物理中最小的粒子

物理中最小的粒子
物理中最小的粒子

物理中最小的粒子

世界由物质组成,但是,究竟什么是物质呢,其实,放在我们面前的一个苹果它就是物质的,因为我们可以看到它,可以摸到它,但是,我们并没有真正的接触到它,因为,无限细分的话,分子,原子之间是有距离的,尽管很小。我们之所以说某个东西是真实存在的,那是因为它能够给予我们一定的“作用力”,让我们能够“感觉”到它。也就是说,能够给予我们某种“作用力”的现象,注意,是现象,我们就会认为它是真实存在的“东西”。那么,组成这个“东西”的最小单元究竟是什么呢,分子,原子,基本粒子,还是什么呢?我个人认为,那个最基本的“东西”,其实是一种最基本的能量,它没有固定的形状,只有符合客观的运行规律。按照人们普遍的理解,它好像是虚幻的,但是,其实并没有什么虚幻的东西,它以A方式运行,人们感觉不到,但是以B方式运行时,可以给予我们“作用力”,于是人们就感受到它了,比如,你看,我手心里的这个铁块很重。

彼此的相互作用,或者说彼此之间有相对运动的趋势,是一切物理现象的起源,是根源。虽说是彼此,但

是,最根本的,可能只有一种“物质”,这里说的“物质”并不是我们能直接感受到的类似于钢铁那样的东西,只是暂时无法找到一个更合适的词来描述它,就暂且先这么叫。宇宙中的万物,所有的现象,都是基于这种“物质”不同方式运行的结果。所谓的能量,就是这种“物质”运动或者是运动趋势的外在表现。质量与能量之所以能够转换,那正是因为所谓的具有质量的物质,其实正是前面提到的那种,能够给予我们某种“作用力”的现象,而能量,就是这种“物质”运动或者是运动趋势的外在表现,所以他们实际上是一回事。反物质,其实就是“真空”,这里说的真空是真正的真空,真正的什么也没有,但这种真正的什么也没有,也可以说是充满了反物质,当“物质”与“真空”(即反物质)相遇时,便立刻停止了相对运动的趋势,因为此时是一种真正平衡的状态,也就是所谓的堙没,此时所放出的巨大能量,就正是运动停止的外在表现,外在的作用。一个电荷,在电场里,会受力,在磁场里,便不会受力,但是,一旦动起来,就会受力,平行于磁场,就又不会受力,这充分说明,这一切是有内在联系的,正是某种运行规律作用的结果,其实他们是统一的。只是,这种规律,人们目前无法认识到,别说复杂的物理现象了,就连组基本的电磁场,又有谁能真正讲明白

呢,人们只是掌握了这些运行规律作用下的外在的宏观的一种表现规律,不过这对于人们利用它造福人类,基本已经足够了。我想,电场与磁场(暂且先这么区分,其实他们本质上一定是统一的,是一回事,只是“物质的运行规律不同”)运行中,有某种正交的行为。我们所说的电子,其实是聚集的能量团,打个不太恰当的比方,就像太阳是聚集在一起的气体一样。

物理学中的对称性

物理学中的对称性 摘要:物理学中关于对称性探索的一个重要进展就是建立诺特定理,定理指出,如果运动定律在某一变换下具有不变性,必然相应地存在着一条守恒定律。守恒定律与对称性之间也存在着莫大的联系,各种守恒定律的出现不是偶然的,是物理规律具有多种对称性的必然结果。 关键词:物理学、对称性、守恒定律 对称现象遍布于自然界中,人体的左右对称,平面镜成像的对称,正方形的中心对称等等。对称现象是物质世界某种本质和内在规律的体现,物理学以研究物理世界规律为对象,是研究自然界中物体运动变化规律的一门科学,它是自然科学中的一个重要的组成部分,那么物理中蕴含着对称性也是必然的。例如:宏观物质世界中的时空对称性,微观物质世界中的对称性,物理量之间的对称性,物理学中的形体对称性等。物理学是美的,这些对称性都完美的体现出了物理学之美。本文将分别从四个方面来研究物理学中的对称性。前三个方面主要讲解物理学中对称性的概念、对称性与守恒定律以及物理学中的形体对称,第四个方面是通过对电与磁的对称性分析,用更直观的对比来认识物理学中的对称性。一、什么是对称性? 按照对称的定义来讲,对称就是指物体相对而又相称,或者说它们相仿,相等。所谓对称性是指:某种变化下的不变性。自然界中的事物的对称性表现在两方面。第一:物体的形状或几何形体的对称性。例如:五角星的旋转对称,正方体的中心对称性。这是根据对称性的定义,我们使五角星和正方体都绕它们的中心旋转180°,在这样的变换下,变换后图形具有不变性。第二:事物进程或物理规律的对称性。所谓物理规律的对称性是指:物理规律在某种变换下的不变性。例如:一个物体做平抛运动,水平初速度为V,抛出时离水平地面的高度为H,空气阻力忽略不计。在其他外部条件都相同的情况下,在不同的地方使该物体做如上所述的运动,该物体的运动状况是否相同呢?我们知道,平抛运动可以看成

高中物理中及对称性模型

对称性模型 由于物质世界存在某些对称性,使得物理学理论也具有相应的对称性,从而使对称现象普遍存在于各种物理现象和物理规律中,应用这种对称性它不仅能帮助我们认识和探索物质世界的某些规律,而且也能帮助我们去求解某些具体的物理问题,这种思维方法在物理学中为对称法,利用对称法分析解决物理问题,可以避免复杂的数学演算和推导,直接抓住问题的实质,出奇制胜,快捷简便地解决问题。 对称法作为一种具体的解题方法,虽然高考命题没有单独正面考查,但是在每年的高考命题中都有所渗透和体现。从侧面体现考生的直观思维能力和客观的猜想推理能力。所以作为一种重要的物理思想和方法,相信在今后的高考命题中必将有所体现。 在高中物理模型中,有很多运动模型有对称性,如(类)竖直上抛运动的对称性,简谐运动中的对称性,电路中的对称性,带电粒子在匀强磁场中匀速圆周运动中几何关系的对称性. 简谐运动的对称性是指振子经过关于平衡位置对称的两位置时,振子的位移、回复力、加速度、动能、势能、速度、动量等均是等大的(位移、回复力、加速度的方向相反,速度动量的方向不确定)。运动时间也具有对称性,即在平衡位置对称两段位移间运动的时间相等。(从某点到达最大位置和从最大位置再回到这一点所需要的时间相等、从某点向平衡位置运动的时间和它从平衡位置运动到这一点的对称点所用的时间相等). 现将对称模型分为空间对称模型和时间对称模型 1、空间对称模型 例1:如图1所示:在离地高度是h,离竖直光滑的墙是 s处,有一个弹性小 1 球以初速度 v正对着墙水平抛出,与墙发生弹性碰撞后落到地面上,求小球落地 点与墙的距离。 【解析】:小球与墙的碰撞是弹性碰撞,碰撞前后 的动量对于墙面的的法线是对称的。如墙的另一面同一高 度有一个弹性小球以相同的速度与墙碰撞,由于对称性, 它的轨迹与小球的实际轨迹是对称的。因此碰前的轨迹与碰

