对于陀螺仪和加速的传感器的认识】

对于陀螺仪和加速的传感器的认识】
对于陀螺仪和加速的传感器的认识】

加速度传感器测的是什么?

我觉得很多时候大家都被它的名字给误导了我觉得准确的来说它测的不是加速度至少对于mma7260这类的片子它检测的是它受到的惯性力(包括重力!重力也是惯性力)。那又有人要问了F=ma 惯性力不就是加速度么?差矣加速度传感器实际上是用MEMS技术检测惯性力造成的微小形变注意检测的是微小形变所以你把加速度传感器水平静止放在桌子上它的Z轴输出的是1g的加速度因为它Z轴方向被重力向下拉出了一个形变可是你绝对不会认为它在以1g的加速度往下落吧你如果让它做自由落体它的Z轴输出应该是0 给个形象的说法可以把它看成是一块弹弹胶它检测的就是自己在三个方向被外力作用造成的形变。从刚才的分析可以发现重力这个东西实际是个很恶心的东西它能隔空打牛,在不产生加速度的情况下对加速度传感器造成形变,在产生加速度的时候不造成形变,而其他力都做不到。可惜的是,加速度传感器不会区分重力加速度与外力加速度。

所以,当系统在三维空间做变速运动时,它的输出就不正确了或者说它的输出不能表明物体的姿态和运动状态举个例子当一个物体在空间做自由落体时在X轴受到一个外力作用产生g的加速度这时候x y z 轴的输出分别是g,0,0 如果这个物体被x轴朝下静止放在水平面上它x y z 轴的输出也分别是g,0,0 所以说只靠加速度传感器来估计自己的姿态是很危险而不可取的

加速度传感器有什么用?

加速度计,可以测量加速度,包括重力加速度,于是在静止或匀速运动(匀速直线运动)的时候,加速度计仅仅测量的是重力加速度,而重力加速度与刚才所说的R坐标系(绝对坐标系)是固连的,通过这种关系,可以得到加速度计所在平面与地面的角度关系也就是横

滚角和俯仰角计算公示如下俯仰角横滚角

陀螺仪测的是什么?

陀螺仪可以测量角速度,具有高动态特性,但是它是一个间接测量器件,它测量的是角度的导数,角速度,显然我们要将角速度对时间积分才能得到角度看到积分我想敏感的同学马上就能发现一个致命的问题积分误差

积分误差的来源主要有两个一个是积分时间积分时间Dt越小,输出角度越准一个是器件本身的误差假设陀螺仪固定不动,理想角速度值是0dps(degree per second),但是有一个偏置0.1dps加在上面,于是测量出来是0.1dps,积分一秒之后,得到的角度是0.1度,1分钟之后是6度,还能忍受,一小时之后是360度,转了一圈所以说陀螺仪在短时间内有很大的参考价值

陀螺仪另外一个问题是它的测量基准是自身,并没有系统外的绝对参照物重力轴是个绝好的参照物因此需要陀螺仪和加速度传感器的配合使用如果要测偏航角YAW 还需要电子罗盘感知地磁方向给出水平方向的绝对参考(当然这个在智能车上不存在吧······——!)

陀螺仪和加速度传感器的融合

除了给出绝对参考系陀螺仪和加速度传感器相互融合使用的最重要的原因是:

综合考虑,加速度计是极易受外部干扰的传感器,但是测量值随时间的变化相对较小。陀螺仪可以积分得到角度关系,动态性能好,受外部干扰小,但测量值随时间变化比较大。可以看出,它们优缺点互补,结合起来才能有好的效果

用通俗点的话来说就是无论工作多久加速度传感器如果没收到外部干扰它测的就一定是准的!陀螺仪虽不会受到外部干扰可是时间长了由于积分误差累计它的值就全错

了!

所以两个数据融合的方法就是设计算法在短时间尺度内增加陀螺仪的权值,在更长时间尺度内增加加速度权值,这样系统输出角度就更真实了

再通俗点说就是隔一段时间用加速度传感器的值修正一下陀螺仪的积分误差然后在隔的这段时间内用陀螺仪本身的角度积分

其实MK四轴的平衡算法也是这样,首先对陀螺仪做PI运算,其中I的真正含义就是积分反演角度

有了陀螺仪PI算法,四轴就有了瞬时增稳,就可以遥控飞了,但是它不会永远水平

由于累积误差的作用,很快中立点就不是水平位置了,这时候就需要用加速度不断的纠正陀螺仪积分误差。

你可以看到MK算法中有根据加速度方向不断把积分量I递减清零的代码,就是这个融合算法的核心了

MK立足于一个高级航模玩具,为了在低成本8位单片机上运行,不去显式的计算姿态角,只把校正后的PI值输出负反馈控制电机了

这样的好处是基本上只用整型算法就能完成运算,而要显式的计算姿态角,更专业的做法就是KALMAN滤波显式求解姿态

卡曼滤波也是在对历史数据积分,并且可以同步融合陀螺仪与加速度数据,陀螺仪与加速度贡献权值还可以通过滤波参数调整

所以它就成了惯性数据处理的经典算法,他的缺点是浮点运算量较大,对系统资源要求较高

至于具体的KALMAN滤波算法网上大把大把的这里就不多赘述了

总结一下就是:

PITCH/ROLL角速度积分->PITCH/ROLL姿态角,再结合加速度纠正累积误差

发两张四轴论坛上feng_matrix大侠发的两张图

最后说一下自己以前在做四轴时碰到的问题

1 数据类型非常重要很多时候精度误差计算都错在数据类型小数点上尤其是AD值(int) 往电压值角度值(float)转换时一定要注意!

