2015-2016学年度指数综合练习

2015-2016学年度指数综合练习
2015-2016学年度指数综合练习

2015-2016学年度指数综合练习

1.函数1()4x f x a -=+(0a >,且1a ≠)的图像过一个定点,则这个定点坐标是( )

A .(5,1)

B .(1,5)

C .(1,4)

D .(4,1) 2.化简

的结果为( ) A .5 B . C .﹣ D .﹣5

3.函数]1,0[在x a y =上的最大值与最小值的和为3,则=a ( )

A B .2 C .4 D

4.函数()()01x f x a

a =<<在区间[0,2]则a 的值为( )

5,则N C M R 等于( ) A .[]1,1- B .(1,0)- C .[)3,1 D .(0,1)

6.指数函数()(1)x

f x a =-在R 上是增函数,则a 的取值范围是( )

A .1a >

B .2a >

C .01a <<

D .12a <<

7.函数(0,1)x y a a a a =->≠的图象可能是( )

8.设d c b a ,,,都是不等于的正数,x x x x d y c y b y a y ====,,,在同一坐标系中的图像如图所示,则d c b a ,,,的大小顺序是( )

A 、d c b a <<<.

B 、c d b a <<<.

C 、c d a b <<<. C 、d c a b <<<.

9.设,则( )

A. B. C. D.

10.已知a

b =0.32,0.20.3

c =,则a ,b ,c 三者的大小关系是( )

A .b>c>a

B .b>a>c

C .a>b>c

D .c>b>a

11.已知函数,若,则实数( )

A .

B .

C .2

D .9

12.函数

( )

(A)[0,+∞) (B)[0,2]

(C)[0,2) (D)(0,2)

13

(A) (-)1,-∞ (B) (),0()0,+∞∞- (C) (-1,+)∞ (D) (-),0()1,+∞-∞ 14.若函数 的定义域为R ,则a 的取值范围是(

) A . B . C . D . 15.-x 3在区间[-1,1]上的最大值等于(

16有两个不等实根,则实数a 的取值范围是( ) A .()0,∞- B .()2,1 C .()+∞,0 D .()1,0

1.50.90.4812314,8,2y y y -??=== ???312y y y >>213y y y >>132y y y >>123y y y >>

高中数学函数相关知识点整理.doc

高中数学函数相关知识点整理 函数在高中数学中的地位不可动摇,考生必须掌握函数相关知识点,下面是我给大家带来的,希望对你有帮助。 高中数学反比例函数知识点 形如 y=k/x(k为常数且k0) 的函数,叫做反比例函数。 自变量x的取值范围是不等于0的一切实数。 反比例函数图像性质:反比例函数的图像为双曲线。 由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。 另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为|k|。 知识点: 1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。 2.对于双曲线y=k/x ,若在分母上加减任意一个实数 (即 y=k/(xm)m 为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移) 高中数学对数函数知识点 对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。 对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,

因为它们互为反函数。 (1)对数函数的定义域为大于0的实数集合。 (2)对数函数的值域为全部实数集合。 (3)函数总是通过(1,0)这点。 (4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。 (5)显然对数函数无界。 高中数学指数函数知识点 指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得 可以得到: (1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。 (2) 指数函数的值域为大于0的实数集合。 (3) 函数图形都是下凹的。 (4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。 (5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。 (6) 函数总是在某一个方向上无限趋向于X轴,永不相交。

实数指数幂及运算

实数指数幂及运算 教学目标:掌握实数指数幂的拓展过程过程中的不变性质。 掌握根式和有理数指数幂的意义 注意指数幂的拓展过程中的底数的约束条件 教学重点:实数指数幂的运算和底数的限制条件 教学难点:实数指数幂的运算 教学过程: 一、正整数指数幂(复习): 1.()n a n N +∈的意义: n n a a a a =? 2.()n a n N +∈的运算: (1)m n m n a a a +?= (2)()m n m n a a ?= (3)(,0)m m n n a a m n a a -=>≠ (4)()m m m a b a b ?=? 二、负整数指数幂(拓展): 规定: 01(0)a a =≠ 1(0)n n a a a -=≠ 三、分数指数: 1.复习: 问题: 2x a = 3 x a = 则x 的取值是什么? 2.拓展: 如果存在实数x ,使得n x a =(,1,)a R n n N +∈>∈,则x 叫做a 的n 次方根; 求a 的n 次方根,叫做把a 开n 次方,称作开方运算, 正数a 的正n 次方根叫做a 的n 次算术根。 n 叫做根指数。 3.根式性质: (1) (1,)n a n n N +=>∈ (2) a n a n ?=?-?,当为正奇数时,当为正偶数时 4.分数指数幂(有理指数幂): (1)正分数指数幂: 1 0)n a a => 0,,,)m n m a a n m N n +=>∈且为既约分数