粒子物理与原子核物理专业硕士研究生培养方案

粒子物理与原子核物理专业硕士研究生培养方案

粒子物理与原子核物理专业硕士研究生培养方案 (学科专业代码:070202授予理学硕士学位) 一、学科专业简介 粒子物理与原子核物理专业包含如下研究方向:粒子物理、相对论重离子碰撞物理、夸克物质物理、相对论重离子碰撞实验、高能碰撞唯象学,以及高能核天体物理。本专业方向是以国内及国际大型加速器及宇宙线实验为依托,在粒子物理方向,从理论和实验两方面研究物质的最基本构成、性质、相互作用及其规律;在原子核物理方向,研究内容包括GeV至TeV能区的重离子碰撞,在理论上涉及高能重离子碰撞动力学及形成夸克物质的机理,粒子碰撞与粒子产生物理模型,夸克物质信号的预言;实验研究包括高能核-核碰撞的实验数据处理;高能核-核碰撞实验计算机模拟与物理分析;粒子探测新技术与数据获取技术研发,核电子学以及新型探测器的研发和研制,探测器软件研发及网格计算技术在实验模拟及数据分析中的应用等;目标是探寻夸克物质信号,检验格点量子色动力学(QCD)的预言,研究TeV能区的新物理。该专业方向

有长期的理论和实验研究基础,师资力量雄厚,有良好的国际国内合作环境,“粒子物理研究所”、“湖北省高能物理重点实验室”及批准建设的“夸克与轻子物理教育部重点实验室”提供了科学研究环境的有效保障。 二、培养目标 掌握坚实的粒子物理与原子核物理基础和系统的专门知识,熟悉粒子物理与原子核物理专业有关方向的国内外研究历史、现状和发展方向,掌握一门外语,具有从事科学研究、高等学校教学工作或独立担负有关专门技术工作能力,成为德智体全面发展,适应社会主义现代化需要的高层次人才。 三、研究方向简介 序号研究方向名 称 简介 1 粒子物理从理论和实验上研究物质的最基本构成、性质、相互作用及其规律 2 夸克物质物夸克物质的硬探针信号、夸克

高三物理粒子的波动性

普通高中课程标准实验教科书—物理(选修3-5)[人教版] 第十七章波粒二象性 新课标要求 1.内容标准 (1)了解微观世界中的量子化现象。比较宏观物体和微观粒子的能量变化特点。体会量子论的建立深化了人们对于物质世界的认识。 (2)通过实验了解光电效应。知道爱因斯坦光电效应方程以及意义。 (3)了解康普顿效应。 (4)根据实验说明光的波粒二象性。知道光是一种概率波。 (5)知道实物粒子具有波动性。知道电子云。初步了解不确定性关系。 (6)通过典型事例了解人类直接经验的局限性。体会人类对世界的探究是不断深入的。 例1 通过电子衍射实验,初步了解微观粒子的波粒二象性,体会人类对于物质世界认识的不断深入。 2.活动建议 阅读有关微观世界的科普读物,写出读书体会。 新课程学习 17.3 崭新的一页:粒子的波动性

★新课标要求 (一)知识与技能 1.了解光既具有波动性,又具有粒子性。 2.知道实物粒子和光子一样具有波粒二象性。 3.知道德布罗意波的波长和粒子动量关系。 (二)过程与方法 1.了解物理真知形成的历史过程。 2.了解物理学研究的基础是实验事实以及实验对于物理研究的重要性。 3.知道某一物质在不同环境下所表现的不同规律特性。 (三)情感、态度与价值观 1.通过学生阅读和教师介绍讲解,使学生了解科学真知的得到并非一蹴而就,需要经过一个较长的历史发展过程,不断得到纠正与修正。 2.通过相关理论的实验验证,使学生逐步形成严谨求实的科学态度。 3.通过了解电子衍射实验,使学生了解创造条件来进行有关物理实验的方法。 ★教学重点 实物粒子和光子一样具有波粒二象性,德布罗意波长和粒子动量关系。 ★教学难点

“粒子物理标准模型”之父格拉肖

“粒子物理标准模型”之父格拉肖 2005年11月11日,中国科学院 爱因斯坦讲座教授,“粒子物理标准 模型”之父格拉肖(Sheldon Lee Glashow l932-)教授(美国哈佛大学 和波士顿大学)应邀来高能所访问, 并做了题为“Comments about Particle Physics in China”的精彩 报告。 格拉肖是世界著名的理论物理学家, 美国科学院院士。他1932年12月5日生于纽约,1954年毕业于康奈尔大学,1958年在哈佛大学获得博士学位,1958-1960年在哥本哈根工作。1966年到哈佛大学任教,1967年起任教授。主要研究领域是基本粒子和量子场论。1976年获奥本海默奖,1979年与S.温伯格、A.萨拉姆共同获得诺贝尔物理学奖,1991 年获Erice科学和平奖。 上个世纪60年代初,格拉肖在规范场理论的基础上讨论过 弱相互作用和电磁相互作用统一的问题,预言了中性弱流的存 在,但没有能够从理论上得到有静止质量的中间玻色子。1975 年,他和合作者一起在电弱统一理论和量子色动力学的基础上, 提出了把弱相互作用、电磁相互作用、强相互作用统一起来的 大统一理论,在基本粒子和场论的理论研究以及宇宙学的研究 中都有较大的影响。正是由于这些成就,他与S.温伯格、A.萨拉姆共同获得了1979年诺贝 尔物理学奖。 粒子物理标准模型堪称是二十世纪物理学取得的最重大成就之一。格拉肖教授是粒子物理标准模型奠基人之一,也是大统一理论的开创者,他还成功地预言了粲夸克的存在。科学家们经过多年的探索发现,世界上所有的物质都是由百十种不同的元素构成的,而元素又都由不同数目的质子、中子和电子组成,而质子、中子又有内部结构,它们由夸克组成(左图:一个质子由两个上夸克和一个下夸克组成,一个中子由两个下夸克和一个上夸克组成),而介子是由夸克和反夸克组成。质子、中子、介子、轻子、光子等统称为 基本粒子,而基本粒子之间的相互转化是因为存在着引力、电磁力、 弱力和强力4种自然力的相互作用。其中,几乎所有的粒子之间都存 在引力,但电磁力只存在于带电粒子之间。 这4种力之间有何关系?物理学家们一直力图找到把它们统一起来的途 径。格拉肖(右图)是最早涉足弱力和电磁力统一研究领域的。弱力的 强度只有电磁力的千分之一,它们是完全不同的两种自然力,1961年,

