房室模型

房室模型
房室模型

§3 房 室 模 型

[问题的提出] 药物进入机体后,在随血液输运到各个器官和组织的过程中,不断地被吸收、分布、代谢,最终排出体外.药物在血液中的浓度,即单位体积血液(毫升)中药物含量(毫克或微克),称血药浓度,随时间和空间(机体的各部分)而变化.血药浓度的大小直接影响到药物的疗效,浓度太低不能达到预期的效果,浓度太高又可能导致药物中毒、副作用太强或造成浪费.因此研究药物在体内吸收、分布和排除的动态过程,及这些过程与药理反应间的定量关系,对于新药研制、剂量确定、给药方案设计等药理学和临床医学的发展都具有重要的指导意义和实用价值.这个学科分支称药物动力学.

建立房室模型(Compannlent Model)是药物动力学研究上述动态过程的基本步骤之一.所谓房室是指机体的一部分,药物在一个房室内呈均匀分布,即血药浓度是常数,而在不同房室之间则按照一定规律进行药物的转移.一个机体分为几个房室,要看不同药物的吸收、分布、排除过程的具体情况,以及研究对象所要求的精度而定.本节只讨论二室模型,即将机体分为血液较丰富的中心室(包括心、肺、肾等器官)和血液较贫乏的周边室(四肢、肌肉组织等).药物的动态过程在每个房室内是一致的,转移只在两个房室之间以及某个房室与体外之间进行.二室模型的建立和求解方法可以推广到多室模型.显然,将一个机体划分为若干房室是人们为了研究目的所做的简化.值得庆幸的是,这种简化在一定条下已由临床试验证明是正确的,为医学界和药理学界所接受.

[模型的假设] 1.机体分为中心室( 室)和周边室( 室),两个室的容积(即血液体积或药物分布容积)在过程中保持不变;2.药物从一室向另一室的转移速率,及向体外的排除速率,与该室的血药浓度成正比;3.只有中心室与体外有药物交换,即药物从体外进人中心室,最后又从中心室排出体外.与转移和排除的数量相比药物的吸收可以忽略.

在这些假设下的一种二室模型示意图如下,)(),(t x t c i i 和i V 分别表示第i 室

)2,1(=i 的血药浓度、药量和容积,12k 和21k 是两室之间药物转移速率系数,13k 是药物从I 室向体外排除的速率系数.)(0t f 是给药速率,由给药方式和剂量确定.这种速率系数为常数的房室模型称乳突状模型.

[模型的建立] 根据假设条件和上图可以写出两个房室中药量)(),(21t x t x 满足的微分方程.)(1t x 的变化率由I 室向Ⅱ室的转移12k -1x ,I 室向体外的排除113x k -,Ⅱ室向I 室的转移是221x k ,及给药)(0t f 组成;)(2t x 的变化率由I 室向Ⅱ室的转移112x k 及Ⅱ室向I 室的转移221,x k -组成.于是有

)(t x i 与血药浓度)(t c i 、房室容积i V 之间显然有关系式

(2)代人(1)式可得

这是线性常系数非齐次方程,它的解由齐次方程的通解和非齐次方程的特解组成.其对应齐次方程的通解为:

其中βα,由

确定.为了得到非齐次方程的特解从而解出(3),需要设定给药速率)(0t f 和初始条件.我们考察下面几种常见的给药方式.

1.快速静脉注射

这种注射可简化为在0=t 的瞬时将剂量0D 的药物输入中心室,血药浓度立即上升为10/V D ,于是)(0t f 和初始条件为

方程(3)在条件(6)下的解为

其中βα,由(5)确定.可以看出当∞→t 时0)(,0)(21→→t c t c .

2.恒速静脉滴注

当静脉滴注的速率为常数是0k 时,)(0t f 和初始条件为

方程(3)在条件(9)下的解可表示为

其中常数11,B A 由初始条件0)0()0(21==c c 确定.

当t 充分大时)(),(21t c t c 将趋向于(10)式右端第3项表示的常值.实际上,若T t =后停止滴注,那么)(),(21t c t c 在T t >以后将按指数规律衰减并趋于零.

3.口服或肌肉注射

这种给药方式相当于在药物输入中心室之前先有一个将药物吸收人血掖的过程,可以简化为有一个吸收室,如图16.)(0t x 为吸收室的药量,药物由吸收室 进人中心室的转移速率系数为01k ,于是)(0t x 满足

0D 是给药量.而药物进人中心室的速率为

将方程(11)的解代人(12)式得

在这种情况下方程(3)的解)(1t c 的一般形式为

(设βα,01≠k ).其中系数A ,B ,,E 正由初始条件0)0()0(21==c c 确定. 从以上的讨论可以看出,中心室的血药浓度)(1t c 取决于转移速率系数132112,,k k k ,房室容积21,V V 以及输入参数00,k D 等因素,而房室模型的用途恰是通过对)(1t c 的量测,确定对于药理学和临床医学最为重要的参数,如转移速率系数,特别是从中心室向体外排除的速率系数13k .下面介绍在快速静脉注射给药方式下估计诸参数的方法.

[参数估计] 在0=t 瞬时快速注射剂量为0D 的药物以后,在一系列时刻

),2,1(n i t i ,?=从中心室采取血样并获得血药浓度)(1t c ,根据这些数据利用 (7),

(5)式估计参数132112,,k k k 的过程可分两步:先计算(7)式中的B A ,,,βα再确定132112,,k k k .

1.计算B A ,,,βα 不妨设βα<,于是当t 充分大时(7)式近似为

对于适当大的i t 和相应的)(1t c ,用最小二乘法不难估计出α,1nA 和A . 然后计算

再利用(7)式得

对于较小的i t 和由(17)式算出的)(1i t c ,仍用最小二乘法即可得到β和B .

2.确定132112,,k k k

因为∞→t 时0)(),(21→t c t c ,进人中心室的药物全部被排除,所以

将(7)代人(19)式可得

又因为

联合(20),(21)式解出

再利用(5)式即可确定

这就完成了根据中心室血药浓度的量测数据,估计转移和排除速率系数的过程.

[ 评注] 建立房室模型的目的是研究体内血药浓度的变化过程,确定诸如转移和排除速率系数等参数,为制订给药方案和剂量大小提供数量依据.建模过程是将机理分析和测试分析相结合,先由机理分析确定方程形式,再由测试数据估计参数.

选用几个房室建模是一个重要问题,可以先选择一室模型,其计算非常简单.不满意时再采用二室或多室模型,甚至非线性房室模型.常见的一种非线性模型(以一室为例)是1

2111.)(c k c k t c +-

=,当1c 较小时它近似于线性模型;称为一级排除过程,而当1c 较大时)(1.t c 近似于常数,称为零级排除过程,所以它表示了一种混合型的排除过程.