(2)负分数指数幂:1 (0,,,)m n m n m a a n m N n a -+=>∈且为既约分数 5、有理指数幂运算法则:0,0a b >>,,αβ是有理数 (1) a a a αβαβ+?= (2) ()a a αβαβ?= (3) ()a b a b ααα?=? 四、无理指数幂: 1、0,0a b >>,,αβ是无理数 (1) a a a αβαβ+?= (2) ()a a αβαβ?= (3) ()a b a b ααα?=? 2、实数指数幂: 0,0a b >>,,αβ是实数 (1) a a a αβαβ+?= (2) ()a a αβαβ?= (3) ()a b a b ααα?=? 五、典型例题: 例1、(整数指数幂)化简下列各式: (1)()03.14π- (2)512-??- ??? (3)()42x - (4 ) ))109 22 (5)()32212339a b a b a b -----??- (6)()()()()33334411a a a a a a a a ----+-++- 练习: 一组: (1)57x x (2)232(2)a b --- (3)23(2)()x x -- (4)13 ()()a ab b - (5)2222(2)()a a a a ---+÷- (6)2222()()x y x y ---÷- 二组: (1)若,m n Z ∈,满足5m a =,15n b =,则25m n -= . (2 )已知21n a =,* ()n N ∈,则33n n n n a a a a ---=- (3)已知11a a --=,则66a a -+的值为 例2、(根式)求下列各式的值: (1 (2 (3 2 (4 )a b <

指数函数第3课时指数与指数幂的运算(三)

指数函数第3课时指数与指数幂的运算(三) (一)教学目标 1.知识与技能: 能熟练地运用有理指数幂运算性质进行化简,求值. 2.过程与方法: 通过训练点评,让学生更能熟练指数幂运算性质. 3.情感、态度、价值观 (1)培养学生观察、分析问题的能力; (2)培养学生严谨的思维和科学正确的计算能力. (二)教学重点、难点 1.重点:运用有理指数幂性质进行化简,求值. 2.难点:有理指数幂性质的灵活应用. (三)教学方法 1.启发学生认识根式与分数指数幂实质是相同的.并能熟练应用有理指数幂的运算性质对根式与分数指数幂进行互化. 2.引导学生在化简求值的过程中,注意将根式转化为分数指数幂的形式和积累一些常用技巧.如凑完全平方、分解因式、化小数为分数等等.另外,在运用有理指数幂的运算性质化简变形时,应注意根据底数进行分类,以精简解题的过程. (四)教学过程 教学环节教学内容师生互动设计意 图 复习引入复习 1.分数指数幂的概念. * (0,,) m n m n a a a m n N =>∈ * 1 (0,,) m n m n a a m n N a - =>∈ 2.分数指数幂的运算性质. (0,,) r s r s a a a a r R s R + ?=>∈∈ ()(0,,) r s rs a a a r R s R =>∈∈ ()(0,) r r r a b a b a r R ?=>∈ 师:提出问题 生:复习回顾 师:总结完善 复 习旧 知,为 新课作 铺垫.

应用举例 例1.(P56,例4)计算下列各式 (式中字母都是正数) (1) 2115 11 3366 22 (2)(6)(3) a b a b a b -÷- (2) 3 1 8 8 4 () m n- 学生思考,口答,教师板演、点 评. 例 1 (先由学生观察以上两个 式子的特征,然后分析、提问、解答) 分析:四则运算的顺序是先算乘 方,再算乘除,最后算加减,有括号 的先算括号的.整数幂的运算性质 及运算规律扩充到分数指数幂后,其 运算顺序仍符合我们以前的四则运 算顺序. 我们看到(1)小题是单项式的 乘除运算;(2)小题是乘方形式的 运算,它们应让如何计算呢? 其实,第(1)小题是单项式的 乘除法,可以用单项式的运算顺序进 行. 第(2)小题是乘方运算,可先 按积的乘方计算,再按幂的乘方进行 计算. 解:(1)原式 = 211115 326236 [2(6)(3)]a b +-+- ?-÷- =0 4ab =4a (2)原式= 3 1 88 8 4 ()() m n- =23 m n- 通 过这二 个例题 的解 答,巩 固所学 的分数 指数幂 与根式 的互 化,以 及分数 指数幂 的求 值,提 高运算 能力.