2 一定要注意陀螺仪的积分时间!!一定要注意搞清楚自己程序里陀螺仪值的积分时间看清数据手册中的电压值和角速度的关系千万不要搞错仔细仔细再仔细

3 EN-03这个片子我没用过主要当时考虑性能实在太········但既然组委会规定了大家就好好适应毕竟都在一个平台上了但是印象中这款片子输出值很小好像使用上都是借个运放还有一定要注意温漂!!陀螺仪上的温漂太可怕了EN-03有没有温度反馈脚记不得了·······如果有大家一定要用上如果没有想想办法怎么解决温漂吧·····

智能温度传感器DS18B20及其应用

智能温度传感器DS18B20及其应用 作者:张军, ZHANG Jun 作者单位:山西冶金技师学院,山西太原,030003 刊名: 仪表技术 英文刊名:INSTRUMENTATION TECHNOLOGY 年,卷(期):2010(4) 被引用次数:8次 参考文献(4条) 1.马家成;孙玉德;张颖MCS-51单片机原理与接口技术 1998 2.张萍基于数字温度计DS18B20的温度测量仪的开发[期刊论文]-自动化仪表 2007(06) 3.金伟正单线数字温度传感器的原理与应用[期刊论文]-电子技术应用 2000(06) 4.赵海兰;赵祥伟智能温度传感器DS18B20的原理及应用[期刊论文]-现代电子技术 2003(14) 本文读者也读过(2条) 1.韩志军.刘新民.HAN Zhi-jun.LIU Xin-min数字温度传感器DS18B20及其应用[期刊论文]-南京工程学院学报(自然科学版)2003,1(1) 2.刘华东.LIU Hua-dong串行温度传感器DS18B20的应用[期刊论文]-湖北职业技术学院学报2010,13(4) 引证文献(15条) 1.李建海.刘迪.王冬梅电池温度智能监测系统设计[期刊论文]-现代电子技术 2011(16) 2.张嘉斌.毕艳梅MDX61B驱动变频器在核电站燃料转运装置中的应用[期刊论文]-电脑知识与技术 2012(22) 3.孙云翔.刘永刚浅谈变电站热点温度监测预警工作的信息化建设[期刊论文]-企业技术开发(学术版) 2012(7) 4.林峰宝浅析智能压力变送器[期刊论文]-才智 2012(3) 5.王毅.万英.陈承格数字式温度测量系统的设计[期刊论文]-福建师范大学学报(自然科学版) 2012(1) 6.沈燕.高晓蓉.李金龙超声车距预警系统设计[期刊论文]-现代电子技术 2012(13) 7.张准.陈良旭.韦中超基于单片机与计算机串口的温度实时监控系统设计[期刊论文]-现代电子技术 2012(16) 8.刘玉洁DS18B20温度测量电路的设计与仿真[期刊论文]-数字技术与应用 2011(4) 9.马将.邓学勇.邓毅.杨威变电站重点部位温度监测系统设计[期刊论文]-宜宾学院学报 2011(12) 10.李战胜.李智.秦岭基于SPCE061A的矿山锅炉水温监测系统设计[期刊论文]-工矿自动化 2010(9) 11.管晓博基于SPCE061A单片机的超声波测距系统的设计[期刊论文]-计算机与现代化 2012(7) 12.张婧婧.达新民.郭斌基于TMS320VC5402的温控系统的设计[期刊论文]-计算机与现代化 2011(3) 13.金晓龙.郭斌.孟小艳基于SPCE061A温室温湿度监测系统的设计及实现[期刊论文]-计算机与现代化 2012(9) 14.钟珊.尹斌基矛Proteus的温度测控系统仿真研究[期刊论文]-电子设计工程 2011(24) 15.张江印基于单片机的多点测温系统[期刊论文]-实验室研究与探索 2012(10) 本文链接:https://www.360docs.net/doc/0d9822345.html,/Periodical_ybjs201004023.aspx

初步认识传感器

一、什么是传感器 传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。国际电工委员会(IEC:InternationalElectrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的系统”。 传感器的发展历程的可大致分为三代:第一代是结构型传感器,它利用结构参量变化来感受和转化信号。第二代是上 70 年代发展起来的固体型传感器,这种传感器由半导体、电介质、磁性材料等固体元件构成,是利用材料某些特性制成。第三代传感器是 2000 年开始逐渐发展的智能型传感器。智能传感器至今科学界尚无规范化的统一定义,简单概括,智能传感器带有微处理机,具有采集、处理、交换信息的能力,是传感器集成化与微处理机相结合的产物。 在当今这个信息化的时代,传感器诸多的应用场景需要更加快速地获得更精准更全面的信息。 以物联网为例,传感器位于最关键的感知层,不仅像传统传感器一样作为接收和传递信息的入口,更需要分析、处理、记忆、存储海量数据的这些功能。而智能传感器则可以充分满足这些要求,其具体优势功能包括:(1)自补偿与自诊断功能;(2)信息存储与记忆功能;(3)自学习与自适应功能;(4)数字输出功能 二、传感器市场和分类 目前主流的传感器以气体传感器、流量传感器、压力传感器、热释电传感器和湿度传感器为主,并覆盖加速度传感器、柔性传感器、MEMS 传感器等。

目前,部分传感器市场比如压力传感器、温度传感器、流量传感器、水平传感器已表现出成熟市场的特征。流量传感器、压力传感器、温度传感器的市场规模最大,分别占到整个传感器市场的21%、19%和14%。 传感器市场的主要增长来自于可穿戴设备传感器、MEMS传感器、生物传感器等新兴智能传感器。 全球市场的众多产品中,CMOS图像传感器市占率最高,占据全球近 45%的市场份额,其次是指纹传感器、压力传感器、射频识别传感器,三者市占率均为 9%。 根据中国信通院最新的数据统计,2016 年全球智能传感器市场规模达 258 亿美元(1710 亿人民币),预计 2019 年将达到 378.5 亿美元,年均符合增长率 13.6%。 根据 Global Market Insights 最新的数据统计, 2015 年,美洲地区占据了全球市场的最大份额,亚太地区(中国、日本、韩国、印度、澳大利亚)位居第二,占领了 23%的市场份额。美洲地区预计在 2022 年前将一直主导智能传感器市场。而亚太地区由于汽车和消费电子领域等下游产业的带动,则成为市场规模增长最快的地区。

传感器分类及常见传感器的应用

机电一体化技术常用传感器及其原理 班级:机械设计制造及其自动化: 学号:

一、传感器的分类 传感器有许多分类方法,但常用的分类方法有两种,一种是按被测物理量来分;另一种是按传感器的工作原理来分。按被测物理量划分的传感器,常见的有:温度传感器、湿度传感器、压力传感器、位移传感器、流量传感器、液位传感器、力传感器、加速度传感器、转矩传感器等。 按工作原理可划分为: 1.电学式传感器 电学式传感器是非电量电测技术中应用围较广的一种传感器,常用的有电阻式传感器、电容式传感器、电感式传感器、磁电式传感器及电涡流式传感器等。 电阻式传感器是利用变阻器将被测非电量转换为电阻信号的原理制成。电阻式传感器一般有电位器式、触点变阻式、电阻应变片式及压阻式传感器等。电阻式传感器主要用于位移、压力、力、应变、力矩、气流流速、液位和液体流量等参数的测量。 电容式传感器是利用改变电容的几何尺寸或改变介质的性质和含量,从而使电容量发生变化的原理制成。主要用于压力、位移、液位、厚度、水分含量等参数的测量。 电感式传感器是利用改变磁路几何尺寸、磁体位置来改变电感或互感的电感量或压磁效应原理制成的。主要用于位移、压力、力、振动、加速度等参数的测量。 磁电式传感器是利用电磁感应原理,把被测非电量转换成电量制成。主要用于流量、转速和位移等参数的测量。 电涡流式传感器是利用金屑在磁场中运动切割磁力线,在金属形成涡流的原理制成。主要用于位移及厚度等参数的测量。