高中物理-粒子的波动性练习

高中物理-粒子的波动性练习 我夯基我达标 1.下列哪组现象能说明光具有波粒二象性() A.光的色散和光的干涉 B.光的干涉和光的衍射 C.光的反射和光电效应 D.泊松亮斑和光电效应 思路解析:光的色散、光的反射可从波动性与粒子性两方面分别予以理解,故A、C选项错误.光的干涉、衍射现象只说明了光的波动性,B选项错误.泊松亮斑能说明光具有波动性,光电效应说明具有粒子性,故D选项正确. 答案:D 2.对光的认识,下列说法正确的是() A.个别光子的行为表现出粒子性,大量光子的行为表现出波动性 B.光的波动性是光子本身的一种属性,不是光子之间的相互作用引起的 C.光表现出波动性时,就不具有粒子性,光表现出粒子时,就不再具有波动性 D.光的波粒二象性应理解为:在某种场合下光的波动性表现得明显,在另外的某种场合下,光的粒子性表现得明显 思路解析:本题考查的是光的波粒二象性,光是一种概率波,少量光子的行为往往易显出粒子性,而大量光子的行为往往显示出其波动性,A选项正确.光的波动性不是由于光子之间的相互作用引起的,而是光的一种属性,这已被弱光照射双缝后在胶片上的感光实验所证实,B选项正确.粒子性和波动性是光同时具备的两种属性,C选项错误,D选项正确. 答案:ABD 3.下列说法正确的是() A.光的波粒二象性学说就是牛顿的微粒说加上惠更斯的波动说组成的 B.光的波粒二象性彻底推翻了麦克斯韦电磁理论 C.光子说并没有否定电磁说,在光子的能量E=hν中,ν(频率)就是波的特征量 D.光波不同于宏观观念中的那种连续的波,它是表明大量光子运动规律的一种概率波 思路解析:光的波粒二象性认为光是一份一份的光子构成的,光子是一种没有静止质量的能量团,与牛顿的微粒说中的实物粒子有本质区别;光同时还是一种概率波,可以用波动规律来解释,但与惠更斯的波动说中的光是一种机械波有本质区别,因而A错而D对.在光的波粒二象性中,光子能量E=hν中,ν表示了波的特征,因而并没有否定麦克斯韦的电磁说,B错C对. 答案:CD 4.对于光的波粒二象性的说法中,正确的是() A.一束传播的光,有的光是波,有的光是粒子 B.光子与电子是同一种粒子,光波与机械波是同样一种波 C.光的波动性是由于光子间的相互作用而形成的 D.光是一种波,同时也是一种粒子,光子说并未否定电磁说,在光子的能量E=hν中,频率ν仍表示的是波的特性 思路解析:根据波粒二象性,光同时具有波动性和粒子性,A选项错误.不同于宏观观念的粒子和波,故B选项错误.光的波动性是光子本身固有的性质,不是光子之间相互作用引起的,C选项错误.光子的能量与其对应的能量成正比,而频率是反映波动特征的物理量,因此E=hν揭示了光的粒子性和波动性之间的密切联系,光子说并未否定电磁说,故D选项正确. 答案:D

物理学中的对称性

目录 摘要 (1) Abstract (1) 1 引言 (1) 2 对称性 (1) 2.1镜像对称 (2) 2.2 转动对称 (2) 2.3平移对称 (2) 2.4置换对称性 (2) 3 物理定律的对称性 (3) 3.1物理定律的空间平移对称性 (3) 3.2物理定律的转动对称性 (3) 3.3物理定律对时间的平移对称性 (3) 3.4物理定律对于匀速直线运动的对称性 (3) 4 对称性与物理定律的关系 (3) 5 对称性在物理学中的应用 (4) 6结论 (5) 参考文献 (5)

物理学中的对称性 摘要:从自然界中的对称性开始,讲解了物理学中转动对对称性开始称,平移对称,置换对称;还讲解了物理定律中的空间平移对称性,转动对称性,时间平移对称性,匀速直线运动的对称性;进而说明了物理定律与对称性的关系和对称性在物理学中的应用,以及对称性导致物理问题发生和解决。 关键词:对称性;物理定律;守恒 Discuss the Symmetry Secondary Physics Abstract:From the nature of the symmetry of the begining, explain the physics rotation on symmetry started to call, translational symmetry, permutation symmetry; also explained the laws of physics in the spatial translational symmetry, rotational symmetry, time translation symmetry, the symmetry uniform motion in a straight line; then describes the physical laws and symmetry and symmetry in the application of Physics, as well as symmetry leads to physical problems and solutions. Key words:symmetrical; the laws of physicsl; conservation 1引言 对称性是自然界最普遍、最重要的特性[1]。近代科学表明,自然界的所有重要的规律均与某种对称性有关,甚至所有自然界中的相互作用,都具有某种特殊的对称性——所谓“规范对称性”。实际上,对称性的研究日趋深入,已越来越广泛的应用到物理学的各个分支:量子论、高能物理、相对论、原子分子物理、晶体物理、原子核物理,以及化学(分子轨道理论、配位场理论等)、生物和工程技术。 2对称性 什么是对称性?对称性首先来源于生活,对称式自然界中十分普片的现象,从总星系到星系团,从银河系到太阳系,地球,从原生物到各种动植物,都具有不同程度