3.2.3指数函数与对数函数的关系教案

3.2.3 指数函数与对数函数的关系 【学习要求】 1.了解反函数的概念及互为反函数图象间的关系; 2.掌握对数函数与指数函数互为反函数. 【学法指导】 通过探究指数函数与对数函数的关系,归纳出互为反函数的概念,通过指数函数图象与对数函数图象的关系,总结出互为反函数的图象间的关系,体会从特殊到一般的思维过程. 填一填:知识要点、记下疑难点 1.当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数的 自变量 ,而把这个函数的自变量 作为新的函数的 因变量. 我们称这两个函数 互为反函数. 即y =f(x)的反函数通常用 y =f - 1(x) 表示. 2.对数函数y =log a x 与指数函数y =a x 互为反函数 ,它们的图象关于 直线y =x 对称. 3.互为反函数的图象关于直线 y =x 对称;互为反函数的图象同增同减. 4.当a>1时,在区间[1,+∞)内,指数函数y =a x 随着x 的增加,函数值的增长速度 逐渐加快 ,而对数函数y =log a x 增长的速度 逐渐变得很缓慢. 研一研:问题探究、课堂更高效 [问题情境] 设a 为大于0且不为1的常数,对于等式a t =s,若以t 为自变量可得指数函数y =a x ,若以s 为自变量可得对数函数y =log a x.那么指数函数与对数函数有怎样的关系呢?这就是本节我们要探究的主要问题. 探究点一指数函数与对数函数的关系 导引为了探究这两个函数之间的关系,我们用列表法画出函数y =2x 及y =log 2x 的图象. 问题1函数y =2x 及y =log 2x 的定义域和值域分别是什么,它们的定义域和值域有怎样的关系? 答:函数y =2x 的定义域为R,值域为(0,+∞);函数y =log 2x 的定义域为(0,+∞),值域为R.函数y =2x 的定义域和值域分别是函数y =log 2x 的值域和定义域. 问题2在列表画函数y =2x 的图象时,当x 分别取-3,-2,-1,0,1,2,3这6个数值时,对应的y 值分别是什么? 答:y 值分别是: 18, 14, 1 2 , 1, 2, 4, 8. 问题3在列表画函数y =log 2x 的图象时,当x 分别取18,14,1 2 ,1,2,4,8时,对应的y 值分别是什么? 答:y 值分别是:-3,-2,-1,0,1,2,3. 问题4综合问题2、问题3的结果,你有什么感悟? 答:在列表画y =log 2x 的图象时,可以把y =2x 的对应值表里的x 和y 的数值对换,就得到y =log 2x 的对应值表. 问题5观察画出的函数y =2x 及y =log 2x 的图象,能发现它们的图象有怎样的对称关系? 答:函数y =2x 与y =log 2x 的图象关于直线y =x 对称. 问题6我们说函数y =2x 与y =log 2x 互为反函数,它们的图象关于直线y =x 对称,那么对于一般的指数函数y =a x 与对数函数y =log a x 又如何? 答:对数函数y =log a x 与指数函数y =a x 互为反函数.它们的图象关于直线y =x 对称. 探究点二 互为反函数的概念 问题1对数函数y =log a x 与指数函数y =a x 是一一映射吗?为什么? 答:是一一映射,因为对数函数y =log a x 与指数函数y =a x 都是单调函数,所以不同的x 值总有不同的y 值与之对应,不同的y 值也总有不同的x 值与之对应. 问题2对数函数y =log a x 与指数函数y =a x 互为反函数,更一般地,如何定义互为反函数的概念? 答:当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数的自变量,而把这个函数的自变量作为新 的函数的因变量,我们称这两个函数互为反函数.函数y =f(x)的反函数通常用y =f - 1(x)表示. 问题3 如何求函数y =5x (x ∈R)的反函数? 答:把y 作为自变量,x 作为y 的函数,则x =y 5,y ∈R.通常自变量用x 表示,函数用y 表示,则反函数为y =x 5 ,x ∈R. 例1 写出下列函数的反函数: (1)y =lg x; (2)y =log 1 3 x; (3)y =????23x . 解:(1)y =lg x(x>0)的底数为10,它的反函数为指数函数y =10x (x ∈R). (2)y =log 13x (x>0)的底数为1 3 ,它的反函数为指数函数y =????13x (x ∈R). (3)y =????23x (x ∈R)的底数为23,它的反函数为对数函数y =log 2 3x (x>0). 小结:求给定解析式的函数的反函数的步骤: (1)求出原函数的值域,这就是反函数的定义域; (2)从y =f(x)中解出x; (3)x 、y 互换并注明反函数的定义域. 跟踪训练1 求下列函数的反函数:(1)y =3x -1; (2)y =x 3+1 (x ∈R); (3)y =x +1 (x≥0); (4)y =2x +3 x -1 (x ∈R,x≠1).