最简单的房室模型是一房室模型

最简单的房室模型是一房室模型。用一房室模型意味着将机体看成一个动力学单元,它适用于给药以后药物瞬即分布到血液、其它体液及各器官组织中,并达成动态平衡的情况。二房室模型是从动力学角度把机体设想为两部分,分别称为中央室和周边室。中央室一般包括血液及血流丰富的组织(如心、肝、肾、肺、脑、消化器官等),周边室一般指血流供应少,药物不易进入的组织(如肌肉、皮肤、脂肪、毛发等)。尽管经典房室模型在临床中已有广泛的应用,但是这种模型并不能描述组织间浓度差异较大的生理系统。对药理活性不高的药物而言,可以忽略房室之间的差异,但是对于具有高亲和力的药物,或对于某些组织具有毒性,有特殊的目标器官的药物,经典的房室模型就无法描述这种特殊的现象[1]。经典房室模型还存在着一些明显的缺点,如:分析结果依赖于房室模型的选择,而房室模型的选择带有一定的不确定性。同一种药物可用不同的房室模型来解释,相应的参数可以显著不同。因而,要判断哪一个模型最适宜,有时是困难的,甚至是不可能的。为了克服经典房室模型的缺点,近年来药物动力学研究继经典房室模型之后又提出了生理房室模型[2]。生理房室模型简称生理模型,是一种整体模型。它是根据生理学、生物化学和机体解剖学的知识,模拟机体循环系统的血液流向并将各器官或组织相互联结。每一房室代表一种或一组特殊器官或组织,每一器官或组织(房室)在实际血流速率和组织/血液分配系数以及药物性质的控制下遵循物质平衡原理进行药物运转。因此,生理模型可描述任何器官或组织内药物浓度的经时变化,以提供药物体内分布的资料,并可以模拟肝、肾等代谢、排泄功能,提供药物体内生物转化的资料,从而得到药物对靶器官作用的信息,有助于药物作用机理的探讨。依据生理房室模型药物动力学,通过模拟可以验证、补充和预测体内药量的经时变化规律。对新药研究开发、临床药物治疗均有理论指导意义和实用价值。 药动学通常用房室模拟人体,只要体内某些部位接受或消除药物的速率相似,即可归入一个房室。房室模型仅是进行药动学分析的一种抽象概念,并不一定代表某一特定解剖部位。把机体划分为一个或多个独立单元,可对药物在体内吸收、分布、消除的特性作出模式图,以建立数学模型,揭示其动态变化规律。 1,假设机体给药后,药物立即在全身各部位达到动态平衡,这时把整个机体视为一个房室,称为一室模型或单室模型。 2,假设药物进入机体后,瞬时就可在血液供应丰富的组织(如血液、肝、肾等)分布达到动态平衡,然后再在血液供应较少或血流较慢的组织(如脂肪、皮肤、骨骼等)分布达到动态平衡,此时可把这些组织分别称为中央室和周边室,即二室模型。 多数情况下二室模型能够准确地反映药物的体内过程特征,但一房室模型虽然准确性稍差,却比较简单,便于理解、推广、应用,且有些药物用单室模型处理已能满足要求,所以其重要性并不亚于二室模型。 第二章.目前的主要研究现状以及相应的文献、使用的方法和结论

海洋平台结构设计与模型制作计算书

海洋平台结构设计与模型制作 理论方案 浙江大学结构设计竞赛组委会 二○一二年

第一部分:方案设计摘要 根据学长“简单、粗犷”的原理,在实践中抛 弃了很多复杂、沉重的构件,最终展现在我们面前 的是一个四棱台与四棱柱结合的简单作品。 自下而上的构件分别为: 底部为深入沙中的底柱,长为10cm。通过一次 实验,为利于柱子插入细沙中而将柱子削尖。 联结底柱的是四棱台,高42cm、底边长45cm、 顶边长28cm。为抵抗风荷载的力矩而增大重力的力 臂,在保证质量较轻的条件下增大底部长度。初时 对竖向荷载过分估计以致四周承重柱以及斜撑杆过 重,但稳重的底部在加载过程汇中也有可取之处。 之所以将高度定为28cm,是因为伊始准备在四棱台 中间安置塑料片筒体。但在实际操作中我们放弃了 这个设想。 联结四棱台的是被斜杆分成三部分的四棱柱。 借鉴了别人的轻质理念,一改底座的笨重,上部桁 架的布置简明,但纤细的杆件也使整体遭受了风荷 载的极大挑战。在实验加载中发现荷载箱稍小,因 此改进顶部边长、露出四个小柱。本欲在与水面相 切处设置420*420的塑料片则可以利用水的吸附 力,可惜塑料片质量稍重、效果也不太明显。改进 后,四棱台留在空中的部分受风荷载较大,布置了 较密的桁架。 在构件联结处,我们尽力增大构件的接触面积,同时也做了些小木段与木片作为加固。 总结来看,在最初的设计思考中我们还是有一些新的想法,比如筒体,比如利用水的吸附力,但在实践制作过程中我们缺乏对可操作性的理性认识;同时我们过分估计竖向荷载以致质量过重,轻视水平风荷载而在试验中多次面临剧烈的扭转。最终我们的结构形式归于简单,但过程并不平淡。在否定与自我否定中,我们已有收获。

广厦通用计算GSSAP新规范计算模型的合理选取

广厦通用计算GSSAP 新规范计算模型的合理选取一个结构CAD包括3部分:前后处理、计算和基础CAD。如下介绍前处理中的结构模型和一天学会广厦结构CAD。 1前处理中的结构模型 如下高度概括我们天天面对的结构模型。 一个结构模型包括2部分:总的信息和构件信息,总的信息包括总体信息和各层信息,构件信息包括墙柱梁板的位置和属性,属性包括设计属性、截面材料属性和荷载属性。 1.1GSSAP总体信息 1)地下室有3个参数控制 地下室层数控制地下室无风,嵌固层最大结构层号控制地下室嵌固,有侧约束地下室层数控制地下室弹性约束。 1下上层刚度比≥2,可设为嵌固层,否则设为有侧约束层; 2其它计算如SATWE少了一个参数:有侧约束层,所以首层柱根判定有错; 如下结构1为地梁和防水板,考虑土的摩擦作用1层有侧约束,错误判定结构1层为首层。

