待机能耗问题及其电源解决方案

待机能耗问题及其电源解决方案
待机能耗问题及其电源解决方案

待机能耗问题及其电源解决方案

【摘要】在当今这个强调节能减排的年代,降低电源电路的待机能耗越来越重要。本文以数学模型大略估算了主要的传导、切换和控制电路的损失,进而确立了降低切换频率为降低待机功率损耗的主要方法,并且探讨了各项已经被专利的降频技术及其可能存在的缺陷。

【关键词】反激式变换器;待机能耗;降频技术

一、引言

随着全球气候日益变暖,节能减排已成为各国政府工作的重中之重,特别是和日常生活息息相关的电子行业。“高效率,低待机功耗”已成为电子产品开发工作者在产品开发中必须考虑的重要因素,在欧美市场,低待机功耗已经和安规、EMI一起成为电子产品销往市场的通行证。作为电子产品的心脏,电源电路部分在这场高效低损的革命中担负着关键使命。当电子产品进入待机状态后,其他部分电路都进入关闭或者休眠状态,此时电源电路工作时产生的损耗在整个系统损耗中占据很大的份额。

根据国际经济合作组织的调查,各国因待机而消耗的能量约占总能耗数的3%-13%。目前我国城市家庭的平均待机能耗已经占到了家庭总能耗的10%左右,相当于每个家庭使用着一盏15-30W的“长明灯”,在浪费能源的同时形成了巨大的环保压力。国际能源署(IEA)于2000年向全球电器产品生产销售厂商发起节能倡议“1瓦计划”,现已得到欧盟、美国的积极响应。到2010年所有出口到这些地区的电器产品其待机功耗必须降低到1瓦,这将成为所有已经进入和试图进入欧美市场的电子产品厂商们新的非关税壁垒。2008年11月,美国环保署(EPA)和能源部发起了“能源之星”(第二版)执行工程,规定电源适配器的待机能耗必须小于0.3W或0.5W。“能源之星”计划已经成为国际标准之一,全球每年销售的能源之星产品超过10亿件,有28000种不同型号的终端耗能产品获得了能源之星节能认证。我国作为电子电器产品出口大国,必须熟悉和了解这些法规和协议,降低产品的待机能耗,跨越待机能耗的技术壁垒[1]。

本文探讨了降低电源电路待机能耗的方法。首先以数学描述估算了主要的传导损耗、开关损耗以及控制电路的损耗,进而确立了降低开关频率为降低待机能耗的主要方法,接着介绍了各项已提出的降频技术。此外,还介绍了降低启动电流和其他损失的技术。最后依据本文所提出的设计概念,制作了一个实验性的适配器,其输出电压电流规格为12V/5A,在240V交流输入且无负载时,输入功率只有0.1W。

二、开关电源的待机功耗机理分析

目前,大多数100W以下的电子设备,如电源适配器、充电器、无绳电话、ADSL路由器、LCD显示器和DVD等,都是采用反激式开关电路将电网提供的

如何降低LED照明开关电源待机功耗

如何降低LED照明开关电源待机功耗 与普通光源相比,LED灯具有效率高、环保和使用寿命长的特性,因而它们正在成为降低室内和外部照明能耗的主选解决方案。设计用于照明供电的开关电源也应该具有高效率,以便顺应LED灯的节能特性。除了在正常工作过程中具有高功率转换效率之外,开关电源的待机功耗也成为LED业界的普遍关注焦点。在不远的将来,待机功耗有望调整到1W甚至300mW以下。然而,在LED照明应用中,专用于待机电源的辅助功率级并不适用,主要是因为照明应用在工作期间不存在待机条件。但是,为灯泡供电的开关电源即便在没有灯或者灯已损坏的条件下仍然与电网连接并吸取能量。这是在照明应用中关心待机功率水平的主要原因。 在空的办公楼中,待机功耗特性不良的照明系统是不环保的,本文探讨如何引入简单的辅助电路来降低待机功耗。所提议的电路能够实现功率因数校正(PFC)级的间歇工作,该PFC级是降低照明开关电源的待机功耗所必需的。为了评估所提议的电路,我们设计了一个额定功率为120W的两级开关电源,在宽泛的输入电压范围下可以获得低于1W的待机功耗。 两级配置 由于额定功率的原因和改善功率因数的需求,LED街灯的开关电源通常使用两级配置,它由第一级的PFC模块和第二级的下游DC-DC转换器构成。在100W左右的中等功率范围,临界导通模式(CRM)是PFC级合适的控制方案。在这个额定功率范围中,下游DC-DC 转换器通常采用准谐振反激拓扑。高度集成的FAN6300脉宽调制(PWM)控制器具有一个内部波谷电压检测器,能够保证电源系统在宽泛的线路电压范围内工作于准谐振状态,并减小开关损耗,使功率MOSFET漏极上的开关电压最小化。为了最大限度减小待机功耗和改善轻负载效率,专有的绿色模式功能提供关断时间(off-TIme)调制,以便降低开关频率,并执行延长的波谷电压开关,保证MOSFET在关断时漏-源电压保持在最低水平。使用这项特性,第二DC-DC级在无负载条件下进入间歇工作模式,能够获得非常理想的待机功耗特性。大多数现有的PFC控制器并无间歇工作功能,主要是因为PFC级最初针