高中数学-实数指数幂及其运算练习

高中数学-实数指数幂及其运算练习课时过关·能力提升 1根式等于() A.B.C.D.- 解析原式=(a-2. 答案A 2化简的结果是() A. B. C.3 D.5 解析原式=. 答案B 3()4()4等于() A.a16 B.a8 C.a4 D.a2 解析原式==a2a2=a2+2=a4. 答案C 4若xy≠0,则等式=-2xy成立的条件是() A.x>0,y>0 B.x>0,y<0 C.x<0,y>0 D.x<0, y<0 解析因为=2=2|x|·|y|·=-2xy,所以y>0,且x<0.答案C

5若a b+a-b=2,则a b-a-b的值等于() A. B.±2 C.-2 D.2 解析∵(a b-a-b)2=(a b+a-b)2-4, ∴(a b-a-b)2=8-4=4,∴a b-a-b=±2. 答案B 6有下列结论: ①当a<0时,(a2=a3;②=|a|;③在代数式y=(x-2-(3x-7)0中x的取值范围为(2,+∞);④若 100a=5,10b=2,则 2a+b=1.其中正确的个数为() A.0 B.1 C.2 D.3 解析只有④正确,由100a=102a=5,10b=2,得102a+b=5×2=10,故2a+b=1. 而①中(a2应为-a3,②中③中x的取值范围由确定, 得x∈. 答案B 7计算的值等于() A.1+ B.1- C.2+ D.2- 解析∵ =

= ==1-. ∴原式=×2=2-. 答案D 8+3的值等于. 解析+3=2+. 答案 9若x>0,则(2)(2)-4·(x-)=. 解析原式=4-33-4+4=-27+4=-23. 答案-23 10已知=0,则y x=. 解析∵=|x-1|+|y+3|=0, ∴|x-1|=|y+3|=0,∴x=1,y=-3. ∴y x=(-3)1=-3. 答案-3 11若m-=5,则m2+m-2=. 解析由m-=5可得=25,即m2+m-2-2=25,故m2+m-2=27. 答案27

知识讲解_指数函数及其性质_基础

指数函数及其性质 编稿:丁会敏 审稿:王静伟 【学习目标】 1.掌握指数函数的概念,了解对底数的限制条件的合理性,明确指数函数的定义域; 2.掌握指数函数图象: (1)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质; (2)掌握底数对指数函数图象的影响; (3)从图象上体会指数增长与直线上升的区别. 3.学会利用指数函数单调性来比较大小,包括较为复杂的含字母讨论的类型; 4.通过对指数函数的概念、图象、性质的学习,培养观察、分析归纳的能力,进一步体会数形结合的思想方法; 5.通过对指数函数的研究,要认识到数学的应用价值,更善于从现实生活中发现问题,解决问题. 【要点梳理】 要点一、指数函数的概念: 函数y=a x (a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. 要点诠释: (1)形式上的严格性:只有形如y=a x (a>0且a ≠1)的函数才是指数函数.像23x y =?,12x y =, 31x y =+等函数都不是指数函数. (2)为什么规定底数a 大于零且不等于1: ①如果0a =,则000x x ?>??≤??x x 时,a 恒等于, 时,a 无意义. ②如果0a <,则对于一些函数,比如(4)x y =-,当11 ,,24 x x = =???时,在实数范围内函数值不存在. ③如果1a =,则11x y ==是个常量,就没研究的必要了. 要点诠释:

(1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论。 (2)当01a <<时,,0x y →+∞→;当1a >时,0x y →-∞→。 当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快。 当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快。 (3)指数函数x y a =与1 x y a ?? = ??? 的图象关于y 轴对称。 要点三、指数函数底数变化与图像分布规律 (1) ① x y a = ②x y b = ③x y c = ④x y d = 则:0<b <a <1<d <c 又即:x ∈(0,+∞)时,x x x x b a d c <<< (底大幂大) x ∈(-∞,0)时,x x x x b a d c >>> (2)特殊函数 11 2,3, (), ()23 x x x x y y y y ====的图像: 要点四、指数式大小比较方法 (1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较. (2)中间量法 (3)分类讨论法 (4)比较法 比较法有作差比较与作商比较两种,其原理分别为: ①若0A B A B ->?>;0A B A B -,或1A B <即可. 【典型例题】 类型一、指数函数的概念 例1.函数2 (33)x y a a a =-+是指数函数,求a 的值. 【答案】2 【解析】由2 (33)x y a a a =-+是指数函数, 可得2331,0,1, a a a a ?-+=?>≠?且解得12, 01,a a a a ==??>≠?或且,所以2a =. 【总结升华】判断一个函数是否为指数函数: (1)切入点:利用指数函数的定义来判断;