3嵌固层的梁不应自动放大1.3倍,下柱不应小于地上1.1倍,加上梁的贡献,一般情况下已经满足下柱加梁的承载力大于上柱1.3倍的要求; 4如下嵌固在0层(基础层),结构1和2层有侧土约束,结构3层为首层。 5如下结构1为地梁和防水板,考虑土的摩擦作用1层有侧约束,结构2层为首层。 2)裙房层数 1要准确输入裙房层数,包括地下室部分的层数; 2影响裙房上塔楼层风荷载的自动计算; 3影响裙房上塔楼结果的输出,如刚重比、周期比等。 3)薄弱的结构层号 1除层间抗侧力结构的承载力比值外,其它自动判定的薄弱层都自动处理相应的放大系数,不需在这人工指定; 2多层自动放大1.15,高层自动放大1.25。 4)加强层所在的结构层号 1加强层是刚度和承载力加强的层,与墙的加强部位层是两个不同概念的层; 2加强层及相邻层核心筒可在墙设计属性中人工设置约束边缘构件。

房室模型的综述

房室模型的综述 1前言 神经系统可能是我们体内最复杂和最重要的系统。它负责传递有关肌肉运动和感官输入的信息,使我们能够与周围的世界互动并感知它们。神经系统主要由称为神经元的大量互连细胞网络组成。因此,对神经元的研究具有重要意义,因为了解神经元本身的性质有助于理解它们如何在更大的网络中协同工作。 1.1神经元解剖学 神经元可以分解为三个主要部分;躯体,树突和轴突。体细胞是神经元的主体,具有容纳细胞核的半透性细胞膜。树枝状结构形成一个巨大的树状结构,从躯体延伸出来。树突负责接收来自其他神经元的突触输入(神经递质)。神经元的轴突是长轴状结构,终止于轴突末端。轴突末端负责释放由其他神经元的树突所接收的神经递质。神经元图如图1所示。树突和轴突末端的大分支结构允许每个神经元与数千个其他神经元连接,形成大规模的通信网。神经元通过突触进行通信,突触由轴突终端中的电脉冲触发。轴突末端的电脉冲释放神经递质,该神经递质与另一神经元的树突上的受体位点结合。树突上的兴奋性神经递质的累积可以引起动作电位,这是跨细胞膜的电压的大的尖峰。该电脉冲可以沿树突移动到轴突终端,其中可以定位其他突触,允许信息在网络上传播。 1.2数学方法 为了捕获沿单个神经元的电脉冲传播的基本动态,可以使用数学方程。然而,神经元的复杂生理结构产生难以分析的方程式。跨越神经元细胞膜的潜在差异取决于空间和时间,因此生理上准确的神经元模型将受部分差异方程(PDE)控制。PDE难以通过分析和数值分析。为了克服这种困难,神经元可以通过称为区室化的过程离散化(图2)。当神经元被划分时,它被分解成称为隔室的不连续区段。 图1:神经元图。神经元的三个主要部分是体细胞,树突和轴突。 单个隔室没有空间依赖性,因此它们的电压仅取决于时间,这使得它们可以由普通的二元方程(ODE)控制。通常,对ODE系统的分析比PDE系统的分析容易得多。区室化过程允许使用空间独立的隔室对神经元进行建模。模型具有的隔室越多,其生理学上就越现实。然而,大隔室模型可能极难分析,因此可能难以揭

midas_civil简支梁模型计算

第一讲 简支梁模型的计算 工程概况 20 米跨径的简支梁,横截面如图 1-1 所示。 迈达斯建模计算的一般步骤 1- 理处 前 第五步:定义荷载工况 第六步:输入荷载第四步:定义边界条件 第三步:定义材料和截面 第二步:建立单元 第一步:建立结点

具体建模步骤 第 01 步:新建一个文件夹,命名为 Model01,用于存储工程文件。这里,在桌面的“迈达斯”文件夹下新建了它,目录为 C:\Documents and Settings\Administrator\桌面\迈达斯\模型 01。 第 02 步:启动 Midas ,程序界面如图 1-2 所示。 图 1-2 程序界面 第 03 步:选择菜单“文件(F)->新项目(N)”新建一个工程,如图 1-3 所示。

图 1-3 新建工程 第04 步:选择菜单“文件(F)->保存(S) ”,选择目录C:\Documents and Settings\Administrator\桌面\迈达斯\模型 01,输入工程名“简支梁.mcb”。如图 1-4 所示。 图 1-4 保存工程

第05 步:打开工程目录C:\Documents and Settings\Administrator\桌面\迈达斯\模型 01,新建一个 excel 文件,命名为“结点坐标”。在 excel 里面输入结点的 x,y,z 坐标值。如图 1-5 所示。 图 1-5 结点数据 第 06 步:选择树形菜单表格按钮“表格->结构表格->节点”,将excel 里面的数据拷贝到节点表格,并“ctrl+s”保存。如图 1-6 所示。

设计计算

设计 一.现有一教学管理系统,ER模型如下: 逻辑模型如下: 学生(学号,姓名,性别,民族) 教师(教师号,姓名,民族,职称) 课程(课号,课名,课程介绍,课程类型,先导课号) 教学班(课号,班级号,学年,学期,限制人数) 教师教学(教师号,课号,班级号,学年,学期,周学时,开始周,结束周) 选课(学号,课号,班级号,学年,学期,成绩) 说明: 1、“周学时”、“开始周”、“结束周”、“限制人数”字段的取值类型为整数型。“成绩”字段的取值类型为实数型。其它字段的取值类型为字符型。 2、“成绩”字段可以取NULL值。 请用SQL语句做如下操作: 1、查询学号为’200617001’的学生,选修课程类型为’专业课’且不及格的课程的课号、课名。 2、统计教师号为‘2002016’的教师,在2008年,上课名为“数据库原理”课的总学时。 3、查询选课门数超过5门的学生学号、选课门数、平均分。 4、请为自己选上‘2008’学年、第‘2’学期、课号为‘180012’、班级号为‘02’的课。 5、把‘2008’学年、第‘1’学期,选修课名为‘数据库原理’、成绩低于60分的“蒙古族”学生的成绩提高10分。 6、删除2004级,所选课的课程都及格的学生的选课信息。 参考答案: 1. Select 课号,课名 From 选课,课程 Where 选课.课号=课程.课号and 学号=’200617001’and 课程类型=’专业课’and 成绩<60 2、 Select 周学时×(开始周-结束周+1)as 总学时 From 教师教学,课程 Where 教师教学.课号=课程.课号and 教师号=’2002016’and学年=’2008’and 课名=’数据库原理’ 3、

第十二届同济大学大学生结构设计与模型竞赛计算书

理论分析计算书目录 一、设计说明 (3) 1、方案构思 (3) 2、结构选型 (4) 3、结构特色 (5) 二、方案设计 (5) 1、设计基本假定 (5) 2、模型结构图 (5) 3、节点详图 (8) 4、主要构件材料表及结构预计重量 (10) 三、结构设计计算 (11) 1、静力分析 (11) 2、内力分析 (13) 3、承载力及位移计算 (15) 四、结构分析总结 (16)