IT6500C系列电源的测试解决方案

IT6500C系列电源的测试解决方案 为了倡导可持续发展,电池成为了各类产品的主流储能供电源。针对电池,目前市面上也出现很多相关测量设备,比如内阻测试仪,充放电测试系统,电池模拟器等等。但极少数的厂家对电池的应用给出完整的解决方案,以解决目前电池测试中的各类问题,如防止反接,再比如如何提高测量效率,降低设备成本等。 本文要介绍的是在电池应用中,艾德克斯完整的一系列的解决方案。 一、电池内阻测试仪内阻是评价电池性能的重要指标之一。目前市面上,对于单体的电芯筛选,多采用交流内阻测试仪,其优势是可将测量时间控制在8ms左右,测量效率高,非常适用于产线的快速点检。而对于大型电池组,如动力电池,蓄电池,磷酸铁锂电池等,受到测试设备等方面的限制,不方便进行交流内阻的测量,因此多采用直流内阻测试法,以对电池进行寿命预测和输出能力的评估。另外一方面,直流内阻不仅测试电池包本身内阻,还包含了极化电阻等,能更真实的反应电池供电时的内阻特性。 当然,对于完整的电池测试而言,除了内阻测试之外,还包括长时间的容量寿命验证,因此电源和电子负载也通常成为电池生产厂商以及使用电池厂商的标配测量设备。同时结合内阻的分析,通常实验室需要配置直流内阻测试仪,交流内阻测试仪或者一整套的测试系统。 在这里,我们特别推荐的是IT6500C系列的电源,将电源本身额外扩展了直流内阻测试功能,可省去实验室的成本投入。用户进入IT6500C的菜单,选择DCR测试项,输入电池容量后,即可轻松完成电池直流内阻的测试,并将结果显示在面板上。 二、电池内阻模拟功能随着越来越多的行业采用电池供电,如数码产品,电动工具,家用电器及电动汽车等,对于电池模拟器设备的需求也日益提升。 多数哪些用户会需要电池模拟器呢?比如如上列举的行业,都需要一台电源模拟电池给其设计产品的主板供电,已验证其产品不同工况下消耗的电流。比如手机在发送短信时消耗的电流,又或者接听电话时消耗的电流等。当然,一般的电源只能模拟电池对外输出的电压电流能力,却无法模拟电池的内阻,真实考量电池的输出电量能力。

浅谈纯电阻闭合电路中的功率和电源效率

浅谈纯电阻闭合电路中的功率和电源效率 渔行实验学校王元金 纯电阻闭合电路是高中物理电学的基本电路,正确理解相关概念和灵活运用解题方法是学习恒定电路的基础。本文就电路中的功率和电源效率作一个学习方法指导,希望对同学们的学习有帮助。 一、闭合电路中的功率 1.电源的功率:是描述闭合电路中电源把其它形式的能转化为电能快慢的物理量。它在数量上等于总电流I与电源电动势E的乘积,即P=IE 2.电源的输出功率:是指外电路上的电功率,它在数量上等于总电流I与路端电压U的乘积。 PLU 即对于纯电阻电路,电源的输出功率 P.,. =I2R= (-^)2 R= ——孕——=——须—— R + r (R-r)2+4Rr (R-r)2| R' 由上式可以看出,当外电阻等于电源内电阻时(R=r),电源输出功率最大,其最大输出功率为生。 4尸 当R>r时,随R增大P出减小,随R减小,P出增大 当RG时,随R增大P出减小,随R减小,P“,减小,如图1所示: 图1 3.电源内部损耗的功率:指内电阻的热功率,即 PE

4.根据能量守恒定律可得 P=P出+P内 二、电源效率 电源的效率是指电源的输出功率与电源的功率之比,即 P IE E 对纯电阻电路,电源的效率为 I2R R 1 n -—-- = = 尸(R +,?)R + r . r i十— R 由上式看出,外电阻越大,电源的效率越高。 当R=r,P 出==P .|lnux时,n =50%o 外电阻短路即R=o, n=o; 外电路断开时,电源不工作,n=o 三、典型例题分析 如图2所示电路中,己知电源电动势E=3V,内电阻r=lQ, R】=2。,滑线变阻器R 的阻值可连续增大,求: (1)当R多大时,R消耗的功率最大 (2)当R多大时,R:消耗的功率最大 — ------------- n 图2 r D 在求申钠祠最大M率时 分析与解答: 把R:归入内电阻,当R=Rx+r时,R 消耗的功率最大;但在求Ri消耗的最大功率时,因为R】为定值电阻,不能套用上述方法,应用另一种思考方法求解,由P K FR,可知,只要电流最大,P】就最大,所以当

不间断电源解决方案

不间断电源解决方案 方案总述 电力操作电源是为电力系统中控制和保护设备提供独立电源的设备。同时,一些重要的动力负荷电源,如保证发电机组,大型厂用电设备启停的润滑油泵电源系统,氢密封油电系统电源,主要的热工动力电源,以及UPS不间断电源和事故照明电源系统等,由于安全性和可靠性要求极高,需要采用与控制电源系统同等可靠的直流电源系统供电。因此,电力系统直流操作电源对于可靠性的要求极高。无论是大型枢纽变电站,中小型变电站站,还是核电站,水、火力发电厂等,均要求直流供电系统的高可靠性。通过对电源系统的的合理设计,各分立部件的可靠性保证及协同工作,以及冗余配置方案,可以满足电力系统对于直流操作电源系统的高可靠性要求。 解决方案 图示为完整的工程解决方案示例。整个系统的能源由市电与蓄电池组共同提供。 电厂是一个自动化程度很高的特殊生产企业,自动化的生产设备依赖于供电系统的安全、稳定运行。在现代化的发电厂中,大容量机组发电机的DCS控制系统,包括各种热工自动装置,如自动调节用组装仪表、汽轮机电液数字调节装置、锅炉联锁及安全监察系统FSSS、汽机监视仪表(TSI)、协调控制系统(CCS)等,都需要有一个可靠的电源,该电源要求无论在机组本身厂用电中断还是电网故障 页脚内容1