2.磁学式传感器 磁学式传感器是利用铁磁物质的一些物理效应而制成的,主要用于位移、转矩等参数的测量。 3.光电式传感器 光电式传感器在非电量电测及自动控制技术中占有重要的地位。它是利用光电器件的光电效应和光学原理制成的,主要用于光强、光通量、位移、浓度等参数的测量。 4.电势型传感器 电势型传感器是利用热电效应、光电效应、霍尔效应等原理制成,主要用于温度、磁通、电流、速度、光强、热辐射等参数的测量。 5.电荷传感器 电荷传感器是利用压电效应原理制成的,主要用于力及加速度的测量。 6.半导体传感器 半导体传感器是利用半导体的压阻效应、光电效应、磁电效应、半导体与气体接触产生物质变化等原理制成,主要用于温度、湿度、压力、加速度、磁场和有害气体的测量。7.谐振式传感器 谐振式传感器是利用改变电或机械的固有参数来改变谐振频率的原理制成,主要用来测量压力。 8.电化学式传感器 电化学式传感器是以离子导电为基础制成,根据其电特性的形成不同,电化学传感器可分为电位式传感器、电导式传感器、电量式传感器、极谱式传感器和电解式传感器等。电化学式传感器主要用于分析气体、液体或溶于液体的固体成分、液体的酸碱度、电导率及氧化还原电位等参数的测量。

温度传感器实验

实验二(2)温度传感器实验 实验时间 实验编号 无 同组同学 邓奡 一、实验目的 1、了解各种温度传感器(热电偶、铂热电阻、PN 结温敏二极管、半导体热敏电阻、集成温度传感器)的测温原理; 2、掌握热电偶的冷端补偿原理; 3、掌握热电偶的标定过程; 4、了解各种温度传感器的性能特点并比较上述几种传感器的性能。 二、实验原理 1、热电偶测温原理 由两根不同质的导体熔接而成的,其形成的闭合回路叫做热电回路,当两端处于不同温度时回路产生一定的电流,这表明电路中有电势产生,此电势即为热电势。 试验中使用两种热电偶:镍铬—镍硅(K 分度)、镍铬—铜镍(E 分度)。图所示为热电偶的工作原理,图中:T 为热端,0T 为冷端,热电势为 )()(0T E T E E AB AB t -=。

热电偶冷端温度不为0℃时(下式中的1T ),需对所测热电势进行修正,修正公式为:),(),(),(0110T T E T T E T T E +=,即: 实际电动势+测量所得电动势+温度修正电势 对热电偶进行标定时,以K 分度热电偶作为标准热电偶来校准E 分度热电偶。 2、铂热电阻 铂热电阻的阻值与温度的关系近似线性,当温度在C 650T C 0?≤≤?时, )1(20BT AT R R T ++=, 式中:T R ——铂热电阻在T ℃时的电阻值 0R ——铂热电阻在0℃时的电阻值 A ——系数(=C ??/103.96847-31) B ——系数(=C ??/105.847--71) 3、PN 结温敏二极管

半导体PN 结具有良好的温度线性,PN 结特性表达公式为: γln be e kT U = ?, 式中,γ为与PN 结结构相关的常数; k 为波尔兹曼常数,K J /1038.1k 23-?=; e 为电子电荷量,C 1910602.1e -?=; T 为被测物体的热力学温度(K )。 当一个PN 结制成后,当其正向电流保持不变时,PN 结正向压降随温度的变化近似于线性,大约以2mV/℃的斜率随温度下降,利用PN 结的这一特性可以进行温度的测量。 4、热敏电阻 热敏电阻是利用半导体的电阻值随温度升高而急剧下降这一特性制成的热敏元件,灵敏度高,可以测量小于℃的温差变化。 热敏电阻分为正温度系数热敏电阻PTC 、负温度系数热敏电阻NTC 和在某一特定温度下电阻值发生突然变化的临界温度电阻器CTR 。 实验中使用NTC ,热敏电阻的阻值与温度的关系近似符合指数规律,为: )11(00 e T T B t R R -=。式中: T 为被测温度(K),16.273t +=T 0T 为参考温度(K),16.27300+=t T T R 为温度T 时热敏电阻的阻值 0R 为温度0T 时热敏电阻的阻值

第14课 电子温度计——温度传感器

第14课电子温度计——温度传感器 【教材分析】 本课的教学内容主要分为两大部分:首先是温度传感器及其应用,以多功能电子钟还能显示温度为切入点,进而认识温度传感器及其典型应用。其次简单介绍湿度传感器及相对湿度数据,了解日常生活中各类环境适宜的相对湿度数据范围。本课的重点是温度传感器及其应用。 【学情分析】 学生对温度的认识具有一定的生活经验,对冰箱、电子体温计等装有温度传感器的产品有所体验,但对温度传感器本身比较陌生。 【教学目标与要求】 1. 知识与技能 (1)了解温度的概念及温度计的原理,认识温度传感器,了解其应用; (2)设计制作温度测量表格; (3)动手搭建创作出外形新颖、方便实用的温度计。 2. 过程与方法 (1)通过教师提出的问题,理解温度计的原理,了解温度传感器及其应用; (2)连接电子模块,完成温度计的制作,设计制作温度测量表格; (3)应用比特造型模块,创意设计出造型各异的温度计外形; (4)围绕作品的创意,用途等方面进行说明和展示(5W+1H)。 3. 情感、态度与价值观 (1)温度计外形的设计,培养发散思维,提高创新能力,审美能力; (2)通过模块的组建、拼装,培养动手能力; (3)小组为单位的学习过程,提高团队意识,培养人际交往和沟通能力; (4)作品的描述展示,设计理念和功能说明,培养演讲演示能力,提高自信心。 4. 行为与创新 勇于反思、敢于突破,在实验中打破常规。 【教学重点与难点】 重点:发挥想象力和创造力,团队合作,设计温度计外形,组建模块,完成