一、设计说明 根据竞赛规则要求,我们从模型制作的材料抗压特性,冲击荷载形式和静力加载大小要求等方面出发,结合节省材料,经济美观,承载力强等特点,采用比赛提供的木材细杆和木板,502胶水味粘结剂精心设计制作了“三足鼎立”结构模型,空间桁架结构为该模型的一大亮点。 1、方案构思 模型主要承受150N竖直静荷载和一定的竖向冲击荷载,竖直静荷载较容易满足,而竖向冲击荷载结构的刚度要求较高,同时要求结构有较强的抗剪能力。 (1)本结构主要构思是想利用三根柱子的轴力来抵抗荷载的作用 (2)设计的总原则是:尽可能的利用竖向支撑的三根粗杆来提高柱子的承载力而在柱子之间辅以细杆来稳定结构,并利用木材的抗拉性能,及抗压性能来抵抗荷载的作用。 2、结构选型 由于三角形具有较强的稳定性,而且在平面上容易找平,我们选择三角形为主体结构框架,桁架受力均匀简单,仅受轴力,便于木材性能的发挥,我们以空间桁架为主导。 2.1结构外形 结构上平面为边长225mm的等边三角形,底面在半径为240mm的圆上,整体为相似三角形,内部采用空间桁架结构加强稳定性。 2.2材料截面选择

主体三根柱子截面为四根2*8的杆件粘接而成,形成外侧10mm,内侧8mm的箱型,保证抗压的同时减轻材料的质量。 T型柱稳定性较好,我们用T型柱搭出上部的空间角锥体,使结构整体稳定。 主体承力T型柱由2*6㎜翼缘2*4㎜腹板组成框架结构。 外围由2*4㎜与2*6的L行梁连接,结构内部由2*2㎜斜梁与主体柱交叉相连,增强整体稳定性。 2.3节点设计 主体框架结构相交的节点由于杆的倾斜在加动载和静载时会引起较大的剪力,在连接时用小木片填充密实,再用2*2水平短木条相连使木条在下面顶住节点上部斜梁,在加载处节点贴上薄木片来增大接触面积,从而来增大节点强度,从而在结构受力计算时一些节点模拟成刚节点。 斜梁相交时,两根梁搭出榫结,用胶水加固,增大节点强度和刚度。 3、结构特色 这个名为漫步天下的结构是在我们制作结构对结构进行试验的多次循环反复而后的出来的结构,它凝聚了所有的试验所得的经验。它的优点: (1)从结构的外形上看,我们选择正三角形作为主体形状,受力均匀,加载方便,上宽下窄,形状渐随着高度逐渐变化,有活力。 (2)根据SAP2000软件建立的模型分析,可得出结构位移最大

midas_civil简支梁模型计算

第一讲简支梁模型的计算 1.1工程概况 20米跨径的简支梁,横截面如图1-1所示。 图1-1横截面 1.2迈达斯建模计算的一般步骤 第一步:建立结点 前第二步:建立单元 处 第三步:定义材料和截面 理 第四步:定义边界条件 第五步:定义荷载工况 第六步:输入荷载 第七步:分析计算 后 处 理 第八步:查看结果 1.3具体建模步骤 第01步:新建一个文件夹,命名为Model01,用于存储工程文件。这里,在桌面的 “迈达斯”文件夹下新建了它,目录为C:\Documentsand 桌面迈达斯模型01。 第02步:启动MidasCivil.exe,程序界面如图1-2所示。

图1-2程序界面 第03步:选择菜单“文件(F)->新项目(N)”新建一个工程,如图1-3所示。 图1-3新建工程 第04步:选择菜单“文件(F)->保存(S)”,选择目录C:\Documentsand

桌面迈达斯模型01,输入工程名“简支梁.mcb”。如图1-4所示。 图 1-4保存工程 第05步:打开工程目录C:\Documentsand 桌面迈达斯模型01, 新建一个excel文件,命名为“结点坐标”。在excel里面输入结点的x,y,z坐标 值。如图1-5所示。 图 1-5结点数据 第06步:选择树形菜单表格按钮“表格->结构表格->节点”,将excel里面的数据拷贝到节点表格,并“ctrl+s”保存。如图1-6所示。

图1-6建立节点 第07步:打开工程目录桌面迈达斯模型01,再新建一个excel文件,命名为“单元”。在excel里面输入单元结点号。如 图1-6所示。

结构设计大赛计算说明书终极完美版

Babel-Tower框架结构模型设计理论方案 安徽工业大学第一届大学生结构设计竞赛框架结构模型设计理论方案 Babel-Tower框架结构模型设计理论方案 作品序号KJ-146 学院名称 学生姓名 指导教师 联系电话 安徽工业大学结构设计竞赛组委会 1

一、Babel Tower结构设计理论方案概述 根据竞赛规则规定,我们从结构形式选型与规则要求相协调的角度出发,综合考虑加载实际情况以及所提供材料的特点等方面,设计了该结构。根据规则,采用230克白卡纸,蜡线及白乳胶这三种材料制作成该框架体系。并绘制出模型的结构空间立体图、结构整体布置图、结构局部布置图、结构破坏形式图等。从结构整体着眼,设计中充分利用三角形结构的稳定性和偏心支撑良好的耗能性能以及预应力的受力优点。在设计计算过程中假定材质连续均匀、柱与斜撑连接采用铰结、模型本身质量不计,忽略底部与板连接的斜撑,利用PKPM程序进行立体模型建立,利用结构力学求解器进行内力分析计算得出整个结构的内力图及变形图,并对结构杆件进行强度及稳定性计算校核。同时,对模型进行了大量加载实验。通过计算和实验,最终确认该模型能满足强度、刚度及稳定性的要求, 实用和美观结合体现了结构有形、创意无限的大赛主题思想。