中职数学基础模块上册实数指数幂及其运算法则word教案

实数指数幂及运算 课前预习案 【课前自学】 一 、 整数指数 1、正整指数幂的运算法则 (1)m n a a = ,(2)()m n a = ,(3)m n a a = ,(4)()m ab = 。 2、对于零指数幂和负整数指数幂,规定:0___(0)a a =≠, ____(0,)n a a n N -+=≠∈。 二、 分数指数幂 1.n 次方根的概念 . 2.n 次算术根的概念 . 3.根式的概念 . 4.正分数指数幂的定义 1n a = ; m n a = . 5.负分数指数幂运算法则: m n a -= . 6.有理指数幂运算法则:(设a>0,b>0,,αβ是任意有理数) a a αβ= ;()a αβ= ;()a b α= 自学检测(C 级) =-0)1(______ ; =-3)x 2(_______; 3)2 1(--=_______ ; =-223 )y x (_____ 课内探究案 例:化简下列各式 (1 (2;

(3))0(322>a a a a ; (4)232520432()()()a b a b a b --?÷; (5)12 2 31111362515()()46x y x y x y ----- (6)111222m m m m --+++. 当堂检测: 1. (C 级)化简44)a 1(a -+的结果是( ) A. 1 B. 2a-1 C. 1或2a-1 D. 0 2.(C 级) 用分数指数幂表示下列各式: 32x =_________;31a =_________;43)(b a +=_________; 322n m +=_________;32y x =_________. 3. (C 级) 计算: 21)4964(- =________ 3227=________;________= 41 10000; 课后拓展案 1.(C 级)计算: (1) 21 6531 -÷a a a (2) )32(431313132----÷ b a b a (3) (4). 643 3)1258(b a 2. (C 级)计算:(1)3163)278(--b a ; (2)632x x x x (3)22 121)(b a -; (4)302 32)()32()2(--?÷a b a b a b . 3.(B 级)k 2)1k 2()1k 2(222---+-+-等于( )

指数与指数函数(3)

指数与指数函数080612 一、考题选析: 例1、(07江苏)设函数()f x 定义在实数集上,它的图像关于直线1x =对称,且当1x ≥时, ()31x f x =-,则有( ) A.132323f f f ?? ???? << ? ? ??????? B.231323f f f ?????? << ? ? ??????? C.213332f f f ?????? << ? ? ??????? D.321233f f f ?????? << ? ? ??????? 例2、(07上海春)若21,x x 为方程1 1 )2 1(2+-=x x 的两个实数解,则=+21x x ; 例3、(05全国Ⅱ)设函数11 ()2 x x f x +--=,求使()f x ≥x 取值范围. 例4、(05江西10)已知实数a , b 满足等式,)3 1()2 1 (b a =下列五个关系式 ①0, 225()()4 x g x a e =+ 。若存在12,[0,4]ξξ∈使得12()()1f g ξξ-<成立,求a 的取值范围。 点评:本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力。 解:(Ⅰ)f `(x)=-[x 2+(a -2)x +b -a ]e 3- x , 由f `(3)=0,得 -[32+(a -2)3+b -a ]e 3-3=0,即得b =-3-2a , 则 f `(x)=[x 2+(a -2)x -3-2a -a ]e 3 -x =-[x 2+(a -2)x -3-3a ]e 3-x =-(x -3)(x +a+1)e 3- x . 令f `(x)=0,得x 1=3或x 2=-a -1,由于x =3是极值点, 所以x+a+1≠0,那么a ≠-4. 当a <-4时,x 2>3=x 1,则 在区间(-∞,3)上,f `(x)<0, f (x)为减函数;

指数函数的基础知识

指数函数基础知识 指数函数施我们学习的基本函数之一,对于指数函数的学习,概念非常重要,因此一定要弄懂指数函数的定义。 一、指数函数的定义: 函数 )10(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数定义域是R 。 注意点1:为什么要规定01a a >≠且呢? ①若0a =,则当0x >时,0x a =;当0x <时,x a 无意义. ②若0a <,则对于x 的某些数值,可使x a 无意义. 如x )2(-,这时对于 14x = ,1 2x =,…等等,在 实数范围内函数值不存在. ③若1a =,则对于任何x R ∈,1x a =,是一个常量,没有研究的必要性. 为了避免上述各种情况,所以规定01a a >≠且。在规定以后,对于任何x R ∈,x a 都有意义,且0x a >. 因此指数函数的定义域是R ,值域是(0,)+∞ 。 注意点2: 上述指数函数的定义是形式上的定义,它实质上是一种指数的对应关系,以a 为底数 作为指数对应过去。从对应的角度看指数函数的话,就能很容易理解为什么函数1 3+=x y 不 是指数函数,也能理解指数函数的解析式x y a =中,x a 的系数为什么是1. 有些函数貌似指数函数,实际上却不是,如 x y a k =+ (01a a >≠且,k Z ∈);有些函数看起来不像指数函数,实际上却是,如x y a -= (01a a >≠且),因为它可以化为 1x y a ?? = ???,其中10a >,且1 1 a ≠。 二、函数的图象 (1)①特征点:指数函数y =a x (a >0且a ≠1)的图象经过两点(0,1)和(1,a),我们称这两点为指数函数的两个特征点. ②指数函数y =a x (a >0且a ≠1)的图象中,y =1反映了它的分布特征;而直线x =1与指数函数图象的交点(1,a)的纵坐标则直观反映了指数函数的底数特征,我们称直线x =1和y =1为指数函数的两条特征线(如右图所示). (2)、函数的图象单调性 当a >1时,函数在定义域范围内呈单调递增; 当0<a <1时,函数在定义域范围内呈单调递减;