时,都不应中断供电,这就要求大容量机组中不但有可以使机组安全停机的事故保安电源,而且要求有一个为控制、监视装置及事故后状态参数记录装置提供高供电品质且不间断供电的交流不停电电源。 1、DCS系统电源保护方案: 易事特公司的EA8900系列电力专用电源采用1+1的冗余供电系统,针对电力系统应用负载及环境,运用先进技术制造的工业级交流保护电源,能够充分满足电力DCS系统等负载对供电可靠性的要求。 (图:DL31电力UPS应用方案) 方案的优点: 1)为电力行业量身定制的专业型UPS,适应电力行业内部的恶劣电网环境,既满足了电力行业的负载需求,又可以让用户不必再为负载的三相不平衡而烦恼。 2)1+1冗余并联的工作方式,让本来已经很可靠的供电系统再增加一把安全锁,满足电力行业用户对UPS高可靠性指标的极限需要。 3)充分利用电力行业的220V/110V大容量电池组,可最大限度的延长UPS的后备时间,并节省电池组的安装空间和前期投资。 4)选配旁路隔离变压器,实现输入与输出的完全隔离,并可保证输出的零地电压<1V。 页脚内容2

低功耗小功率开关电源设计毕业设计

低功耗小功率开关电源设计毕业设 计 南华大学船山学院毕业设计 1 开关电源简介小功率开关电源以其诸多优良的性能,在测控仪器仪表、通信设备、学习与娱乐等诸多电子产品中得到广泛的应用。随着环境和能源问题日益突出,人们对电子产品的环保要求不断提高,对电子产品的能源效率更加关注。设计无污染、低功耗、高效率的绿色模式电源已成为开关电源技术研究的热点。研究一种中小功率开关电源,应用过渡模式有源功率因数校正、准谐振变频功率隔离变换控制和同步整流等多种先进的电源控制技术,以实现绿色开关电源设计的目的。开关电源的基本结构所有事物都要遵循能量守恒定律,开关电源也不例外,实际上,开关电源也要通过以能量形式传递完成的。从能量上看,开关电

源可以分为直流开关电源模式和交流开关电源模式,直流开关电源模式主要是输出为直流信号电能,而交流开关电源模式主要是输出为交流信号电能。直流开关电源模式为当前的主流模式,该开关电源模式的基本组成结构框图如下图所示:交流输入桥式整流滤波LC 组成滤波器DC/DC变换器转换输出整流滤波占空比控制电路DC直流输出放大电路控制电路图开关电源基本组成结构框图上图中可知:开关电源主要整流滤波、DC/DC变换电路、开关占空比控制电路以及控制电路等模块组成。第1页,共29页南华大学船山学院毕业设计交直流输入电压经LC滤波器,再通过桥式整流与母线电解电容平滑后变为直流电压,再经DC/DC变换器转换,再经二极管整流和电解电容的滤波至输出,为了能使电路成为一个闭环工作,在输出端引出一个控制电路再经放大电路到占空比控制电路至DC/DC变换器转换器形成一

个闭环。占空比控制电路中占空比的表示方法如下图所示:图占空比示意图上图中可知:占空比D=Toff/(TOff+Ton),周期T= Ton+Toff,频率f=1/T。传统开关电源的缺陷传统开关电源基本上采用的都是传统电路,传统电路大部分采用的电路芯片都为PWM控制的KA38系列芯片,这当中也要用到开关MOSFET管,还有就是也要加个启动电阻,根据P=U*U/R可知该电路上的待机功耗至少要大于,而低功耗的要求待机功耗至少要小于,甚至有些要小于。如果功耗大,对人口密集的中国来说,电能的损耗无疑是巨大的。另外传统电源存在着某些有害物质,根据我国CCC标准中的《关于在电气电子设备中限制使用某些有害物质指令》,从而没能达到环保的功能。绿色开关电源的发展方向于传统电源存在着诸多的缺陷,为了能量的有效利用,人们从而提出了绿色开关电源,绿色开关电源产品主要向高频、高效率、低功

电源测试方案

电源测试报告(型号:) Prepared By 拟制Date 日期 Reviewed By 评审Date 日期 Approved By 批准Date 日期 Authorized By 签发Date 日期

测试汇总: 测试项目数量测试结果 1.输入性能 2. 输出性能 3.保护功能 4. 安规要求 5. 可靠性实验 6. 电源冲击实验 7. 结构规格检验 问题汇总:

目录 1.输入性能 (4) 2.输出性能 (4) 3.保护功能 (5) 4. 安规要求 (6) 5. 可靠性实验 (6) 6. 电源冲击实验 (7) 7. 结构规格检验 (7)

