行测数学运算:排列组合问题

行测数学运算:排列组合问题
行测数学运算:排列组合问题

行测数学运算:排列组合问题

基本知识点:

加法原理:分类用加法

乘法原理:分步用乘法排列:与顺序有关

组合:与顺序无关

排列公式:Pmn=Amn=n!(n-m)!=n×(n-1)×(n-2)×…×(n-m+1)

组合公式:Cmn=Cn-mn=Amnm!=n!m!(n-m)!=n×(n-1)×(n-2)×…×(n-m+1)m×(m-1)×(m-2)×…×1

一、基础公式型

【例1】(吉林2009乙-9)甲、乙、丙三个人到旅店住店,旅店里只有三个房间,恰好每个房间住一个人,问一共有()种住法。

A. 5

B. 6

C. 7

D. 8

[答案]B

[解析]本题等价于从3个人里挑出3个来排一个顺序:A33=6。

【例2】(陕西2008-12)在一条线段中间另有6个点,则这8个点可以构成多少条线段?()

A. 15

B. 21

C. 28

D. 36

[答案]C

[解析]本题等价于从8个点中挑出2个构成一条线段,即:C28=28。

【例3】(国家2004B类-44)把4个不同的球放入4个不同的盒子中,每个盒子放一个球,有多少种放法?()

A. 24

B. 4

C. 12

D. 10

[答案]A

[解析]本题等价于从4个球里挑出4个来排一个顺序:A44=24。

【例4】(上海2004-18)参加会议的人两两都彼此握手,有人统计共握手36次,到会共有多少人?()

A. 9

B. 10

C. 11

D. 12

[答案]A

[解析]本题等价于从N个人中挑出2个成为一个组合,即:C2N=N×(N-1)

2×1=36,解得N=9。

【例5】(国家2004A类-47)林辉在自助餐店就餐,他准备挑选三种肉类中的一种肉类,四种蔬菜中的两种不同蔬菜,以及四种点心中的一种点心。若不考虑食物的挑选次序,则他可以有多少种不同的选择方法?()

A. 4

B. 24

C. 72

D. 144

[答案]C

[解析]根据乘法原理:共有C13×C24×C14=72种不同的选择方法。

【例6】(国家2009-115)要求厨师从12种主料中挑出2种,从13种配料中挑出3种来烹饪菜肴,烹饪方式共7种,最多可做出多少道不一样的菜肴?()A. 131204 B. 132132D. 130468D. 133456

[答案]B

[解析]根据乘法原理:总共有

C212×C313×7=12×112×1×13×12×113×2×1×7=132132道不一样的菜肴。

[注释]本题的计算有很多种简便的方法,原数化简得11×13×12×11×7时可利用尾数判断;也可以利用“7×11×13=1001”来简化计算;也可以直接不计算,而利用结果是7的倍数来判断。

【例7】(山东2009-115)某单位有3名职工和6名实习生需要被分配到A、B、C三个地区进行锻炼,每个地区分配一名职工和2名实习生,则不同的分配方案有多少种? ()

A. 90

B. 180

C. 270

D. 540

[答案]D

[解析]根据乘法原理:总共有C13×C12×C11×C26×C24×C22=540种分配方案。或者,有A33×C26×A33=540。

【例8】(江苏2006A类-17)要从三男两女中安排两人周日值班,至少有一名女职员参加,有多少种不同的安排方法?()

A. 7

B. 10

C. 14

D. 20

[答案]A

[解析]随意安排两个人有C25种情况,不满足题意(即全部是安排男职员)有C23种情况,因此,至少有一名女职员参加的安排方法一共有:C25-C23=10-3=7种。

【例9】(浙江2008-18)有颜色不同的四盏灯,每次使用一盏、两盏、三盏或四盏,并按一定的秩序挂在灯杆上表示信号,问共可表示多少种不同的信号?()A. 24种 B. 48种 C. 64种 D. 72种

[答案]C

[解析]使用一、二、三、四盏灯分别有A14=4、A24=12、A34=24、A44=24种不同的信号,易得总数为64种。

【例10】(北京应届2008-16)某单位今年新进3个工作人员,可以分配到3

个部门,但是每个部门至多只能接收2个人,问共有几种不同的分配方案()。

A. 12

B. 16

C. 24

D. 以上都不对

[答案]C

[解析]总体分为两种情形:(1)如果三个部门每个部门分配一个工作人员,共有A33种分配方案;(2)如果三个部门分别分配0、1、2个工作人员,一共有C23×C13×C12种分配方案。综上,总的分配方案为:A33+C23×C13×C12=6+18=24(种)

【例11】(国家2005一类-48)从1,2,3,4,5,6,7,8,9中任意选出三个数,使它们的和为偶数,则共有多少种不同的选法?()

A. 40

B. 41

C. 44

D. 46

[答案]C

[解析]总体分为两种情形:(1)三个数都是偶数,共有C34种选法;(2)三个数两奇一偶,共有C25×C14种选法。综上,总的选法为:C34+C25×C14=44(种)。

【例12】(广东2008-14)3个单位要采购300本书,每个单位最少要订购99本,最多只能订购101本,求有几种订购方法?()

