TC237B型CCD图像传感器的原理及应用

TC237B型CCD图像传感器的原理及应用
TC237B型CCD图像传感器的原理及应用

CCD图像传感器详解汇总

CCD图像传感器 CCD(Charge Coupled Device)全称为电荷耦合器件,是70年代发展起来的新型半导体器件。它是在MOS集成电路技术基础上发展起来的,为半导体技术应用开拓了新的领域。它具有光电转换、信息存贮和传输等功能,具有集成度高、功耗小、结构简单、寿命长、性能稳定等优点,故在固体图像传感器、信息存贮和处理等方面得到了广泛的应用。CCD图像传感器能实现信息的获取、转换和视觉功能的扩展,能给出直观、真实、多层次的内容丰富的可视图像信息,被广泛应用于军事、天文、医疗、广播、电视、传真通信以及工业检测和自动控制系统。实验室用的数码相机、光学多道分析器等仪器,都用了CCD 作图象探测元件。 一个完整的CCD器件由光敏单元、转移栅、移位寄存器及一些辅助输入、输出电路组成。CCD工作时,在设定的积分时间内由光敏单元对光信号进行取样,将光的强弱转换为各光敏单元的电荷多少。取样结束后各光敏元电荷由转移栅转移到移位寄存器的相应单元中。移位寄存器在驱动时钟的作用下,将信号电荷顺次转移到输出端。将输出信号接到示波器、图象显示器或其它信号存储、处理设备中,就可对信号再现或进行存储处理。由于CCD光敏元可做得很小(约10um),所以它的图象分辨率很高。 一.CCD的MOS结构及存贮电荷原理 CCD的基本单元是MOS电容器,这种电容器能存贮电荷,其结构如图1所示。以P型硅为例,在P型硅衬底上通过氧化在表面形成SiO2层,然后在SiO2上淀积一层金属为栅极,P型硅里的多数载流子是带正电荷的空穴,少数载流子是带负电荷的电子,当金属电极上施加正电压时,其电场能够透过SiO2绝缘层对这些载流子进行排斥或吸引。于是带正电的空穴被排斥到远离电极处,剩下的带负电的少数载流子在紧靠SiO2层形成负电荷层(耗尽层),电子一旦进入由于电场作用就不能复出,故又称为电子势阱。 当器件受到光照时(光可从各电极的缝隙间经过SiO2层射入,或经衬底的薄P型硅射入),光子的能量被半导体吸收,产生电子-空穴对,这时出现的电子被吸引存贮在势阱中,这些电子是可以传导的。光越强,势阱中收集的电子越多,光弱则反之,这样就把光的强弱变成电荷的数量,实现了光与电的转换,而势阱中收集的电子处于存贮状态,即使停止光照一定时间内也不会损失,这就实现了对光照的记忆。

CCD图像传感器的10大优点

CCD(Charged Coupled Device)于1969年在贝尔试验室研制成功,之后由日商等公司开始量产,其发展历程已经将近30多年,从初期的10多万像素已经发展至目前主流应用的500万像素。CCD又可分为线型(Linear)与面型(Area)两种,其中线型应用于影像扫瞄器及传真机上,而面型主要应用于数码相机(DSC)、摄录影机、监视摄影机等多项影像输入产品上。 一般认为,CCD图像传感器有以下优点: 1. 高解析度(High Resolution):像点的大小为μm级,可感测及识别精细物体,提高影像品质。从早期1寸、1/2寸、2/3寸、1/4寸到最近推出的1/9寸,像素数目从初期的10多万增加到现在的400~500万像素; 2. 低杂讯(Low Noise)高敏感度:CCD具有很低的读出杂讯和暗电流杂讯,因此提高了信噪比(SNR),同时又具高敏感度,很低光度的入射光也能侦测到,其讯号不会被掩盖,使CCD的应用较不受天候拘束; 3. 动态范围广(High Dynamic Range):同时侦测及分办强光和弱光,提高系统环境的使用范围,不因亮度差异大而造成信号反差现象。 4. 良好的线性特性曲线(Linearity):入射光源强度和输出讯号大小成良好的正比关系,物体资讯不致损失,降低信号补偿处理成本; 高光子转换效率(High Quantum Efficiency ):很微弱的入射光照射都能被记录下来,若配合影像增强管及投光器,即使在暗夜远处的景物仍然还可以侦测得到; 5. 大面积感光(Large Field of View):利用半导体技术已可制造大面积的CCDD晶片,目前与传统底片尺寸相当的35mm的CCD已经开始应用在数码相机中,成为取代专业有利光学相机的关键元件; 光谱响应广(Broad Spectral Response):能检测很宽波长范围的光,增加系统使用弹性,扩大系统应用领域; 6. 低影像失真(Low Image Distortion):使用CCD感测器,其影像处理不会有失真的情形,使原物体资讯忠实地反应出来; 7. 体积小、重量轻:CCD具备体积小且重量轻的特性,因此,可容易地装置在人造卫星及各式导航系统上; 8. 低秏电力,不受强电磁场影响;

CCD图像传感器的特性.