2.3 指数与指数函数(含解析)

§2.3指数与指数函数1.分数指数幂 (1)规定:正数的正分数指数幂的意义是 m n a=n a m(a>0,m,n∈N*,且n>1);正数的负分数指数幂的意义 是 m n a =1 n a m (a>0,m,n∈N*,且n>1);0的正分数指数幂等于0;0的负分数指数幂没有意义. (2)有理数指数幂的运算性质:a r a s=a r+s,(a r)s=a rs,(ab)r=a r b r,其中a>0,b>0,r,s∈Q. 2.指数函数的图象与性质 (1)R 题型一指数函数的图像与性质 例1(1)如图是指数函数①y=a x,②y=b x,③y=c x,④y=d x的图象,则a,b,c,d与1的大小关系是_________________. (2)函数y=a x-a(a>0,且a≠1)的图象可能是()

在下列一次函数b ax y +=(10<,不吻合; 由()C ,1b >,则指数函数() x bx b y a a ==中底数01b a <<,不吻合; 所以,应该选()D 。 2、函数f (x )=a x -b 的图象如图,其中a 、b 为常数,则下列结论正确的是( ) A .a >1,b <0 B .a >1,b >0 C .00 D .0

4指数函数与对数函数基础知识点及练习题

指数函数与对数函数 1、指数及其运算性质:(1)、如果一个数的n 次方根等于a (* ,1N n n ∈>),那么这个数叫a 的n 次方根; n a 叫根式,当n 为奇数时,a a n n =;当n 为偶数时,? ??<-≥==)0()0(||a a a a a a n n (2)、分数指数幂:正分数指数幂:n m n m a a =;负分数指数幂:n m n m a a 1= - 0的正分数指数幂等于1,0的负分数指数幂没有意义(0的负数指数幂没有意义); (3)、运算性质:当Q s r b a ∈>>,,0,0时:r r r rs s r s r s r b a ab a a a a a ===?+)(,)(,, r r a a 1 =; 2、对数及其运算性质:(1)、定义:如果)1,0(≠>=a a N a b ,数b 叫以a 为底N 的对数,记作b N a =log ,其中a 叫底数,N 叫真数,以10为底叫常用对数:记为lgN ,以e=2.7182828…为底叫自然对数:记为lnN (2)、性质:①:负数和零没有对数,②、1的对数等于0:01log =a ,③、底的对数等于1:1log =a a ,④、积的对数:N M MN a a a log log )(log +=, 商的对数: N M N M a a a log log log -=, 幂的对数:M n M a n a log log =, 方根的对数:M n M a n a log 1 log = ,

1 <

指数函数与对数函数练习题 1、 函数y =)1lg(2-x 的定义域是__________________. 2、已知函数f (x )=log 3(8x +7),那么f ( 2 1 )等于_______________. 3、 与函数y = x 有相同图象的一个函数是( ). A .y =x 2 B. y =x 2x C. y =a log a x (a >0, a ≠1) D. y = log a a x (a>0, a≠1) 4、在同一坐标系中,函数y =x 5.0log 与y =x 2log 的图象之间的关系是( ). A.关于原点对称 B.关于x 轴对称 C.关于直线y =1对称. D.关于y 轴对称 5、下列函数中,在区间(0,+∞)上是增函数的是( ). A.y =-x 2 B.y = x 2-x +2 C.y =(21 )x D.y =x 1log 3.0 6、函数y =)(log 2x -是( ). A. 在区间(-∞,0)上的增函数 B. 在区间(-∞,0)上的减函数 C. 在区间(0,+∞)上的增函数 D. 在区间(0,+∞)上的减函数 7、已知函数f (x )=||2x ,那么函数f (x )( ). A. 是奇函数,且在(-∞,0)上是增函数 B. 是偶函数,且在(-∞,0)上是减函数 C. 是奇函数,且在(0,+∞)上是增函数 D. 是偶函数,且在(0,+∞)上是减函数 8、函数y =||log 3x (x ∈R 且x ≠0)( ) . A. 为奇函数且在(-∞,0)上是减函数 B. 为奇函数且在(-∞,0)上是增函数 C. 是偶函数且在(0,+∞)上是减函数 D. 是偶函数且在(0,+∞)上是增函数 9、如果函数y =x a log 的图象过点(9 1 ,2),则a =___________. 10、 实数2732–3log 22·log 21 8 +lg4+2lg5的值为_____________. 11、若1log 2 1>x ,则x 的取值范围是( ). A. 21< x B.2 10<x D.0