A. 6

B. 7

C. 8

D. 9

[答案]B

[解析]总体分为两种情形:(1)三个单位都是100本书,就这么1种情况;(2)三个单位分别99、100、101本书,需要进行一个全排列,有A33=6种情况。

总共有1+6=7种订购方法。

【例13】(上海2004-19)用1,2,3,4,5这五个数字组成没有重复数字的自然数,从小到大顺序排列:1,2,3,4,5,12,…,54321。其中,第206个数是多少?()

A. 313

B. 12345

C. 325

D. 371

[答案]B

[解析]由1、2、3、4、5组成的没有重复数字的一位数共有A15=5个;二位数共有A25=20个;三位数共有A35=60个;四位数共有A45=120个;至此由1、2、3、4、5组成的没有重复数字的四位以内的数共有;5+20+60+120=205个;那么第206个数是第一个由1、2、3、4、5组成的五位数,即最小的五位数12345。

二、分步计算型

【例14】(国家2008-57)一张节目表上原有3个节目,如果保持这三个节目的相对顺序不变,再添加2个新节目,有多少种安排方法?()

A. 20

B. 12

C. 6

D. 4

[答案]A

[解析]分步计算:先插第一个节目,有4种方法;再插第二个节目,有5种方法。根据乘法原理,共有不同安排方法4×5=20种。

【例15】(国家2009-107)小王忘记了朋友的手机号的最后两位数,只记得倒数第一位是奇数,则他最多要拨号多少次才能保证拨通?()

A. 90

B. 50

C. 45

D. 20

[答案]B

[解析]分步计算:先考虑最后一位,有5种可能;再考虑倒数第二位,有10种可能。根据乘法原理,共有不同组合方法5×10=50种。

【例16】(内蒙古2008-8、北京应届2006-14)某铁路线上有25个大小车站,那么应该为这条路线准备多少种不同的车票?()

A. 625

B. 600

C. 300

D. 450

[答案]B

[解析]分步计算:先考虑起点站,有25种可能;再考虑终点站,有24种可能。根据乘法原理,共有不同车票25×24=600种。

【例17】(浙江2009-51)如右图所示,圆被三条线段分成四个部分。现有红、橙、黄、绿四种涂料对这四个部分上色,假设每部分必须上色,且任意相邻两个区域不能用同一种颜色,问共有几种不相同的上色方法?()

A. 64种

B. 72种

C. 80种

D. 96种

[答案]B

[解析]分步计算:按顺序分别给1、2、3、4区域上颜色,则总共有不同的上色方法4×3×2×3=72种。

三、插空捆绑型

相邻问题——捆绑法;不邻问题——插空法。

【例18】A、B、C、D、E五个人排成一排,其中A、B两人必须站一起,共有()种排法。

A. 120

B. 72

C. 48

D. 24

[答案]C

[解析]“相邻问题”,选用捆绑法。先将A、B捆绑在一起,共有A22=2种捆

法;再用它们的整体和C、D、E在一起排,共有A44=24种排法;因此共有不同排法2×24=48种。

【例19】A、B、C、D、E五个人排成一排,其中A、B两人不站一起,共有()种排法。

A. 120

B. 72

C. 48

D. 24

[答案]B

[解析]“不邻问题”,选用插空法。先将C、D、E排成一排共有A33=6种排法;当C、D、E形成四个空时,将A、B插入,共有A24=12种排法;因此共有不同的排法6×12=72种。

四、错位排列型

错位排列问题核心提示

错位排列问题:有N封信和N个信封,则每封信都不装在自己的信封里,可能的方法的种数计作Dn,则D1=0,D2=1,D3=2,D4=9,D5=44,D6=265…(请牢牢记住前五个数)

【例20】小明给住在五个国家的五位朋友分别写一封信,这些信都装错了信封的情况共有多少种?()

A. 32

B. 44

C. 64

D. 120

[答案]B

[解析]错位排列问题D5=44。

【例21】甲、乙、丙、丁四个人站成一排,已知:甲不站在第一位,乙不站在第二位,丙不站在第三位,丁不站在第四位,则所有可能的站法数为多少种?()A. 6 B. 12 C. 9 D. 24

[答案]C

[解析]错位排列问题D4=9。

【例22】(北京社招2007-16)五个瓶子都贴了标签,其中恰好贴错了三个,则错的可能情况共有多少种?()

A. 6

B. 10

C. 12

D. 20

[答案]D

[解析]先从五个瓶子中选出三个瓶子,共有C35=10种方法;然后对这三个瓶子进行错位排列共有D3=2种方法。因此,所有可能的方法数为10×2=20种。五、重复剔除型

【例23】将6个人平均分成三组,请问一共有多少种分配的方法?()

A. 15

B. 30

C. 45

D. 90

[答案]A

[解析]我们先从6个人当中挑出两个人组成一组,有C26种情况;再从剩下的4个人当中再挑出两个人组成一组,有C24种情况;最后从剩下的2个人当中再挑出两个人组成最后一组,有C22种情况。总共有C26×C24×C22种分配方法。然而,下图示的六种情况虽然对应了上述解法的不同挑人过程,但实际上却是相同的分配方法,所以最后的结果还要剔除这些重复的情况。由于每A33=6种不同的挑法只对应同样的分配结果,所以最后答案应该为:C26×C24×C22÷A33=15(种)。

[注释]将NM个人平均分成N组,总共有CMNM×CMNM-M×…×CM2M×CMMANN

种分配方法。

【例24】(上海2005-11)某小组有四位男性和两位女性,六人围成一圈跳集体舞,不同排列方法有多少种?()