温度计的制作。 难点:设计制作漂亮且实用的作品。 【教学方法与手段】 分析法:学生通过观察、思考和交流分析来解惑、释疑。 验证法:在验证对比中发现问题并寻找背后原因。 【课时安排】 安排1课时。 【教学准备】 PPT课件,图片,比特造型模块,比特电子模块。 【教学过程】 一、话题导入,响指一声,顺利揭题 师:老师想知道教室现在的温度,你们有没有办法? 生答:可以使用温度计。 师:老师这里正好有一个温度计,请同学来帮我读一读。你能说完整吗?(学生纠正其温度完整性:一定要读成多少摄氏度) 师:谢谢你,帮助顾老师解决了一个问题,那么你刚才读出的温度能代表我们江阴的气温吗?可以代表今天一天的气温吗? 生答。 师:是啊,一般情况下,我们都是使用这样的温度计来测量温度的。而温度计从古到今也经历了不同的发展历程(屏显各个不同时期的温度计)。如今有越来越高级的温度计出现在我们的生活中。看!现在我请一位同学来给我们做个实验。(拍手或打个响指)看,有没有奇迹发生了?那么这个数据代表了什么? 生答。 师:我们只要一拍手、一打响指就可以显示教室内的温度,你们说它听话吗? 师:(揭题)今天就来学习制作听话的数字温度计(板书)。 【设计意图】开门见山地引入气温的话题,让同学们看温度计上的读数来温故有关温度的科学知识。响指一声,引出今天所要学习的知识:听话的数字温度计。其中我强调了温度表述的完整性,这种科学性的表述是一贯而之的。在揭题之前,渲染了“见证奇迹”氛围,激起了学生的学习兴趣。

传感器心得体会

传感器心得体会

传感器心得体会 【篇一:传感器实验总结】 《传感器及检测技术》教学实践工作总结 本学期,担任《传感器及检测技术》课程的理论和实践教学内容。本课程的实践教学主要是教学实验,在全体同学的大力配合下,比较圆满的完成了实践教学任务,达到了实验的预期目的。现将此课程的实践教学工作总结如下: 1、实验计划的制定 为更好的完成实践教学环节,使学生能够真正的在实践环节学到更多的东西,在学期初我就认真研究教材内容和教学大纲要求,针对教学内容和学生特点制定了详细的实验安排,并与实验室老师进行了认真的沟通,充分做好教学实践前的各项准备工作。 2、注重理论和实践的结合 每讲授一段内容,就组织同学们做一次实验,让学生把课堂上获得的理论知识及时的得到验证和应用,从而加深对所学内容的理解。同时鼓励同学们利用课余时间多到实验室做一些创造性的实验,提高他们的知识迁移能力和思维能力。 3、实验过程的安排 (1)每次实验前,提前下达实验任务,让学生做好实验前的各种准备工作。由班长做好分组工作,每组指定一名组长,实行组长负责制,负责本组的组织和协调工作,。 (2)进实验室时,讲清实验室纪律,不得随意摆弄实验用品,要严格遵守实验章程,在老师的指导下进行各种实验。

(3)实验过程中,认真抓好学生的纪律,不得无故迟到、早退,杜绝做与实验无关的事情。实验过程中教师要不断巡 视及时发现学生们遇到的各种问题,并给与指导或启发。尽量多鼓励、少批评,培养学生的自信心,提高学生学习的积极性。 (4)实验完毕,及时清查实验物品,并督促学生摆放好实验物品,做到物归原位。另外,每组展示实验成果,并派代表做出总结,谈谈实验中遇到的各种问题,并说明做出了怎样的处理,有哪些收获。小组成员之间先进行互评,然后由教师作出补充,并适当给与鼓励。同时督促同学课下认真完成实验报告。 4、反思改进 在每次实验完毕后,我都把实验中发现的问题进行归纳整理,进行反思,同时向有经验的教师请教,争取在下次实践课中加以改进。 总之,这一个学期的实践教学,总的来说基本上能够按照要求保质保量的完成教学任务,但从中我也发现了一些问题,在今后的教学工作中,我会努力的改进不足的地方,争取把以后的实践教学工作做得更好。 【篇二:实验心得体会】 实验心得体会 在做测试技术的实验前,我以为不会难做,就像以前做物理实验一样, 做完实验,然后两下子就将实验报告做完.直到做完测试实验时,我才知道其实并不容易做,但学到的知识与难度成正比,使我受益匪浅. 在做实验前,一定要将课本上的知识吃透,因为这是做实验的基础,否则,在老师讲解时就会听不懂,这将使你在做实验时的难度加大,浪费做实验的宝贵时间.比如做应变片的实验,你要清楚电桥的各种接法,如果你不清楚,在做实验时才去摸索,这将使你极大地浪费时间,使你事倍功半.做实验时,一定要亲力亲为,务必要将每个步骤,每个细节弄清楚,弄