二、本模型设计的六大特点说明 1:预应力束管柱的制作与组合: 由于加载过程中主要部位的竖向支撑柱为大偏心受压(即一侧受压一侧受拉),故在柱截面受拉一侧布置蜡线并且施加预应力。由于管内预应力较大导致管体向受拉一侧均匀弯曲,则考虑使用普通纸管与预应力纸管通过纸带螺旋加箍束缚组合形成束管的方案消除预应力带来的初始偏心。最终,在束管成型后,加载试验证明,该预应力束管柱较之相同截面尺寸的纸管柱抗压抗扭承载力可以提高1.2倍左右。 2:空间斜撑构成3个刚性面与分层连接板的布置方案: 该框架结构以束管作为主要的受力构件,为提高整体性并减小受压束管的自由长度,我们采用分段合理增加空间斜撑并且使用纸板作为连接板的方案。通过计算,我们把主要受压构件的自由长度控制在200mm以内,来降低失稳的可能性。综合考虑水平加载方式和结构布置特点,我们通过空间斜撑在竖直方向上形成3个刚性面层并通过空间斜撑和连接板加强边柱与抗扭较好的中柱之间的连接,以此提高结构抗扭承载力和整体性。 空间斜撑中的另一大亮点就是位于第二层的刚性面刻意抬高避开底部斜撑形成偏心支撑有利于能量耗散。众所周知,通过偏心柱段剪切屈服限制支撑受压屈服,从而保证结构有很好的的承载能力和良好的耗能性能。我们正是利用这一点措施来增强结构底部抗弯能力。 3:Sap2000与PKPM建模并且对结构进行有限元分析与结构力学求解器的建模、分析、校核: 通过Sap2000建立立体模型后并对空间结构进行弯矩、剪力和破坏形式的分析,并导出分析图与部分数据。使用PKPM2005版本中的PM-CAD程序模块按照结

桥梁模型设计计算书

桥梁模型设计计算书 1.方案的设计思路 由于结构主要承受竖向力,所以结构选型主要在于正面的形状。 平纵联和横联只用于提供侧向支撑,减小主桁长细比,而且形成空间效应,共同作用,提高抗扭刚度,具体计算需要空间有限元计算。 1.1考虑桥的正面形状 由所学结构力学知识:常见梁式桁架主要有平行弦桁架、抛物线型桁架和三角形桁架。比较得:1)平行弦桁架的内力分布不均匀,弦杆内力向跨中递增,若没一节间改变截面,则增加拼接困难;若采用相同截面,有浪费材料。2)三角形桁架的内力分布也不均匀,弦杆内力两端最大,且端接点处夹角甚小,构造布置较困难。3)抛物线型桁架的内力分布均匀,因而在材料使用上最为经济。 总的而言,我们组选择做正面为抛物线型桁架的桥模。 1.2考虑木杆受拉和受压强度 木材的顺纹抗拉强度,是指木材沿纹理方向承受拉力荷载的最大能力。木材的顺纹抗拉强度较大,各种木材平均约为117.7-147.1MPa,为顺纹抗压强度的2-3倍。这是木材受拉的优点——强度大。 一般而言竖向载荷下,上弦杆受压,下弦杆受拉,腹杆则较复杂,或拉或压。所以,我们考虑让斜腹杆受拉。 1.3考虑桁架的主跨数 四跨桁架如下图: 经初步分析和计算,杆件长度较长,稳定性较差;受力并不是很均匀材料利用率低,并且并不是很美观。 所以我们小组选择6跨桁架,能较好的满足各方面的条件。有以下几种方案: 主选方案

方案1 方案2 方案3 分别标记为主选方案(因为斜腹杆受拉)和备选方案1,2,3 1.4考虑桁架的高度从而确定各杆件的尺寸 在材料用量方面,当跨度一定时(500mm),桁高越大,弦杆受力越小,弦杆用材量就少,但腹杆较长,腹杆用材量较大;反之,当桁高减小时,弦杆用木量增加但腹杆用木量增大。查阅资料表明,用量最少的梁高约为其跨度的1/6~2/13。这里我组自己建模,进行了最优化设计。 除考虑材料因素外,还需考虑桁架的受力条件。 现需要从承载力上来考虑桁架的最适高度 上下弦杆的内力较大,腹杆的内力相比而言较小。所以拟用1cm*0.3cm两片,0.6cm*0.3cm 一片组成的工字梁做上下弦杆,用0.6cm*0.3cm的木条做腹杆,来计算内力及承载力。 用主选方案分别计算7cm,8cm,8.33cm,9cm,10cm,12cm,14cm高时的承载力。

降水设计计算模型及公式

附件一: 计算模型及公式 1.潜水完整井计算模型 ()??? ? ?+-=01log 2366.1r R S S H k Q …………………………………………公式1 式中:Q 基坑涌水量(m 3/d ); k :渗透系数(m/d ); H :潜水含水层厚度(m ): S :基坑水位降深(m ); R :降水影响半径(m ); r 0:基坑等效半径(m )。 2.承压水完整井计算模型 ? ??? ? ?+=01lg 73.2r R MS k Q 式中:Q :基坑涌水量(m 3/d ); K :渗透系数(m/d ); R :降水影响半径(m ); r 0:基坑等效半径(m ); M :承压含水层厚度(m )

3.承压水非完整井计算模型 ??? ? ??+-+???? ??+=002.01lg 1lg 73.2r M l l M r R MS k Q ……………………………公式式中:Q :基坑涌水量(m 3/d ); K :渗透系数(m/d ); R :降水影响半径(m ); r 0:基坑等效半径(m ); M :承压含水层厚度(m ); S :基坑水位降深(m ); l :基坑降水井过滤器工作部分长度(m ) 4.承压—潜水完整井计算模型 ()? ??? ? ?+--=02 1lg 2366.1r R h M M H k Q 式中:Q :基坑涌水量(m 3/d ); K :渗透系数(m/d ); R :降水影响半径(m ); r 0:基坑等效半径(m ); M :承压含水层厚度(m ); h

5.线形工程潜水完整井计算模型 R h H kL Q 2 2-=…………………………………………………公式5 () 22 2h H R x h y -+ =……………………………………………公式6 ()d R r d S S H k q w 2ln 2πππ+-= …………………………………………………公式7 双直线井排,条件同上,适用条件: ①均质潜水含水层; ②完整井点; ③位于无界含水层中; ④直线井点排,两侧进水; ⑤L>50m 。 6.线形工程承压完整井计算模型 R kMSL Q 2= ………………………………………………………公式8 x R S H y -=………………………………………………………公式9 适用条件: ①均质承压含水层; ②线形排列井点,两侧进水; ③完整井点,远离地表水体; ④L>50m 。

PKPM建模计算全过程

PKPM计算步骤 第一步: 建立结构模型(前处理) PMCAD: 第1~3主菜单(建筑模型与荷载输入、结构楼面布置信息、楼面荷载传导计算) 第二步: 整体分析(分析计算) TAT-8或TAT SAT-8或SATWE PK第一主菜单 第三步: 基础设计(分析计算) JCCAD: 第1~5主菜单 第四步: 绘制xx(后处理) 单层框排架xx: PK绘图相关菜单 板绘制结构平面xx: PMCAD第5主菜单(完成PMCAD的第1~3主菜单后就可完成) xxxx: xxxx

