Matlab在化工管路设计型计算的应用

Matlab在化工管路设计型计算的应用
Matlab在化工管路设计型计算的应用

化工流体管路设计讲解

四浙虹工艺*孝流体输送管路设计 目录

1.任务书 2.设计过程 2.1 流程图 2.2 管道设计 2.2.1 主管道规格确定 2.2.2 管道特性方程估算 2.3 泵的设计 2.3.1 项目基础数据及相关信息 2.3.2泵型号确定及其基础特性参数 2.3.3泵工作点确定及其性能参数的校正 2.3.4泵的安装高度估算 2.4 设计结果一览图表 3.条件变化对输送系统的影响分析 4.操作过程及注意事项 5.设计评述 6.参考文献 7.符号说明 、任务书 某工厂需要将一定量溶剂从贮槽送往高位槽,两槽液面稳定, 其间的垂直距离为10m,溶剂温度20C,溶剂贮槽液面与地面的距离为3m,试解决下列问题:

⑴选择输送管子,并画出示意图;⑵选择合适类型的泵;⑶求泵的轴功率和电 机功率;⑷确定泵的安装位置;⑸确定泵的工作点、损耗在阀门上的轴功率; ⑹现若流量需增加10%,可采取什么措施?分析管路设计中可行的节能措施。 注:学号单号同学选用溶剂为乙醇,双号同学选用溶剂为甲醇,输送量为(50+ 学号最后两位)吨/小时。 要求:查阅相关工程设计手册或其它文献,写出设计报告,对工艺参数的选用附上相关出处。 二、设计过程 1.流程图

2. 管道设计 2.1物理参数及操作环境 条件在20 T ,即303.15K 下进行,储罐A 与大气相通,其液面上方大气压 假定为1atm,离心泵根据管路计算选择。输送量为 61000kg/h 。 常压、303.15K 下,乙醇的物性数据为:密度p =789kg/m 3,黏度卩 =1.15*10-3Pa ? s 。 2.2管径、流速、雷诺数的计算与流型的判断 工程设计中.易燃易爆液体管道直径的大小.与安全流 速值的大小有直接的关系。根据化工设计手册 [1] 乙醇的安全流速u w 5m/s,结合乙醇在管路输送的经济 流速[2],和泵吸入管的推荐流速 0.5 w u w 2.0m/s 和排出管 的推荐流速 2.4 w u w 3.0m/s[3]。 假定液体在吸入管道内的流速 u °=2.2 m s ,在泵排出管 内的流速 u 1=3.0m/s,已知流量 V 77.3m 3/h 0.0215 m 3/s ,由 ..d 2 流量计算式 V - u 得吸入管径为: 同理得排出管径为: 查流体输送用不锈钢无缝钢管规格表【 4】 选取吸入管规格 121mm 4 mm 。则吸入管内径 =96 mm

管道直径设计计算步骤

管道直径设计计算步骤 以假定流速法为例,其计算步骤和方法如下: 1.绘制通风或空调系统轴测图,对各管段进行编号,标注长度和风量。 管段长度一般按两管件间中心线长度计算,不扣除管件(如三通,弯头)本身的长度。 2.确定合理的空气流速 风管内的空气流速对通风、空调系统的经济性有较大的影响。流速高,风管断面小,材料耗用少,建造费用小;但是系统的阻力大,动力消耗增大,运用费用增加。对除尘系统会增加设备和管道的摩损,对空调系统会增加噪声。流速低,阻力小,动力消耗少;但是风管断面大,材料和建造费用大,风管占用的空间也增大。对除尘系统流速过低会使粉尘沉积堵塞管道。因此,必须通过全面的技术经济比较选定合理的流速。根据经验总结,风管内的空气流速可按表6-2- 1、表6-2-2及表6-2-3确定。除尘器后风管内的流速可比表6-2-3中的数值适当减小。 表6-2-1一般通风系统中常用空气流速(m/s) 支室内xx空干管 管进风口回风口气入口6~2~1.5~2.5~ 5.5~薄钢1483.53.5 工业建筑机6.5板、混凝土 械通讯 4~2~1.5~2.0~ 砖等

5~61263.03.0 工业辅助及 民用建筑 0.5 0.50.2~~0.7 自然通风~1.01.0类别 机械通风5~8 52~ 2~4风管 材料 表6-2-2空调系统低速风管内的空气流速部位 新风xx 总管和总干管 无送、回风口的支管 有送、回风口的支管频率为1000Hz时室内允许声压级(dB)<40~60>60 3.5~ 4.04.0~4.5 5.0~ 6.0 6.0~8.06.0~8.0 7.0~12.0 3.0~ 4.0 5.0~7.0 6.0~8.0 2.0~ 3.03.0~5.03.0~6.0表6-2-3除尘风管的最小风速(m/s)粉尘类

