临床呼吸生理与呼吸力学监测

机械通气的呼吸力学指标

机械通气的呼吸力学指标 呼吸力学在是机械通气理论的重要组成部分之一,正常人胸腔内不同位置的力学特征存在着一定的差异,这种不均一性在损伤不均匀的肺部病变中表现的更为突出,可以对气体交换产生极大的影响并使发生机械通气相关肺损伤的机率明显增加,因此熟知不同疾病状态下的呼吸力学特征对指导正确使用机械通气技术十分有帮助。 与机械通气相关的重要呼吸力学指标 1.气道压力的计算公式和意义 跨肺压(ΔPL)=气道开口压(Pao)-胸膜腔内压(Ppl)(1) 跨肺泡压(ΔPalv)=肺泡内压(Palv)-胸膜腔内压(Ppl)(2) 跨气道压(Δpaw)=气道开口压(Pao)-肺泡内压(Palv)(3)

气道峰压(PIP)=气道阻力压(PRaw)+平台压(Ppla)(4) 平台压(Ppla)近似等于平均肺泡内压(Palv)。 平均气道压(Paw)=[(PIP-PEEP)×Ti/TOT]+PEEP(恒压通气时)(5)Paw=[0.5×(PIP-PEEP)×Ti/TOT]+PEEP(恒流通气)(6) 食道内压(Pes)近似等于胸膜腔内压(Ppl)。(7) 平均肺泡压(Palv)=Paw+(RE-RI)×(VE/60)(8) 多数气道内压力很容易在呼吸机面板或辅助监测系统上观察到,但应注意如果不结合食道内压力测定其临床意义变小。因为目前尚无直接测定胸膜腔内压的很好方法,多用食道内压(Pes)代替胸腔内压,如不测定Pes则在自主呼吸状态下测得的肺顺应性、中心静脉压等重要生理参数均不准确。所以,食道内压/胸膜腔内压测定对机械通气患者的呼吸和循环功能的判断及进行治疗都有重要意义。应注意,在机械通气连接管路上的不同部位测得压力所代表的意义不同。Paw对血流动力学、气体交换的影响更为明显,并与气压伤的发生密切相关。因此,监测Paw十分重要。在机械通气期间,应尽量保持峰压力小于40cmH2O,测定时按吸气末按钮才能使结果准确。平台压应保持在35 cmH2O以内,若高于此值发生气压伤的危险性明显增高。由公式(5)可看出,要减少Paw,可通过调整吸气时间(当潮气量和呼吸频率固定时,调节吸气流速)、减少PEEP水平、降低呼吸阻力和通气水平来实现。从公式(8)可以看出,当RE 明显高于RI时,可使得平均肺泡压高于平均气道压,多发生在高分钟通气量和呼气阻力相对大的情况下。哮喘患者存在严重的气道阻塞,呼气阻力可明显高于吸气阻力,在通气量过大时平均肺泡压高于平均气道压,如没有考虑这一差异,容易低估肺泡内的压力。 2.气道阻力的计算公式和意义 气道阻力是气体在气道中受到的阻塞程度,可分为吸气阻力和呼气阻力。 吸气阻力(RI)=(PIP-Ppla)/吸气末流速(8) 呼气阻力(RE)=(Ppla-PEEP)/最大呼气流速(9) 跨气道压是气体进入肺泡的动力,正压机械通气时,气道峰压力(PIP)需克服