1.输入性能 测试记录: 测试者测试时间测试数量测试结果 测试仪器:3位半数字万用表,调压器,电流表。 测试条件:提供可变稳压的可变电源, 测试标准:以规格书的标准参数为准。 项目ITEM 最小值最大值单位测试条件测试结果MIN MAX UNITS CONDITIONS Test Results 1.1 输入电压Input voltage VAC 额定负载 /1A 1.2 输入电流Input current A 85Vac输入 /额定负载 /1A 1.3 浪涌电流 Inrush current A At 25℃ cold start/Input 230VAC 测试方法: 1.输入电压测试:将电源的输出端加上额定负载(即标称电流的负载)检测电源正 常工作状态的输入最低电压与最高电压。 2.输入电流测试:将电源的输出端加上额定负载(即标称电流的负载)调整输入电 压85V-265V,检测电源正常工作输入的最小电流与最大电流。 3.浪涌电流测试:到第三方检测机构检测 2.输出性能 测试记录: 测试者测试时间测试数量测试结果 测试仪器: 3位半数字万用表,调压器,电流表,示波器。 测试条件:提供可变稳压的可变电源 测试标准:以规格书的标准参数为准.

闭合电路中的功率及效率问题精编版

闭合电路中的功率及效率问题 1.电源的总功率 (1)任意电路:P总=EI=U外I+U内I=P出+P内.(2)纯电阻电路:P总=I2(R+r)= E2 R+r . 2.电源内部消耗的功率:P内=I2r=U内I=P总-P出.3.电源的输出功率 (1)任意电路:P出=UI=EI-I2r=P总-P内. (2)纯电阻电路:P出=I2R= E2R (R+r)2 = E2 (R-r)2 R+4r . (3)纯电阻电路中输出功率随R的变化关系 ①当R=r时,电源的输出功率最大为P m=E2 4r. ②当R>r时,随着R的增大输出功率越来越小. ③当R

项目施工现场临时用电方案

施工现场临时用电方案 1、现场电源情况 作为施工用电源。施工用电主要设备电焊机、混凝土设备、安装设备和拆除设备。 2、临时用电管理小组人员职责 项目总工:1.对现场临时用电工程质量负有第一技术责任。具体负责组织相关人员编制《专题施工方案》,领导新技术、新材料、新工艺的引进和推广应用。 2.组织领导三大体系的培训、实施与监督考核。 3.负责审核项目物资计划及工程物资需用计划。 4.负责组织现场试验与抽样试验。 5.负责对项目部管理人员和施工人员安全交底。 安全、质量员:1.负责现场临时用电工程质量、安全检查与监督工作,监督和指导分包单位质量、安全体系的有效运行。 2.负责质量、安全事故的调查和分析,根据处理方案对质量、安 全的整改进行监督。 3.负责员工的入场教育、考核;负责安全防护措施的落实、防护 用品的检查与整改。 4.按GB/T28001-2001职业安全管理体系实施安全管理及监督。 5.现场消防设施的管理与检查,消防培训。 机电工长:1.具体负责现场临时用电施工的安排、管理工作。

2.负责组织施工技术保证资料的汇总及管理。 3.负责各专业施工班组的交叉、流水作业中用电的组织和协调工作。 4.主持机电施工各工序的自检、互检和交接检工作。 5.按照项目部的施工进度安排组织作业班组进行临时用电布置。 3、现场勘察及临时用电布置方案 根据施工现场场地位置,施工道路、拟建筑物的分布情况和机械设备的分布情况、市电供电源的位置情况,结合现有供配电器材和当前施工现场临电管理要求的标准,对本施工现场的临时用电规划提出下列方案。 4、供电线路采用系统选择 1.供电方式采用三相四线制TN-S系统。在总配电箱起点处与变压器的负荷端进行可靠接地,安装一组接地极。保护零线除必须在变压器下端总配电箱处做重复接地外,还必须在配电系统的分电箱处,作重复接地,接地电阻不应大于10Ω。工作零线(N线)和保护零线(PE线)要严格区分,不得混用。所有机电设备的金属外壳必须与保护零线做可靠联接。按照规范要求,PE线截面选择根据相线截面而定。 2.供配电方式严格按照《施工现场临时用电安全技术规范》JGJ46执行,实行三级供电二级保护的原则,分别设置隔离、短路、漏电、过载保护。现场根据需要必须设置备用电源,以保证停电后现浇砼的

怎样提高开关电源的转换效率及降低待机功耗

以反激式电源为例, 其工作损耗主要表现为:MOSFET导通损耗(I*I*Rdston*fs),MOSFET寄生电容损耗 (C*V*V*fs/2),开关交叠损耗,PWM控制器及其启动电阻损耗,输出整流管损耗,箝位保护电路损耗,反馈电路损耗等.其中前三个损耗与频率成正比关系. 在待机状态,主电路电流较小,MOSFET导通时间ton很小,电路工作在DCM模式,故相关的导通损耗,次级整流管损耗等较小,此时损耗主要由寄生电容损耗和开关交叠损耗和启动电阻损耗构成. 根据上面分析可知,减小/关断启动电阻,降低开关频率,减小开关次数,都可减小待机损耗,提高待机效率.具体的方法有:降低时钟频率;由高频工作模式切换至低频工作模式,如准谐振模式(Quasi Resonant,QR)切换至脉宽调制(Pulse Width Modulation,PWM), 脉宽调制切换至脉冲频率调制(Pulse Frequency Modulation, PFM);间隙工作模式(Burst Mode). 1)减小、关断启动电阻 对于反激式电源,启动后控制芯片由辅助绕组供电,启动电阻上压降为300V左右.设启动电阻取值为47kΩ,消耗功率将近2W.要改善待机效率,必须在启动后将该电阻通道切断.现在一般的IC内部都有专门的启动电路,在电源启动后,可关闭启动电阻.若控制器没有专门启动电路,也可在启动电阻串接电容,其启动后的损耗可逐渐下降至零.缺点是电源不能自重启,只有断开输入电压,使电容放电后才能再次启动电路.而下图所示的启动电路,则可避免以上问题,而且该电路功耗仅为0.03W.不过电路增加了复杂度和成本. 2)降低开关工作频率 3)切换工作模式 1)QRPWM 对于工作在高频工作模式的开关电源,在待机时切换至低频工作模式可减小待机损耗.例如,