第六章管道布置设计资料讲解

第六章管道布置设计 第一节化工车间管道布置设计的任务和要求 一、化工车间管道布置设计的任务 (1)确定车间中各个设备的管口方位和与之相连接的管段的接口位置。 (2)确定管道的安装连接和铺设、支承方式。 (3)确定各管段(包括管道、管件、阀门及控制仪表)在空间的位置。 (4)画出管道布置图,表示出车间中所有管道在平面、立面的空间位置,作为管道安装的依据。 (5)编制管道综合材料表,包括管道、管件、阀门、型钢等的材质、规格和数量。 二、化工车间管道布置设计的要求化工车间管道布置应符合下列要求: (1)符合生产工艺流程的要求,并能满足生产要求; (2)便于操作管理,并能保证安全生产; (3)便于管道的安装和维护; (4 )要求整齐美观,并尽量节约材料和投资。化工车间管道布置除了符合上述要求外,还应仔细考虑下列问 题。 1. 物料因素 (1)输送易燃、易爆、有毒及有腐蚀性的物料管道不得铺设在生活间、楼梯、走廊和门等处,这些管道上还应设置安全阀、防爆膜、阻火器和水封等防火防爆装置,并应将放空管引至指定地点或高过屋面2m以上。 (2)有腐蚀性物料的管道,不得铺设在通道上空和并列管线的上方或内侧。 (3)管道铺设时应有一定的坡度,坡度方向一般是沿物流的方向,坡度一般为1/100 - 5/1000 。粘度小的液体物料管道可取5/1000 左右,含固体的物料管道可取1/100 左右。 (4)真空管线应尽量短,尽量减少弯头和阀门,以降低阻力,达到更高的真空度。2.考虑施工、操作及维修 (1)管道应尽量集中布置在公用管架上,平行走直线,少拐弯,少交叉,不妨碍门窗开启和设备、阀门及管件的安装维修,并列管道的阀门应尽量错开排列。 (2)支管多的管道应布置在并行管线的外侧,引出支管时,气体管道应从上方引出,液体管道应从下方引出,管道应尽量避免出现“气袋”、“口袋”和“盲肠”。 (3)管道应尽量沿墙面铺设,或布置在固定在墙上的管架上,管道与墙面之间的距离以能容纳管件、阀门及

管道设计规定

适用范围 二、图面字体规定 1、角图章内用4 mm仿宋体填写;文表内用4号仿宋体填写。 2、角图章外平面图内的设备,建(构)筑物名称及编号文字高度为4mm加粗。 3、其余部分:例如尺寸,说明,管道号文字高度为3.5mm。 三、装置(单元)布置设计规定 1、设计原则 (1)本工程改造部分以尽量利旧原有设施为原则。 (2)满足工艺要求 装置(单元)布置应充分考虑工艺系统要求的设备标高差和泵净吸入头(NPSH)的需要以及过程控制对设备布置的要求,此外为防止结焦、堵塞,控制温降、压降等有工艺要求的相关设备尽量靠近布置。 (3)安全生产 装置(单元)布置应充分考虑设备以及机泵间防火、防爆安全间距的要求,建筑物间的安全距离以及与界区外相邻装置(单元)有安全间距要求的设备或建筑物间的安全距离;装置(单元)布置应设置贯通通道与界区外四周环形通道相连,以保证消防作业的可抵达性和可操作性。 (4)方便设备安装与检修 大型设备如反应器、常、减压塔及分馏塔等均应靠道路一侧布置,既有利设备的现场组对,也方便其吊装;贯通式通道要为每台设备的安装与检修创造条件。此外,设置若干个检修通道口,为某些设备(如压缩机)的检修创造条件。装置布置还应充分考虑设备检修(如管壳式换热器)所需空间以及固体物料装卸所需作业面。 (5)节约 装置(单元)布置应按照“流程顺畅,紧凑布置”的原则,减少装置占地;优化各设备间距,减少管道的往返;对大管径管道,造价高(如高材质)管道,应尽可能最短,以节约投资。 2、设备布置的定位原则 (1)卧式容器基础中心线 (2)塔和立式容器中心线 (3)换热器基础中心线(框架上层) 管程嘴子中心线(地面层) (4)卧式泵泵端基础 (5)立式泵泵中心线 3、装置内通道宽度 (1)车行消防道路最小4000mm (2)检修、维修道路最小4000mm (3)操作通道最小800mm (4)联通通道最小800mm (5)检修消防通道路面内缘转弯半径不宜小于9m. 4、装置内通道净高 (1)卡车通道净空要求最小4500mm (2)工厂主干道净空要求最小5000mm (3)铁路净空要求最小5500mm

管道的设计计算——管径和管壁厚度(精)

管道的设计计算——管径和管壁厚度 空压机是通过管路、阀门等和其它设备构成一个完整的系统。管道的设计计算和安装不当,将会影响整个系统的经济性及工作的可靠性,甚至会带来严重的破坏性事故。 A.管内径:管道内径可按预先选取的气体流速由下式求得: =i d 8.1821 ?? ? ??u q v 式中,i d 为管道内径(mm );v q 为气体容积流量(h m 3);u 为管内气体平均流速(s m ),下表中给出压缩空气的平均流速取值范围。 管内平均流速推荐值 1m 内的管路或管路附件——冷却器、净化设备、压力容器等的进出口处,有安装尺寸的限制,可适当提高瞬间气体流速。 例1:2台WJF-1.5/30及2台H-6S 型空压机共同使用一根排气管路,计算此排气管路内径。 已知WJF-1.5/30型空压机排气量为1.5 m 3/min 排气压力为3.0 MPa 已知H-6S 型空压机排气量为0.6 m 3/min 排气压力为3.0 MPa 4台空压机合计排气量v q =1.5×2+0.6×2=4.2 m 3/min =252 m 3/h 如上表所示u=6 m/s 带入上述公式=i d 8.1821??? ??u q v =i d 8.1821 6252??? ??=121.8 mm 得出管路内径为121mm 。

B.管壁厚度:管壁厚度δ取决于管道内气体压力。 a.低压管道,可采用碳钢、合金钢焊接钢管;中压管道,通常采用碳钢、合金钢无缝钢管。其壁厚可近似按薄壁圆筒公式计算: min δ= []c np npd i +-?σ2 式中,p 为管内气体压力(MPa );n 为强度安全系数5.25.1~=n ,取[σ]为管材的许用应力(MPa ),常用管材许用应力值列于下表;?为焊缝系数,无缝钢管?=1,直缝焊接钢管?=0.8;c 为附加壁厚(包括:壁厚偏差、腐蚀裕度、加工减薄量),为简便起见,通常当δ>6mm 时,c ≈0.18δ;当δ≤6mm 时,c =1mm 。 当管子被弯曲时,管壁应适当增加厚度,可取 'δ=R d 20δ δ+ 式中,0d 为管道外径;R 为管道弯曲半径。 b.高压管道的壁厚,应查阅相关专业资料进行计算,在此不做叙述。 常用管材许用应力 例2: 算出例1中排气管路的厚度。管路材料为20#钢 公式 min δ=[]c np npd i +-?σ2中 n=2 , p=3.0 MPa , i d =121 如上表20#钢150o C 时的许用应力为131,即σ=131 ?=1 , C =1 带入公式 min δ=[]c np npd i +-?σ2=1321131212132+?-????=3.8 mm 管路厚度取4 mm