柱xx: xxxx 剪力墙xx: JLQ 基础xx: JCCAD绘图相关菜单 第五步: 图形编辑(后处理) 任意程序模块下的“图形编辑、打印及转换”菜单PMCAD 楼面模型与荷载输入 1、轴线输入 ——画轴线 2、网格生成 ——轴线命名 3、楼层定义 ——换标准层 ——xx、柱构件定义 ——布置xx、柱、墙 ——设置本层信息 4、荷载输入

定义并布置作用于结构标准层中梁、柱、墙等构件上的荷载,以及某些特殊节点上的集中荷载。 楼面xx荷载、活荷载 设计参数 本菜单用于对结构设计计算和结构施工图绘制的相关参数进行输入、选择和确认楼层组装 主要用于对已经建好的结构标准层、荷载标准层进行组装,形成整栋建筑的结构模型。即要完成建筑的竖向布局,要求用户把已经定义的结构标准层和荷载标准层布置在从上至下的各楼层上,并输入层高。 保存、退出 结构楼面布置信息 对已经组合的结构楼层的楼面相关信息进行补充操作,采用人机交互方式输入有关楼板结构的信息(在各层楼面上布置次梁、铺预制板、楼板开洞、改楼板厚、设层间梁、设悬挑板、楼板错层等)。 楼板开洞 主要用于当某个房间需要布设楼梯或有其他需求时,对房间内的楼板进行开洞。 次xx显示 开关菜单 预制楼板 类似于【楼板开洞】 修改板厚

盖梁设计与计算方法的研究现状

盖梁设计与计算方法的研究现状 唐杨 (重庆交通大学重庆 400074) 摘要:归纳了现阶段盖梁设计和计算中采用的4种方法以及近几年来在盖梁计算理论上取得的重要成果,总结出了影响盖梁内力的三个变量因子即线刚度比、盖梁梁高和桥墩跨径,同时简要叙述了盖梁非线性分析的研究成果,分析了今后盖梁的研究方向和重点。 关键词:盖梁计算模型影响规律非线性分析 中国分类号:U441+4 文献标识码:A 文章编号:1673-1816(2018)03-0011-04 1 引 言 盖梁是桥梁中承上启下的结构部件,规范中关于盖梁计算没有严格的规定。公预规[1]规定:墩台盖梁与柱应按刚构计算。当盖梁与柱的线刚度之比大于5时,双柱式墩台盖梁可按简支梁计算,多柱式墩台可按连续梁计算。另外指出按简支梁计算的盖梁,其计算跨径应取lc和1.15ln两者的最小值,其中lc为支承中心之间的距离,ln为盖梁净跨径。当盖梁作为连续梁或刚构分析时,计算跨径取支承中心之间的距离。 2 计算理论发展 2.1 规范中的计算方法 现在最常用的双柱式盖梁,规范[1]中针对线刚度比大于5的情况,此时盖梁的简化受力图示是双悬臂简支梁的形式,考虑恒载和活载很容易手算出盖梁各截面的内力。当线刚度比小于5之后必须采用刚构模型计算,由于双悬臂刚构模型是一个超静定结构,多采用商业软件进行建模计算,也有学者[2]通过大量有限元试验分析,利用多元回归建立了盖梁控制截面的简化计算公式。 软件计算基本都建立杆系模型,也就是没有考虑盖梁和立柱的截面宽度。双悬臂简支梁模型是在立柱与盖梁的相交点上设置支撑点,双悬臂刚构模型是在盖梁和立柱相交点采用刚接。 2.2 计算理论的发展 目前盖梁设计多采用四种设计理论:传统盖梁计算方法、有限元平面模型计算、全桥空间有限元模型计算以及实体有限元模型。 传统计算方法目前国内采用桥梁通计算软件进行建模计算,其计算原理与传统盖梁计算方法基本一致。赵香玲等[3]采用杠杆原理法、刚性横梁法、铰接板法计算了桥墩高粱在对称荷载和非对称荷载下的支座反力,比较了各种方法计算的优越性。 收稿日期:2017-12-14 作者简介:唐杨(1992-),男,湖北五峰人,土家族,硕士,研究方向桥梁结构理论研究。 11

多塔结构设计模型计算分析

多塔结构设计模型与计算分析探讨摘要:本文结合结构设计实践经验,深入分析了多塔结构在软件中的实现以及相关技术问题的考虑,提出多塔结构设计中应当加强的部分,同时分析了多塔结构可采用的计算模型,总结了一些有价值的设计方法,为同类工程设计提供有效的依据。 关键词:建筑结构多塔结构计算模型设计方法 中图分类号: tu3 文献标识码:a 文章编号: abstract: combining with the structure design and practical experience, in-depth analysis of multi tower structure in software and related technical issues, put forward multi tower structure design should be strengthened, simultaneous analysis of multi tower structure can use computational models, summarizes some valuable design method for the design of similar projects, provide effective on the basis of. key words:building structure; multi tower structure; calculation model; design method. 1引言 塔作为建筑结构设计重要部分,其常见于大底盘结构中。其与刚性楼板的区别在于,对于多塔结构来说,每个塔都有独立的迎风面和独立的变形;而每块“刚性楼板”虽然有独立的变形,但不一定有独立的迎风面。“塔”和“刚性板”之间不存在一一对应关系,

7 第四章 经典的房室模型理论

第四章 经典的房室模型理论 药物动力学研究的主要目标就是揭示药物在体内的动态变化规律性。药物在体内经历吸收(absorption)、分布(distribution)、代谢(metabolism)和排泄(excretion)过程的处置(如图4-1所示),自始至终都处于动态变化之中,且药物的体内处置过程较为复杂,受到体内外诸多因素的影响。为了揭示药物在体内的动态变化规律性,常常要借助数学的方法来阐明体内药量随时间而变化的规律性,根据体内药量和时间的数据,建立一定的数学模型,求得相应的药动学参数,通过这些参数来描述药物体内过程的动态变化规律性。掌握了这一规律性一方面可以帮助我们了解药物作用的规律性,阐明药物的作用和毒性产生的物质基础,进而指导临床制定合理的给药方案,提高用药的安全性和合理性;另一方面对新药的开发研究和评价也有一定的指导意义。 图4-1 药物的体内处置过程 第一节房室模型及其基本原理 一. 房室模型(compartment model)及其动力学特征 1.房室模型的基本概念 药物在体内的处置过程较为复杂,涉及到其在体内的吸收、分布、代谢和排泄过程,且始终处于动态变化之中。药物在体内的命运是这些处置过程综合作用