A. 720

B. 60

C. 480

D. 120

[答案]D

[解析]将六个人排成一排,共有A66=720种方法。但注意到下图显示的六种情况对应着相同的相对位置,应该将相同情况剔除。所以共有720÷6=120种方法。

[注释]N人排成一圈,有ANNN种排法。题干中的“男女”为干扰条件。

【例25】用6枚不同的珍珠串一条项链,共有多少种不同的串法?()

A. 720

B. 60 &nbs

p;C. 480 D. 120

[答案]B

[解析]本题与上题相比,区别在于“人是不能随意翻转的”,但项链是可以翻转的。如右图:如果是人围成一圈,图中是两种完全不同的情形(有左右手的区别),但如果是项链,只需要翻转一下,便能完全一致。所以所有可能的排法数还要再除以2,即A66÷6÷2=60种。

[注释] N个珍珠串成一条项链,有ANN2N种串法。

六、多人传球型

【例26】(国家2006一类-46、二类-39)四人进行篮球传接球练习,要求每人接球后再传给别人。开始由甲发球,并作为第一次传球,若第五次传球后,球又回到甲手中,则共有多少种传球方式?()

A. 60种

B. 65种

C. 70种

D. 75种

[答案]A

[解一]五次传球传回甲,中间将经过四个人,将其分为两类:

第一类:传球的过程中不经过甲,

甲→→→→→甲共有方法3×2×2×2=24种

第二类:传球的过程中经过甲,

①甲→→→甲→→甲共有方法3×2×1×3=18种

②甲→→甲→→→甲共有方法3×1×3×2=18种

根据加法原理,共有不同的传球方式24+18+18=60种。

[解二]注意:N次传球,所有可能的传法总数为3N(每次传球有3种方法)。并且第N次传回甲手中的可能性就是第N-1次不在甲手中的可能性。从表中可知,经过5次传球后,球仍回甲手的方法共有60种,故选A项。传球问题

[解二]注意:N次传球,所有可能的传法总数为3N(每次传球有3种方法)。并且第N次传回甲手中的可能性就是第N-1次不在甲手中的可能性。

从表中可知,经过5次传球后,球仍回甲手的方法共有60种,故选A项。

传球问题核心公式

N个人传M次球,记x=(N-1)MN,则与x最接近的整数为传给“非自己的某人”的方法数,与x第二接近的整数便是传给自己的方法数。

如上例之中,x=(4-1)54=60.75,最接近的整数是61,第二接近的整数是60,所以传回甲自己的方法数为60种,而传给乙(或者丙、丁)的方法数为61。

【例27】某人去A、B、C、D、E五个城市旅游,第一天去A城市,第七天到E 城市。如果他今天在某个城市,那么他第二天肯定会离开这个城市去另外一个城市。那么他一共有多少种旅游行程安排的方式?()

A. 204

B. 205

C. 819

D. 820

[答案]C

[解析]相当于五个人传六次球,根据“传球问题核心公式”:X=(5-1)65=819.2,与之最接近的是819,第二接近的是820。因此若第七天回到A城市则有820种方法,去另外一个城市则有819种方法。

七、等价转化型

【例28】从1~100当中选出3个数互不相邻,请问一共有多少种选法?()A. 142880 B. 147440 C. 608384 D. 152096

[答案]D

[解析]本题相当于在97个物件的空隙里插上3个物件(与顺序没有关系),这样构成的100个物件对应着1~100这100个数,新插进来的3个物件对应的数必然是不相邻的,将其取出必然满足题目条件。于是我们完成了一个“等价转化”。97个物件一共产生98个空隙(包括两头),98个空隙中插入3个物件一共有C398=98×97×963×2×1=98×97×16,利用尾数法,显然选D。

【例29】一名医生给三名学生打疫苗,这种疫苗必须按顺序依次注射a、b、c 三针,请问这一共九针有多少种不同的顺序?()

A. 1200

B. 1440

C. 1530

D. 1680

[答案]D

[解析]医生只需要在自己的打针顺序表上标明这三名学生的名字,譬如“甲、乙、甲、丙、甲、丙、丙、乙、乙”,那么依次注射a、b、c三针就会自动安排唯一的顺序。于是我们完成了一个“等价转化”。医生一共要打九针,在这九针当中先选出三针来给甲打,有C39=84种情况;在剩下的六针当中再选出三针给乙打,有C36=20;剩下三针就留给丙了。所以一共有84×20=1680种情况。【例30】一次射击比赛当中,6个瓷制靶子排成两列,左边挂了4个靶子,右边挂了2个靶子。射手在射击每一列的时候,必须先击碎此列尚未击碎的靶子当中的最下面一个。请问全部击碎所有6个靶子一共有多少种方法?()

A. 10种

B. 12种

C. 15种

D. 21种

[答案]C

[解析]与上题类似,我们进行“等价转化”。本题等价于在第1、2、3、4、5、6次射击中,有4次是往左射击,有2次是往右射击,确定好这6次射击的“左”与“右”之后,具体是打哪个靶就被唯一确定了。6次射击中寻找出2次往右射击应该有C26=6×52×1=15种方式。

初中排列组合公式例题.

