Pacbio 第三代测序仪

Pacbio 第三代测序仪
Pacbio 第三代测序仪

第三代测序-单分子实时测序

一,PacBio RS平台介绍

二,PacBio RS测序仪系统服务领域

1,动植物复杂基因组测序

2,真菌基因组完成图

3,细菌基因组完成图

4,BAC克隆完成图

5,从头组装(DE Novo Assembly)

三,天津生物芯片提供的PACBIO RS系统测序方案

四,PacBio RS测序仪系统优势

五,PacBio RS测序仪系统原理

一,PacBio RS平台介绍

PacBio RS测序仪系统是太平洋生物技术公司(Pacific Biosciences)基于单分子实时(SMRT)测序技术的第三代测序平台,可以在一天内完成从样品制备到测序和读取序列的全过程。天津生物芯片利用PacBio RS测序仪系统全面解决了二代测序几大困扰:海量数据拼接难,变异检测假阳性高,稀有突变被淹没,高GC含量区域无法跨越,高度片段无法准确测定等,得到高质量,完整的数据信息,为合作伙伴提供优质的基因组组装,目标区域测序,碱基修饰检测等技术服务。

二,PacBio RS测序仪系统服务领域

1,动植物复杂基因组测序

(1)杂合基因组:杂合基因组主要指杂合率高于0.5%的二倍体基因组,如大部分水产类和昆虫等;

(2)高重复基因组:主要指重复序列比例高于50%的二倍体基因组,大部分林木;

(3)超大基因组:基因组大小大于3G,甚至是10G以上的物种,如两栖类,部分林木;

(4)多倍体基因组:如四倍体、六倍体植物等。

图1 主要技术策略示意图

2,真菌基因组完成图

(1)适用于所有真菌菌株;

(2)尤其适合超高GC/超低GC真菌;

(3)其它用传统方法测序比较困难真菌;

(4)真菌基因组草图或精细图补洞。

3,细菌基因组完成图

(1)普通细菌快速完成图构建;

(2)尤其适合超高GC/超低GC细菌;

(3)其它用传统方法测序比较困难细菌菌株

通过采用第三代测序技术,直接进行细菌基因组的完成图绘制。

4,BAC克隆完成图

通过PacBio RS平台进行单分子实时测序,可以快速得到超长读长。再加大测序深度,PacBio序列可以产生非常均一覆盖度,在大部分目标区域内,可以接近100%的覆盖度。

这种方式对于有超高GC含量、超低碱基复杂度等BAC克隆非常具有优势。根据PacBio公司提供的Poster,由1Pacific Biosciences公司和University of Washington, Seattle对人类基因组一个约1.6Mb的片段,总共8个BAC克隆进行了PacBio测序,对比了Illmina测序,总体上得到了非常好的效果。(见下图)

5,从头组装(DE Novo Assembly)

PacBio RS平台是目前唯一能完成完整基因组组装,结构测定和基因分型的微生物测序平台。该平台可以用PacBio数据独立完成微生物基因组的完整拼

接,也可以将PacBio长读长数据和二代测序短读长数据进行混合拼接完成基因组。

三,天津生物芯片提供的PACBIO RS系统测序方案

PACBIO RS 系统可提供多种SMRT测序方案,如标准测序、环形比对测序、频闪测序,每种方法都利用了长片段读取的优势并结合SMRT bell模板形式(模板处理后形成的一个类似哑铃的结构)和单DNA 聚合酶原理。

1)标准测序:从插入片段的一端测到另一端,只测一次。适合插入片段在

1-6Kb间。主要应用于再测序和重头测序。

2)环形比对测序:从插入片段的一端测到另一端后,由于模板是哑铃状结构的,因此,继续测序将得到互补链的序列信息,从而可通过对插入片段的反复测序来获得高准确度的单分子测序结果。适合插入片段在 250-500bp。主要用于发现和确定稀有变异。

3)频闪测序:由于激光连续照射会对 DNA聚合酶活性造成一定影响,因此,可以通过将激光器按照一定间隔打开和关闭,获得相对标准测序来说更长时间的聚合酶活性。这样可获得一系列分散的读取序列从而增加对超长插入片段的物理覆盖率。适合长度高达 10K的插入片段。主要用于结构变异的鉴定或者对复杂重复区域的拼接。

在每一种测序方案中,用户都可以调整参数,适合多种应用和项目类型。这种灵活性也提供了分多个步骤解决一个问题的能力。

四,PacBio RS测序仪系统优势

采用PacBio RS 平台,进行单分子实时测序(single molecule, real-time SMRT)主要技术优势有:

1、超长的测序读长:平均测序读长能达到3,000至5,000碱基,最长的序列能达到20,000碱基;

2、极端的准确率:对基因组组装和基因组变异检测,可以最多达到99.999%的准确率;选用特殊测序模式,测序准确率可以在达到单个分子99%准确率的条件下,读长超过经典的Sanger测序法;

3、极度的敏感性:可以检测频率在0.1%的 minor variants;

4、直接检测广泛的碱基修饰:除了5-methylcytosine修饰以外,还可以检测N6-methyladenine, N4-methylcytosine, DNA氧化损伤以及其它碱基的修饰.

5、最小的GC偏向性(GC bias):在极端高GC和极端低GC区域,可以轻松测定,从而保证序列的均匀覆盖度;

6、无PCR扩增偏向性:样本不需要进行PCR扩增,避免了覆盖度不均一和PCR artifacts.