3 指数函数的概念及图像和性质

§3 指数函数的概念及图像和性质(共3课时) 一. 教学目标: 1.知识与技能 (1)理解指数函数的概念和意义; (2)2x y =与1()2 x y =的图象和性质; (3)理解和掌握指数函数的图象和性质; (4)指数函数底数a 对图象的影响; (5)底数a 对指数函数单调性的影响,并利用它熟练比较几个指数幂的大小 (6)体会具体到一般数学讨论方式及数形结合的思想; 2.情感、态度、价值观 (1)让学生了解数学来自生活,数学又服务于生活的哲理. (2)培养学生观察问题,分析问题的能力. 二.重、难点 重点: (1)指数函数的概念和性质及其应用. (2)指数函数底数a 对图象的影响; (3)利用指数函数单调性熟练比较几个指数幂的大小 难点: (1)利用函数单调性比较指数幂的大小 (2)指数函数性质的归纳,概括及其应用. 三、教法与教具: ①学法:观察法、讲授法及讨论法. ②教具:多媒体. 四、教学过程 第一课时 讲授新课 指数函数的定义 一般地,函数x y a =(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R . 提问:在下列的关系式中,哪些不是指数函数,为什么? (1)2 2 x y += (2)(2)x y =- (3)2x y =- (4)x y π= (5)2 y x = (6)2 4y x = (7)x y x = (8)(1)x y a =- (a >1,且2a ≠) 小结:根据指数函数的定义来判断说明:因为a >0,x 是任意一个实数时,x a 是一个确定的实数,所以函数的定义域为实数集R .

00 0,0x x a a x a ?>?=?≤??x 当时,等于若当时,无意义 若a <0,如1 (2),,8 x y x x =-= 1 先时,对于=等等,6在实数范围内的函数值不存在. 若a =1, 11,x y == 是一个常量,没有研究的意义,只有满足(0,1)x y a a a =>≠且的形式才能称为指数函数,5,,3,31x x x a y x y y +===+1x x 为常数,象y=2-3,y=2等等,不符合(01)x y a a a =>≠且的形式,所以不是指数函数 我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研究. 先来研究a >1的情况 下面我们通过用计算机完成以下表格,并且用计算机画出函数2x y =的图象 再研究,0<a <1的情况,用计算机完成以下表格并绘出函数1()2 x y =的图象. x

人教A版数学必修一《指数函数、对数函数、幂函数》综合基础知识讲解

指数函数、对数函数、幂函数综合 【学习目标】 1.理解有理指数幂的含义,掌握幂的运算. 2.理解指数函数的概念和意义,理解指数函数的单调性与特殊点. 3.理解对数的概念及其运算性质. 4.重点理解指数函数、对数函数、幂函数的性质,熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理. 5.会求以指数函数、对数函数、幂函数为载体的复合函数的定义域、单调性及值域等性质. 6.知道指数函数x a y =与对数函数x y a log =互为反函数(a >0,a ≠1). 【知识框图】 【要点梳理】 要点一、指数及指数幂的运算 1.根式的概念 a 的n 次方根的定义:一般地,如果n x a =,那么x 叫做a 的n 次方根,其中*1,n n N >∈ 当n 为奇数时,正数的n 次方根为正数,负数的n n a n 为偶数时,正数的n 次方根有两个,这两个数互为相反数可以表示为n a 负数没有偶次方根,0的任何次方根都是0. n a n 叫做根指数,a 叫做被开方数. 2.n 次方根的性质: (1)当n n n a a =;当n ,0, ,0; n n a a a a a a ≥?==? -∈>;()10,,,1m n m n a a m n N n a - = >∈> 要点诠释: 0的正分数指数幂等于0,负分数指数幂没有意义.

4.有理数指数幂的运算性质: ()0,0,,a b r s Q >>∈ (1)r s r s a a a += (2)()r s rs a a = (3)()r r r ab a b = 要点二、指数函数及其性质 1.指数函数概念 一般地,函数()0,1x y a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域为 R . 2.指数函数函数性质: 要点三、对数与对数运算 1.对数的定义

指数运算、指数函数

§1.4指数运算、指数函数 【复习要点】 1.指数、对数的概念、运算法则; 2.指数函数的概念, 性质和图象. 【知识整理】 1.指数的概念;运算法则:n n n mn n m n m n m b a ab a a a a a ===?+)(,)(, )1,,,0(* >∈>= n N n m a a a n m n m )1,,,0(1 1 * >∈>= = - n N n m a a a a n m n m n m 2.指数函数的概念, 性质和图象如表: 中利用函数的图象来比较大小是一般的方法。 4.会求函数y =a f (x)的单调区间。 5.含参数的指数函数问题,是函数中的难点,应初步熟悉简单的分类讨论。 【基础训练】 1]43 的结果为 ( ) A.5 B.5 C.-5 D.-5 2.将3 22-化为分数指数幂的形式为 ( ) A .21 2- B .31 2- C .2 12 - - D .65 2-