化工管道设计手册

化工管道设计手册 配管设计通则 目次 1 适用范围 (2) 2 管系的设计压力与设计温度 (2) 3 管系压力等级的分界 (3) 4 阀门选择 (4) 5 管系放空与排凝 (6) 6 安全阀放空与停工放空……………………………………………………………… 7 阀门及仪表的安装方 (9) 8 管件的选择 (12) 9 法兰间隙与管间距 (16) 10 管系法兰的设置 (18) 11 管道的最大允许支撑间距 (18)

1、适用范围 本通则适用于装置(单元)配管设计中所涉及的一般事项。 2、配管设计所需基础资料 (a) 设计基础条件(Basic Engineening Design Ddta) (b) 详细工程设计数据(配管)[Detailed Engineening Design Data(Piping)] (c) 流程图(含工艺、公用工程、管道及仪表流程(P&ID) (d) 公用工程流程图 (e) 装置布置图 (f) 设备含机泵、工业炉及其它非定形设备 (g) 管道等级表 (h) 管道表 (I) 仪表规格表 2、管道系统(以下简称管系)的设计压力与设计温度 管系的设计压力与设计温度的确定原则如下: (1)管系的设计温度取与其相接的设备的设计温度。 (2)管系的设计压力取以下压力的最高者 (a) 与管系连接的设备的设计压力; (b) 保护管系的安全阀的设定压力; (c) 当离心泵出口管道考虑切断时,设计压力为泵的正常吸入压力加上泵进出口额定压差的1.2倍。 (d) 往复泵出口管道上安全阀的设定压力。 (3)对于低于大气压操作的管系,按承受外压条件设计,设计压力取0.1MPa。 (4)夹套管内管设计压力:当内管介质压力大于夹套内介质压力时按内管介质压力确定。 3、管系等级的分界 当内管介质压力小于夹套内介质压力时,接承受外压设计,设计压力按夹套内介质压力确定;夹套外管设计压力按夹套内介质压力确定。 (1)管系的压力范围是从压力源到较低压力的管系或所连设备前的第一个切断阀或止回阀。 当是双阀时,双阀的压力等级取较高侧的压力等级(见图1) 图1 管系的压力范围 (2)调节阀周围管道的压力及温度划分见图2 图2 调节阀周围管道等级的划分

石油化工设计手册

石油化工设计手册作者:陈龙俊、黄志斌 出版社:化学工业出版社2009年10月出版 册数规格:全五卷+ 1CD16开精装 定价:Y 1280元 现价:520元 详细目录 第一篇石油化工工程设计基础知识 第一章石油化工工程设计概述 第二章石油化工工艺流程图设计 第三章物料衡算 第四章能量衡算 第五章石油化工管道仪表流程图(PID )的设计第六章石油化工工艺设备设计及其选型 第七章车间布置设计方法 第八章石油化工管道布置设计基本方法 第九章计算机在石油化工设计中的应用 第二篇石油化工工艺工程项目设计及常用规范第一章工程设计项目专篇编制的设计文件

第二章公用工程分配系统和辅助系统设计第三章工程设计常用规范(规定、标准)和相关资料 第三篇石油化工装置工艺管道安装设计施工技术 第一章石油化工管道法兰 第二章石油化工管道及仪表流程图设计 第三章石油化工管道及仪表流程图基本单元典型设计第四章小型设备设计施工技术 第五章管道与设备隔热安装设计施工技术 第四篇石油化工新型储罐浮盘设计与应用 第一章新型储罐浮盘设计与应用概述 第二章铝浮铜式铝制骨架内浮盘设计 第三章塑胶浮子铝制骨架内浮盘设计 第四章石油化工浮盘项目的可行性分折和浮盘工厂设计第五章石油化工储罐设计与施工的相关标淮 第五篇石油化工压力管道设计与施工检验 第一章石油化工压力管道设计概论 第二章计算机辅助石油化工压力管道设计软件 第三章石油化工管道布置设计与实例第四章压力管道的隔热设计和防腐蚀措施第五章长输管道和公用管道设计简述

第六章压力管道的制图设计 第七章压力管道的施工与检验 第八章压力管道设计专业项目管理 第六篇石油化工单元工艺设计计算与选型 第一章反应器 第二章发酵罐 第三章液体搅拌 第四章离心机和过滤机 第五章泵 第六章压缩与膨胀机 第七篇石油化工自动控制设计 第一章石油化工自动控制设计国内外标准第二章石油化工简单自动控制系统的设计第三章石油化工复杂自动控制系统的设计第四章典型生产单元的控制方案第五章石油化工数字控制系统设计第六章控制室的设 计第七章仪表盘、柜的设计 第八章储运系统仪表选型及自动化设计 第九章防爆设计及标准

通风管道设计计算

通风管道系统的设计计算 在进行通风管道系统的设计计算前,必须首先确定各送(排)风点的位置和送(排)风量、管道系统和净化设备的布置、风管材料等。设计计算的目的是,确定各管段的管径(或断面尺寸)和压力损失,保证系统内达到要求的风量分配,并为风机选举和绘制施工图提供依据。 进行通风管道系统水力计算的方法有很多,如等压损法、假定流速法和当量压损法等。在一般的通风系统中用得最普遍的是等压法和假定流速法。 等压损法是以单位长度风管有相等的压力损失为前提的。在已知总作用压力的情况下,将总压力按风管长度平均分配给风管各部分,再根据各部分的风量和分配到的作用压力确定风管尺寸。对于大的通风系统,可利用等压损法进行支管的压力平衡。 假定流速法是以风管内空气流速作为控制指标,计算出风管的断面尺寸和压力损失,再对各环路的压力损失进行调整,达到平衡。这是目前最常用的计算方法。 一、通风管道系统的设计计算步骤 800m /h 3 1500m /h 31 2 3 4000m /h 3 4 除尘器 6 5 7

