽略不计。这种电缆的无源互调特性也是非常理想的。如果要弯曲到某种形状,需要专用的成型机或者手工的磨具来完成。如此麻烦的加工工艺换来的是非常稳定的性能,半刚性电缆采用固态聚四氟乙烯材料作为填充介质,这种材料具有非常稳定的温度特性,尤其在高温条件下,具有非常良好的相位稳定性。半刚性电缆的成本高于半柔性电缆,大量应用于各种射频和微波系统中。 半柔性电缆 半柔性电缆是半刚性电缆的替代品,这种电缆的性能指标接近于半刚性电缆,而且可以手工成型。但是其稳定性比半刚性电缆略差些,由于其可以很容易的成型,同样的也容易变形,尤其在长期使用的情况下。 柔性(编织)电缆 柔性电缆是一种"测试级"的电缆。相对于半刚性和半柔性的电缆,柔性电缆的成本十分昂贵,这是因为柔性电缆在设计时要顾及的因素更多。柔性电缆要易于多次弯曲而且还能保持性能,这是作为测试电缆的最基本要求。柔软和良好的电指标是一对矛盾,也是导致造价昂贵的主要原因。柔性射频电缆组件的选择要同时考虑各种因素,而这些因素之间有些的相互矛盾的,如单股内导体的同轴电缆要比多股的具有更低的插入损耗和弯曲时的幅度稳定性,但是相位稳定性能就不如后者。所以一条电缆组件的选择,除了频率范围,驻波比,插入损耗等因素外,还应考虑电缆的机械特性,使用环境和应用要求,另外,成本也是一个永远不变的因素。 特性阻抗 射频同轴电缆由导体,介质,外导体和护套组成。 "特性阻抗"是射频电缆,接头和射频电缆组件中最常提到的指标。最大功率传输,最小信号反射都取决于电缆的特性阻抗和系统中其它部件的匹配。如果阻抗完全匹配,则电缆的损耗只有传输线的衰减,而不存在反射损耗。电缆的特性阻抗(Zo)与其内外导体的尺寸

蓝牙测试项及其标准

蓝牙测试项及其标准 1 输出功率Outpu t Power 通过50 ohm射频线或者耦合器件连接,设置EUT工 作在test mode loop back 或者TX mode.,Hopping on;如果EUT支持功率控制,设置EUT以最大功率 输出;使用DH5,包长度12500μs,payload为PRBS 9;频点2402,2441,2480MHz每次至少测量burst周 期的20%到80%; -6

蓝牙测试标准

Summary 1介绍 (3) 2蓝牙射频性能测试 (4) 2.1发射功率 (4) 2.2调制特性:频率偏移 (4) 2.3初始载波频率容许量 (5) 2.4灵敏度 (5) 2.5灵敏度限值 (5) 2.6阻塞 (6) 3无线链路范围 (6) 4协同工作能力 (7) 4.1GSM通信下的蓝牙灵敏度 (7) 4.2蓝牙通信下的GSM灵敏度限值 (7) 5附录 (9) 5.1测试条件 (9) 5.1.1 常规测试条件 (9) 5.1.2 极限测试条件 (9)

1介绍 在M5和E6项目中采用的蓝牙模块是菲利普的BGB204。BGB204符合蓝牙协议1.2。 在M5和E6项目中,蓝牙模块支持class 2功率等级,并且不支持功率控制。 蓝牙模块的射频测试项目包括: 射频性能测试 无线链路范围测试 协调工作能力测试 蓝牙模块射频性能测试项目中的功率谱密度,输出功率谱的频率范围,邻道功率,载波频率漂移,载波干扰和交调性能测试并没有包括在本文档中。菲利普对BGB204的这些性能进行了测试和质量控制,这些性能符合蓝牙协议1.2。 本文档中的射频性能测试包括了蓝牙模块的原理图和版图能够影响的射频测试项目。 参考文档: Core System Package Part A : Radio Frequency Test Suite Structure (TSS) and Test Purposes (TP) Specification 1.2 : Revision 1.2.3 Document n° 20.B.353/1.2.3 测试设备:Rohde & Schwarz CMU200 option K53 (Bluetooth)

射频各项测试指标.