呼吸机的临床应用及参数设置大全

呼吸机的临床应用及参数设置大全 发布时间:2011-09-15 15:52:25 一、适应症:1.严重通气不良2.严重换气障碍3.神经肌肉麻痹4.心脏手术后 5.颅内压增高 6.新生儿破伤风使用大剂量镇静剂需呼吸支持时 7.窒息、心肺复苏9.任何原因的呼吸停止或将要停止。 二、禁忌症:没有绝对禁忌症。肺大泡、气胸、低血容量性休克、心肌梗塞等疾病应用时应减少通气压力而增加频率。 三、呼吸机的基本类型及性能: 1. 定容型呼吸机:吸气转换成呼气是根据预调的潮气量而切换。 2. 定压型呼吸机:吸气转换成呼气是根据预调的压力峰值而切换。(与限压不同,限压是气道压力达到一定值后继续送气并不切换) 3. 定时型呼吸机:吸气转换为呼气是通过时间参数(吸气时间)来确定。八十年代以来,出现了定时、限压、恒流式呼吸机。这种呼吸机保留了定时型及定容型能在气道阻力增加和肺顺应性下降时仍能保证通气量的特点,又具有由于压力峰值受限制而不容易造成气压伤的优点,吸气时间、呼气时间、吸呼比、吸气平台的大小、氧浓度大小均可调节,同时还可提供IMV(间歇指令通气)、CPAP(气道持续正压通气)等通气方式,是目前最适合婴儿、新生儿、早产儿的呼吸机。 四、常用的机械通气方式 1. 间歇正压呼吸(intermittent positive pressure ventilation,IPPV):最基本的通气方式。吸气时产生正压,将气体压入肺内,靠身体自身压力呼出气体。

2. 呼气平台(plateau):也叫吸气末正压呼吸(end inspiratory positive pressure breathing,EIPPB),吸气末,呼气前,呼气阀继续关闭一段时间,再开放呼气,这段时间一般不超过呼吸周期的5%,能减少VD/VT(死腔量/潮气量) 3. 呼气末正压通气(positive end expiratory pressure,PEEP):在间歇正压通气的前提下,使呼气末气道内保持一定压力,在治疗呼吸窘迫综合征、非心源性肺水肿、肺出血时起重要作用。 4. 间歇指令通气(intermittent mandatory ventilation,IMV)、同步间歇指令通气(synchronized intermittent mandatory ventilation,SIMV):属于辅助通气方式,呼吸机管道中有持续气流,(可自主呼吸)若干次自主呼吸后给一次正压通气,保证每分钟通气量,IMV的呼吸频率成人一般小于10次/分,儿童为正常频率的1/2~1/10 5. 呼气延迟,也叫滞后呼气(expiratory retard):主要用于气道早期萎陷和慢性阻塞性肺疾患,如哮喘等,应用时间不宜太久。 6. 深呼吸或叹息(sigh) 7. 压力支持(pressure support):自主呼吸基础上,提供一定压力支持,使每次呼吸时压力均能达到预定峰压值。 8. 气道持续正压通气(continue positive airway pressure,CPAP):除了调节CPAP旋钮外,一定要保证足够的流量,应使流量加大3~4倍。CPAP正常值一般4~12cm水柱,特殊情况下可达15厘米水柱。(呼气压4厘米水柱)。 五、呼吸机与人体的连接: 情况紧急或者估计插管保留时间不会太长、新生儿、早产儿、一般经口插管。其他情况可以选经鼻插管或者是气管切开。 六、呼吸机工作参数的调节: 四大参数:潮气量、压力、流量、时间(含呼吸频率、吸呼比)。 1. 潮气量:潮气输出量一定要大于人的生理潮气量,生理潮气量为6~10毫升/公斤,而呼吸机的潮气输出量可达10~15毫升/公斤,往往是生理潮气量的1~2倍。还要根据胸部起伏、听诊两肺进气情况、参考压力二表、血气分析进一步调节。 2. 吸呼频率:接近生理呼吸频率。新生儿40~50次/分,婴儿30~40次/分,年长儿20~30次/分,成人16~20次/分。潮气量*呼吸频率=每分通气量 3. 吸呼比:一般1:1.5~2,阻塞性通气障碍可调至1:3或更长的呼气时间,限制性通气障碍可调至1:1。 4. 压力:一般指气道峰压(PIP),当肺部顺应性正常时,吸气压力峰值一般为10~20厘米水柱,肺部病变轻度:20~25厘米水柱;中度:25~30毫米水柱;重度:30厘米水柱以上,RDS、肺出血时可达60厘米水柱以上。但一般在30以下,新生儿较上述压力低5厘米水柱。 5. PEEP使用IPPV的患儿一般给PEEP2~3厘米水柱是符合生理状况的,当严重换气障碍时(RDS、肺水肿、肺出血)需增加PEEP,一般在4~10厘米水柱,病情严重者可达15甚至20厘米水柱以上。当吸氧浓度超过60%(FiO2大于0.6)时,如动脉血氧分压仍低于80毫米汞柱,应以增加PEEP为主,直到动脉血氧分压超过80毫米汞柱。PEEP每增加或减少1~2毫米水柱,都会对血氧产生很大影