图6-8 通风除尘系统图 一般通风系统风倌管内的风速(m/s)表6-10 除尘通风管道最低空气流速(m/s)表6-11 1、绘制通风系统轴侧图(如图6-8),对个管段进行编号,标注各管段的长度和风量。以风量和风速不变的风管为一管段。一般从距风机最远的一段开始。由远而近顺序编号。管段长度按两个管件中心线的长度计算,不扣除管件(如弯头、三通)本身的长度。 2、选择合理的空气流速。风管内的风速对系统的经济性有较大影响。流速高、风管断面小,材料消耗少,建造费用小;但是,系统压力损失增大,动力消

管道承压计算公式

管道承压计算公式 一、根据设计压力计算壁厚 参照规范GB50316-2000<工业金属管道设计规范>计算公式P44,当直管计算厚度S1小于管子外径D 的1/6时,按照下面公式计算 公式1 S1= ) ]([21PY E PD +σ 公式2 S=S1+C1+C2 二、根据壁厚简单计算管道承受压力校核验算 公式1 P=S D ES +2)]([2σ

阀门磅级,MPA, BAR, PSI和公斤的含义和换算 阀门磅级,MPA, BAR, PSI和公斤的含义和换算 class 150 300 400 600 800 900 1500 2500 LB Mpa 1.6-2.0 2.5-5.0 6.3 10.0 13.0 15.0 25.0 42.0 MPA 150LB对应1.6-2.0MPa,300LB对应2.5-5.0MPa,400LB对应6.3MPa,600LB对应10MPa,800LB对应13MPa,900LB对应15MPa,1500LB对应25MPa,2500LB对应42MPa 我通常所用的PN,CLass,都是压力的一种表示方法,所不同的是,它们所代表承受的压力对应参照温度不同,PN欧洲体系是指在120℃下所对应的压力,而CLass美标是指在425.5℃下所对应的压力。所以在工程互换中不能只单纯的进行压力换算,如CLass300#单纯用压力换算应是2.1MPa,但如果考虑到使用温度的话,它所对应的压力就升高了,根据材料的温度耐压试验测定相当于5.0MPa。 阀门的体系有2种:一种是德国(包括我国)为代表的以常温下(我国是100度、德国是120度)的许用工作压力为基准的“公称压力”体系。一种是美国为代表的以某个温度下的许用工作压力为代表的“温度压力体系” 美国的温度压力体系中,除150LB以260度为基准外,其他各级均以454度为基准。 150磅级(150psi=1MPa)的25号碳钢阀门在260度时候,许用应力为1MPa,而在常温下的许用应力要比1MPa大得多,大约是2.0MPa。 所以,一般说美标150LB对应的公称压力等级为2.0MPa,300LB对应的公称压力等级为5.0MPa等等。因此,不能随便按照压力变换公式来变换公称压力和温压等级。 PN是一个用数字表示的与压力有关的代号,是提供参考用的一个方便的圆整数,PN是近似于折合常温的耐压MPa数,是国内阀门通常所使用的公称压力。对碳钢阀体的控制阀,指在200℃以下应用时允许的最大工作压力;对铸铁阀体,指在120℃以下应用时允许的最大工作压力;对不锈钢阀体的控制阀,指在250℃以下应用时允许的最大工作压力。当工作温度升高时,阀体的耐压会降低。 美标阀门以磅级为表示公称压力,磅级是对于某一种金属的结合温度和压力的计算结果,他根据ANSI B16.34的标准来计算。磅级与公称压力不是一一对应的主要原因是磅级与公称压力的温度基准不同。我们通常使用软件来计算,但是也要懂得使用表格来查磅级。日本主要用K值表示压力等级。 对于气体的压力,在中国,我们一般更常用其质量单位“公斤”描述(而不是“斤”),单位kg。其对应的压强单位是“kg/cm2”,一公斤压力就是一公斤的力作用在一个平方厘米上。 同样,相对应于国外,对于气体的压力,常用的压强单位是“psi”,单位是“1 pound/inch2”, 就是“磅/平方英寸”,英文全称为Pounds per square inch。但是更常用的是直接称呼其质量单位,即磅(LB.),实际这LB.就是前面提到的磅力。把所有的单位换成公制单位就可以算出: 1 psi=1磅/inch 2 ≈0.068bar,1 bar≈14.5psi≈0.1MPa,欧美等国家习惯使用psi作单位。 在Class600和Class1500中对应欧标和美标有两个不同数值, 11MPa(对应600磅级)是欧洲体系规定,这是在《ISO 7005-1-1992 Steel Flanges》里面的规定;10MPa(对应600磅级)是美洲体系规定,这是在ASME B16.5里面的规定。 因此不能绝对地说600磅级对应的就是11MPa或者10MPa,不同体系的规定是不同的。 阀门的体系主要有2种:一种是德国(包括我国)为代表的以常温下(我国是100度、德国是120