核物理与粒子物理导论教学大纲

《核物理和粒子物理导论》课程教学大纲 一、课程基本信息 1、课程代码:PH337 2、课程名称(中文):核物理与粒子物理导论 课程名称(英文):An Introduction to Nuclear and Particle Physics 3、学时/学分:48/3 4、先修课程:基础力学、电磁学、高等数学、数学物理方法、原子物理学 5、面向对象:物理系三年级或同等基础各专业学生 6、开课院(系)、教研室:物理与天文系粒子与核物理研究所 7、教材、教学参考书: 教材: 低能及中高能原子核物理学,程檀生钟毓澍编著,北京大学出版社,1997。参考书: a.Das and T. Ferbel, Introduction to Nuclear and Particle Physics (2nd Edition), (World Scientific, New Jersey, 2003) b.Particle Physics, by Nai-Sen Zhang (Science Press, 1986) (《粒子物理学》,章 乃森著,科学出版社,1986) 二、课程性质和任务 本课程教学目的是使学生掌握核物理与粒子物理的基本概念,了解核物理与粒子物理的一些最新发展动向。本课程属专业选修课程,适用物理系三年级或以上各专业学生。在整个课程讲解之中,强调基本的物理概念,并将随时插入目前国际上相关领域的研究进展和前沿问题,以使学生通过本课程的学习,对核物理与粒子物理相关的研究领域现状有一个了解。 三、教学内容和基本要求 第一章:概述 1)物质的结构层次 2)核物理与粒子物理的发展简史 3)自然单位 第二章:原子核的基本性质 1)综述

高中物理-粒子的波动性练习

高中物理-粒子的波动性练习 A组 1.人类对光的本性的认识经历了曲折的过程.下列关于光的本性的陈述符合科学规律或历史事实的是() A.牛顿的“微粒说”与爱因斯坦的“光子说”本质上是一样的 B.光的双缝干涉实验显示了光具有波动性 C.麦克斯韦预言了光是一种电磁波 D.光具有波粒二象性 解析:牛顿的“微粒说”认为光是一种物质微粒,爱因斯坦的“光子说”认为光是一份一份不连续的能量,显然选项A错;干涉、衍射是波的特性,光能发生干涉说明光具有波动性,选项B正确;麦克斯韦根据光的传播不需要介质,以及电磁波在真空中的传播速度与光速近似相等从而认为光是一种电磁波,后来赫兹用实验证实了光的电磁说,选项C正确;光具有波动性与粒子性,称为光的波粒二象性,选项D正确. 答案:BCD 2.用很弱的光做双缝干涉实验,把入射光减弱到可以认为光源和感光胶片之间不可能同时有两个光子存在,如图所示是不同数量的光子照射到感光胶片上得到的照片.这些照片说明() A.光具有粒子性 B.光具有波动性 C.光既有粒子性,又有波动性 D.光的波动性不是光子之间的相互作用引起的 解析:少量光子通过双缝后照片上呈现不规则分布的亮点显示了光的粒子性,大量光子通过双缝后照片上获得了双缝干涉条纹,说明光具有波动性;光子先后依次通过双缝,说明光的波动性不是光子之间的相互作用引起的.故选项C、D正确. 答案:CD 3.下列有关光的波粒二象性的说法中,正确的是() A.有的光是波,有的光是粒子 B.光子与电子是同样的一种粒子 C.光的波长越长,其波动性越显著;波长越短,其粒子性越显著 D.大量光子的行为往往显示出粒子性 解析:一切光都具有波粒二象性,光的有些行为(如干涉、衍射)表现出波动性,有些行为(如光电效应)表现出粒子性,所以,不能说有的光是波,有的光是粒子,选项A错误. 虽然光子与电子都是微观粒子,都具有波粒二象性,但电子是实物粒子,有静止质量,光子不是实物粒子,没有静止质量,电子是以实物形式存在的物质,光子是以场形式存在的物质,所以,不能说光子与电子是同样一种粒子,选项B错误. 光的波粒二象性的理论和实验表明,大量光子的行为表现出波动性,个别光子的行为表现出粒子性.光的波长越长,衍射性越好,即波动性越显著,光的波长越短,其光子能量越大,个别或少数光子的作用就足以引起光接收装置的反应,所以其粒子性就很显著.故选项C正确,D错误. 答案:C 4.下列说法正确的是()

物理知识结构的对称美

物理知识结构的对称美 句容市后白中学陈国军212400 【摘要】:正确发现知识体系间的联系,不但有助于理解掌握知识,也有利于加深对知识本身的认识。哲学的辩证统一教会我们物体现象之间都是联系的。指导我们认识事物及规律的本质。 【关键词】:对称性、最小作用原理、诺特定理 高中物理的各个板块中都会不同程度的出现应用对称性。正确的观察、理解有利于发现深层次的对称。正确的使用对称规律会使问题得以简化,使得某些颇难解的问题迎刃而解。法拉第跟据电和磁的对称,成功的得到了法拉第电磁感应定律,德布罗意跟据逆向对称思想得到了物质波假说,而且还获得诺贝尔物理学奖。 一、形体上的对称性 形体上的对称是最直接的对称,常常使得我们可以不必精确地去求解就可以获得一些结论。例如:上抛一个自由运动的小球,小球的上升和下降是对称的,其运动特征也高度对称,位置、速度大小、能量的对称,不用解就知道是对称的。再如一个无阻力的摆球摆动起来,左右是对称的,向左边摆动的高度与右边摆边的高度一定是相等的,从中间平衡位置向左摆到最高点的时间一定等于从中间平衡位置向右摆到最高点的时间,平衡位置两边等当位置处摆球的速度和加速度的大小必定是相等的,等等。再例如一张无限大平面方格子的导体网络,方格子每一边的电阻是r,在这张方格子网络的中间相邻格点连出两条导线,问这两条导线之间的等效电阻是多少?这个问题涉及到