双频段GSM/DCS移动电话射频指标分析 2003-7-14 [摘要]本文对GSM移动电话的射频指标进行了分析,并讨论了改进办法。其中一些测试及提高射频指标的方法是从实践经验中总结出来的,有一定的参考价值。第一部分对各射频指标作了简要介绍。第二部分介绍了射频指标的测试方法。第三部分介绍了一些提高射频指标的设计和改进方法。 1 射频(RF)指标的定义和要求 1.1 接收灵敏度(Rx sensitivity) (1)定义 接收灵敏度是指收信机在满足一定的误码率性能条件下收信机输入端需输入的最小信号电平。衡量收信机误码性能主要有帧删除率(FER)、残余误比特率(RBER)和误比特率(BER)三个参数。这里只介绍用残余误比特率(RBER)来测量接收灵敏度。 残余误比特率(RBER)的定义为接收到的错误比特与所有发送的的数据比特之比。 (2)技术要求 ●对于GSM900MHz频段 接收灵敏度要求:当RF输入电平为-102dBm(分贝)时,RBER不超过2%。测量时可测试实际灵敏度指标。根据多款移动电话的测试结果来看:当RBER=2%时,若RF输入电平为-l09~-l07dBm,则接收灵敏度为优;若RF输入电平为-l07~l05dBm,则接收灵敏度为良好;若RF输入电平为 -105~-l02dBm,则接收灵敏度为一般;若RF输入电平>-l02dBm,则接收灵敏度为不合格。 ●对于DCSl800MHz频段 接收灵敏度要求:当RF输入电平为-l00dBm,RBER不超过2%。测量时可测试实际灵敏度指标。根据多款移动电话的测试结果来看:当RBER=2%时,若RF输入电平为-l08~-105dBm,则接收灵敏度为优;若RF输入电平为-105~ -l03dBm,则接收灵敏度为良好;若RF输入电平为-l03~ -100dBm,则接收灵敏度为一般;若RF输入电平为>-l00 dB mm,则接收灵敏度为不合格。 1.2频率误差Fe、相位误差峰值Pepeak、相位误差有效值PeRMS (1)定义 测量发射信号的频率和相位误差是检验发信机调制信号的质量。GSM调制方案是高斯最小频移键控(GMSK),归一化带宽为BT=0.3。 发射信号的相位误差定义为:发信机发射信号的相位与理论上最好信号的相位之差。理论上的相位轨迹可根据一个己知的伪随机比特流通过GMSK脉冲成形滤波器得到。

蓝牙测试标准

Summary 1介绍 (2) 2蓝牙射频性能测试 (2) 2.1发射功率 (2) 2.2调制特性:频率偏移 (3) 2.3初始载波频率容许量 (3) 2.4灵敏度 (4) 2.5灵敏度限值 (4) 2.6阻塞 (4)

3无线链路范围 (5) 4协同工作能力 (5) 4.1GSM通信下的蓝牙灵敏度 (5) 4.2蓝牙通信下的GSM灵敏度限值 (5) 5附录 (6) 5.1测试条件 (6) 5.1.1常规测试条件 (6) 5.1.2极限测试条件 (6) 1介绍 在M5和E6项目中采用的蓝牙模块是菲利普的BGB204。BGB204符合蓝牙协议1.2。 在M5和E6项目中,蓝牙模块支持class 2功率等级,并且不支持功率控制。 蓝牙模块的射频测试项目包括: 射频性能测试 无线链路范围测试 协调工作能力测试 蓝牙模块射频性能测试项目中的功率谱密度,输出功率谱的频率范围,邻道功率,载波频率漂移,载波干扰和交调性能测试并没有包括在本文档中。菲利普对BGB204的这些性能进行了测试和质量控制,这些性能符合蓝牙协议1.2。 本文档中的射频性能测试包括了蓝牙模块的原理图和版图能够影响的射频测试项目。 参考文档: Core System Package Part A : Radio Frequency Test Suite Structure (TSS) and Test Purposes (TP) Specification 1.2 : Revision 1.2.3 Document n° 20.B.353/1.2.3 测试设备:Rohde & Schwarz CMU200 option K53 (Bluetooth) 2蓝牙射频性能测试 蓝牙射频性能测试的所有测试项目都是在连接模式下进行的。蓝牙天线与蓝牙模块的功率输出电路断开,功率输出电路通过50ohm连接器与测试设备CMU连接。 2.1发射功率 蓝牙模块符合class 2 功率等级,所以发射功率应该满足下面要求: -6dBm < Pout < 4dBm. 测试方法: 蓝牙模块通过50ohm连接器与蓝牙测试设备CMU连接。CMU设置为signaling模式,发射功率设置为 -70dBm。 包类型:DH1 调制方式:PRBS9 功率种类:平均功率 跳频方式: 无跳频:测试信道0 : fTX = 2402 MHz