石油化工装置工艺管道安装设计手册

石油化工装置工艺管道安装设计手册 第四篇相关标准(第四版) 作者:张德姜主编 出版社:中国石化出版社 出版日期:2009年8月 《石油化工装置工艺管道安装设计手册(第四篇):相关标准(第4版)》共五篇,按篇分册出版。第一篇设计与计算;第二篇管道器材;第三篇阀门;第四篇相关标准;第五篇设计施工图册。第一篇在说明设计与计算方法的同时,力求讲清基本道理与基础理论,以利于初学设计者理解安装设计原则,从而提高安装设计人员处理问题的应变能力。在给出大量设计资料的同时,将有关国家及中国石化的最新标准贯穿其中,还适当介绍ASME、JIS、DIN、BS等标准中的有关内容。 第二、三篇为设计者提供有关管道器材、阀门的选用资料。 第四篇汇编了有关的设计标准及规范。本篇为修订第四版,汇编了截至2008年底发布的石油化工装置工艺管道安装设计标准及规范。 第五篇中的施工详图图号与第一、二篇中提供的图号一一对应,以便设计者与施工单位直接选用。 《石油化工装置工艺管道安装设计手册(第四篇):相关标准(第4版)》图文并茂,表格资料齐全,内容丰富,不仅可作为设计人员的工具书,同时又是培训初学设计人员的教材。 第一部分设计与施工 1.GB 50160-2008石油化工企业设计防火规范 2.GB 50058-92爆炸和火灾危险环境电力装置设计规范 3.GB 50316-2000工业金属管道设计规范(2008年版)

4.SH/T 3902-2004石油化工配管工程常用缩写词 5.SH/T 3051-2004石油化工配管工程术语 6.SH 3011-2000石油化工工艺装置设备布置设计通则 7.SH 3012-2000石油化工管道布置设计通则 8.SH 3059-2001石油化工管道设计器材选用通则 9.SH/T 3041-2002石油化工管道柔性设计规范 10.SH/T 3040-2002石油化工管道伴管和夹套管设计规范 11.SH 3022-1999石油化工设备和管道涂料防腐蚀技术规范 12.SH/T3039-2003石油化工非埋地管道抗震设计通则 13.SH 3010-2000石油化工设备和管道隔热技术规范 14.GB/T 985.1-2008气焊、焊条电弧焊、气体保护焊和高能束焊的推荐坡口 15.GB/T 985.2-2008埋弧焊的推荐坡口 16.GB 50235-97工业金属管道工程施工及验收规范 17.GB 50236-98现场设备、工业管道焊接工程施工及验收规范 18.GB 50126-2008工业设备及管道绝热工程施工规范 .19.GB/T 3323-2005金属熔化焊焊接接头射线照相 20.FJJ 211-86夹套管施工及验收规范 21.SH 3501-2002石油化工有毒、可燃介质管道工程施工及验收规范(含2004年第1号修改单) 22.SHSG 035-89施工现场中的设备材料代用导则

化工原理实验报告_管路设计与安装讲解

管路设计与安装 一、实验目的及基本要求 1.实验目的 (1)综合运用流体力学基本原理与操作技能,设计并安装“流量计校核”与“突然扩大、缩小局部 阻力系数的测定”两个实验装置; (2) 掌握常用工具的使用方法,学习管路的组装、试压、冲洗及拆除操作方法; (3) 学习管路系统的运行测试及停车方法。 2.对化工管路装拆的基本要求: (1) 化工管路布置的一般要求:在管路布置及安装时,主要考虑安装、检修、操作的方便及安全,同时尽可能减少基建费用,并根据生产的特点、设备的布置、材料的性质等加以综合考虑。 ①化工管路安装时,各种管线应成平行铺设,便于共用管架,要尽量走直线,少拐弯,少交叉,以节约管材,减小阻力,同时力求做到整齐美观; ②为便于操作及安装检修,并列管路上的零件与阀门位置应错开安装; ③管子安装应横平竖直,水平管其偏差不大于15mm/10m,垂直管其偏差不大于 10mm/10m; ④管路安装完毕后,应按规定进行强度和严密度试验; ⑤管路离地面的高度以便于检修为准,但通过人行道时,最低点离地面不得小于2m。 (2) 常见管件及阀门、流量计的安装要求: ①转子流量计是用来测量管系中流体流量的,其安装有严格的要求。它必须垂直安装在管系中,若有倾斜,会影响测量的准确性,严重时会使转子升不上来。转子流量计前后各应有相应的直管段,前段应有15~20d 的直管段,后段应有5d 左右的直管段(d 为管子内径),以保证流量的稳定。 ②阀门的装拆:截止阀结构简单,易于调节流量,但阻力较大。安装时,应使流体从阀盘的下部向上流动,目的是减小阻力,开启更省力。在关闭状态下阀杆、填料函部不与介质接触,以免阀杆等受腐蚀。闸阀密封性能好,流体阻力小,但不适用输送含有晶体和悬浮溶物的液体管路中。 ③活动接头是管系中常见的管件,在闭合管系时,它应是最后安装,拆除管系时,应首先从活动接头动手。 (3) 泵的管路布置总的原则是保证良好的吸入条件与检修方便 ①为增加泵的允许吸上高度, 吸入管路应尽量短而直,减少阻力, 吸入管路的直径不应小于泵 吸入口直径. ②在泵的上方不布置管路,有利于泵的检修. 3、对指导教师的要求 (1) 指导教师对实训重点进行相应的讲解,给学生进行分组; (2) 组织学生观看有关化工管路方面的教学录像,使学生对化工管路有一定感性认识; (3) 每个实训小组根据老师提供的管系图列出设备、管件、仪表等清单,领取相应的材料工具等;

管道设计计算公式(流速规定、泵的选用)