无穷多个回路和无穷多个节点,要用直流电路中普遍的基尔霍夫方程组将得到无穷多个方程,难以求解。然而这一无穷的方格子网络具有形体上的对称性,利用对称性分析,求解变得相当简单。在高中阶段只能利用对称性,设想用一根导线连接到一个格点,通以电I,电流从网络的边缘流出,由于从该格点向四边流过的电流具有对称性,因此流过与该可知点连接的每一边的电流必定是I/4。再设想电流I从网络的边缘流入,再从网络中心的一个格点上连接的一条导线从上流出,根据同样的对称性分析,流过与该格点连接的每一边的电流也必定是I/4。我们要求解的情形正是这两种情形的叠加,电流I从连接到一个格点的导线流入,从连到相邻格点的导线流出,而在网络边缘,两种情形流出和流入的电流相互抵消。结果在连接导线的两相邻格点之间的那条边上通过的电流是上述两种情形的叠加,即为I/2,这条边的电阻是r,这意味剩下的电流I/2通过其它边,它相应的电阻应是r,换句话说,从相邻格点来看,这一无穷方格子网络的等效电阻是两个阻值为r 的并联,其等效电阻为r/2。由此可以看出,对称性分析在物理学中非常有用,一旦明确了具有对称性,问题常常变得简单可解。 二、物理量及物理规律的对称性 以上谈到对称性的时候,提到的“事物”不一定限指一个具体物件的形体,物理学家更注意到物理规律的对称性。直线运动中的位移、速度、动量、加速度,和曲线运动的角位移、角速度、角动量、角加速度对称,还有力和力矩对称。直线的规律速度时间规律、速度位移

粒子物理标准模型的缺陷及其完善

中国网络大学CHINESE NETWORK UNIVERSITY 毕业设计(论文) 院系名称:百度网络学院 专业:百度 学生姓名:百度 学号:123456789 指导老师:百度 中国网络大学教务处制

2019年3月1日

目录 摘要............................................................................................................................................................ II 关键词............................................................................................................................................................ II 0 引言 (1) 1 标准模型简介(电弱相互作用的W-S-G模型) (1) 1.1规范场部分 (1) 1.2费米子部分 (1) 1.3标量场部分 (2) 1.4 Yukawa相互作用 (2) 1.5 对称性自发破缺 (3) 1.6 Higgs机制 (6) 1.7 电磁相互作用与弱相互作用的统一性. (6) 2 标准模型中存在的问题 (6) 2.1 太多的自由参数 (7) 2.2 不自然性问题 (7) 2.3 费米子问题 (8) 2.4 中微子问题 (8) 2.5 宇宙暗物质问题 (10) 3 标准模型的完善 (10) 3.1 Little Higgs模型 (10) 3.2 超对称模型 (11) 3.3 额外维 (12) 3.3.1大额外维模型 (13) 3.3.2弯曲的额外维 (13) 4. 结语 (14) 参考文献 (14) 致谢 (15)

(整理)对称性原理在物理学中的重要性.

6、对称性原理在物理学中的重要性 《自然杂志》19卷4期的‘探索物理学难题的科学意义'的97个悬而未决的难题:23.自然界是否存在七种对称性晶体?77.CP不守恒难题只能在中性K介子衰变中见到吗?78.引起CP对称性破坏的力是什么?87.是否存在中性,稳性,质量至少大于40GeV的超对称粒子?美籍华人著名的物理学家、诺贝尔奖金获得者李政道把“一些物理现象理论上对称,但实验结果不对称”、“暗物质问题、暗能量问题”、"类星体的发能远远超过核能,每个类星体的能量竟然是太阳能量的1015倍"、“夸克禁闭”称为是21世纪科技界所面临的四大难题。这些问题都于对称性原理存在着密切的联系。近代科学表明,自然界的所有重要的规律均与某种对称性有关,甚至所有自然界中的相互作用,都具有某种特殊的对称性——所谓“规范对称性”。实际上,对称性的研究日趋深入,已越来越广泛的应用到物理学的各个分支:量子论、高能物理、相对论、原子分子物理、晶体物理、原子核物理,以及化学(分子轨道理论、配位场理论等)、生物(DNA的构型对称性等)和工程技术。 对称美在于:在杂乱中形成规律,在无序中引入秩序。物理学的第三个特点是它的和谐性和统一性。自然界本身就是和谐统一的,自然美反映到物理学理论中,就显示出统一与和谐的物理学美的规范。物理学规律的统一、有序与神秘的和谐、自恰常常使一些物理

学家感到狂喜和惊奇。而物理学家们创造出来的系统的思想所表现的统一与和谐之美又使更多的人感到愉快。我们可在门捷列夫的元素周期表中感到这一体系结构的“诗意”。在牛顿对天地间运动规律的统一之中;在焦耳迈尔对热功的统一之中;在法拉第、麦克斯韦对电与磁的统一之中;在E=MC2所表示的质能统一之中;在广义相对论的引力、空间、物质的统一之中;我们都会感到一种和谐的满足。守恒与对称和统一、和谐的观念紧密相连。守恒和对称会给人一种圆满、完整、均匀的美感。从阿基米德的杠杆原理到开普勒第二定律表现的角动量守恒,以及动量守恒、能量守恒等,都符合守恒的审美标准。在数学中,方程与图形的对称处处可见,这也是数学美的重要标志。中心对称、轴对称、镜像对称等,都是诗人愉悦的形式。笛卡尔建立的解析几何学是在数学方程与几何图形之间建立的一种对称。爱因斯坦于1905年提出了具有革命性意义的狭义相对论,从其新思想的来源看,不仅是逻辑的,而且具有美学的性质,是一种对称美的追求。电磁场的基本方程――麦克斯韦方程组就具有一定程度的优美的数学对称性。它确定了电荷、电流、电场、磁场的普遍规律与联系,用完美而对称的数学形式奠定了经典电动力学的基础。对称性原理简单说就是从不同角度看某个事物都是一样的。在所有这样的对称中,最简单的是左右对称。例如:从镜子里看左右颠倒了的脸,它都是一样的。有些事物比人脸有着更大的对称性。立方体从六个相互垂直的不同方向看,或者颠倒它的左右来看,都是一样的。球从任何方向来看都是相同的。这样的对称性千百年来愉悦和激发着艺术家和科学家。但对