复习排列与组合 考试内容:两个原理;排列、排列数公式;组合、组合数公式。 考试要求:1)掌握加法原理及乘法原理,并能用这两个原理分析和解决一些简单的问题。 2)理解排列、组合的意义。掌握排列数、组合数的计算公式,并能用它们解决一些简单的问题。 重点:两个原理尤其是乘法原理的应用。 难点:不重不漏。 知识要点及典型例题分析: 1.加法原理和乘法原理 两个原理是理解排列与组合的概念,推导排列数及组合数公式,分析和解决排列与组合的应用问题的基本原则和依据;完成一件事共有多少种不同方法,这是两个原理所要回答的共同问题。而两者的区别在于完成一件事可分几类办法和需要分几个步骤。 例1.书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书。 (1)若从这些书中任取一本,有多少种不同的取法? (2)若从这些书中取数学书、语文书、英语书各一本,有多少种不同的取法? (3)若从这些书中取不同的科目的书两本,有多少种不同的取法。 解:(1)由于从书架上任取一本书,就可以完成这件事,故应分类,由于有3种书,则分为3类然后依据加法原理,得到的取法种数是:3+5+6=14种。 (2)由于从书架上任取数学书、语文书、英语书各1本,需要分成3个步骤完成,据乘法原理,得到不同的取法种数是:3×5×6=90(种)。 (3)由于从书架上任取不同科目的书两本,可以有3类情况(数语各1本,数英各1本,语英各1本)而在每一类情况中又需分2个步骤才能完成。故应依据加法与乘法两个原理计算出共得到的不同的取法种数是:3×5+3×6+5×6=63(种)。 例2.已知两个集合A={1,2,3},B={a,b,c,d,e},从A到B建立映射,问可建立多少个不同的映射? 分析:首先应明确本题中的“这件事是指映射,何谓映射?即对A中的每一个元素,在B中都有唯一的元素与之对应。” 因A中有3个元素,则必须将这3个元素都在B中找到家,这件事才完成。因此,应分3个步骤,当这三个步骤全进行完,一个映射就被建立了,据乘法原理,共可建立不同的映射数目为:5×5×5=125(种)。 2.排列数与组合数的两个公式 排列数与组合数公式各有两种形式,一是连乘积的形式,这种形式主要用于计算;二是阶乘的形式,这种形式主要用于化简与证明。 连乘积的形式阶乘形式 Anm=n(n-1)(n-2)……(n-m+1) = Cnm= 例3.求证:Anm+mAnm-1=An+1m 证明:左边= ∴等式成立。 评述:这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质:n!(n+1)=(n+1)!可使变形

高中数学排列组合公式大全_高中数学排列组合重点知识.doc

高中数学排列组合公式大全_高中数学排列 组合重点知识 高中数学排列组合公式大全_高中数学排列组合重点知识 高中数学排列组合公式大全 1.排列及计算公式 从n个不同元素中,任取m(m n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n 个不同元素中取出m(m n)个元素的所有排列的个数,叫做从n 个不同元素中取出m个元素的排列数,用符号p(n,m)表示. p(n,m)=n(n-1)(n-2) (n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).

排列(Pnm(n为下标,m为上标)) Pnm=n (n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m 高中数学排列组合公式记忆口诀 加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。 两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。 排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。 不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。 关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。 高中数学排列组合重点知识 1.计数原理知识点 ①乘法原理:N=n1 n2 n3 nM (分步) ②加法原理:N=n1+n2+n3+ +nM (分类) 2. 排列(有序)与组合(无序) Anm=n(n-1)(n-2)(n-3) (n-m+1)=n!/(n-m)! Ann =n! Cnm = n!/(n-m)!m!

公务员行测必备数学公式总结(全)汇总

1.1基础数列类型 ①常数数列如7,7,7,7,7,7,7,7,…… ②等差数列如11,14,17,20,23,26,…… ③等比数列如16,24,36,54,81,…… ④周期数列如2,5,3,2,5,3,2,5,3,…… ⑤对称数列如2,5,3,0,3,5,2,…… ⑥质数数列如2,3,5,7,11,13,17 ⑦合数数列如4,6,8,9,10,12,14 注意:1既不是质数也不是合数 1.2 200以内质数表 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199 1.3 整除判定 能被2整除的数,其末尾数字是2的倍数(即偶数) 能被3整除的数,各位数字之和是3的倍数 能被5整除的数,其末尾数字是5的倍数(即5、0) 能被4整除的数,其末两位数字是4的倍数 能被8整除的数,期末三位数字是8的倍数 能被9整除的数,各位数字之和是9的倍数 能被25整除的数,其末两位数字是25的倍数

能被125整除的数,其末三位数字125的倍数 1.4 经典分解 91=7×13 111=3×37 119=7×17 133=7×19 117=9×13 143=11×13 147=7×21 153=9×17 161=7×23 171=9×19 187=11×17 209=19×11 1.5常用平方数 数字平方 1 1 2 4 3 9 4 16 5 25 6 36 7 49 8 64 9 81 10 100 11 121 12 144 13 169 14 196 15 225 16 256 17 289 18 324 19 361 20 400 21 441 22 484 23 529 24 576 25 625

高中数学排列组合公式排列组合计算公式.