的结果。为了定量地描述药物体内过程的动态变化规律性,常常要借助数学的原理和方法来系统地阐明体内药量随时间而变化的规律性。房室模型理论从速度论的角度出发,建立一个数学模型来模拟机体,它将整个机体视为一个系统,并将该系统按动力学特性划分为若干个房室(compartment),把机体看成是由若干个房室组成的一个完整的系统,称之为房室模型(compartment model),如图4-2所示。 图4-2房室模型 房室模型中的房室划分主要是依据药物在体内各组织或器官的转运速率而确定的,只要药物在其间的转运速率相同或相似,就可归纳成为一个房室,但这里所指的房室只是数学模型中的一个抽象概念,并不代表解剖学上的任何一个组织或器官,因此房室模型的划分具有抽象性和主观随意性。但房室的概念又是与体内各组织器官的生理解剖学特性(如血流量、膜通透性等)有一定的联系。同一房室中的各组织部位的药物浓度并不一定相同,但药物在其间的转运速率是相同或相似的。 根据药物在体内的动力学特性,房室模型可分为一房室模型、二房室模型和多房室模型。一房室模型是指药物在体内迅速达到动态平衡,即药物在全身各组织部位的转运速率是相同或相似的,此时把整个机体视为一个房室,称之为一房室模型,如图4-3所示。

转载 常用结构计算软件与结构概念设计

转载常用结构计算软件与结构概念设 计 原文地址:常用结构计算软件与结构概念设计作者:朱来新1、结构计算软件的局限性、适用性和近似性。 随着计算机结构分析软件的广泛应用和普及,它使人们摆脱了过去必须进行的大量的手工计算,使人们的工作效率得以大幅度的提高。与此同时,人们对结构计算软件的依赖性也越来越大,有时甚至过分地相信计算软件,而忽略了结构概念设计的重要性。由于种种原因,目前的结构计算软件总是存在着一定的局限性、适用性和近似性,并非万能。如:结构的模型化误差;非结构构件对结构刚度的影响;楼板对结构刚度的影响;温度变化在结构构件中产生的应力;结构的实际阻尼(比);回填土对地下室约束相对刚度比;地基基础和上部结构的相互作用等等。有些影响因素目前还无法给出准确的模型描述,也只能给出简化的表达或简单的处理,受人为影响较大。加之,建筑体型越来越复杂,这就对结构计算软件提出了更高的要求,而软件本身往往又存在一定的滞后性。正是因为如此,结构工程师应对所用计算软件的基本假定、力学模型及其适用范围有所了解,并应对计算结果进行分析判断确认其正确合理、有效后方可用于工程设计。 2、现阶段常用的结构分析模型 实际结构是空间的受力体系,但不论是静力分析还是动力分析,往往必须采取一定的简化处理,以建立相应的计算简图或分析模型。目前,常用的结构分析模型可分为两大类:第一类为平面结构空间协同分析模型;另一类为三维空间有限元分析模型。 1)平面结构空间协同分析模型。将结构划分若干片正交或斜交的平面抗侧力结构,但对任意方向的水平荷载和水平地震作用,所有正交或斜交的抗侧力结构均参与工作,并按空间位移协调条件进行水平力的分配。楼板假定在其自身平面内刚度无限大。这一分析模型目前已经很少采用。其主要适用于平面布置较为规则的框架结构、框-剪结构、剪力墙结构等。

结构设计大赛模型计算书

石河子大学第四届大学生结构设计大赛 作品名称:戈壁自由塔 院系名称水利建筑工程学院 学生姓名胡春源李继友付柳燕员丽君 雷青松 指导老师曾晓云 石河子大学大学生结构设计竞赛组委会 二O一一年六月

目录 一、设计说明书 (一)结构选型 (3) (二)材料性质: (3) (三)制作工艺 (4) (四)模型特色 (5) 二、结构计算书 (一)计算简图与内力分析 (6) (二)、强度,刚度,稳定性校核 (6) 三、方案图 (7)

一、设计说明书 (一)结构选型 1、考虑因素:(1)、纸的抗拉压强度比较高,抗弯能力较弱,抗压稳定性差。(2)、防止整体和局部强度条件和失稳是结构方案设计的出发。(3)、加载条件是竖向的静荷载。(4)、加载时荷载容易出现偏心力,使模型偏倒。 2、开始构思:在阅读了本次结构设计大赛的要求后,我们小组就开始查找资料。本次要求我们设计一个多层结构。并且是承受竖向荷载。由于尺寸的要求,模型高为600mm,顶部尺寸应满足能放200mm 200mm的加载板。所以该多层结构容易在竖向荷载加载时的偏心力作用下偏倒。 考虑到以上4点因素,为了使杆件结构受到的力更为合理,方案采用桁架结构体系。 最开始考虑到容易倾倒,我们联想到了埃菲尔铁塔,于是我们的构思是设计顶层为竖直杆,中间是倾斜杆,底层为三 个斜三棱柱,但由于节点杆件数目过多, 接点不好处理,可能做出来的模型节点容 易破坏。于是我们将斜杆改成了三根竖直 的主柱,在底层为了防止偏倒,在外围用 斜杆支撑。底层内部用三根斜杆(一段固定在 主杆上,另一端把三个杆固定到一起。) 为了防止受桁架的失稳问题,增加结构的 整体受力性能,在竖向杆件之间用线构造“\” 的斜杆和横杆联系。 最终确定它高600mm,底座跨度为 356mm,顶部为边长为17.8cm的正三角 形。如右图所示 (二)材料性质: 白卡纸作为模型材料,其力学性能 特点是受拉性能良好,抗撕裂能力差,

一房室模型

关于药动学中一房室模型的数学建模 摘 要 本文讨论了药动学中一房室模型,旨在分析不同注射条件下,血药浓度 的变化规律。 药动学通常用房室模拟人体,只要体内某些部位接受或消除药物的速率相似,即可归入一个房室。本文讨论一室模型,即给药后,体内药物瞬时在各个部位达到平衡,血液浓度和全身各组织器官部位浓度迅速达到平衡,可看为开放性一室模型。 本文利用数学建模思想,考虑不同人体吸收药物能力λ不同,讨论了在不同给药方式下人体血药浓度的变化,以及在多次重复给药方式下血药浓度的变化,并画出图像。 针对问题一,运用微分方法,通过血药浓度变化率平衡关系及有关血药浓度的初值条件,建立微分方程模型,通过计算得到结论:在快速静脉注射条件下,药物浓度随时间的增加而指数减小;在恒速静脉滴注条件下,在持续时间τ处,药物浓度指数增加达到峰值,在τ之后指数减小;在口服或肌肉注射条件下,药物浓度随时间呈现增加后减小趋势。 针对问题二,首先由问题一可求解第n 次注射后血药浓度,在稳态要求下,即∞→t ,血药浓度c 在人体能够承受最大值1c 与最小值2c 之间,求出固定时间间隔T 和固定剂量D 。 针对问题三,采取问题二解题方法,在恒速静脉注射和口服或肌肉注射及多次重复给药方式下条件下,分别求出人体血药浓度解析表达式,并作图,求出在恒速静脉注射条件下固定时间间隔T 和固定剂量D 。 关键词:一室模型 快速静脉注射 恒速静脉注射 口服或肌肉注射 固定时间 固 定剂量 多次重复给药