推荐-WCDMA射频测试经验总结 精品

WCDMA主要射频指标测试经验总结 本文档列写了在使用Agilent 8960进行WCDMA射频各项测试的简要测试方法及步骤,注意事项和相关归纳总结,敬请参考。 一、测试前的设置 1.选择前面板上的“CALL SETUP” 2.按下F1键,把Operating Mode选择成“Cell Off” NOTE: 若不在CELL OFF状态下,有些参数无法设置

3.按More键,把页面切换到第二页,共四页。“2 of 4”4.按下F2,设置Cell Parameter --- 设置“BCCH Update Page” 到“Auto”状态 --- 设置“ATT Flag State” 到“set”状态 --- 按下F6,关闭当前窗口

5、按下F4设置“Uplink Parameters” --- 设置“Maximum Uplink Transmit Power Level”到24dBm --- 按下F6,关闭当前窗口 6、按下前面板左边的“More”切换页面到第一页,“1 of 4” 7、按下F1,设置“Operating Mode”到“Active Cell” 8、按下F7,设置“Cell Power”到-93dBm/3.84MHz 9、手机开机,等待手机registration 注:1、“security settings” 要依据UE的要求,通常情况应设置为“Auth.&Int”

NOTE: 使用小白卡,在8960关闭鉴全的情况下,依然可以注册,并且模块本身也应使用QPST关闭鉴全,若默认已关闭无需操作。 2、假如UE用的是Qualm chipset,就必须把“RLC Reestablish”设置成“Off”

蓝牙BLE射频手动测试指导书

蓝牙BLE射频手动测试指导书(仅供内部使用) For internal use only 拟制:Prepared by 日期:Date 审核:Reviewed by 日期: Date yyyy-mm-dd 审核:Reviewed by 日期: Date yyyy-mm-dd 批准:Granted by 日期: Date yyyy-mm-dd

1、测试设备和测试项目简介 1.1测试设备 a、CBT:CBT(带CBT-K57选件) b、信号源,如:SMU(含蓝牙模块) or E4438C c、频谱仪,如:E4445A or FSP 1.2测试项目 1.2.1仅使用CBT即可进行的测试项目: TRM-LE/CA/01/C (Output power at NOC) TRM-LE/CA/02/C (Output power at EOC) TRM-LE/CA/03/C (In-band emissions at NOC) TRM-LE/CA/04/C (In-band emissions at EOC) TRM-LE/CA/05/C (Modulation characteristics) TRM-LE/CA/06/C (Carrier frequency offset and drift at NOC) TRM-LE/CA/07/C (Carrier frequency offset and drift at EOC) RCV-LE/CA/01/C (Receiver sensitivity at NOC) RCV-LE/CA/02/C (Receiver sensitivity at EOC) RCV-LE/CA/05/C (Intermodulation performance) RCV-LE/CA/06/C (Maximum input signal level) RCV-LE/CA/07/C (PER Report Integrity) 连接图如下:

常用射频指标测试大纲

常用射频指标 测试大纲 通信对抗 2015/10/30 Ver. 1.0

目录 目录1 1.1dB压缩点(P1dB) (1) 1.1基本概念 (1) 1.2测量方法 (1) 2.三阶交调(IP3) (2) 2.1基本概念 (2) 2.2测量方法 (3) 3.三阶互调(IM3) (4) 3.1基本概念 (4) 3.2测量方法 (5) 3.2.1直接测量 (5) 3.2.2间接法 (5) 4.噪声系数(NF) (5) 4.1基本概念 (5) 4.2测量方法 (6) 4.2.1使用噪声系数测试仪 (6) 4.2.2增益法 (6) 4.2.3Y因数法 (8) 4.2.4测量方法小结 (10) 5.灵敏度 (10) 5.1基本概念 (10) 5.2测量方法 (11) 5.2.1间接法-噪声系数法测量 (11) 5.2.2直接法-临界灵敏度测量 (11) 6.镜频抑制 (11) 6.1基本概念 (11) 6.2测量方法 (12) 7.相位噪声 (13) 7.1基本概念 (13) 7.2测量方法 (13)

7.2.1基于频谱仪的相位噪声测试方法 (13)