模型组合讲解——对称性模型

模型组合讲解一一对称性模型 马秀红王世华 [模型概述] 对称法作为一种具体的解题方法,虽然高考命题没有单独正面考查,但是在每年的高考 命题中都有所渗透和体现。从侧面体现考生的直观思维能力和客观的猜想推理能力。所以作 为一种重要的物理思想和方法,相信在今后的高考命题中必将有所体现。 [模型讲解] 1.简谐运动中的对称性 例1.劲度系数为k的轻质弹簧,下端挂一个质量为m的小球,小球静止时距地面的高 度为h,用力向下拉球使球与地面接触,然后从静止释放小球(弹簧始终在弹性限度以内)则: A.运动过程中距地面的最大高度为2h B.球上升过程中势能不断变小 C.球距地面高度为h时,速度最大 D.球在运动中的最大加速度是kh/m 解析:因为球在竖直平面内做简谐运动,球从地面上由静止释放时,先做变加速运动, 当离地面距离为h时合力为零,速度最大,然后向上做变减速运动,到达最高点时速度为零,最低点速度为零时距平衡位置为h,利用离平衡位置速度相同的两点位移具有对称性,最高 点速度为零时距平衡位置也为h,所以球在运动过程中距地面的最大高度为2h,由于球的振 k k 幅为h,由a x可得,球在运动过程中的最大加速度为 a h,球在上升过程中动 m m 能先增大后减小,由整个系统机械能守恒可知,系统的势能先减小后增大。所以正确选项为 ACD。 2.静电场中的对称性 例2. (2005上海高考)如图1所示,带电量为+ q的点电荷与均匀带电薄板相距为2d, 点电荷到带电薄板的垂线通过板的几何中心。若图中b点处产生的电场强度为零,根据对称 性,带电薄板在图中b点处产生的电场强度大小为多少,方向如何?(静电力恒量为k)。 解析:在电场中a点:图1

最新对称性原理在物理学中的重要性

对称性原理在物理学中的重要性

6、对称性原理在物理学中的重要性 《自然杂志》19卷4期的‘探索物理学难题的科学意义' 的97个悬而未决的难题:23.自然界是否存在七种对称性晶体?77.CP不守恒难题只能在中性K介子衰变中见到吗?78.引起CP对称性破坏的力是什么?87.是否存在中性,稳性,质量至少大于40GeV的超对称粒子?美籍华人著名的物理学家、诺贝尔奖金获得者李政道把“一些物理现象理论上对称,但实验结果不对称”、“暗物质问题、暗能量问题”、"类星体的发能远远超过核能,每个类星体的能量竟然是太阳能量的1015倍"、“夸克禁闭”称为是21世纪科技界所面临的四大难题。这些问题都于对称性原理存在着密切的联系。近代科学表明,自然界的所有重要的规律均与某种对称性有关,甚至所有自然界中的相互作用,都具有某种特殊的对称性——所谓“规范对称性”。实际上,对称性的研究日趋深入,已越来越广泛的应用到物理学的各个分支:量子论、高能物理、相对论、原子分子物理、晶体物理、原子核物理,以及化学(分子轨道理论、配位场理论等)、生物(DNA的构型对称性等)和工程技术。 对称美在于:在杂乱中形成规律,在无序中引入秩序。物理学的第三个特点是它的和谐性和统一性。自然界本身就是和谐统一的,自然美反映到物理学理论中,就显示出统一与和谐的物理学美的规范。物理学规律的统一、有序与神秘的和谐、自恰常常使一些物理学家感到狂喜和惊奇。而物理学家们创造出来的系统的思想

所表现的统一与和谐之美又使更多的人感到愉快。我们可在门捷列夫的元素周期表中感到这一体系结构的“诗意”。在牛顿对天地间运动规律的统一之中;在焦耳迈尔对热功的统一之中;在法拉第、麦克斯韦对电与磁的统一之中;在E=MC2所表示的质能统一之中;在广义相对论的引力、空间、物质的统一之中;我们都会感到一种和谐的满足。守恒与对称和统一、和谐的观念紧密相连。守恒和对称会给人一种圆满、完整、均匀的美感。从阿基米德的杠杆原理到开普勒第二定律表现的角动量守恒,以及动量守恒、能量守恒等,都符合守恒的审美标准。在数学中,方程与图形的对称处处可见,这也是数学美的重要标志。中心对称、轴对称、镜像对称等,都是诗人愉悦的形式。笛卡尔建立的解析几何学是在数学方程与几何图形之间建立的一种对称。爱因斯坦于1905年提出了具有革命性意义的狭义相对论,从其新思想的来源看,不仅是逻辑的,而且具有美学的性质,是一种对称美的追求。电磁场的基本方程――麦克斯韦方程组就具有一定程度的优美的数学对称性。它确定了电荷、电流、电场、磁场的普遍规律与联系,用完美而对称的数学形式奠定了经典电动力学的基础。对称性原理简单说就是从不同角度看某个事物都是一样的。在所有这样的对称中,最简单的是左右对称。例如:从镜子里看左右颠倒了的脸,它都是一样的。有些事物比人脸有着更大的对称性。立方体从六个相互垂直的不同方向看,或者颠倒它的左右来看,都是一样的。球从任何方向来看都是相同的。这样的对称性千百年来愉悦和激发着艺术家和科学家。但对称性在物理学

对称性与守恒定律

对称性与守恒律 物理规律是分层次的,有的只对某些具体事物适用,如胡克定律只适用于弹性体;有的在一定范畴内成立,如牛顿定律适用于一切低速运动的宏观物体;有的如能量、动量守恒等守恒律,则在所有领域的自然界起作用。后者属于自然界更深层次、最为基本的规律。而守恒律和对称性有紧密联系。了解对称性的概念、规律及其分析方法,对于深入地认识自然有重要意义。 一、什么是对称性 对称的概念日常生活中就有,如人体外部器官的左右对称,紫禁城建设布局的东西对称,不带任何标记的球的中心对称等。对称性的定义如下。 若某个体系(研究对象)经某种操作(或称变换)后,其前后状态等价(相同),则称该体系对此操作具有对称性,相应的操作称为对称操作。简言之,对称性就是某种变换下的不变性。 二、物理学中几种常见的(对称)变换 1.空间变换 1)平移:即对位矢作的变换,相应的对称性谓之平移对称性。 例如,一个不带任何标记的无限大平面,对沿平面的任意平移具有对称性,而当此平面上均匀布满方格时,则对沿平面的特定方位(如边长或对角线方位)平移某个长度的整数倍具有对称性。 2)转动:绕某定点或轴线的转动 前述球的中心对称,就是指球对绕球心的任意旋转对称,通常就称之为球对称。一圆柱体,对绕其中心轴旋转任一角度状态不变,即具有旋转轴对称…… 3)镜像反射(反演):俗称照镜子。指对镜面作物像变换。 紫禁城建筑的东西对称,就是以天安门中轴面(南北竖直面)为镜面的镜像对称。 ●物理矢量的镜面反射——极矢量和轴矢量 按镜面反射时,矢量物像的方向之间的关系,物理矢量分两类。一类,以位移 为例,其镜像为,如图1(a)所示。它们平行于镜面的分量方向相同,垂直于镜面的分量的方向相反,这类矢量叫极矢量。,,等都是极矢量。