通用技术认识传感器课件及其教案

通用技术《认识传感器》课件及其教案 选修 选修1:电子控制技术 电子控制技术是一门运用电子电路实现信息或能量改变的技术。本模块提供了学习设计和制作电子控制系统的机会,以使学生接触和尝试解决更具有趣味、更富有价值的技术问题。 本模块由“传感器”“数字电路”“电磁继电器”和“电子控制系统及其应用”四个主题组成。前面三个主题分别阐述电子控制系统的三个组成部分,突出各个组成部分的作用。第四个主题是将前三个主题组合成一个控制系统,并通过应用性设计,对“技术与设计1”和“技术与设计2”内容进行应用、综合和拓展。 通过本模块的学习,学生应该了解电子控制电路的构成,知道数字电路的基础知识及其在电子控制技术中的应用;学会设计和安装电子控制电路,能运用系统的方法分析电子控制的过程和可能发生的故障,并用试验的方法进行优化,以提高解决实际技术问题的能力。 教学中应密切结合学生的生活经验和典型实例,把重点放在电子控制电路的实际运用和改进上,强调综合运用系统和控制的方法,分析和解决设计中遇到的问题。 (一) 传感器 【课程目标】 1.认识常见的传感器,能用多用电表检测传感器。 2.知道传感器的作用及其应用。 【学习要求】 1.能认识常见传感器的实物外形和电路符号。 2.能使用多用电表检测光敏传感器、热敏传感器等常见传感器。 3.知道传感器的作用和应用。 【教学建议】 1.在教学中,应尽量收集多种传感器实物,让学生从外形上认识常见的传感器。 2.在教学中,可通过人体的感觉器官与传感器的对应类比,引入并认识传感器的特性。 3.在传感器的应用案例教学中,可通过实地观察、调查、咨询、查阅产品说明书或有关的技术资料等多种方式,了解各种传感器在生活、生产、军事等方面的应用,分析它在电子控制系统中的作用。如:热敏传感器可以在自动电饭锅、冰箱等电器中用来控制温度。 (二) 数字电路 【课程目标】 1.通过比较数字信号和模拟信号,了解数字信号的特性,知道数字信号的优点。 2.知道数字信号中“1”和“0”的意义,了解数字电路是一种能够方便地处理“1”和“0”两种状态的电路。 3.了解晶体三极管的开关特性及其在数字电路中的应用。 4.熟悉与门、或门和非门等三种基本逻辑门的电路符号及各自的逻辑关系,会填写它们的真值表,能画出波形图。 5.知道与非门、或非门的电路符号及各自的逻辑关系,会填写它们的真值表,能画出波形图。 6.知道常见的数字集成电路的类型,并能用数字集成电路安装简单的实用电路装置。 7.能够对数字电路进行简单的组合设计和制作,并进行试验。 【学习要求】 1.通过比较数字信号和模拟信号,了解数字信号的特性,知道数字信号中“1”和“0”

实验五 温度传感器特性试验

实验五温度传感器特性试验 5.1、 Cu50温度传感器的温度特性实验 一、实验目的:了解Cu50温度传感器的特性与应用。 二、基本原理:在一些测量精度要求不高且温度较低的场合,一般采用铜电阻,可用来测量-50oC~+150oC的温度。铜电阻有下列优点: 2在上述温度范围内,铜的电阻与温度呈线性关系 R t = R (1+at) 4电阻温度系数高,a = 4.25~4.28×10-3/oC 6容易提纯,价格便宜 三、需用器件与单元:K型热电偶、Cu50热电阻、YL系列温度测量控制仪、直流电源±15V、温度传感器实验模块、数显单元(主控台电压表)、万用表。 四、实验步骤: 1、差动电路调零 将温度测量控制仪上的220V电源线插入主控箱两侧配备的220V控制电源插座上。首先对温度传感器实验模块的三运放测量电路和后续的反相放大电路调 零。具体方法是把R 5和R 6 的两个输入点短接并接地,然后调节Rw 2 使V 01 的输出电压 为零,再调节Rw 3,使V 02 的输出电压为零,此后Rw 2 和Rw 3 不再调节。 2、温控仪表的使用 注意:首先根据温控仪表型号,仔细阅读“温控仪表操作说明”,(见附录一)学会基本参数设定(出厂时已设定完毕)。 3、热电偶的安装 选择控制方式为内控方式,将K型热电偶温度感应探头插入“YL系列温度测量控制仪”的上方两个传感器放置孔中的一个。将K型热电偶自由端引线插入“YL 系列温度测量控制仪”正前方面板的的“传感器”插孔中,红线为正极。 4、热电阻的安装及室温调零 将Cu50热电阻传感器探头插入加热源的另一个插孔中,尾部红色线为正端,插入实验模块的a端,其它两端相连插入b端,见图11-1,a端接电源+2V,b端与差动运算放大器的一端相接,桥路的R W1 另一端和差动运算放大器的另一端相接 (R2=50欧姆)。模块的输出V 02 与主控台数显表相连,连接好电源及地线,合上 主控台电源,调节Rw 1 ,使数显表显示为零(此时温度测量控制仪电源关闭)。

带你认识基本的传感器特性参数

带你认识基本的传感器 特性参数 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

带你认识基本的传感器特性参数 传感器的关键性能参数有多种,其中最为基本的有:量程、灵敏度、线性度、迟滞、重复性、精度、分辨率、零点漂移、带宽,本文将对这些参数进行一一介绍。 量程 每个传感器都有自身的测量范围,被测量处在这个范围内时,传感器的输出信号才是有一定的准确性的。 传感器的量程X FS、满量程输出值Y FS、测量上限X max、测量下限X min的关系见下图。 灵敏度 传感器的灵敏度是指其输出变化量ΔY与输入变化量ΔX的比值,可以用k表示。对于一个线性度非常高的传感器来说,也可认为等于其满量程输出值Y FS与量程X FS的比值。灵敏度高通常意味着传感器的信噪比高,这将会方便信号的传递、调理及计算。 k=ΔY ΔX 线性度 传感器的线性度又称非线性误差,是指传感器的输出与输入之间的线性程度。理想的传感器输入-输出关系应该是程线性的,这样使用起来才最为方便。但实际中的传感器都不具备这种特性,只是不同程度的接近这种线性关系。 实际中有些传感器的输入-输出关系非常接近线性,在其量程范围内可以直接用一条直线来拟合其输入-输出关系。有些传感器则有很大的偏离,但通过进

行非线性补偿、差动使用等方式,也可以在工作点附近一定的范围内用直线来拟合其输入-输出关系。 选取拟合直线的方法很多,上图表示的是用最小二乘法求得的拟合直线,这是拟合精度最高的一种方法。实际特性曲线与拟合直线之间的偏差称之为传感器的非线性误差δ,其最大值与满量程输出值Y FS的比值即为线性度γL。 γL=± δ Y FS ×100% 迟滞 当输入量从小变大或从大变小时,所得到的传感器输出曲线通常是不重合的。也就是说,对于同样大小的输入信号,当传感器处于正行程或反行程时,其输出值是不一样大的,会有一个差值ΔH,这种现象称为传感器的迟滞。 产生迟滞现象的主要原因包括传感器敏感元件的材料特性、机械结构特性等,例如运动部件的摩擦、传动机构间隙、磁性敏感元件的磁滞等等。迟滞误差γH的具体数值一般由实验方法得到,用正反行程最大输出差值ΔH max的一半对其满量程输出值Y FS的比值来表示。 γH=±H max 2Y FS ×100% 重复性 一个传感器即便是在工作条件不变的情况下,若其输入量连续多次地按同一方向(从小到大或从大到小)做满量程变化,所得到的输出曲线也是会有不同的,可以用重复性误差γR来表示。 重复性误差是一种随机误差,常用正行程或反行程中的最大偏差ΔY max的一半对其满量程输出值Y FS的比值来表示。 γR=±Y max 2Y FS ×100%