最新ACDC电源转换器测试方案汇总

A C D C电源转换器测试 方案

AC-DC电源转换器测试方案 摘要:AC-DC电源转换器测试方案 关键字:AC-DC电源模块, 交流电源 ·系统概述 该自动测试系统用于AC-DC电源模块的性能测试和分析。该系统硬件由AMETEK CI i/iX程控交流电源、AMETEK Sorensen SL程控直流电子负载、测试夹具、数据采集系统和示波器组成,具有测量稳定可靠、速度快和精度高的特点,可适用于电源单元的各种动、静态功能测试。该系统非常适合DC-DC电源转换器的测试。系统框图如下图。来源:大比特半导体器件网 ·系统组成 该系统由AMETEK CI i/iX程控交流电源,AMETEK Sorensen SL程控直流电子负载,数据采集系统USB-1208,Tektronix示波器,以及工控电脑等组成。如下图。借助Labview和Test stand 平台强大功能和灵活特

性,可灵活地定制相应的测试程序集,以实现不同的测试要求。来源:大比特半导体器件网 ·系统功能 该系统主要功能如下:来源:大比特半导体器件网 (a) 主要可测试项目:来源:大比特半导体器件网 功能(Functions)测试: - 输出电压调整(Hold-on Voltage Adjust) - 电源调整率(Line Regulation) - 负载调整率(Load Regulation) - 综合调整率(Combine Regulation) - 输出涟波及杂讯(Output Ripple & Noise, RARD) - 输入功率及效率(Input Power, Efciency) - 动态负载或暂态负载(Dynamic or Transient Response) - 电源良好/失效(Power Good/Fail)时间 - 起动(Set-Up)及保持(Hold-Up)时间 - 功率因数来源:大比特半导体器件网

IRIRSW开关电源解决方案

IRIRSW开关电源解决方案 IRIRS27951220W开关电源解决方案 ledledled by externally pulling the voltage at the CT/SD pin below its enable voltage threshold.IRS27951/2主要特性:· Simple primary-side control solution for fixed and variable frequency DC-DC resonant converters.· Max 500kHz per channel output with 50% duty cycle· Floating channel bootstrap operation up to +600Vdc· Programmable minimum and maximum switching frequency· Programmable soft start frequency and soft start time· Programmable dead time· Micropower start-up & ultra low quiescent current· Over-current protection using low side MOSFET Rds(on)· User initiated micropower “Sleep mode”· Under-voltage Lockout· Simple design with minimal component count.· Lead-freeIRS27951/2典型应用:· LCD & PDP TV· Telecom SMPS, PC SMPS· Home Audio Systems图1. IRS27951/2功能方框图图2. IRS27951/2典型应用电路图IRAC27951-220W IRS27951评估板The evaluation board consists of a front-end AC-DC rectifier stage cascaded with a half-bridge resonant DCDC converter with multiple output voltage rails (24V and 12V). The front end is a conventional rectifier stage with a rectifier bridge and an EMI filter.The downstream converter is a multi-resonant half bridge LLC converter whose control is implemented with the IRS27951 (U1) controller HVIC. The controller drives the two half-bridge MOSFETs with a 50 percent fixed duty cycle with dead-time, changing the frequency according to the feedback signal in order to regulate the output voltages against load and input voltage variations. As described earlier, in addition to current protection, all the critical functions needed to control resonant converter designs can be externally programmed using this 8 pin controller IC.The transformer uses the magnetic integration approach, incorporating the resonant series and shunt inductances in the power transformer. The transformer configuration chosen for the secondary winding is center-tap, and the output rectifiers are Schottky diodes. The feedback loop is implemented by means of a classical configuration using a TL431 (U3) to adjust the current in the optocoupler TLP621 (U2). Weighted resistive dividers from both voltages are summed at the reference node of the TL431 in order to achieve a better overall output voltage regulation. The optocoupler transistor modulates the current from the RT pin of the controller IC to modulate the switching frequency, thus achieving output voltage regulation.图3. IRAC27951 220W 评估板外形图IRAC27951 220W 评估板主要指标:图4.IRAC27951 220W 评估板电路图IRAC27951 220W 评估板材料清单:图5.IRAC27951 220W评估板PCB布局图(顶层)图 6.IRAC27951 220W评估板PCB布局图(底层)详情请见:/product-info/datasheets/data/irs27951s.pdf和/technical-info/refdesigns/irac27951-220w.pdf