1流速与管径计算公式 水流速度取0.7 m/s,则管径计算值如下: D= 4×Q 3600×π×V = 4×6000 3600×3.14×0.7 =174 mm 空气管道的流速,一般规定为:干、支管为10~15m/s,通向空气扩散装置的竖管、小支管为4~5m/s。 2泵的选型 水管管路的水头损失=沿程水头损失+局部水头损失 沿途水头损失=(λL/d)*V^2/(2g)------------P150(层流、紊流均适用) 局部水头损失=ζ*V^2/(2g) 水管管路的水头损失=沿程水头损失+局部水头损失=(λL/d+ζ)*V^2/(2g) 式中:λ—管道沿途阻力系数;L—管道长度;ζ——局部阻力系数,有多个局部阻力系数,则要相加;d—管道内径, g—重力加速度,V—管内断面平均流速。沿途阻力系数λ和局部阻力系数ζ都可查水力学手册。 λ=64/Re 仅适用于圆管层流。对于紊流,由于运动的复杂性,其规律主要由试验确定,但可在理论上给以某些阐述。P171

沿程水头损失 (1)层流区Re<2320(即lgRe<3.36)λ=64/Re (2)层流转变为紊流过渡区2320<Re<4000(即3.36<lgRe<3.6),试验点散乱,流动情况比较复杂且范围不大,一般不作详细分析。 (3)紊流区Re>4000(即lgRe>3.6)分为紊流光滑区、紊流过渡区、紊流粗糙区。 ①紊流光滑区:不同相对粗糙度△/d试验点均落在直线cd上,说明λ与△/d无关。和层流情况相类似,λ值也仅仅与Re有关。可表示为λ=(Re),但与层流区所遵循的函数关系不同。

②紊流粗糙区:分界线ef右方,λ与Re无关,仅与△/d有关,可表示为λ=(△/d) ③紊流过度粗糙区λ=(△/d,Re)

化工管道设计手册

化工管道设计手册 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

化工管道设计手册 配管设计通则 目次 1 适用范围 (2) 2 管系的设计压力与设计温度………………………………………………………… 2 3 管系压力 等级的分界 (3) 4 阀门选 择……………………………………………………………………………… 4 5 管系放空与排 凝 (6) 6 安全阀放空与停工放 空……………………………………………………………… 7 阀门及仪表的安装 方 (9) 8 管件的选 择 (12) 9 法兰间隙与管间距 (16) 10 管系法兰的设 置 (18) 11 管道的最大允许支撑间 距 (18)

1、适用范围 本通则适用于装置(单元)配管设计中所涉及的一般事项。 2、配管设计所需基础资料 (a) 设计基础条件(Basic Engineening Design Ddta) (b) 详细工程设计数据(配管)[Detailed Engineening Design Data(Piping)] (c) 流程图(含工艺、公用工程、管道及仪表流程(P&ID) (d) 公用工程流程图 (e) 装置布置图 (f) 设备含机泵、工业炉及其它非定形设备 (g) 管道等级表 (h) 管道表 (I) 仪表规格表 2、管道系统(以下简称管系)的设计压力与设计温度 管系的设计压力与设计温度的确定原则如下: (1)管系的设计温度取与其相接的设备的设计温度。 (2)管系的设计压力取以下压力的最高者 (a) 与管系连接的设备的设计压力; (b) 保护管系的安全阀的设定压力; (c) 当离心泵出口管道考虑切断时,设计压力为泵的正常吸入压力加上泵进出口额定压差的1.2倍。 (d) 往复泵出口管道上安全阀的设定压力。 (3)对于低于大气压操作的管系,按承受外压条件设计,设计压力取0.1MPa。 (4)夹套管内管设计压力:当内管介质压力大于夹套内介质压力时按内管介质压力确定。 3、管系等级的分界 当内管介质压力小于夹套内介质压力时,接承受外压设计,设计压力按夹套内介质压力确定;夹套外管设计压力按夹套内介质压力确定。 (1)管系的压力范围是从压力源到较低压力的管系或所连设备前的第一个切断阀或止回阀。 当是双阀时,双阀的压力等级取较高侧的压力等级(见图1) 图1 管系的压力范围 (2)调节阀周围管道的压力及温度划分见图2 图2 调节阀周围管道等级的划分 (3)当等级在法兰式阀门处分界时,其分界处的螺栓、螺母和垫片的材质按低压高温等级匹配,而型式则按高压、低温等级匹配。 (4)设备及管系上的安全阀、泄压阀是直接放大气时,阀后的材料等级可降低。 5、阀门的选择 管系中阀门尺寸和种类的选择,原则上以下列条件为准。

管网设计计算说明书

目录 第一篇给水管网设计 1.概述 (2) 1.1给水现状 (2) 1.2规划用水单位 (2) 1.3水源选择 (2) 1.4水压要求 (2) 2.设计用水量计算 (3) 3.管网设计 (4) 3.1管网定线 (4) 3.2比流量,沿线流量和节点流量以及流量出分配 (4) 3.3管网平差计算 (8) 4泵站流量扬程计算 (9) 5.管网设计校核 (9) 5.1消防工况校核 (9) 5.2事故工矿校核 (11) 第二篇污水管网设计 1.概述 (12) 2.管道定线及设计管段、面积划分 (12) 3.设计流量、比流量计算 (13) 4.污水管段设计流量计算表 (14) 5.污水干管水力和埋设深度计算 (14) 第三篇雨水管网设计 1.概述 (16) 2.雨水量计算 (16) 2.1暴雨强度公式 (16) 2.2综合径流系数 (16) 3.雨水管网定线 (16) 4.划分设计管段 (17) 5.汇水面积划分 (17) 6.管段设计流量及管道水力计算 (18) 7.各设计管段上、下端的管底标高和埋设深度计算 (19)

第一篇给水管网设计 1. 概述 1.1 给水现状 目前镇区没有统一给水,居民用水多采用自发组织引山泉水及地下水,其水量不能满足镇区用水量的要求,此外,镇区给水管网不成系统,管径和管材都不能满足要求。 1.2 规划用水单位 镇区规划以居住生活用地为主,用水量主要包括:居民生活用水量、工业用水量、公建用水量及市政用水量。规划可根据远期镇区的发展状况、人民生活水平、工业的性质及水资源的情况,同时参考国家有关规及相似城镇的用水标准, 1.3 水源选择 根据水利部门提供资料,本镇区上游的溪水库(在规划围之外,位于本镇的东北方向,溪上游)流域集雨面积为约为10km2,水量充足,水质符合《地面水环境质量标准》(GB3838)二级标准,溪在水质及水量方面均能满足远期镇区供水的要求,故规划拟定以溪水库作为镇区供水水源。供水方式采用统一,均由位于镇区东北角的自来水厂统一供给。 1.4 水压要求