一、 问题重述 药动学通常用房室模拟人体,一房室模型准确性稍差,却比较简单,便于理解推广应用,且有些药物用单室模型处理已能满足要求。讨论按固定时间间隔、每次给予固定剂量的多次重复给药方式。为了维持药品的疗效和保证机体的安全,要求血药浓度控制在合理范围内。现解决一下问题: 问题一:根据已知的二室模型,建立只有一个中心室的一室模型,并给出解析表达式。 问题二:在快速静脉注射的多次重复给药方式下,求解血药浓度解析表达式,并作图,讨论如何确定固定时间间隔和固定剂量使血药浓度的变化,满足上述要求。 问题三:在快速静脉注射和口服或肌肉注射的多次重复给药方式下,求解血药浓度解析表达式并作图。讨论在恒速静脉注射条件下如何确定固定时间间隔和固定剂量使血药浓度的变化满足上述要求。 二、问题分析 由题目可知,在注入人体内的药物转移速率与药物注入速率共同作用下,联系实际,考虑到个体差异而吸收药物能力不同,建立微分方程模型,可求解出不同给药方式下人体血药浓度变化解析表达式。 针对问题一,运用微分方法,通过血药浓度变化率平衡关系,建立微分方程模型。在快速静脉注射注射条件下,注射开始时,血药浓度在人体内浓度瞬时达到最大值,给药速率0)(0=t f ,以此为初值条件求解,并作出图像。在恒速静脉注射条件下,给药速率00)(k t f =,血药浓度在初始时为零作为初始条件,设 τ为注射时间,当],0[τ∈t 和],[∞∈τt 时,建立分段函数,并求解画图。在口 服或肌肉注射条件下,注射开始时,血药浓度在人体内瞬时达到最大值,血药含量的变化率与血药含量呈线性关系,以此求出注射速率)(0t f ,再求出血药浓度 )(t c ,然后作出图像。 针对问题二,由问题一结论可知,在快速静脉注射条件下,第n 次注射后血药浓度,在稳态要求下,即∞→t ,血药浓度c 在人体能够承受最大值1c 与最小值2c 之间,求出固定时间间隔T 和固定剂量D 。 针对问题三,采取问题二解题方法,在恒速静脉注射和口服或肌肉注射及多次重复给药方式下条件下,分别求出人体血药浓度解析表达式,并作图,并求出在恒速静脉注射条件下固定时间间隔T 和固定剂量D 。

程序设计中常用的计算思维方式

程序设计中常用的计算思维方式 第1章正确认识和处理整体与部分的关系 概述: “整体”与“部分”是一对虽然对立、但并非僵化不变的概念。在一定条件下,“部分”可以看作“整体”,“整体”又可以看作是另一个“整体”的“部分”,两者相互依存和影响。“整体”与“部分”又可以相互转化的。“整体”的问题可以分割成“部分”来处理,“部分”的问题也可以通过“整体”来解决。 1.1 整体实现的关键是准确地应用必要条件 A、选择有助于简化问题、变难为易的必要条件 这里面就是说我们要在坚持“简化问题、变难为易”的原则下,尽力寻找“精确”的必要条件,以缩小求解范围,提高出解速度。当碰到一道难题时,总是尝试从最简单的特殊情况入手,找出有助于简化问题、变难为易的必要条件,逐渐深入,最终分析归纳出一般规律。 B、合成必要条件,从整体结构上优化 在搜索和动态规划中,必要条件有期很好的应用价值。一般地,对于深度优先搜索和广度优先搜索,如何限制搜索范围、减少搜索量最有效的手段是“剪枝”。然而由于问题的错综复杂,所以我们要找最高效的优化条件,来提高程序的效率。所以我们可以尝试从多个侧面分析寻找必要条件,把问题分解,根据各部分的本质联系,将各方面的必要条件综合起来使用。 C、必要条件与原有模型比较、更新算法 上面所说的两种优化程序的策略其实是都是在“缩小求解范围”,改进在有算法的基础上进行的,属于局部优化。然而精确选择揭示问题本质的必要条件,与原有的模型比较, 小结:必要条件是逻辑推到的理论依据,也是思考过程的一种取向。解题时,若能寻找出精确的必要条件,一方面能帮助我们揭示问题的本质,设计出正确的算法;另一种方面又能“缩小求解范围”,提高算法效率。因此,准确地应用必要条件是整体实现的关键。所以我们要在坚持“具体问题具体分析”的原则,不拘一格,灵活处理;在分析问题时,要勤于思考,善于发现。 1.2 整体思考的一个重要角度是“守恒” A、从具体问题中抽象出守恒量 守恒量需要通过联想和化归思维将其抽象出来,从问题本身的结构中抽象出守恒量。 B、根据问题的本质构造守恒量 有时候,如果能为每一个元素标一个权值,就可以揭示问题“守恒”规律。在总价值不变的前提下,或许能将整个问题转化成一个简单的、或者是经典的问题。比如构造成Fibonacci数列等。 C、在交互式问题中构造变化中的不变量 考虑可能出现的各种情况和最优策略,找变化中的不变量,运用“守恒”法寻找解题的突破口 小结:守恒是问题分析问题的一种思维方式一种整体意识和解题方法,通过联想和化归思维将其抽象出来。 1.3 提高整体实现效率的基本途径是“充分利用有效信息”和“压缩冗余信息” A.计算过程中充分利用有效信息: 在记忆化搜索和动态规划中充分利用信息,特别指出在动态规划中改变状态的表示含义对优化问题是个很好的策略。还有在数值计算中充分利用信息。 B.通过“压缩法”消除冗余的图形和数据信息 在图论的问题中,通过采用“缩点法”,将具有等价意义的一类顶点压缩成一个顶点,来简化问题;还有就是压缩冗余信息。 1.4 改善整体性能状态的基础是处理好细节问题 细节是算法整体的关键部分,对整体起到“牵一发而动全身”的作用,是算法整体性能状态的基础。在程序设计中,细节的处理十分重要,应该对其取“举轻若重”的态度。许多事例证明:有时细节决定成败。 按照对算法的影响的性质和程度,可把细节分为如下几种情况: 1、影响正确性的细节问题。在解题过程中虽然已经找到解决方法却不能通过全部测试数据,往往就是这类 的细节处理不当所致。 2、严重影响时间复杂度的细节。这类细节相当隐蔽,往往不为人所注意。但是这种细节影响时间复杂度的阶,处理得好

相关文档
最新文档