对称性原理在物理学中的表现形式

对称性原理在物理学中的表现形式 在近代科学的开端,哥白尼对日心说的数学结构做了美学说明和论证,他从中看到令人惊异的“对称性”与“和谐联系”——这可以说是科学美学的宣言书.开普勒醉心于宇宙的和谐,他在第谷的庞杂数据中清理出具有美感的行星运动三定律,并由衷地感到难以置信的狂喜和美的愉悦.伽利略对落体定律的揭示,在纷繁的事实多样性中求得统一的定律.牛顿的严整而简单的力学体系把天地间的万物运动统摄在一起,他推崇和倡导节约原理,并认为上帝最感兴趣的事情是欣赏宇宙的美与和谐.这一切,谱写了近代科学的美的协奏曲.以相对论和量子力学为代表的现代科学,更是把科学审美发挥到了极致.撇开这些理论的抽象的理性美和雅致的结构美不谈,令人叫绝的是,数学实在和物理实在之间的(神秘的)一致是由群的关系保证的,科学理论中审美要素的存在是由群的真正本性决定的——对称性或不变性(协变性,invariance)之美跃然纸上! (1)经典物理学中的对称性原理 在原始的意义上,对称是指组成某一事物或对象的两个部分的对等性.物理是研究客观世界的最基本规律的一美科学,而它们在很多方面存在着对等性,例如:正电荷和负电荷、电荷的负极与正极、光速的可逆性、空间与时间、正功与负功、质子与中子、电子与正电子等均具有对称性.万有引力公式F=GMm/r2与静电力公式F=KQ1Q2/r2,弹性势能公式E=0.5kx2与动能公式E=0.5mv2,凸透镜成象公式1/u+1/v=1/f与并联电阻公式1/R1+1/R2=1/R、弹簧串联公式1/k1+1/k2=1/k,欧姆定律公式I=U/R与压强公式P=F/S、密度公式ρ=m/V 、电场强度E=F/Q、电压U=W/Q与电容C=Q/U,安培力F=BIL与电功W=Uit,重量G=ρgV与热量Q=cm Δt等均具有相似性根据这些相似性.开普勒用行星轨道的椭圆对称性代替了古希腊人所坚持的圆形对称性, 开普勒第一定律:每个行星都沿椭圆轨道运行,太阳就在这些椭圆的一个焦点上. 物理学中有一些规律属于基本定律,它们具有支配全局的性质,掌握它们显然是极端重要的.例如力学中的牛顿定律是质点、质点组机械运动(非相对论)的基本定律,电磁学的麦克斯韦方程组是电磁场分布、变化的基本定律,物理学中还有另外一种基本定律的表述形式,这就是最小作用原理(变分原理),它可表述为系统的各种相邻的经历中,真实经历使作用量取极值.可以看出最小作用原理的表述形式与牛顿定律、麦克斯韦方程组的表述形式极不相同.牛顿定律告诉我们,质点此时此刻的加速度由它此时此刻所受的力和它的质量的比值决定;麦克斯韦方程组告诉我们,此时此刻的电场分布由此时此刻的电荷分布以及此时此刻的磁场的变化决定,此时此刻的磁场分布由此时此刻的电流分布以及此时此刻的电场

第十七章--原子核物理和粒子物理简介

习题十七 17-1 按照原子核的质子一中子模型,组成原子核X A Z 的质子数和中子数各是多少?核内共有多少个核子?这种原子核的质量数和电荷数各是多少? 答:组成原子核X A Z 的质子数是Z ,中子数是Z A -.核内共有A 个核子.原子核的质量数是A ,核电荷数是Z . 17-2 原子核的体积与质量数之间有何关系?这关系说明什么? 答:实验表明,把原子核看成球体,其半径R 与质量数A 的关系为3 10A R R =,说明原子核的体积与质量数A 成正比关系.这一关系说明一切原子核中核物质的密度是一个常数.即单位体积内核子数近似相等,并由此推知核的平均结合能相等.结合能正比于核子数,就表明核力是短程力.如果核力象库仑力那样,按照静电能的公式,结合能与核子数A 的平方成正比,而不是与A 成正比. 17-3 什么叫原子核的质量亏损?如果原子核X A Z 的质量亏损是m ?,其平均结合能是多少? 解:原子核的质量小于组成原子核的核子的质量之和,它们的差额称为原子核的质量亏损.设 原子核的质量为x M ,原子核X A Z 的质量亏损为:x n p M m Z A Zm m --+=?])([ 平均结合能为 A mc A E E 2 0ΔΔ== 17-4 已知 Th 232 90 的原子质量为u 232.03821,计算其原子核的平均结合能. 解:结合能为MeV 5.931])([ΔH ?--+=M m Z A Zm E n Th 23290 原子u M 03821.232=,90=Z ,232=A ,氢原子质量u m 007825.1H =, u m n 008665.1= MeV 1.766.56MeV 5.931]03821.232008665.1)90232(007825.190[Δ=?-?-+?=∴E ∴平均结合能为 MeV 614.7232 56 .1766Δ0=== A E E 17-5什么叫核磁矩?什么叫核磁子(N μ)?核磁子N μ和玻尔磁子 B μ有何相似之处?有何区别?质子的磁矩等于多少核磁子?平常用来衡量核磁矩大小的核磁矩I μ'的物理意义是什么?它和核的g 因子、核自旋量子数的关系是什么? 解:原子核自旋运动的磁矩叫核磁矩,核磁子是原子核磁矩的单位,定义为: 227m A 10.05.51 .18361 π4??=== -B p N m eh μμ