3.下列等式一定成立的是 ( ) A .2 33 1a a ?=a B .2 12 1a a ?- =0 C .(a 3)2=a 9 D .61 3 12 1a a a =÷ 4.下列命题中,正确命题的个数为 ( ) ①n n a =a ②若a ∈R ,则(a 2-a +1)0 =1 ③y x y x +=+34 33 4 ④6 2 3)5(5-=- A .0 B .1 C .2 D .3 5.化简11111321684 2 1212121212-----?????????? +++++ ? ? ? ? ????? ??????,结果是 ( ) A .1 1 321122--? ?- ? ?? B .1 13212--??- ? ?? C .1 3212-- D .1 321 122-??- ??? 6 .4 4 ? ? ? ? 等 于 ( ) A .16 a B .8 a C .4 a D .2a 【例题选讲】 1.设3 2212 ,-==x x a y a y ,其中a >0,a ≠1,问x 为何值时有 (1)y 1=y 2 ? (2)y 1<y 2? 2.比较下列各组数的大小,并说明理由 (1)43 1.1,43 4.1,32 1.1 (2)4 316.0- ,2 35 .0- ,8325.6 (3)53 2 )1(+a ,43 2 )1(+a 3.已知函数3234+?-=x x y 的值域为[7,43],试确定x 的取值范围. 4.设01a <<,解关于x 的不等式2 2 232 223 x x x x a a -++->

三角函数指数函数与对数函数公式

三角函数 1。角度和弧度的关系 360o =2π , 1= π 180 ,1o = 180 π 2。弧长公式 L=|α|R 扇形面积 S= 2 1LR= 2 1|α|R 2 3。Sin α=r y ,cos α=r x ,tan α=y x ,cot α= y x ,sec α=x r ,csc α=y r 4。当0<α<2 π 时,有sin α<α,sin αcos α 5。第一象限角的集合:{α|2k π<α<2k π+ 2 π ,k ∈z } 第二象限角的集合:{α|2k π+ 2 π <α<2k π+π,k ∈z } 第三象限角的集合:{α|2k π+π<α<2k π+2 3π,k ∈z } 第四象限角的集合:{α|2k π-2 π <α<2k π,k ∈z } 6。 α 6 π 4 π 3 π 2 π π 2 3π π2 sin 2 1 2 2 2 3 1 1 - c αcos 1 2 3 2 2 2 1 1 - 0 1 α tan 3 3 1 3 不存在 不存在

α cot 不存在 3 1 3 3 不存在 不存在 7。当角α的终过位于名个象限时,三角函数的正负号如下表 第一象限角 第二象限角 第三象限角 第四象限 角 sin α\csc α 正 正 负 负 cos α\sec α 正 负 负 正 tan α\cot α 正 负 正 负 8。三角函数的关系 平方关系 sin 2α+cos 2α=1 商数关系 α αcos sin =tan α , α αsin cos =cot α 倒数关系 cot α= α tan 1, csc α= α sin 1, sec α=α cos 1 1+tan 2 α=sec 2 α , 1+cot 2 α=csc 2 α 9。诱导公式 ① 2k π+α与α(k ∈z) Sin(2k π+α)=sin α, cos(2k π+α)=cos α, tan(2k π+α)=tan α, cot(2k π+α)=cot α ② π+α与α(k ∈z) Sin(π+α)= -sin α, cos(π+α)= -cos α, tan(π+α)=tan α, cot(π+α)=cot α ③ π-α与α(k ∈z) Sin(π-α)=sin α, cos(π-α)= -cos α, tan(π-α)= -tan α, cot(π-α)= -cot α ④ -α与α(k ∈z) Sin(-α)= -sin α, cos(-α)=cos α, tan(-α)= -tan α, cot(-α)= -cot α ⑤ 2k π-α与α(k ∈z) Sin(2k π-α)= -sin α, cos(2k π-α)=cos α, tan(2k π-α)= -tan α, cot(2k π-α)= -cot α ⑥ 2π-α与α Sin(2π-α)=cos α, cos(2 π -α)=sin α,

指数函数知识点总结

指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *. 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m ? 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 《 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2 注意:利用函数的单调性,结合图象还可以看出:

(1)在[a ,b]上,)1a 0a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [ (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; ' 指数函数·例题解析 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---21 3321x x 、 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 ? 练习:(1)4 12-=x y ; (2)|| 2()3 x y =; (3)12 41 ++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d | B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),

相关文档
最新文档