功率因数和效率的区别

功率因数与效率的区别 尽管功率因数和转换效率都是指电源的利用率, 但区别却很大。功率因素是输入视在功率与输入有功功率之比,与效率无关的,功率因数越大表示无功量就小;它是电源对电网的利用率。电源效率是输入有功功率与输出有功功率之比,效率越高表示机电的损耗就小;它指的是转换效率,就是你这个LED灯泡是5W,但是你把这整个灯接上就不是5W,电源本身也要耗电,这个效率就是多少点是真正让灯泡用了,多少是无用的。当然效率越高越好。简单的说,功率因数产生的损耗是电力部门负担,而转换效率的损耗是用户自己负担。一般来讲,功率因数与本设备的效率并没有必然的、直接的联系,但是,功率因数低了的话,会大量占用供电设备的容量,增加电路损耗,提高供电成本。比如,同样是1KW的电器,如果功率因数是0.9,那么占用供电系统的容量 1/0.9=1.1KvA,如果功率因数是0.5,那么占用供电系统的容量是1/0.5=2KVA。因为后者的线路电流较前者大了近一倍,所以线路损耗增加了近三倍。所以使用高功率因数设备的意义在于节约供电设备容量和减少线路损耗。效率,通俗地说就是吃了多少饭,干了多少活。比如一个电源,测得输入的功率是220W,又测得输出各路电压的总功率是190W,那么其效率190/220=86.4%。其效率还是很高的。如果换用一个低效率的电源,由于无论使用什么电源,电脑的实际需要是一定的,仍是190W,但这时测得输入的功率是280W,那么这个电源的效率是190/280=67.9%。很显然,两个效率不同的电源,电脑的工作都是一样的,不同的是,后一个电源比前一个电源多耗电280-220=60W。多了这60W,全部转化为热能,由风扇排出了。如果你有测温的工具,可以明显测出这两个电源工作温度和排出空气的温度是明显不同的。使用高效率的电源,对用户而言,可以节省电费,对供电企业,意义是节省供电设备的容量,减少供电设备的压力电源测量仪是各种生产或测量各种低压电源(常见的是开关电源,灯具电源、等等)的通用仪表,可以测各种参数,包括功率因数、输出电压、输出电流、电源效率、纹波、视在功率、有功功率、无功功率,等等。LED常常是用低压直流工作,所以它有一个电源,用来将交流变成低压直流,称为:“驱动器”,或“电源”。电源效率:是衡量输入电源的交流有功功率,有多少转化为直流功率了(有发热损耗等等)。发光效率:是指电能(或功率)转换成光能的转换效率,用lm/瓦来衡量,就是说同样的电能,

开关电源入门必读:开关电源工作原理超详细解析

开关电源入门必读:开关电源工作原理超详细解析 第1页:前言:PC电源知多少 个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Sw itching Mode P ow er Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(sw itching)。线性电源的工作原理是首先将127 V或者220V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/W ii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的“开关电源”其实是“高频开关电源”的缩写形式,和电源本身的关闭和开启式没有任何关系的。 事实上,终端用户的PC的电源采用的是一种更为优化的方案:闭回路系统(closed loop system)——负责控制开关管的电路,从电源的输出获得反馈信号,然后根据PC的功耗来增加或者降低某一周期内的电压的频率以便能够适应电源的变压器(这个方法称作PW M,Pulse W idth Modulation,脉冲宽度调制)。所以说,开关电源可以根据与之相连的耗电设备的功耗的大小来自我调整,从而可以让变压器以及其他的元器件带走更少量的能量,而且降低发热量。 反观线性电源,它的设计理念就是功率至上,即便负载电路并不需要很大电流。这样做的后果就是所有元件即便非必要的时候也工作在满负荷下,结果产生高很多的热量。 第2页:看图说话:图解开关电源 下图3和4描述的是开关电源的PW M反馈机制。图3描述的是没有PFC(P ow er Factor Correction,功率因素校正)电路的廉价电源,图4描述的是采用主动式PFC设计的中高端电源。 图3:没有PFC电路的电源 图4:有PFC电路的电源 通过图3和图4的对比我们可以看出两者的不同之处:一个具备主动式PFC电路而另一个不具备,前者没有110/220V转换器,而且也没有电压倍压电路。下文我们的重点将会是主动式PFC电源的讲解。

电源测试方案

安徽巨森电器开关电源测试方案 开关电源在本公司得到广泛应用,由于某些原因,某些成熟的产品可能要更换电源。对于这些电源的更换,在一段时间内,公司未出台电源测试的方法,处于条件限制,现针对开关/模块电源的更换应进行的测试,结合本公司实际情况,制定公司新更换或新采用电源的测试方法。 一、测试项目 需测项目包括开关电源空载输出、额定负载时电压和电流输出、源效应、负载效应、纹波、耐压和绝缘电阻、短路保护(或过流保护点),产品老化试验。 测试参考各开关电源给出的详细参数说明书进行。 对于较重要的或功率在几十瓦以上的电源,其效率(或内部功率器件的工作温度)直接决定了它的可靠性、故障率,应予测试;此外尚有多项其他指标应根据不同要求安排测试,例如突加负载输出电压的瞬时跌落及其恢复时间、AC/DC 电源的输入功率因数和波形峰值比、电源的各项EMC 指标以及温度系数、时间稳定性等。 二、测试要求 1、测试人员需能正确使用数字万用表,识别开关电源的管脚图,能调节功率电源的输出电压,具有电相关知识。 2、测试仪器要求尽量使用精度高、分辨率高的仪器仪表,根据实际情况,选择使用仪器。 3、一般常规测试是在常温常压下测试的,对测试条件有特殊要求的需在要求条件下进行测试(比如有的需要模拟工作现场的环境,如室外、阴雨、暴晒等)。 三、测试方法和过程 3.1空载输出电压 将开关电源的输入电压调至开关电源的额定电压,用万用表测试开关电源的输出电压,为了减小误差,可以多测几组数据(图中的电源开关电源表示所检开关电源)。