CCD图像传感器的特性一般包括光谱特性、分辨率、暗电流、灵敏度和动态范围等。 1、光谱特性 CCD图像传感器具有很宽的感光光谱范围,其感光光谱可延伸至红外区域,利用此特性,可以在夜间无可见光照明的情况下,用辅助红外光源照明,也能使CCD图像传感器清晰地成像。光波的波长范围从几纳米到1 mm,即10-9 ~10-3m,而人眼的感光范围只在0.38~0.78 μm的范围。CCD器件的光谱响应范围宽于人眼的视觉范围,一般在0.2~1.1μm的波长范围内。特种材料的红外CCD 的波长响应可扩展到几微米,即CCD 的光谱响应范围从远紫外,近紫外,可见光到近红外区,甚至到中红外区。2、分辨率 分辨率是CCD的最重要的特性,一般用器件的MTF(Modulation Transfer Function)即调制转移函数来表示。需要说明的是,CCD芯片的分辨率与后面提到的CCD摄像机的分辨率的定义是不同的。3、暗电流 暗电流产生的主要原因在于CCD器件本身的缺陷,而且这种器件本身还使得暗电流的产生也不均匀;暗电流限制了器件的灵敏度和动态范围;暗电流的大小与温度的关系极为密切,温度每降低100C,暗电流约减少一半。 4、灵敏度和动态范围 CCD的灵敏度一般用最低照度表示,所谓灵敏度高就是要求在很低的照度下也能输出较为清晰(轮廓)的图像。动态范围是势阱中可存储的最大电荷量和噪声决定的最小电荷量之比。CCD势阱中可容纳的最大信号电荷量取决于CCD电极面积及器件结构,时钟驱动方式及驱动脉冲电压的幅度等因素。

5、弥散现象(Blooming) 由于CCD势阱对光信号电荷的收容能力有一定的限度,所以,当高照度光局部地照射CCD单元时,电荷量将从势阱溢出,并流入邻近势阱,光产生的图像就会失真,这就是弥散现象。 6、噪声 CCD的噪声源主要有以下几种:电荷注入器件产生的噪声;电荷转移时,电荷量波动产生的噪声;电荷读出时的噪声。

CMOS-CCD图像传感器的区别

CMOS/CCD图像传感器的工作原理 虽是老声常谈,不过对于我这样的非专业人士来讲,还是要时常温习下一些基本概念的,虽然早先系统比较过 coms 和ccd ,但时间久了某些细节问题还是不能及时脱口而出。特zz一篇,写的不错。具体构造方面的细节比较,还得自己查书了。因最近正在用sony的HDV-Hc1,用的是cmos感光元件,现在的cmos产品越来越多了,前景大好。 无论是CCD还是CMOS,它们都采用感光元件作为影像捕获的基本手段,CCD/CMOS感光元件的核心都是一个感光二极管(photodiode),该二极管在接受光线照射之后能够产生输出电流,而电流的强度则与光照的强度对应。但在周边组成上,CCD的感光元件与CMOS的感光元件并不相同,前者的感光元件除了感光二极管之外,包括一个用于控制相邻电荷的存储单元,感光二极管占据了绝大多数面积—换一种说法就是,CCD 感光元件中的有效感光面积较大,在同等条件下可接收到较强的光信号,对应的输出电信号也更明晰。而CMOS感光元件的构成就比较复杂,除处于核心地位的感光二极管之外,它还包括放大器与模数转换电路,每个像点的构成为一个感光二极管和三颗晶体管,而感光二极管占据的面积只是整个元件的一小部分,造成CMOS传感器的开口率远低于CCD (开口率:有效感光区域与整个感光元件的面积比值);这样在接受同等光照及元件大小相同的情况下,CMOS感光元件所能捕捉到的光信号就明显小于CCD元件,灵敏度较低;体现在输出结果上,就是CMOS传感器捕捉到的图像内容不如CCD传感器来得丰富,图像细节丢失情况严重且噪声明显,这也是早期CMOS 传感器只能用于低端场合的一大原因。CMOS开口率低造成的另一个麻烦在于,它的像素点密度无法做到媲美CCD的地步,因为随着密度的提高,感光元件的比重面积将因此缩小,而CMOS开口率太低,有效感光区域小得可怜,图像细节丢失情况会愈为严重。因此在传感器尺寸相同的前提下,CCD的像素规模总是高于同时期的CMOS传感器,这也是CMOS长期以来都未能进入主流数码相机市场的重要原因之一。每个感光元件对应图像传感器中的一个像点,由于感光元件只能感应光的强度,无法捕获色彩信息,因此必须在感光元件上方覆盖彩色滤光片。在这方面,不同的传感器厂商有不同的解决方案,最常用的做法是覆盖RGB红绿蓝三色滤光片,以1:2:1的构成由四个像点构成一个彩色像素(即红蓝滤光片分别覆盖一个像点,剩下的两个像点都覆盖绿色滤光片),采取这种比例的原因是人眼对绿色较为敏感。而

相关主题
相关文档
最新文档