呼吸机临床应用

随着现代医学的进展,呼吸机越来越多的应用于急危重抢救、麻醉、术后恢复、呼吸治疗和呼吸维持,在医疗设备中占有重要地位。据美国呼吸病学会统计,由于呼吸机的普遍使用,使临床抢救的成功率大约提高了55 %。但由于长时间使用呼吸机,使患者发生院内感染的机率增加,对于使用呼吸机的患者,护理人员应 从身心两方面给予患者细致护理,尽可能减轻应用呼吸机带来的不适与痛苦,减少并发症发生率。 (一)呼吸机的临床应用 1.呼吸机治疗的目的主要为: (1) 维持适当的通气量,使肺泡通气量满足机体需要。改善气体交换功能,维持有效的气体交换。(2)减少呼吸肌的作功。(3)肺内雾化吸入治疗。(4)预防性机械通气,用于开胸术后或败血症、休克、严重创伤情况下的呼吸衰竭预防性治疗。 2.呼吸机治疗的指征 成人的呼吸生理指标达到下列标准的任何一项时,即应开始机械通气治疗: (1)自主呼吸频率大于正常的3倍或小于1/3者。(2)自主潮气量小于正常1/3者。(3)生理无效腔/潮气量>60%者。(4)肺活量<10-15ml/kg者。 (5)PaCO2 >50mmHg (慢性阻塞性肺疾患除外) 且有继续升高趋势,或出现精神症状者。 3.呼吸机治疗的适应症 当患者出现呼吸困难或呼吸衰竭症状,应及时使用呼吸机进行机械通气,以防止因低氧或缺氧而引起的器官功能衰竭。在临床实践中,心肺复苏后、中枢神经系统疾病引起肺泡低通气量、成人呼吸窘迫综合征、重症肺炎、严重肺挫伤引起的低氧血症、部分COPD患者、ARDS、呼吸衰竭等病人宜使用。 (1)呼吸突然停止或即将停止。(2)在吸入100%氧气的情况下,动脉血氧分压仍达不到50~60mmHg。(3)严重缺氧和二氧化碳储留而引起意识和循环功能障碍。 4.呼吸机与病人的连接方式