图1 空载接线原理图 3.2额定负载下开关电源输出 这一步测试包括额定输出电压和电流的测试,首先要确定开关电源的额定负载,一般选择电阻作为负载。注意选择电阻的功率一定要远大于开关电源的输出功率,以减小电阻的发热,还可以加一些散热措施,如放置排风扇等。 额定负载计算公式: R0=U 2 /P 注:式中R0 为额定负载电阻值,U 为标称输出电压值,P 为额定功率。 确定了额定负载以后,将开关电源额定输入电压接上,接通开关电源的负载回路,在负载回路中串一电流表(为安全计,推荐采用串入精密分流电阻器测其压降,换算为电流值),测试回路中的电流,用万用表电压档测试开关电源输出电压。并记录电压电流值。接线图如2 所示,图中R0 为额定负载。 图2 额定负载接线原理图 3.3源效应(即电压调整率) 源效应为在开关电源的输入电压范围内,输入电压从低到高变化时,输出电压相对于标称输出的变化量。 将开关电源输入电压分别调至范围的下限和上限,用万用表测开关电源的输出电压并记录。 输入图3 源效应测试

数据中心电源解决方案及选型

数据中心电源解决方案及选型 发表时间:2019-11-06T11:30:58.777Z 来源:《基层建设》2019年第23期作者:苏建伟 [导读] 摘要:随着互联网应用技术的迅速发展,作为互联网载体的数据中心建设规模日益变大。 中国通信建设集团设计院有限公司第四分公司河南郑州 450052 摘要:随着互联网应用技术的迅速发展,作为互联网载体的数据中心建设规模日益变大。巨大的用电容量需求给数据中心的建设和运营带来了空前的压力。文章根据数据中心常用的供电解决方案提出了三种电源产品解决方案,并根据安全可靠、节能环保、管理维护、建设成本四个方面提出的电源产品解决方案进行对比和分析,作为数据中心建设的配套电源产品选型参考。 关键词:数据中心;电源系统;节能环保 近年来,随着移动互联网时代的到来,基于互联网技术提供的各种服务已融人到人类的社会生活中,数据储存容量需求高速发展。作为互联网应用服务载体的数据中心,其建设需求也在同步不断增加。近几年来,随着互联网服务、电子商务行业的高速发展,我国的IT服务巨头B.A.T(百度、阿里、腾讯)、三大运营商(移动、联通、电信)都投人了大量的资金用于数据中心的建设。截止目前,全国已经建成了规模不一但数量庞大的数据中心。各大数据中心运营商为了节约成本、便于管理、形成规模化效益,数据中心的建设规模逐渐变得越来越大,同时,巨大的用电容量也给数据中心的建设和运营都带来了巨大的成本压力。如何合理配置资源,提高数据中心供电的安全性,降低运营成本,成为各大数据中心运营商在机房建设中重点考虑的因数。 一、数据中心对供电的要求 主要应包括以下几方面。 1.1安全可靠 一般要求电源供电系统的可用度A!99.999M。因此,必须合理进行配置,达到系统供电安全最优化。 1.2节能环保 在能源紧缺、重视环保的今天,“绿色、节能、高效”是新一代数据中心建设的主流标准。不间断电源(UPS)在绿色、节能、高效方面的表现,主要体现在输人功率因数、输人电流谐波以及整机效率等方面。 1.3可维护性 不间断电源(UPS)供电系统应当具备维护方便,便于管理的设计需求。在节省系统的维护成本的同时,更为重要的是可以尽量避免因人为维护或者管理不当,而引发的系统故障。 1.4建设成本 从数据中心容量需求在应用过程中会逐步增大的情况,要求电源系统配置可扩容设计。这样能有效地控制系统建设初期投资费用,同时,又能使UPS供电系统在数据中心的建设过程中,始终保持安全高效的工作状态,提高了系统的性价比。因此,数据中心供电系统的合理设计,并非一味追求某一项指标的最优化,而是应该根据实际应用的需求,在保证安全可靠、节能环保、运维方便、成本合理这些要点中寻求一个平衡点,提供一个节能环保,安全可靠,经济适用的供电系统解决方案。 二、数据中心用电特点 2.1保证的目标。 在数据中心配电系统中除了正常配电系统中采用的双回路独立电源供电之外,还在数据中心配备事故备用柴油发电机、大容量UPS 等。同时在数据中心配电系统故障处理机制方面,会考虑供电电源失电、母线故障、开关跳闸和开关拒动等一系列非正常情况下如何最大限度地满足设备用电可靠性的要求。 2.2数据中心配电系统较一般建筑配电系统复杂。 与一般建筑配电系统相比,数据中心配电系统其结构更为复杂,对配电管理的要求更加严格。复杂性表现在电源输入及其控制策略上,一般建筑配电多采用双回路一主一备供电,其控制策略为备用电源自动投切。而数据中心配电系统除双回路单独供电之外,自身还配备至少满足全负荷设备容量的柴油发电机,在不同失电故障场景发生时,通过供电策略的改变实现数据中心设备的持续供电。 三、数据中心供配电系统解决方案分析 数据中心在运行的时候,往往是二十四小时不间断运行,其本身具有用电量比较大和可靠性较高以及对电源品质要求比较高的现象,其中比较常见的是电力系统在具体运行的过程中,对电能实施发、输、配、用中的配和用等内容,促使这些方面能够在电力系统正常运行的基础上具体实施。在供配电系统中,功率通常情况下是单向流动的,也就是根据电源端向用户端的方向流动,通过一定的分配手段的基础上,使得供配电的目的得以实现,将电力系统中的电能改变成用户所使用的用电设备可以利用的电能。根据当前的数据而言,其电压等级主要处于35KV或以下。因此供配电系统在设计处理的时候,需要明确其电能负荷的性质和周围区域电量供应的具体情况等。 3.1热备份串联供电的相关方案 串联备份技术和其他技术相对比而言,是比较成熟的,其发展的阶段是比较早的,使用范围相对广泛,其中多种关于UPS技术的相关资料中串联也可称为热备份,多数人都将其称为串联。供电方案中串联的UPS是比较完整的,其也具有自己的旁路在线类型的UPS单机。这些单机的连接媒介仅仅为电源线,没有其他信号连接。通常情况下主机进行全面供电,从机基本上没有对其加以负载处理。 这一方案在具体应用的时候,其优点是结构相对简单,在实施安装处理的时候,比较快捷,相对价格也合理,多个不同公司的UPS能够串联使用。这一方案的具体实施缺陷是需要不间断进行负载用电的扩容处理,就必须持续带电工作,而这一过程中的危险程度也会增加。 3.2直接并机供电方案 直接并机供电方案的形式主要是将多个同类型型号和功率的“不间断电源”在并机柜或并机板等基础上,将输出端连接在一起而形成的。这一方案的主要功能是多台机器对负载功率共同承担处理,其中比较显著的原理是在一般情况下,多个UPS都具有逆变器的输出分担负载及电流,在其中任何一个“不间断电源”出现问题的时候,其余的都会再次对全面的负载进行承担,在促使并联冗余实现的时候,其基础始终是对以下相关内容有效处理。 每个UPS逆变器所输出的波形之间的相位和频率等方面需要是相同的。UPS逆变器在输出电压的时候,这些电压也需要保持一致。每个