排列组合公式/排列组合计算公式 排列P------和顺序有关 组合C -------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法. "排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn (两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标))

排 列 组 合 公 式 及 排 列 组 合 算 法

排列组合n选m,组合算法——0-1转换算法(巧妙算法)C++实现 知识储备 排列的定义:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示计算公式: 注意:m中取n个数,按照一定顺序排列出来,排列是有顺序的,就算已经出现过一次的几个数。只要顺序不同,就能得出一个排列的组合,例如1,2,3和1,3,2是两个组合。 组合的定义:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。 计算公式: 注意:m中取n个数,将他们组合在一起,并且顺序不用管,1,2,3和1,3,2其实是一个组合。只要组合里面数不同即可 组合算法 本算法的思路是开两个数组,一个index[n]数组,其下标0~n-1表示1到n个数,1代表的数被选中,为0则没选中。value[n]数组表示组合

的数值,作为输出之用。 ? 首先初始化,将index数组前m个元素置1,表示第一个组合为前m 个数,后面的置为0。? 然后从左到右扫描数组元素值的“10”组合,找到第一个“10”组合后将其变为?“01”组合,同时将其左边的所有“1”全部移动到数组的最左端。一起得到下一个组合(是一起得出,是一起得出,是一起得出)重复1、2步骤,当第一个“1”移动到数组的n-m的位置,即m个“1”全部移动到最右端时;即直到无法找到”10”组合,就得到了最后一个组合。 组合的个数为: 例如求5中选3的组合: 1 1 1 0 0 --1,2,3? 1 1 0 1 0 --1,2,4? 1 0 1 1 0 --1,3,4? 0 1 1 1 0 --2,3,4? 1 1 0 0 1 --1,2,5? 1 0 1 0 1 --1,3,5? 0 1 1 0 1 --2,3,5? 1 0 0 1 1 --1,4,5? 0 1 0 1 1 --2,4,5? 0 0 1 1 1 --3,4,5 代码如下:

公务员考试行测常用数学公式汇总

常用数学公式汇总 一、基础代数公式 1. 平方差公式:(a +b )×(a -b )=a 2-b 2 2. 完全平方公式:(a±b)2=a 2±2ab +b 2 完全立方公式:(a ±b )3=(a±b)(a 2μab+b 2) 3. 同底数幂相乘: a m ×a n =a m +n (m 、n 为正整数,a≠0) 同底数幂相除:a m ÷a n =a m -n (m 、n 为正整数,a≠0) a 0=1(a≠0) a -p =p a 1(a≠0,p 为正整数) 4. 等差数列: (1)s n =2)(1n a a n ?+=na 1+2 1n(n-1)d ; (2)a n =a 1+(n -1)d ; (3)n =d a a n 1-+1; (4)若a,A, b 成等差数列,则:2A =a+b ; (5)若m+n=k+i ,则:a m +a n =a k +a i ; (其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和) 5. 等比数列: (1)a n =a 1q -1; (2)s n =q q a n -11 ·1)-((q ≠1) (3)若a,G,b 成等比数列,则:G 2=ab ; (4)若m+n=k+i ,则:a m ·a n =a k ·a i ; (5)a m -a n =(m-n)d (6)n m a a =q (m-n) (其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和) 6.一元二次方程求根公式:ax 2+bx+c=a(x-x 1)(x-x 2) 其中:x 1=a ac b b 242-+-;x 2=a ac b b 242---(b 2-4ac ≥0) 根与系数的关系:x 1+x 2=-a b ,x 1·x 2=a c 二、基础几何公式 1. 三角形:不在同一直线上的三点可以构成一个三角形;三角形内角和等于180°;三角形中任两 边之和大于第三边、任两边之差小于第三边; (1)角平分线:三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角的平分线。 (2)三角形的中线:连结三角形一个顶点和它对边中点的线段叫做三角形的中线。 (3)三角形的高:三角形一个顶点到它的对边所在直线的垂线段,叫做三角形的高。 (4)三角形的中位线:连结三角形两边中点的线段,叫做三角形的中位线。 (5)内心:角平分线的交点叫做内心;内心到三角形三边的距离相等。 重心:中线的交点叫做重心;重心到每边中点的距离等于这边中线的三分之一。

排列组合公式排列组合计算公式----高中数学!

排列组合公式/排列组合计算公式 公式P是指排列,从N个元素取R个进行排列。 公式C是指组合,从N个元素取R个,不进行排列。 N-元素的总个数 R参与选择的元素个数 !-阶乘,如9!=9*8*7*6*5*4*3*2*1 从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1); 因为从n到(n-r+1)个数为n-(n-r+1)=r 举例: Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数? A1: 123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。 上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积) Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”? A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。 上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1 排列、组合的概念和公式典型例题分析 例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每

名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法? 解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法. (2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法. 点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算. 例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种? 解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出: ∴ 符合题意的不同排法共有9种. 点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型. 例3判断下列问题是排列问题还是组合问题?并计算出结果. (1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手? (2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法? (3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积? (4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法? 分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析. (1)①是排列问题,共用了封信;②是组合问题,共需握手(次). (2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法. (3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积. (4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法. 例4证明. 证明左式

排 列 组 合 公 式 及 排 列 组 合 算 法 ( 2 0 2 0 )