1.1dB压缩点(P1dB) 1.1基本概念 射频电路(系统)有一个线性动态范围,在这个范围内,射频电路(系统)的输出功率随输入功率线性增加,即输出功率P out– P in = G,输出信号的功率步进等于输入信号的功率步进ΔP out = ΔP in,这种射频电路(系统)称之为线性射频电路(系统),这两个功率之比就是功率增益G。 随着输入功率的继续增大,射频电路(系统)进入非线性区,其输出功率不再随输入功率的增加而线性增加,也就是说,其输出功率低于小信号增益所预计的值。当输出功率满足P out– P in = G – 1时,对应的P out即为输出1dB压缩点,对应的P in即为输入1dB压缩点。 通常把增益下降到比线性增益低1dB 时的输出功率值定义为输出功率的1dB 压缩点,用P1dB表示(图1)。典型情况下,当功率超过P1dB时,增益将迅速下降并达到一个最大的或完全饱和的输出功率,其值比P1dB大3dB~4dB。 1dB压缩点愈大,说明射频电路(系统)线性动态范围愈大。 图 1 输出功率随输入功率的变化曲线 1.2测量方法 频谱仪直接测量。 1,DUT的输入端连接信号源,输出端连接频谱仪; 2,将输入信号的功率由小至大缓慢增加,并记录输入功率、输出功率极其

蓝牙射频技术及其测试项目

蓝牙射频技术及其测试项目 蓝牙设备工作于ISM频段,通过高斯频移键控(GFSK)数字频率调制技术实现彼此间的通信,设备间采用时分复用(TDD)方式,并使用一种极快的跳频方案以便在拥挤波段中提高链路可靠性。对蓝牙设备来说,RF部分是主要测试内容之一。 蓝牙射频设计采用了多种系统体系结构,既有传统模拟调制基于中频的系统,也有基于数字IQ调制器/解调器配置的系统,但无论采用哪种设计配置,在产品开发过程中都必须解决下面的问题: ·全球各地法规要求 ·蓝牙认证 ·简单高效制造测试 ·与其它厂商产品的良好兼容性 蓝牙射频技术 蓝牙设备工作于ISM频段,通常是在2.402GHz至2.48GHz之间的79个信道上运行。它使用称为0.5BT高斯频移键控(GFSK)的数字频率调制技术实现彼此间的通信。也就是说把载波上移157kHz代表“1”,下移157kHz代表“0”,速率为100万符号(或比特)/秒,然后用“0.5”将数据滤波器的-3dB带宽设定在500kHz,这样可以限制射频占用的频谱。 两个设备间通过时分复用(TDD)方式通信,发送器和接收器在相隔时段中交替传送,即一个挨着另一个传送,此外还采用了一种极快的跳频方案(1,600跳/秒),以便在拥挤波段中提高链路可靠性。美国联邦通信委员会预计波段利用率将不断增加,因此可靠性是最基本的要求。 在图1所示的蓝牙结构中,接收器仅采用一次下转换,这类设计使用一个简单的本地振荡器,输出经过倍频,并在接收器和发送器间切换。FSK允许直接VCO调制,基带数据通过一个固定时间延迟且无过冲高斯滤波器,而脉冲整形仅用于发送器中,锁相环(PLL)可用采样-保持电路或相位调制器解除基带内的相位调制。通常中频相当高,以限制滤波器元件的物理尺寸,使中频远离LO频率,确保足够的镜像抑制。如果电平过高造成接收器输入过载,则应使用天线开关。 测试项目 下面介绍一些适用于蓝牙设备RF部分的测试。 功率──输出放大器是一个选件,有这种选件无疑可提升I类(+20dBm)输出放大器的输出功率。虽然对电平精度指标不作要求,但应避免过大的功率输出,以免造成不必要的电池耗电。 无论设计提供的功率是+20dBm还是更低,接收器都需要有接收信号强度指示,RSSI信息允许不同功率设备间互相联系,这类设计中的功率斜率可由控制放大器的偏置电流实现。 与其它TDMA系统如DECT或GSM不同,蓝牙频谱测试并不限于单独的功率控制和调制误差测试,它的测量