欧盟开关电源的待机功耗的标准要求:0新

EMI 滤波器原理与设计方法详解 输入端差模电感的选择: 1. 差模choke置于L线或N线上,同时与XCAP共同作用F=1 / (2*π* L*C) 2.波器振荡频率要低于电源供给器的工作频率,一般要低于10kHz。 3. L = N2AL(nH/N2)nH 4. N = [L(nH)/AL(nH/N2)]1/2匝 5. AL = L(nH)/ N2nH/N2 6. W =(NI)2AL / 2000μJ 输入端共模电感的选择: 共模电感为EMI防制零件,主要影响Conduction 的中、低频段,设计时必须同时考虑EMI特性及温升,以同样尺寸的Common Choke而言,线圈数愈多(相对的线径愈细),EMI防制效果愈好,但温升可能较高。传导干扰频率范围为0.15~30MHz,电场辐射干扰频率范围为30~100MHz。开关电源所产生的干扰以共模干扰为主。产生辐射干扰的主要元器件除了开关管和高频整流二极管还有脉冲变压器及滤波电感等。注意:1. 避免电流过大而造成饱和。2.Choke温度系数要小,对高频阻抗要大。3.感应电感要大,分布电容要小。4.直流电阻要小。 B = L * I / (N * A) (B shall be less than 0.3) L = Choke inductance. I = Maximum current through choke. N = Number of turns on choke. A = Effective area of choke. (for drum core, can approximate with cross section area of center pole.) 假设在50KHZ有24DB的衰减则,共模截止频率Fc = Fs*10Att/4 0 = 50*10-24/40=12.6KHZ 电感值L= (RL*0.707)/(∏*Fc) = (500.707)/(3.14*12.6) = 893uH 使用磁芯和磁棒作滤波电感时应注意自身的阻抗,对于共模电感不能使用低阻抗的磁芯和磁棒,否则会造成炸机现象。作共模电感用的磁芯应用DC500V测量其绝缘阻抗应大于己于100M。 在电源设备中采用噪声滤波器的作用如下: (1)防止外来电磁噪声干扰电源设备本身控制电路的工作; (2)防止外来电磁噪声干扰电源的负载的工作; (3)抑制电源设备本身产生的EMI; (4)抑制由其它设备产生而经过电源传播的EMI。 在国际上的电磁噪声限制规则,如美国有FCC,德国有FTZ,VDE等标准。 在电源设备输入引线上存在二种EMI噪声:共模噪声和差模噪声,把在交流输入引线与地之间存在的EMI噪声叫作其共模噪声,它可看作为在交流输入线上传输的电位相等、相位相同的干扰信号。而把交流输入引线之间存在的EMI噪声叫作差模噪声,它可看作为在交流输入线传输的相位差180°的干扰信号。共模噪声是从交流输入线流入大地的干扰电流,差模噪声是在交流输入线之间流动的干

相关文档
最新文档