管道支吊架设计和计算

浅谈管道门字型支吊架的设计及计算 文摘】用来支撑管道的结构叫管道支吊架,管道在敷设时都必须对管子进行固定或支承,固定或支承管子的构件是支吊架。在机电工程里,管道 支架是分布广、数量大、种类繁多的安装工事,同时管道支吊架的设 计和安装对管道及其附件施工质量的好坏取决定性作用。如何采用安 全适用、经济合理、整齐美观的管道支吊架是机电安装工程的一个重 点。 关键词】管道布置管道跨距管架分析管架内力计算 、管道的布置 对管道进行合理的深化和布置是管道支吊架设计的前提条件。欲设计安全使用、经济合理、整洁美观的管道支吊架,首先需对管道进行合理的布置,其布置不得不考虑以下参数: 1.管道布置设计应符合各种工艺管道及系统流程的要求; 2.管道布置应统筹规划,做到安全可靠、经济合理、满足施工、操作、维 修等方面的要求,并力求整齐美观; 3.在确定进出装置(单元)的管道的方位与敷设方式时,应做到内外协调; 4.管道宜集中成排布置,成排管道之间的净距(保温管为保温之间净距) 不应小于50mm 。 5.输送介质对距离、角度、高差等有特殊要求的管道以及大直径管道的布 置,应符合设备布置设计的要求,并力求短而直,切勿交叉; 6.地上的管道宜敷设在管架或管墩上,在管架、管墩上布置管道时,宜使 管架或管墩所受的垂直荷载、水平荷载均衡; 7.管道布置应使管道系统具有必要的柔性,在保证管道柔性及管道对设 备、机泵管口作用力和力矩不超出过允许值的惰况下,应使管道最 短,组成件最少; 8.应在管道规划的同时考虑其支承点设置,并尽量将管道布置在距可靠支 撑点最近处,但管道外表面距建筑物的最小净距不应小于100mm ,同时应尽量考虑利用管道的自然形状达到自行补偿; 9.管道布置宜做到“步步高”或“步步低”,减少气袋或液袋。不可避免 时应根据操作、检修要求设置放空、放净。 、管架跨距 管架的跨距的大小直接决定着管架的数量。跨距太小造成管架过密,管架数量增多,费用增高,故需在保证管道安全和正常运行的前提下,尽可能增大管道的跨距,降低工程费用。但是管架跨距又受管道材质、截面刚度、管道其它作用何载和允许挠度等的影响,不可能无限的扩大。所以设计管道的支吊架应先确定管架的最大跨距,管架的最大允许跨距计算应按强度和刚度两个条件分别计算,取其小值作为推荐的最大允许跨距。 1.按强度条件计算的管架最大跨距的计算公式:

管道布置图设计手册

目录 页数 1. 目的 (1) 2. 适用范围 (1) 3. 参考文件 (1) 4. 定义 (1) 5. 各阶段管道布置图的内容和职责 (2) 5.1 主要管道走向布置图(MAJOR PIPING ROUTING LAYOUT) (2) 5.1.1主要管道走向布置图设计依据 (2) 5.1.2基础设计阶段(含初步设计)主要管道走向布置图的内容和深度 (2) 5.1.3基础设计阶段(含初步设计)主要管道走向布置图的适用范围 (2) 5.2详细管道研究图(DETAILED PIPING STUDIES) (3) 5.2.1设计依据 (3) 5.2.2详细管道研究图的内容和深度 (3) 5.2.3详细管道研究图的适用范围 (3) 5.3详细管道布置图(DETAILED PIPING LAYOUT) (4) 5.3.1设计依据 (4) 5.3.2详细设计阶段管道布置图的内容和深度 (4) 5.3.3详细设计阶段管道布置图的适用范围 (5) 6. 管道布置图的绘制 (5) 6.1 绘制管道布置图的通用要求 (5) 6.1.1图纸尺寸、发行栏和标题栏 (5) 6.1.2比例和尺寸单位 (8)

6.1.3线型,文字及数字 (8) 6.1.4图面的布置 (11) 6.1.5 北向标及管口表 (12) 6.2 制图规定 (18) 6.2.1平面图的划分 (18) 6.2.2管道图中例外表示的符号 (18) 6.2.3管道布置图上设备应表示的内容 (19) 6.2.4管道布置图上建(构)筑物应表示的内容 (23) 6.2.5定位轴线 (24) 6.2.6管道布置图上仪表、电气应表示的内容 (25) 6.2.7管道布置图上管道应表示的内容 (25) 6.2.8管道布置图上尺寸标注 (34) 6.2.9管道布置图的立面图和详图 (44) 6.2.10 管架标记 (53) 7. 管道布置图的质量保证 (53) 8. 管道布置图的修改、签署、加盖印章 (53) 8.1 管道布置图的修改 (53) 8.2 管道布置图的签署 (54) 8.3 管道布置图加盖压力管道设计资格印章 (54) 9 附录:图例符号 (54)

弯管道设计及计算方法

弯管道设计及计算方法 弯管道主要是算出弦到弧的垂直距离h、h x,定出A、B(B')、C(C')等弯点,即可连成弯管道的弧线,其他钉中心桩和控制桩方法与直线管道相同。如图1所示。 图1弯管道示意 下面例举两种基本的弯管道测量方法(钉桩略)。 1.图2 图2弯管道测量之一 已知条件:两人孔间没有障碍,L和h可直接量得。具体方法: 第一步用皮尺量出两人孔间直线(L)长度,在中点M作垂线h,根据道路弯曲情况确定A点,量出h长度,利用公式(1-1)算出半径R。