字符串的排列组合算法合集 全排列在笔试面试中很热门,因为它难度适中,既可以考察递归实现,又能进一步考察非递归的实现,便于区分出考生的水平。所以在百度和迅雷的校园招聘以及程序员和软件设计师的考试中都考到了,因此本文对全排列作下总结帮助大家更好的学习和理解。对本文有任何补充之处,欢迎大家指出。 首先来看看题目是如何要求的(百度迅雷校招笔试题)。一、字符串的排列 用C++写一个函数, 如 Foo(const char *str), 打印出 str 的全排列,如 abc 的全排列: abc, acb, bca, dac, cab, cba 一、全排列的递归实现 为方便起见,用123来示例下。123的全排列有123、132、213、231、312、321这六种。首先考虑213和321这二个数是如何得出的。显然这二个都是123中的1与后面两数交换得到的。然后可以将123的第二个数和每三个数交换得到132。同理可以根据213和321来得231和312。因此可以知道——全排列就是从第一个数字起每个数分别与它后面的数字交换。找到这个规律后,递归的代码就很容易写出来了: view plaincopy #includeiostream?using?namespace?std;?#includeassert.h?v oid?Permutation(char*?pStr,?char*?pBegin)?{?assert(pStr?pBe

gin);?if(*pBegin?==?'0')?printf("%s",pStr);?else?{?for(char *?pCh?=?pBegin;?*pCh?!=?'0';?pCh++)?{?swap(*pBegin,*pCh);?P ermutation(pStr,?pBegin+1);?swap(*pBegin,*pCh);?}?}?}?int?m ain(void)?{?char?str[]?=?"abc";?Permutation(str,str);?retur n?0;?}? 另外一种写法: view plaincopy --k表示当前选取到第几个数,m表示共有多少个数?void?Permutation(char*?pStr,int?k,int?m)?{?assert(pStr); ?if(k?==?m)?{?static?int?num?=?1;?--局部静态变量,用来统计全排列的个数?printf("第%d个排列t%s",num++,pStr);?}?else?{?for(int?i?=?k;?i?=?m;?i++)?{?swa p(*(pStr+k),*(pStr+i));?Permutation(pStr,?k?+?1?,?m);?swap( *(pStr+k),*(pStr+i));?}?}?}?int?main(void)?{?char?str[]?=?" abc";?Permutation(str?,?0?,?strlen(str)-1);?return?0;?}? 如果字符串中有重复字符的话,上面的那个方法肯定不会符合要求的,因此现在要想办法来去掉重复的数列。二、去掉重复的全排列的递归实现 由于全排列就是从第一个数字起每个数分别与它后面的数字交换。我们先尝试加个这样的判断——如果一个数与后面的数字相同那么这二个数就不交换了。如122,第一个数与后面交换得212、221。然后122中第二数就不用与第三个数交换了,但对212,它第二个数

公务员考试常用数学公式汇总(完整打印版)

公务员考试常用数学公式汇总(完整版) 一、基础代数公式 1. 平方差公式:(a +b )×(a -b )=a 2-b 2 2. 完全平方公式:(a±b)2=a 2±2ab +b 2 完全立方公式:(a ±b )3=(a±b)(a 2 ab+b 2) 3. 同底数幂相乘: a m ×a n =a m +n (m 、n 为正整数,a≠0) 同底数幂相除:a m ÷a n =a m -n (m 、n 为正整数,a≠0) a 0=1(a≠0) a -p = p a 1 (a≠0,p 为正整数) 4. 等差数列: (1)s n = 2)(1n a a n ?+=na 1+21 n(n-1)d ; (2)a n =a 1+(n -1)d ; (3)n = d a a n 1 -+1; (4)若a,A,b 成等差数列,则:2A =a+b ; (5)若m+n=k+i ,则:a m +a n =a k +a i ; (其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和) 5. 等比数列: (1)a n =a 1q -1; (2)s n =q q a n -11 ·1) -((q ≠1) (3)若a,G,b 成等比数列,则:G 2=ab ; (4)若m+n=k+i ,则:a m ·a n =a k ·a i ; (5)a m -a n =(m-n)d (6)n m a a =q (m-n) (其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和) 6.一元二次方程求根公式:ax 2+bx+c=a(x-x 1)(x-x 2) 其中:x 1=a ac b b 242-+-;x 2=a ac b b 242---(b 2-4a c ≥0) 根与系数的关系:x 1+x 2=-a b ,x 1·x 2=a c 二、基础几何公式 1. 三角形:不在同一直线上的三点可以构成一个三角形;三角形内角和等于180°;三角形中任两 边之和大于第三边、任两边之差小于第三边; (1)角平分线:三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角的平分线。 (2)三角形的中线:连结三角形一个顶点和它对边中点的线段叫做三角形的中线。 (3)三角形的高:三角形一个顶点到它的对边所在直线的垂线段,叫做三角形的高。 (4)三角形的中位线:连结三角形两边中点的线段,叫做三角形的中位线。 (5)内心:角平分线的交点叫做内心;内心到三角形三边的距离相等。 重心:中线的交点叫做重心;重心到每边中点的距离等于这边中线的三分之一。 垂线:高线的交点叫做垂线;三角形的一个顶点与垂心连线必垂直于对边。 外心:三角形三边的垂直平分线的交点,叫做三角形的

排列组合的数学公式

排列组合的数学公式 排列组合的数学公式 1. 排列及计算公式从n 个不同元素中,任取m(m≤n) 个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m 个宝鸡博瀚教 育元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m) 表示. p(n,m)=n(n-1)(n- 2) ...... (n -m+1)= n!/(n-m)!( 规定 0!=1). 2. 组合及计算公式 从n 个不同元素中,任取m(m≤n) 个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不 同元素中取出m(m≤n) 个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3. 其他排列与组合公式 从n 个元素中取出r 个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.