温度传感器实验报告

温度传感器实验报告文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

温度传感器实验报告 一、 实验目的: 1、了解各种电阻的特性与应用 2、了解温度传感器的基本原理与应用 二、 实验器材 传感器特性综合实验仪 温度控制单元 温度模块 万用表 导线等 三、 实验步骤 1、AD590温度特性 (1)、将主控箱上总电源关闭,把主控箱中温度检测与控制单元中的恒流加热电源输出与温度模块中的恒流输入连接起来。 (2)、将温度模块中的温控Pt100与主控箱的Pt100输入连接起来。 (3)、将温度模块中左上角的AD590接到传感器特性综合实验仪电路模块的a 、b 上(正端接a ,负端接b ),再将b 、d 连接起来,接成分压测量形式。 (4)、将主控箱的+5V 电源接入a 和地之间。 (5)、将d 和地与主控箱的电压表输入端相连(即测量1K 电阻两端的电压)。 (6)、开启主电源,改变温度控制器的SV 窗口的温度设置,以后每隔C 0 10设定一次,即Δt=C 0 10,读取数显表值,将结果填入下表: 由于我们使用的是AD590温度集成模块,里面已经设置有如下关系:273+t=I (t 为AD590设定温度),因此可得测量温度与设定温度对照表如下:

通过上表可清楚地看出之间的误差。 四、实验中应注意的事项 1、加热器温度不能太高,控制在120℃以下,否则将可能损坏加热器。 2、采用放大电路测量时注意要调零。 3、在测量AD590时,不要将AD590的+、-端接反,因为反向电压输出数值是错误的,而且可能击穿AD590。 五、实验总结 从这个实验中使我充分认识了AD590、PTC、NTC和PT100的温度特性和应用原理,学会了如何制作简单的温度计,也意识到了这些电阻由于会随温度而改变可以利用这一点来制作温度开关,通过温度的变化而使开关自动化,或通过改变温度而控制开关的通断。传感器这一门很新奇,我渴望学会更多的知识,看到更多稀奇的东西,学好传感器这一门学科,与其他学科知识相结合,提升自己的能力,希望有一天我能亲自开发出更有用、更先进的传感器。

传感器认识

通过对传感器与执行器工程学课程的学习以及阅读相关书籍资料,我对这门学科有了一定的了解。它是一门综合性的技术基础学科,需要数学、物理学、电子学、力学、机械等相关知识。传感器应用极其广泛,而且种类繁多,这一个学期的学习让我基本了解了传感器的基本概念及传感器的静、动态特性电阻式、电容式、电感式、压电式、热电式、磁敏式、光电式传感器与光纤传感器的结构、工作原理及应用。 传感器的特性主要是指输出与输入之间的关系。当输入量为常量或变化很慢时,其关系为静态特性。当输入量随时间变换较快时,其关系为动态特性。 传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征传感器静态特性的主要参数有:线性度、灵敏度、迟滞、重复性、漂移等 所谓动态特性,是指传感器在输入变化时,它的输出的特性。在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。 传感器的作用主要是感受和响应规定的被测量,并按一定规律将其转换成有用输出,特别是完成非电量到电量的转换。传感器的组成并无严格的规定。 我们所研究的课题主要是跟盾构机相关。我们平时研究工作中应用的数据都是由企业人员或者我们自己去工作现场利用传感器测出。由于入学的时间有限,目前我所接触的科研项目尚未涉及到太多的传感器内容,只是最近教研室新添了一些不同量程的测力传感器。这些传感器通过无限网关以及节点来进行数据传输,不过需要人工进行标定。在标定的过程中,我们发现测量误差很大,我们分析是由于标定过程中的实物质量远远小于传感器的量程的原因。

市场上常见的压力传感器的种类及原理分析

市场上常见的压力传感器的种类及原理分析 什么是压力传感器呢?压力传感器是指将接收的气体、液体等压力信号转变成标准的电流信号(4~20mADC),以供给指示报警仪、记录仪、调节器等二次仪表进行测量、指示和过程调节的元器件。它主要是由测压元件传感器、测量电路和过程连接件等组成的(进气压力传感器)。 那么压力传感器的种类有哪些呢?就目前市场而言,压力传感器一般有差压传感器、绝压传感器、表压传感器,静态压力传感器和动态压力传感器。对于这几者之间的关系,我们可以这样定义定义:差压是两个实际压力的差,当差压中一个实际压力为大气压时,差压就是表压力。绝压是实际压力,而有意义的是表压力,表压力=绝压-大气压力。静态压力是管道内流体不流动时的压力。动态压力可以简单理解为管道内流体流动后发生的压力。 根据不同的方式压力传感器的种类也不尽相同。小编通过搜集整理资料,将与压力传感器的种类相关的知识做如下介绍,下面我们来看具体分析。 1.扩散硅压力传感器 扩散硅压力传感器工作原理是被测介质的压力直接作用于传感器的膜片上(不锈钢或陶瓷),使膜片产生与介质压力成正比的微位移,使传感器的电阻值发生变化,和用电子线路检测这一变化,并转换输出一个对应于这一压力的标准测量信号。 扩散硅压力传感器原理图 2.压电式压力传感器 (1)压电式压力传感器原理 压电式压力传感器原理基于压电效应。压电效应是某些电介质在沿一定方向上受到外力的作用而变形时,其内部会产生极化现象,同时在它的两个相对表面上出现正负相反的电荷。当外力去掉后,它又会恢复到不带电的状态,这种现象称为正压电效应。当作用力的方向改变时,电荷的极性也随之改变。相反,当在电介质的极化方向上施加电场,这些电介质也会发生变形,电场去掉后,电介质的变形随之消失,这种现象称为逆压电效应。 (2)压电式压力传感器的种类与应用 压电式压力传感器的种类和型号繁多,按弹性敏感元件和受力机构的形式可分为膜片式和活塞式两类。膜片式主要由本体、膜片和压电元件组成。压电元件支撑于本体上,由膜片将被测压力传递给压电元件,再由压电元件输出与被测压力成一定关系的电信号。这种传感器的特点是体积小、动态特性好、耐高温等。 现代测量技术对传感器的性能出越来越高的要求。例如用压力传感器测量绘制内燃机示功图,在测量中不允许用水冷却,并要求传感器能耐高温和体积小。压电材料最适合于研制这种压力传感器。石英是一种非常好的压电材料,压电效