R L h h =+22 48 (1-1) 如算出的R 小于36米,则调整A 的位置,使R 大于36米。 第二步 由M 点向两头将L 分成若干等份MN(MN ')、NP(N 'P ')(等份愈小,绘出的弧愈精确)。利用公式(1-2)、(1-3)……算出h 1、h 2……等长度。 ()h h R R x 1212=-- - (1-2) ()h h R R x 222 2 =--- (1-3) 第三步 根据h 、h 1、h 2……等,找出A 、B 、C 、D 等点,依次连接起来就是弯管道的弧线。 2. 图3 图3 弯管道测量之二 已知条件:人孔B 附近有障碍,A 点不能选定,B 点可以选定,L 及x 可以直接量出,具体方法: 第一步 根据已知条件和公式(1-4),求出R 2 22228444???? ??--+=x x h h x L L R (1-4) 第二步 再用公式(1-5),求出h 。 x h x R R h +--=22 (1-5) 第三步 与图3同样方法,得出弯管道弧线上、A 、C 、B 、D 等各点,并连成弧线。

化工流体管路设计讲解

流体输送管路设计

目录 1.任务书 2.设计过程 2.1流程图 2.2管道设计 2.2.1主管道规格确定 2.2.2管道特性方程估算 2.3泵的设计 2.3.1项目基础数据及相关信息 2.3.2泵型号确定及其基础特性参数

2.3.3泵工作点确定及其性能参数的校正 2.3.4泵的安装高度估算 2.4设计结果一览图表 3.条件变化对输送系统的影响分析 4.操作过程及注意事项 5.设计评述 6.参考文献 7.符号说明 一、任务书 某工厂需要将一定量溶剂从贮槽送往高位槽,两槽液面稳定,其间的垂直距离为10m, 溶剂温度20℃, 溶剂贮槽液面与地面的距离为3m,试解决下列问题:⑴选择输送管子,并画出示意图;⑵选择合适类型的泵;⑶求泵的轴功率和电机功率;⑷确定泵的安装位置;⑸确定泵的工作点、损耗在阀门上的轴功率; ⑹现若流量需增加10%,可采取什么措施? 分析管路设计中可行的节能措施。 注:学号单号同学选用溶剂为乙醇,双号同学选用溶剂为甲醇,输送量为(50+学号最后两位)吨/小时。 要求:查阅相关工程设计手册或其它文献,写出设计报告,对工艺参数的选用附上相关出处。

二、设计过程 1.流程图 2.管道设计 2.1物理参数及操作环境 条件在20℃,即303.15K下进行,储罐A与大气相通,其液面上方大气压假定为1atm,离心泵根据管路计算选择。输送量为61000kg/h。 常压、303.15K下,乙醇的物性数据为:密度ρ=789kg/m3,黏度μ

=1.15*10-3Pa ·s 。 2.2管径、流速、雷诺数的计算与流型的判断 工程设计中.易燃易爆液体管道直径的大小.与安全流速值的大小有直接的关系。根据化工设计手册[1] 乙醇的安全流速u ≤5m/s,结合乙醇在管路输送的经济流速[2],和泵吸入管的推荐流速0.5≤u ≤2.0m/s 和排出管的推荐流速2.4≤u ≤3.0m/s[3]。 假定液体在吸入管道内的流速0u =2.2s m ,在泵排出管 内的流速u 1=3.0m/s,已知流量s / 0.0215/ 77.33 3m h m V a ==,由 流量计算式u d V 2 2?? ? ??=π 得吸入管径为: 002u V d a π==mm 2.2 14.30.0215 2?=112mm 同理得排出管径为: 112u V d a π==mm 3.0 14.30.02152?=96mm 查流体输送用不锈钢无缝钢管规格表【4】 选取吸入管规格mm mm 4 121?φ。则吸入管内径 mm mm d 113241210=?-=, 实际流速为:s m d V u a /2.14320.11314.30.0215 )2(2 200=?? ? ???== π

污水管道系统设计计算公式

1.生活污水量 Q1= n?N?K z Q1---居民生活污水设计流量,L/s; n---居民生活污水量定额,L/(cap·d) N---设计人口数, cap; K z---生活污水量总变化系数。 2.设计人口数 N=ρ?F N---设计人口数,cap; ρ---人口密度,cap/h m2 F---居住面积,h m2 cap---“人”的计量单位。 3.工业企业生活污水和淋浴污水设计流量 Q3=A1B1K1+A2B2K2 3600T + C1D1+C2D2 3600 Q3---工业企业生活污水和淋浴污水设计流量, L/s; A1---一般车间最大班职工人数,cap; B1---一般车间职工生活污水定额,以25L/(cap·班)计; K1---一般车间生活污水量时变化系数,以3.0计; A2---热车间和污染严重车间最大班职工人数,cap; B2---热车间和污染严重车间职工生活污水量定额,以35L/(cap·班)计;K2---热车间和污染严重车间生活污水量时变化系数,以2.5计; C1---一般车间最大班使用淋浴的职工人数,cap; D1---一般车间的淋浴污水量定额,以40L/(cap·班)计; C2---热车间和污水严重车间最大班使用淋浴的职工人数,cap;

D2---热车间和污水严重车间的淋浴污水量定额,以60L/(cap·班)计;T---每工作班工作时数,h。 4.工业废水设计流量 Q4=m·M·K z 3600T Q4---工业废水设计流量,L/s; m---生产过程中每单位产品的废水量定额,L/单位产品;M---产品的平均日产量,单位产品/d; T---每日生产时数,h; K z---总变数系数。

相关文档
最新文档