n 个元素被分成k 类,每类的个数分别是n1,n2,...nk 这 n 个元素的全排列数为n!/(n1!*n2!*...*nk!). k 类元素, 每类的个数无限, 从中取出m 个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1)(n- m+1);Pnm=n!/(n-m)!(注:是阶乘符号);Pnn(两个n 分别为上标和下标) =n!;0!=1;Pn1(n 为下标1 为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n 分别为上标和下标) =1 ;Cn1(n 为下标 1 为上标)=n;Cnm=Cnn-m 排列组合的数学解题技巧 1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。 2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。 3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。 4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

排列组合公式

排列组合公式 1.分类计数原理(加法原理) 12n N m m m =+++ . 2.分步计数原理(乘法原理) 12n N m m m =??? . 3.排列数公式 m n A =)1()1(+--m n n n =!! )(m n n -.(n ,m ∈N*,且m n ≤). 注:规定1!0=. 4.排列恒等式 (1)1 (1)m m n n A n m A -=-+; (2) 1 m m n n n A A n m -= -; (3) 1 1m m n n A nA --=; (4)11n n n n n n nA A A ++=-; (5)11m m m n n n A A mA -+=+. (6) 1!22!33!!(1)!1n n n +?+?++?=+- . 5.组合数公式 m n C =m n m m A A =m m n n n ???+-- 21)1()1(=!!!)(m n m n -?(n ∈N*,m N ∈,且m n ≤). 6.组合数的两个性质 (1)m n C =m n n C - ; (2) m n C +1-m n C =m n C 1+. 注:规定 10 =n C . 7.组合恒等式 (1) 1 1m m n n n m C C m --+= ;

(2) 1 m m n n n C C n m -= -; (3) 1 1m m n n n C C m --= ; (4)∑=n r r n C =n 2; (5) 1121++++=++++r n r n r r r r r r C C C C C . (6)n n n r n n n n C C C C C 2210=++++++ . (7)14205312-+++=+++n n n n n n n C C C C C C . (8)1321232-=++++n n n n n n n nC C C C . (9) r n m r n r m n r m n r m C C C C C C C +-=+++0110 . (10)n n n n n n n C C C C C 22222120)()()()(=++++ . 8.排列数与组合数的关系 m m n n A m C =?! . 9.单条件排列 以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位” ①某(特)元必在某位有11--m n A 种; ②某(特)元不在某位有11---m n m n A A (补集思想)1 111---=m n n A A (着眼位置)1 1111----+=m n m m n A A A (着眼元素)种. (2)紧贴与插空(即相邻与不相邻) ①定位紧贴:)(n m k k ≤≤个元在固定位的排列有k m k n k k A A --种. ②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有k k k n k n A A 1 1+-+-种. 注:此类问题常用捆绑法; ③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的 一组互不能挨近的所有排列数有 k h h h A A 1+种. (3)两组元素各相同的插空

公务员考试常用数学公式汇总(完整打印版)

公务员考试常用数学公式汇总(完整版) 一、基础代数公式 1. 平方差公式:(a +b )3(a -b )=a 2-b 2 2. 完全平方公式:(a±b)2=a 2±2ab +b 2 完全立方公式:(a ±b )3=(a±b)(a 2 ab+b 2) 3. 同底数幂相乘: a m 3a n =a m +n (m 、n 为正整数,a≠0) 同底数幂相除:a m ÷a n =a m -n (m 、n 为正整数,a≠0) a 0=1(a≠0) a -p = p a 1 (a≠0,p 为正整数) 4. 等差数列: (1)s n = 2 )(1n a a n ?+=na 1+21 n(n-1)d ; (2)a n =a 1+(n -1)d ; (3)n = d a a n 1 -+1; (4)若a,A,b 成等差数列,则:2A =a+b ; (5)若m+n=k+i ,则:a m +a n =a k +a i ; (其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和) 5. 等比数列: (1)a n =a 1q -1; (2)s n =q q a n -11 ·1) -((q ≠1) (3)若a,G,b 成等比数列,则:G 2=ab ; (4)若m+n=k+i ,则:a m 2a n =a k 2a i ; (5)a m -a n =(m-n)d (6) n m a a =q (m-n) (其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和) 6.一元二次方程求根公式:ax 2+bx+c=a(x-x 1)(x-x 2) 其中:x 1=a ac b b 242-+-;x 2=a ac b b 242---(b 2-4a c ≥0) 根与系数的关系:x 1+x 2=-a b ,x 12x 2=a c 二、基础几何公式 1. 三角形:不在同一直线上的三点可以构成一个三角形;三角形内角和等于180°;三角形中任两 边之和大于第三边、任两边之差小于第三边; (1)角平分线:三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角的平分线。 (2)三角形的中线:连结三角形一个顶点和它对边中点的线段叫做三角形的中线。 (3)三角形的高:三角形一个顶点到它的对边所在直线的垂线段,叫做三角形的高。 (4)三角形的中位线:连结三角形两边中点的线段,叫做三角形的中位线。 (5)内心:角平分线的交点叫做内心;内心到三角形三边的距离相等。 重心:中线的交点叫做重心;重心到每边中点的距离等于这边中线的三分之一。 垂线:高线的交点叫做垂线;三角形的一个顶点与垂心连线必垂直于对边。 外心:三角形三边的垂直平分线的交点,叫做三角形的