温度传感器实验报告

温度传感器实验报告 Prepared on 22 November 2020

温度传感器实验报告 一、 实验目的: 1、了解各种电阻的特性与应用 2、了解温度传感器的基本原理与应用 二、 实验器材 传感器特性综合实验仪 温度控制单元 温度模块 万用表 导线等 三、 实验步骤 1、AD590温度特性 (1)、将主控箱上总电源关闭,把主控箱中温度检测与控制单元中的恒流加热电源输出与温度模块中的恒流输入连接起来。 (2)、将温度模块中的温控Pt100与主控箱的Pt100输入连接起来。 (3)、将温度模块中左上角的AD590接到传感器特性综合实验仪电路模块的a 、b 上(正端接a ,负端接b ),再将b 、d 连接起来,接成分压测量形式。 (4)、将主控箱的+5V 电源接入a 和地之间。 (5)、将d 和地与主控箱的电压表输入端相连(即测量1K 电阻两端的电压)。 (6)、开启主电源,改变温度控制器的SV 窗口的温度设置,以后每隔C 010设定一C 010 由于我们使用的是AD590温度集成模块,里面已经设置有如下关系:273+t=I (t 为AD590设定温度),因此可得测量温度与设定温度对照表如下:

通过上表可清楚地看出之间的误差。 四、实验中应注意的事项 1、加热器温度不能太高,控制在120℃以下,否则将可能损坏加热器。 2、采用放大电路测量时注意要调零。 3、在测量AD590时,不要将AD590的+、-端接反,因为反向电压输出数值是错误的,而且可能击穿AD590。 五、实验总结 从这个实验中使我充分认识了AD590、PTC、NTC和PT100的温度特性和应用原理,学会了如何制作简单的温度计,也意识到了这些电阻由于会随温度而改变可以利用这一点来制作温度开关,通过温度的变化而使开关自动化,或通过改变温度而控制开关的通断。传感器这一门很新奇,我渴望学会更多的知识,看到更多稀奇的东西,学好传感器这一门学科,与其他学科知识相结合,提升自己的能力,希望有一天我能亲自开发出更有用、更先进的传感器。

对位移传感器的认识

对位移传感器的认识 桥梁试验是指应用测试手段,对桥梁结构的整体或主要部件进行检测,了解桥梁结构及其部件的工作状态和承载能力,以验证桥梁结构的设计计算理论,检验施工质量和发现运用中存在的问题等。 桥梁试验用的设备可分为机械式测试仪器,电测仪器和光测仪器三大类。桥梁常使用的机械式测试仪器,主要有应变计、位移计和振动仪等三大类。电测仪器一般由传感器、电子测量仪器(主机)和指示记录装置组成。 一,概述 传感器。根据其测试内容的不同,可分为应变传感器、反力传感器、位移传感器、振动传感器等。根据其转换的原理不同,可分为电阻式传感器、电感式传感器、电容式传感器、磁电式传感器、压电式传感器等。其中电阻应变片是在桥梁电测中应用最广泛的一种传感器,它是利用一些金属丝的电阻随其在长度方向的应变,在一定范围内保持线性关系的原理制成的。为了增大电阻的变化量和减少应变片的长度,通常采用高电阻率的电阻丝绕制成栅状,做成应变片。测试时,把它牢固地粘贴在测点上,当测点处的基材发生应变时,电阻应变片随之发生应变,其电阻值也作相应的改变,这就达到了非电量向电量的转换。电阻应变片不但可以测量应变,而且在加上一些附件之后,可以对位移和振动等进行测量。 位移传感器又称为线性传感器,它分为电感式位移传感器,电容式位移传感器,光电式位移传感器,位移传感器超声波式位移传感器,霍尔式位移传感器。电感式位移传感器是一种属于金属感应的线性器件,接通电源后,在开关的感应面将产生一个交变磁场,当金属物体接近此感应面时,金属中则产生涡流而吸取了振荡器的能量,使振荡器输出幅度线性衰减,然后根据衰减量的变化来完成无接触检测物体的目的。 二,各种传感器的特点 电感式位移传感器具有无滑动触点,工作时不受灰尘等非金属因素的影响,并且低功耗,长寿命,可使用在各种恶劣条件下。位移传感器主要应用在自动化装备生产线对模拟量的智能控制。 光电式位移传感器利用激光三角反射法进行测量,对被测物体材质没有任何要求,主要影响为环境光强和被测面是否平整。比如公路测量用到真尚有的激光位移传感器,就对传感器进行了特殊配置,与普通情况不一样。 位移是和物体的位置在运动过程中的移动有关的量,位移的测量方式所涉及的范围是相当广泛的。小位移通常用应变式、电感式、差动变压器式、涡流式、霍尔传感器来检测,大的位移常用感应同步器、光栅、容栅、磁栅等传感技术来测量。其中光栅传感器因具有易实现数字化、精度高(目前分辨率最高的可达到纳米级)、抗干扰能力强、没有人为读数误差、安装方便、使用可靠等优点,在机床加工、检测仪表等行业中得到日益广泛的应用。 三,辨向原理 在实际应用中,位移具有两个方向,即选定一个方向后,位移有正负之分,因此用一个光电元件测定莫尔条纹信号确定不了位移方向。为了辨向,需要有π/2相位差的两个莫尔条纹信号。如图2,在相距1/4条纹间距的位置上安放两个光电元件,得到两个相位差π/2的电信号u01和u02,经过整形后得到两个方

认识常见传感器

认识常见传感器 教学目标: 1.让学生认识常见传感器,并知道其作用。 2.让学生会用万用表检测传感器的好坏。 教学重点: 1.传感器及其作用的认识。 2.万用表检测传感器的好坏。 教学难点: 1.理解传感器的作用。 2.万用表检测传感器的好坏。 教学过程: (一)新课导入:让学生观看真人版忍者切水果视频。 教师问:怎么能将真人切西瓜的动作导入到游戏中? 老师回答今天将要学习的传感器就能实现这种功能。 (二)人与传感器 案例一:天气预报图, 教师问:你们事前和当时是怎么获得气温信息的? 学生答:事前通过看天气预报,当天则是通过皮肤感觉。 师生共同总结:在事前是通过眼睛观察天气预报知道将要降温,并将这个信息传给大脑进行处理。在降温那天,是通过自己的皮肤感觉到降温,并将这个信息传给大脑进行处理。 教师总结:从天气预报这个案例可以知道人体上有很多传感器。这些传感器和电子控制系统中的传感器具有功能相似性。例如——人体中耳朵的作用就是获得外界的声音信号,并将它转换成大脑能够处理的脑电波信号,给大脑处理,作出相应的反映。与此相似的声敏传感器将外界的声音信号转换为电子电路能够处理的电信号。 学生通过看书、连线等方式说出人体与传感器的一一对应的关系。 (三)传感器 (1)传感器的定义:传感器是将非电量转换为与之有确定对应关系的电量