标准模型理论

标准模型理论 粒子物理学的标准模型是一套描述强力、弱力及电磁力这三种基本力及组成所有物质的基本粒子的理论。它隶属量子场论的范畴,并与量子力学及狭义相对论兼容。到现时为止,几乎所有对以上三种力的实验的结果都合乎这套理论的预测。但是标准模型还不是一套万有理论,主要是因为它并没有描述到引力。 一.内容 标准模型包含费米子及玻色子——费米子为拥有半整数的自旋并遵守泡利不兼容原理(这原理指出没有相同的费米子能占有样的量子态)的粒子;玻色子则拥有整数自旋而并不遵守泡利不兼容原理。简单来说,费米子就是组成物质的粒子而玻色子则负责传递各种作用力。 电弱统一理论与量子色动力学在标准模型中合并为一。这些理论都是规范场论,即它们把费米子跟玻色子(即力的中介者)配对起来,以描述费米子之间的力。由于每组中介玻色子的拉格朗日函数在规范变换中都不变,所以这些中介玻色子就被称为规范玻色子。标准模型所包含的玻色子有: 胶子- 强相互作用的媒介粒子,自旋为1,有8种 光子- 电磁相互作用的媒介粒子,自旋为1,只有1种 W 及Z 玻色子- 弱相互作用的媒介粒子,自旋为1,有3种 希格斯粒子- 引导规范组的自发对称性破缺,亦是惯性质量的源头。 实际上规范玻色子的规范变换是可以准确地利用一个称为“规范群”的酉群去描述。强相互作用的规范群是SU(3),而电弱作用的规范群是SU(2)×U(1)。所以标准模型亦被称为SU(3)×SU(2)×U(1)。 在众玻色子中,只有希格斯玻色子不是规范玻色子。而负责传递引力相互作用的玻色子——引力子则未能被包括入标准模型之中。 标准模型包含了十二种“味道”(Flavor) 的费米子。组成大部份物质三种粒子:质子、中子及电子,当中只有电子是这套理论的基本粒子。质子和中子只是由更基本的夸克,受强作用力吸引而组成。 二.世代 费米子可以分为三个“世代”。第一代包括电子、上及下夸克及电子中微子。所有普通物质都是由这一代的粒子所组成;第二及第三代粒子只能在高能量实验中制造出来,而且会在短时间内衰变成第一代粒子。把这些粒子排列成三代是因为每一代的四种粒子与另一代相对应的四种粒子的性质几乎一样,唯一的分别就是它们的质量。例如,电子跟μ子的自旋皆为半整数而电荷同样是-1,但μ子的质量大约是电子的二百倍。 τ电子与电子中微子,以及在第二、三代中相对应的粒子,被统称为轻子。它们与其他费米子不同处在于它们没有一种叫“色”的性质,所以它们的作用力(弱力、电磁力)会随距离增加变得越来越弱。相反,夸克间的强力会随距离增加而增强,所以夸克永远只会在色荷为零的组合中出现,这些不同的组合被统称为“强子”。 强子有两种:由三颗夸克组成的费米子,即重子(如质子及中子);以及由夸克-反夸克对所组成的玻色子,即介子(如π介子)。 标准模型中62种基本粒子: 规范粒子13种:传递强相互作用的媒介——胶子8种 传递弱相互作用的媒介——中间玻色子W+W-Z0 传递电磁作用的媒介——光子 为了实现电弱相互作用在低于250Gev的能量范围内分解为电磁相互作用和弱相互作用的特殊粒子——希格斯粒子。 夸克36: 六味:上夸克,下夸克;粲夸克,奇异夸克;底夸克,顶夸克 三色:红绿蓝 夸克有六味,每味三色,再加上各自对应的反粒子,总共36种不同状态的夸克。 轻子12:电子e μ子τ子以及各自的中微子共六种 它们的反粒子六种 三.测试及预测 在W玻色子、Z玻色子、胶子、顶夸克及魅夸克未被发现前,标准模型已经预测到它们的存在,而且对它

现代物理学理论中的非对称性问题

现代物理学理论中的非对称性问题 哥德尔定理指出,在任何公理化形式系统中,总存留着在定义该系统的公理基础上既不能证明也不能证伪的问题,也就是说任何一个理论都有解决不了的问题. 人类原来以为大自然是对称的和完美的.然而,自李政道与杨振宁发现了弱力的宇称不对称以后,自发性破缺就成为了最前沿的一个科学话题,日本科学家还因研究这个获了诺奖.但是,对称的自发破缺问题,一直没有得到质的突破.这一是由于对自然界的来龙去脉与本质没有搞清楚,二是物理学上有一个普适性的定理:热力学的不可逆定律——任何事物的热能都只能由高向低转化,而不可能由低向高转化.这个定律经过了科学的严格检验,确实很符合自然的根本规律.所以,这个规律也造成了对称性的自发破缺:没有了可逆的热力学反应,世界只会由高向低转化,哪来的对称呢?在宏观世界,热力学不可逆定律对对称的自发性破缺问题的影响与决定性作用还不是十分明显.但是,在量子世界,粒子的热力学定律效应就清楚地显示出来了——科学实验证明,粒子与反粒子并不严格遵守PCT联合对称律!实际上,这就是世界对称的自发性破缺的缘由.既然微观世界的粒子与反粒子都不严格遵守对称律,破坏了联合对称律,那么,由微观世界构成的宏观世界的对称破缺的累积效应,当然会造成明显的宏观对称破缺效应.从真空到化学反应式中的极化现象,同样是由于这个原因.平衡是造成对称的原因.但是,由于这种平衡是以动态的非线性方式进行的,所以必然造成对称的破缺.那么,对称的自发破缺与热力学的不可逆定律,真的是全部不可违犯的吗?也不全是.例如,粒子与反粒子的大致对称.甚至,宏观世界也是大致对称的. 这说明事物是可可逆的与可反演的.而在动力学中,这种可逆的反演现象更加明显——你施以一个动力,马上会有一个反动力相对应.但是,无论这种可逆与对应的力如何运动,它们都不是完全对称的,而是存在着自发的对称破缺,而只能保持大致的对称.但是,热力学定律的不可逆反应规律,却制约了人们对世界可逆性的根本性思考.热力学定律的不可逆反应规律,基本上是不可更改的.热力学第二定律作为一个选择原则表明,时间对称破缺意味着存在一个熵垒,即存在不允许时间反演不变态.力学定律对于时间是对称的,但是熵增原理对于时间是不对称的.在经典物理里面,描述热力学第零定律的热传导方程和斯蒂芬-波尔兹曼定律都不具有协变对称性. 在我们的宇宙里,对称的量子数是不守恒的,其中第一个重要发现就是宇称不守恒,现在还有不少东西不守恒.在惯性测量坐标系变换下的某些对称的绝对物理量和某些对称的

相关文档
最新文档