排列组合的基本理论和公式

排列组合的基本理论和公式 排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合. (一)两个基本原理是排列和组合的基础 (1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法. (2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1 种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法.这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理. 这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来. (二)排列和排列数 (1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法. (2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列 当m=n时,为全排列Pnn=n(n-1)(n-2)…3·2·1=n! (三)组合和组合数 (1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合. 从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合. (2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个

排列组合计算公式及经典例题汇总

排列组合公式/排列组合计算公式 排列A------和顺序有关 组合 C -------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法. "排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A(n,m)表示. A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号

c(n,m) 表示. c(n,m)=A(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=A(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为 c(m+k-1,m). 排列(Anm(n为下标,m为上标)) Anm=n×(n-1)....(n-m+1);Anm=n!/(n-m)!(注:!是阶乘符号);Ann(两个n分别为上标和下标)=n!;0!=1;An1(n为下标1为上标)=n

2020年整理公务员考试行测数学公式大全.doc

常用数学公式汇总 1. 平方差公式:(a +b )·(a -b )=a 2 -b 2 2. 完全平方公式:(a±b )2 =a 2 ±2ab +b 2 3. 完全立方公式:(a ±b)3 =(a±b)(a 2 ab+b 2 ) 4. 立方和差公式:a 3 +b 3 =(a ±b)(a 2 + ab+b 2 ) 5. a m ·a n =a m +n a m ÷a n =a m -n (a m )n =a mn (ab)n =a n · b n (1)s n = 2 )(1n a a n +?=na 1+21 n(n-1)d ; (2)a n =a 1+(n -1)d ; (3)项数n = d a a n 1 -+1; (4)若a,A,b 成等差数列,则:2A =a+b ; (5)若m+n=k+i ,则:a m +a n =a k +a i ; (6)前n 个奇数:1,3,5,7,9,…(2n —1)之和为n 2 (其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和) (1)a n =a 1q n -1 ; (2)s n =q q a n -11 ·1) -((q ≠1) (3)若a,G,b 成等比数列,则:G 2 =ab ; (4)若m+n=k+i ,则:a m ·a n =a k ·a i ; (5)a m -a n =(m-n)d (6) n m a a =q (m-n) (其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和)

(1)一元二次方程求根公式:ax 2 +bx+c=a(x-x 1)(x-x 2) 其中:x 1=a ac b b 242-+-;x 2=a ac b b 242---(b 2 -4ac ≥0) 根与系数的关系:x 1+x 2=-a b ,x 1·x 2=a c (2)ab b a 2≥+ ab b a ≥+2)2( ab b a 222≥+ abc c b a ≥++3 )3 ( (3)abc c b a 32 2 2 ≥++ abc c b a 3 3 ≥++ 推广:n n n x x x n x x x x ......21321≥++++ (4)一阶导为零法:连续可导函数,在其内部取得最大值或最小值时,其导数为零。 (5)两项分母列项公式: )(a m m b +=(m 1—a m +1)×a b 三项分母裂项公式:)2)((a m a m m b ++=[)(1a m m +—)2)((1 a m a m ++]×a b 2 1.勾股定理:a 2+b 2=c 2 (其中:a 、b 为直角边,c 为斜边) 2.面积公式: 正方形=2 a 长方形= b a ? 三角形=c ab ah sin 2 1 21= 梯形=h b a )(21+ 圆形=πR 2 平行四边形=ah 扇形=0 360 n πR 2 3.表面积: 正方体=62 a 长方体=)(2ac bc a b ++?

排列组合公式(全)

排列定义从n 个不同的元素中,取r 个不重复的元素,按次序排列,称为从n 个中取r 个的无重排列。排列的全体组成的集合用P(n,r) 表示。排列的个数用 P(n,r) 表示。当r=n 时称为全排列。一般不说可重即无重。可重排列的相应记号为P(n,r),P(n,r) 。 组合定义从n 个不同元素中取r 个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n 个中取r 个的无重组合。 组合的全体组成的集合用C(n,r) 表示,组合的个数用C(n,r) 表示,对应于可重组合 有记号C(n,r),C(n,r) 。 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词( 特别是逻辑关联词和量词) 准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 (1) 加法原理和分类计数法 1.加法原理

2.加法原理的集合形式 3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类 (即分类不漏) (2)乘法原理和分步计数法 1.乘法原理 2.合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n 步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 例1:用1、2、3、4、5、6、7、8、9 组成数字不重复的六位数 集合A 为数字不重复的九位数的集合,S(A)=9! 集合B 为数字不重复的六位数的集合。 把集合A分为子集的集合,规则为前6位数相同的元素构成一个子集。显然各子集没有共同元素。每个子集元素的个数,等于剩余的3 个数的全排列,即3!这时集合B 的元素与A的子集存在一一对应关系,则 S(A)=S(B)*3! S(B)=9!/3!

小学数学排列组合公式大全

小学数学排列组合公式大全 小学是我们整个学业生涯的基础,所以小朋友们一定要培养良好的学习习惯,查字典数学网为同学们特别提供了数学排列组合公式大全,希望对大家的学习有所帮助! 1.排列及计算公式 从n个不同元素中,任取m(mn)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n 个不同元素中取出m(mn)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示. p(n,m)=n(n-1)(n-2)(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(mn)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(mn)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数 =p(n,r)/r=n!/r(n-r)!.

n个元素被分成k类,每类的个数分别是n1,n2,...nk这n 个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为 c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标))

相关文档
最新文档