输出的一种装置。 (2)传感器组成:传感器一般由敏感元件和输出部分组成,通过敏感元件获取外界信息并转换为电信号,通过输出部分输出。以磁敏传感器干簧管为例,说明传感器的组成。 (3)传感器作用:在电子控制系统中,传感器是必不可少的元件,是电子控制系统获取外部信息的唯一途径。 传感器是电子控制系统中的输入部分。传感器的作用就是获得外界信息,并将这些物理信号转换成电子电路能够处理的电信号。这些物理量包括角度、位移、速度、压力、温度、湿度、声强、光强等。电信号包括电压、电流、电阻、电容等。传感器是两者转换的媒介。 (4)传感器分类:按照传感器所获取信息的物理量进行分类可以分为1光敏传感器(光敏电阻、红外线传感器、光敏二极管、光敏三极管、光电池、半导体图像传感器等);2热敏传感器(热敏电阻、双金属片、热电偶、非接触式温度传感器等);3磁敏传感器(干簧管、霍尔元件、磁敏电阻、磁敏二极管、磁敏三极管);4声敏传感器;5气敏传感器;6味敏传感器;7压敏传感器;8湿敏传感器;9位移传感器。并根据获得物理量的特点说明传感器的外形特点。 介绍完传感器的分类后,让同学们根据各种传感器的外形识别七种传感器,更加巩固学生对传感器的认识。掌握常见传感器的结构图和电路符号。 通过酒精检测、自动门、倒车雷达、空调、台灯和防盗红外线一些具体的例子,来分析传感器的运用和作用,能说出各种信号之间的转换。经过这些具体例子的分析后,学生更加认识了传感器,进行知识的运用。提问饮料生产线上统计产量和排除不达标准质量的饮料运用了哪些传感器,并指出从什么信号转换成什么信号。 (四)传感器的检测 通过测量光敏传感器的电阻和电压实验学习传感器检测方面的知识。为了确定传感器的好坏,我们必须对它进行检测。在精度要求不高的检测时,通常可以用多用电表。在做实验之前,向学生讲解万用表的使用知识和注意事项。 实验: 1.画出电路图;

温度传感器的优势与劣势

温度传感器:优势和劣势 供稿:OMEGA工业测量 关键词:OMEGA,温度传感器,高精度 完美的温度传感器: ?对所测量的介质没有影响 ?非常精确 ?响应即时(在多数情况下) ?输出易于调节 不管是哪种类型的传感器,所有温度传感器都要考虑上述因素。 不管测量什么,最重要的是要确保测量设备自身不会影响所测量的介质。进行接触温度测量时,这一点尤为重要。选择正确的传感器尺寸和导线配置是重要的设计考虑因素,以减少"杆效应"及其他测量错误。 将对测量介质的影响降至最低之后,如何准确地测量介质就变得至关重要。准确性涉及传感器的基本特性、测量准确性等。如果未能解决有关"杆效应"的设计问题,再准确的传感器也无济于事。 响应时间受传感器元件质量的影响,还会受到导线的一些影响。传感器越小,响应速度越快。 YSI Temperature利用微珠技术生产出了某些响应最快的商用热敏电阻。 使用微处理器后可以更轻松地调节非线性输出,因此传感器输出的信号调节也更不成问题。YSI 4800Linearizing Circuit允许对热敏电阻的输出实施单组件线性化。 在各采购代理纷纷寻求最廉价的零件之时,工程师们却认识到了传感器"一分钱一分货"的重要性。YSI热敏电阻可为整体设计提供重要价值。

上述每种主要类型的传感器的基本操作理论都有所不同。 每种传感器的温度范围也有所不同。热电偶系列的温度范围最广,跨越多个热电偶类型。 精度取决于基本的传感器特性。所有传感器类型的精度各不相同,不过铂元件和热敏电阻的精度最高。一般而言,精度越高,价格就越高。 长期稳定性由传感器随时间的推移保持其精度的一致程度来决定。稳定性由传感器的基本物理属性决定。高温通常会降低稳定性。铂和玻璃封装的绕线式热敏电阻是最稳定的传感器。热电偶和半导体的稳定性则最差。 传感器输出依照类型而有所变化。热敏电阻的电阻变化与温度成反比,因此具有负温度系数(NTC)。铂等基金属具有正温度系数(PTC)。热电偶的千伏输出较低,并且会随着温度的变化而变化。半导体通常可以调节,附带各种数字信号输出。 线性度定义了传感器的输出在一定的温度范围内一致变化的情况。热敏电阻呈指数级非线性,低温下的灵敏度远远高于高温下的灵敏度。随着微处理器在传感器信号调节电路中的应用越来越广泛,传感器的线性度愈发不成问题。 通电后,热敏电阻和铂元件都需要恒定的电压或电流。功率调节对于控制热敏电阻或铂RTD中的自动加热至关重要。电流调节对于半导体而言不太重要。热电偶会产生电压输出。 响应时间,即传感器指示温度的速度,取决于传感器元件的尺寸和质量(假定不使用预测方法)。半导体的响应速度最慢。绕线式铂元件的响应速度是第二慢的。铂薄膜、热敏电阻和热电偶提供小包装,因此带有高速选件。玻璃微珠是响应速度最快的热敏电阻配置。 会导致温度指示有误的电噪声是使用热电偶时的一个主要问题。在某些情况下,电阻极高的热敏电阻可能是个问题。 导线电阻可能会导致热敏电阻或RTD等电阻式设备内出现错误偏差。使用低电阻设备(例如100Ω铂元件)或低电阻热敏电阻时,这种影响会更加明显。对于铂元件,使用三线或四线导线配置来消除此问题。对于热敏电阻,通常会通过提高电阻值来消除此影响。热电偶必须使用相同材料的延长线和连接器作为导线,否则可能会引发错误。 尽管热电偶是最廉价、应用最广泛的传感器,但NTC热敏电阻的性价比却往往是最高的。

相关文档
最新文档