射频测试规范

1、目的 规范WCDMA射频测试标准,使工程师在作业时有所遵循,特制订本规范。 2、适用范围 本规范适用于公司研发的WCDMA产品项目。 3、参考文件 《3rdGenerationPartnershipProject;TechnicalSpecificationGroupRadioAccessNetworkUserEquipment (UE)radiotransmissionandreception(FDD)(Release9)》 《3rdGenerationPartnershipProject;TechnicalSpecificationGroupRadioAccessNetwork;Requirementsfo rsupportofradioresourcemanagement(FDD)(Release9)》 4、缩略语和术语 ACLRAdjacentChannelLeakagepowerRatio邻道泄漏抑制比 ACSAdjacentChannelSelectivity邻道选择性 AWGNAdditiveWhiteGaussionNoise加性高斯白噪声 BERBitErrorRatio误比特率 BLERBlockErrorRatio误块率 CPICHCommonPilotChannel公共导频信道 CQIChannelQualityIndicator信道质量指示 CWContinuousWave(un-modulatedsignal)连续波(未调制信号) DCHDedicatedChannel专用信道(映射到专用物理信道)DPCCHDedicatedPhysicalControlChannel专用物理控制信道DPCHDedicatedPhysicalChannel专用物理信道 DPDCHDedicatedPhysicalDataChannel专用物理数据信道 DTXDiscontinuousTransmission非连续发射 EcAverageenergyperPNchip每个伪随机码的平均能量 EVMErrorVectorMagnitude误差矢量幅度 FDDFrequencyDivisionDuplex频分复用 FuwFrequencyofunwantedsignal非有用信号频率 HARQHybridAutomaticRepeatRequest自动混合重传请求 HS-DPCCHHighSpeedDedicatedPhysicalControlChannel高速专用物理控制信道 HS-PDSCHHighSpeedPhysicalDownlinkSharedChannel高速物理下行共享信道 HS-SCCHHighSpeedSharedControlChannel高速共享控制信道IblockingBlockingsignalpowerlevel阻塞信号功率电平IoThetotalreceivedpowerspectraldensity总接收功率频谱密度IoacThepowerspectraldensityoftheadjacentfrequencychannel邻信道功率谱密度IocThepowerspectraldensityofabandlimitedwhitenoisesource带限白噪声功率谱密度IorThetotaltransmitpowerspectraldensityofthedownlinksignalattheNodeBantennaconnector基站发送的总功率谱密度orThereceivedpowerspectraldensityofthedownlinksignalasmeasuredattheUEantennaconnector下行链路所接收的功率谱密度 IouwUnwanted signalpowerlevel非有用信号功率电平 OCNSOrthogonalChannelNoiseSimulator正交信道噪声模拟器PCCPCHPrimaryCommonControlPhysicalChannel主公共控制物理信道PICHPagingIndicatorChannel寻呼指示信道 PRACHPhysicalRandomAccessChannel物理随机接入信道QqualminMinimumRequiredQualityLevel小区质量最小需求

蓝牙RF性能测试规范

蓝牙R F性能测试规范 This model paper was revised by the Standardization Office on December 10, 2020

蓝牙RF性能测试规范

8dB之间。 3调制特性 4初始状态同(2), EUT分别工作在低、中、高三个频点。测试仪以所支持的最大分组长度发送净荷为的分组,并对EUT回送的分组计算频率偏移的峰值和均值,分别记为Df1max 和Df1avg。测试仪以所支持的最大分组长度发送净荷为的分组,并对EUT回送的分组计算频率偏移的峰值和均值,分别记为Df2max 和Df2avg,要求满足以下条件:至少%的 Df1max满足 140kHz< Df1max <175kHz;至少%的Df2max 3115kHz;Df2avg /Df1avg 。 操作: Step 1:Menu → Modulation Step 2:slave sig 1 → Testmode Type → Loopback Tests Step 3:Pattern Type →(f1)→ (f2) Step 4:Packet type使用DH5,频点为2024MHz spec: 140kHz ≤△f1avg ≤ 175kHz △f1avg / △f2avg ≥ △f2max ≥ 115kHz 4 初始载波容限(ICFT) EUT为环回状态,回送净荷为PN9的DH1给测试仪。测试仪先将链路置为非跳频,EUT分

别工作在低、中、高三个频点,然后测试仪再将链路置为跳频。测试仪根据4个前导码计算载波频率f0,要求与标称频率fTX的差小于75kHz。 操作 测试项目选择:Menu → Modulation 测试模式设置:slave sig 1 → Testmode Type → Loopback Tests 数据包选择:Connect Control → Slav Sig. → DH1 Spec: +/-75KHz difference to nominal carrier frequency 5 载波频率漂移 初始状态同(3),EUT分别工作在低、中、高三个频点,回送调制信号为的DH1/DH3/DH5分组。测试仪先根据4个前导码计算载波频率f0,然后每10比特净荷测试一次频率,其与初始载频的差为瞬时频率漂移。最后测试仪将跳频打开,重新测试所有频点下的瞬时频率漂移。瞬时频率漂移之间的差定义为漂移速率。对于DH1分组,要求每次的瞬时漂移小于25kHz,对于DH3、DH5分组,要求载波瞬时漂移小于40kHz。规范还要求载波漂移速率小于4000Hz/10μs。 操作 测试项目选择:Menu → Modulation 测试模式设置:slave sig 1 → Testmode Type → Loopback Tests

相关文档
最新文档