呼吸机的临床应用

呼吸机的临床应用 呼吸机呼吸模式SIMV 在临床上有许多患者因不同原因而引致呼吸困难或衰竭,出现通气不足。为抢救及治疗这类病人,以往只能通过气管内插管或气管切开来提供人工通气,维持患者的呼吸,为患者争取时间治疗原发病和诱发因素。但无论是用插管或气管切开方式进行机械通气,均需耗用大量的药物,应用仪器进行特别护理,并给患者带来极大的痛苦和危险,容易有并发症的发生,譬如对神志尚清、病情不稳定的患者插管前所要用的镇静剂可引起低血压或加重低氧血症和高碳酸血症;插管时会因咽反射和喉损伤引起气管痉挛;插管上的气囊构成的压迫又会引起气管坏死和狭窄或气管萎缩;最后需要拔管时仍可因咽痉挛、声带和气管的损害造成拔管困难。所以患者如不是病情发展到后期危及生命时,医生是不会随便为病人施行此类手术的。这些不利因素在很大程度上限制了人工通气在早、中期呼吸衰竭患者中的应用。近年来,世界各地的医护人员都致力寻求有效且操作方便的无创性人工通气方法无创呼吸机(特别是面罩式呼吸机)不仅免除患者因气管切开造成的痛苦及危险,而且缩短了病人的住院时间。现代先进的呼吸系统均配有微电脑系统,并能显示或记录流速、流量、压力图形等参数,为呼吸机在临床中的应用开辟了更广泛的前景。 根据临床实际应用情况,呼吸机设置了多种呼吸模式以适应不同状态下病人的需要: 一、强制式呼吸(ControlledVentilation) 1.容积强制式呼吸(V ol,Contr.)呼吸机在一特定时间内(预先设定的值)依一定的频率供应一特定的潮气量,若病人产生吸气努力,呼吸道压力低于预设的值,每分钟通气量会自动增加。 2.容积强制式呼吸+深呼吸(V olumeContuolledVentilation+Sign)在此模式下,呼吸机每隔若干次(如一百次)呼吸给予一次深呼吸。每一深呼吸为等速流量、双倍潮气量双倍吸气时间。因此每分钟呼气量的上下报警极限设定必须适度提高。 3.压力强制式呼吸(Press.Contr)压力强制式呼吸时在设定时间内将固定压力的气体供应给病患。 此呼吸模式为减速流量型,病人所接收的量由设定的吸气压力(InspiratoryPressLeve1)、呼吸次数/分钟(Breaths/min)、吸气时间百分比(Insp.Time%)所决定。 二、辅助式呼吸(SupportVentilation) 1.压力辅助式呼吸(Press.Support)这时一种必须有病患自发式带动呼吸的呼吸模式。此种模式应用于病人脱离自主呼吸装置后、气喘的病人、手术后病人自主换气不足。当病人带动呼吸机时,其会根据设定的压力在吸气阶段给予压力辅助。 2.同步化间歇性强制呼吸SIMV (SynchronizedInternittent Mandatory Ventilation)SIMV是指预先设定的呼吸次数由呼吸机强制式控制,病人在接受呼吸机间歇性给予强制呼吸的同时,也可在两强制式呼吸之间有自发式呼吸。 SIMV周期分为SIMV 期间和自发呼吸期间,在SIMV期间病人若能带动,呼吸机与病人同步给予一强制呼吸;如在SIMV期间内病人无自主呼吸,呼吸机在SIMV期间结束后给予病人一强制呼吸。

呼吸机的临床应用

呼吸机的临床应用 呼吸机是进行机械通气的一种手段,它能维持呼吸道通畅、改善通气、纠正缺氧、防止二氧化碳在体内蓄积,为抢救提供有力的生命支持,使机体有可能度过基础疾病所致的呼吸功能衰竭,创造条件从疾病过程中恢复。目前由于呼吸机的应用日益广泛,使心脏停搏、呼吸衰竭等危重病人的预后大为改善,是呼吸医学的重大进展之一。 呼吸机的基本原理从50年至今未有重大改变。呼吸机能否发挥作用,一方面与机器的性能、质量有关;另一方面也与医务人员对呼吸机的熟练掌握,对具体患者的呼吸病理生理改变的了解,以及正确的治疗和护理均有很大关系。使用不当,反而会加重病情的发展。 -、呼吸机的治疗作用、指征和禁忌证 (一)呼吸机的治疗作用 1、改善通气功能、维持呼吸道内气体的流动常频通气时,由于正压产生对流,可达到是足够的潮气量;高频通气时则利用高频率的振动,促进对流及气体扩散、弥散过程。 2、改善换气功能由于气道内正压可使部分萎陷肺泡扩张,增加气体交换面积,改善通气;同时运用一些特殊的通气方式,如呼气末延长、呼气末屏气、呼气末正压通气(PEEP)等,改变通气与血流灌注比值,减少分流。 3、减少呼吸功呼吸机替代呼吸肌做功,减少了呼吸肌的负荷,使氧耗量降低,有利于呼吸肌疲劳的恢复。 (二)呼吸机的临床应用指征 1、由于呼吸停止或通气不足所致的急性缺氧和二氧化碳气体交换障碍。 2、肺内巨大分流所造成的严重低氧血症,外来供氧无法达到足够的吸入氧浓度。 3、在重大外科手术后(如心、胸或上腹部手术),为预防术后呼吸功能紊乱,需进行预防性短暂呼吸机支持。 4、在某些情况下,可暂时人为过度通气,以降低颅内压或在严重代谢性酸中毒时增

机械通气的呼吸力学指标 (2)

精心整理 机械通气的呼吸力学指标 呼吸力学在是机械通气理论的重要组成部分之一,正常人胸腔内不同位置的力学特征存在着一定的差异,这种不均一性在损伤不均匀的肺部病变中表现的更为突出,可以对气体交换产生极大的影响并使发生机械通气相关肺损伤的机率明显增加,因此熟知不同疾病状态下的呼吸力学特征对 1.气道压力的计算公式和意义 跨肺压(ΔPL)=气道开口压(Pao)-胸膜腔内压(Ppl)(1) 跨肺泡压(ΔPalv)=肺泡内压(Palv)-胸膜腔内压(Ppl)(2) 跨气道压(Δpaw)=气道开口压(Pao)-肺泡内压(Palv)(3) 气道峰压(PIP)=气道阻力压(PRaw)+平台压(Ppla)(4)

平台压(Ppla)近似等于平均肺泡内压(Palv)。 平均气道压(Paw)=[(PIP-PEEP)×Ti/TOT]+PEEP(恒压通气时)(5) Paw=[0.5×(PIP-PEEP)×Ti/TOT]+PEEP(恒流通气)(6) 食道内压(Pes)近似等于胸膜腔内压(Ppl)。(7) 平均肺泡压(Palv)=Paw+(RE-RI)×(VE/60)(8) 多数气道内压力很容易在呼吸机面板或辅助监测系统上观察到,但应注意如果不结合食道内压力测定其临床意义变小。因为目前尚无直接测定胸膜腔内压的很好方法,多用食道内压(Pes) Paw对 十分重要。 )可看出,要减少PEEP 如没2 呼气阻力(RE)=(Ppla-PEEP)/最大呼气流速(9) 跨气道压是气体进入肺泡的动力,正压机械通气时,气道峰压力(PIP)需克服气道阻力(PRAW)和肺的弹性阻力和呼气末肺内压力(PEEP),公式(4)还可表示为: PIP=R.V+V/C+PEEP 机械通气时气管插管产生的阻力在总的呼吸阻力中占很大比例,与管腔内径关系最大,其次流速和气管插管长度也对阻力有一定的影响。根据流体力学的理论,改变吸入气体的性质,如采用低密度、高粘滞性的氦-氧混合气也可减低吸气阻力,减少呼吸功。气道阻力越大,在气体运动过程中消耗在气道上压力越多,传送到肺泡内的压力和气体都减少。因此要保证有效的气体交换就必

呼吸力学

呼吸力学及监测

与呼吸相关的力学概念 ?力 –物体之间的相互作用 –使物体获得加速度和发生变形 ?功 –力使物体沿力的方向通过一段距离?动力 –导致作功的力 ?阻力 –阻碍物体运动的力

基础:运动方程示意图 M:有一定质量物体. F:使M向前移动的力.K:牵拉M的弹簧,因弹性回缩力而产生的阻力称弹性阻力. R:M移动时与表面摩擦而产生的摩擦阻力称粘性阻力. 物体移动和加速时尚有惯性阻力(在呼吸阻力中可忽略不计). F=F弹+F摩+F惯 呼吸系统: F相当于吸气用力. M+K=胸廓-肺,它的位移距离是肺容积变化(ΔV).位移速度即气体流量(V’),弹性阻力K以顺应性倒数表示(1/C). 气体流经气道的摩擦力是气道阻力(R), 呼吸运动方程: 气体流动靠压力差推动. P=P摩+P弹, Paw=R×V’ + 1/C×ΔV.

正常呼吸时的力 ?吸气相 –动力 ?吸气肌收缩 –阻力 ?弹性回缩力(R弹) ?气体与气体、气体与 气道摩擦(R气道)?呼气相 –动力 ?弹性回缩力–阻力 ?R气道 被忽略的阻力:惯性阻力、粘滞阻力

呼吸系统:气道和肺泡的阻力 气道粘性阻力(Rrs) 肺泡弹性阻力(Ers)

肺通气的阻力 肺通气的动力是气体流速流经气道和进入肺泡所需要克服粘性阻力和弹性阻力所产生的压力. 非弹性阻力,包括气道阻力,惯性阻力和组织的粘性阻力,占总阻力的30%.弹性阻力(肺和胸廓的弹性阻力),占总阻力的70%,是平静呼吸时主要阻力. 1.弹性阻力和顺应性: 弹性组织在外力作用而变形时,有对抗变形和弹性回缩的倾向,为弹性阻力. 以顺应性(compliance)来测量弹性阻力。顺应性是指在外力作用下弹性组织的可扩张性. 2. 弹性阻力(R)可用顺应性(C)的倒数来表示:通常以 单位压力变化引起的容积变化来表示

呼吸机原理及临床应用

检测方法做简单介绍。 1 呼吸机结构原理及临床中的应用 1.1 呼吸机的临床作用 (1)改善通气功能:正确应用呼吸机可有效保证通气量,解除二氧化碳贮留和因通气障碍所致的缺氧,在纠正呼吸性酸中毒和降低PACO2方面有不可替代的优越性。 (2)改善换气功能:应用呼吸机纠正肺内气体分布不均,提高氧浓度。特别是呼气末正压的应用,使通气/血流比例失调和肺内分流得到改善。能纠正严重的低氧血症。 (3)减少呼吸功能:平静呼吸时,氧耗量在总氧耗量5%以下,而严重呼吸困难时氧耗量可以超过30%,使用呼吸机可全部或部分代替呼吸肌的工作,减少能量消耗,避免呼吸疲劳,并减轻循环负担。 总之,呼吸机就是一个给人打气的气桶,不管是什么原因导致的不能呼吸、肺泡氧交换能力不足(如矽肺),呼吸机都可以让人保持呼吸,如果交换不足的话,可提高氧浓度,使其维持住呼吸机能,保持血液中的供氧能力,争取救治时间。 1.2 呼吸机的分类 (1)应用场合:急救及转运呼吸机、家用呼吸支持、治疗呼吸机; (2)驱动方式:气动电控、电动电控、气动气控; (3)应用患者:成人、儿童、新生儿。 1.3 呼吸模式 (1)IPPV(间歇正压通气) 呼吸机最基本的通气方式。 吸气相呼吸机将气体压入体内,气道内产生正压,呼气管道与大气相通,胸肺组织弹性回缩将气体排出,直到压力与大气相等;比较多地应用于麻醉机中的呼吸模式。 (2)VCV(容量控制通气) 输出就是以设定的容量为参考点,主要设定潮气量。 (3)PCV(压力控制通气) 为控制通气,压力为控制的参数,气体分布均匀,氧和通气良好,需监测潮气量。(4)PSV(压力支持通气) 在病人自主呼吸的基础上,每次呼吸得到一定压力的呼吸支持。 (5)SIMV(同步间歇指令通气) 在病人自主呼吸的基础上,每分钟插入几次有规律的、间隙的指令性通气;从机械通气过度到自主呼吸。 (6)PEEP(持续气道正压通气) 控制呼吸时,呼气机维持较低的气道正压。目的在于使萎陷的肺泡复张,提高氧分压。(7)CPAP(持续气道正压通气) 于吸气期和呼气期均送入恒定的正压气流,使气道保持正压。适用于自主呼吸的病人,作用与PEEP 相似,PSV+PEEP。 (8)A/C(辅助控制通气) AV + CV自动选择; AV (辅助通气)———靠患者触发,呼吸机以预置条件提供通气辅助; CV (控制通气)———完全由呼吸机来控制通气的频率、潮气量和吸呼时间比; 1.4 呼吸机主要参数 (1)潮气量———Vti、Vte: 潮气量是最重要的参数,代表患者单次吸入或呼出气体的体积,一般分VTI 和VTE,分别代表吸入和呼出潮气量。对呼吸机而言,指机器每次向患者传送的混合气体的体积,单位

相关文档
最新文档