五,PacBio RS测序仪系统原理

PacBio RS测序仪系统的关键优势是能够对单个DNA(脱氧核糖核酸)分子进行测序,而目前市场上的主流测序仪只能对分子群体进行平均测序。单分子测序能对DNA中罕见的序列变异进行分析,也不需要在测序之前对DNA样本进行放大,因为放大过程可能引发错误,导致对某个DNA序列检测失败。其工作原理是用一种聚合酶将DNA的复制限制在一个微小的间隙中,给各种碱基加上荧光示踪标记,当碱基合成DNA链时,这些荧光标记就会发出不同颜色的闪光,根据闪光颜色就可识别出不同的碱基。

DNA测序原理和方法.

DNA测序原理和方法 DNA序列测定分手工测序和自动测序,手工测序包括Sanger双脱氧链终止法和Maxam-Gilbert化学降解法。自动化测序实际上已成为当今DNA序列分析的主流。美国PE ABI公司已生产出373型、377型、310型、3700和3100型等DNA测序仪,其中310型是临床检测实验室中使用最多的一种型号。本实验介绍的是ABI PRISM 310型DNA测序仪的测序原理和操作规程。 【原理】ABI PRISM 310型基因分析仪(即DNA测序仪),采用毛细管电泳技术取代传统的聚丙烯酰胺平板电泳,应用该公司专利的四色荧光染料标记的ddNTP(标记终止物法),因此通过单引物PCR测序反应,生成的PCR产物则是相差1个碱基的3''''末端为4种不同荧光染料的单链DNA混合物,使得四种荧光染料的测序PCR产物可在一根毛细管内电泳,从而避免了泳道间迁移率差异的影响,大大提高了测序的精确度。由于分子大小不同,在毛细管电泳中的迁移率也不同,当其通过毛细管读数窗口段时,激光检测器窗口中的CCD(charge-coupled device)摄影机检测器就可对荧光分子逐个进行检测,激发的荧光经光栅分光,以区分代表不同碱基信息的不同颜色的荧光,并在CCD摄影机上同步成像,分析软件可自动将不同荧光转变为DNA序列,从而达到DNA测序的目的。分析结果能以凝胶电泳图谱、荧光吸收峰图或碱基排列顺序等多种形式输出。 它是一台能自动灌胶、自动进样、自动数据收集分析等全自动电脑控制的测定DNA片段的碱基顺序或大小和定量的高档精密仪器。PE公司还提供凝胶高分子聚合物,包括DNA测序胶(POP 6)和GeneScan胶(POP 4)。这些凝胶颗粒孔径均一,避免了配胶条件不一致对测序精度的影响。它主要由毛细管电泳装置、Macintosh电脑、彩色打印机和电泳等附件组成。电脑中则包括资料收集,分析和仪器运行等软件。它使用最新的CCD摄影机检测器,使DNA 测序缩短至2.5h,PCR片段大小分析和定量分析为10~40min。 由于该仪器具有DNA测序,PCR片段大小分析和定量分析等功能,因此可进行DNA测序、杂合子分析、单链构象多态性分析(SSCP)、微卫星序列分析、长片段PCR、RT-PCR(定量PCR)等分析,临床上可除进行常规DNA测序外,还可进行单核苷酸多态性(SNP)分析、基因突变检测、HLA配型、法医学上的亲子和个体鉴定、微生物与病毒的分型与鉴定等。【试剂与器材】 1.BigDye测序反应试剂盒主要试剂是BigDye Mix,内含PE专利四色荧光标记的ddNTP 和普通dNTP,AmpliTaq DNA polymerase FS,反应缓冲液等。 2.pGEM-3Zf (+) 双链DNA对照模板0.2g/L,试剂盒配套试剂。 3.M13(-21)引物TGTAAAACGACGGCCAGT,3.2μmol/L,即3.2pmol/μl,试剂盒配套试剂。 4.DNA测序模板可以是PCR产物、单链DNA和质粒DNA等。模板浓度应调整在PCR 反应时取量1μl为宜。本实验测定的质粒DNA,浓度为0.2g/L,即200ng/μl。 5.引物需根据所要测定的DNA片段设计正向或反向引物,配制成3.2μmol/L,即3.2pmol/μl。如重组质粒中含通用引物序列也可用通用引物,如M13(-21)引物,T7引物等。 6.灭菌去离子水或三蒸水。 7.0.2ml或和0.5ml的PCR管盖体分离,PE公司产品。 8.3mol/L 醋酸钠(pH5.2) 称取40.8g NaAc·3H2O溶于70ml蒸馏水中,冰醋酸调pH至5.2,定容至100ml,高压灭菌后分装。 9.70%乙醇和无水乙醇。 10.NaAc/乙醇混合液取37.5ml无水乙醇和2.5ml 3mol/L NaAc混匀,室温可保存1年。11.POP 6测序胶ABI产品。

第三代测序技术的三种技术平台介绍

第三代测序技术的三种技术平台介绍 随着生物学的发展,人们对基因的功能研究更加透彻,为了进一步研究和改造基因的目的需要详细了解生物的基因组全序列,因为DNA序列是改造基因的基础,这就要求具有高效的DNA测序技术。DNA测序技术到目前为止已经发展到了第三代测序技术。 最早的Sanger测序在人类基因组计划中立下赫赫战功,但也给基因组测序贴上了数亿美元的价格标签,让人生畏。这两年发展迅猛的第二代测序仪——Illumina的Genome Analyzer、Roche 454的GS系列以及ABI的SOLiD系统——让人类基因组重测序的费用蹭地降低到10万美元以下。现在,能对单个DNA分子进行测序的第三代测序仪也加入到这场比赛中,让竞争更加激烈。 目前,第三代测序主要有三种技术平台。两种通过掺入并检测荧光标记的核苷酸,来实现单分子测序。Helicos的遗传分析系统已上市,而Pacific Biosciences准备在明年推出单分子实时(SMRT)技术。第三种Oxford Nanopore的纳米孔(nanopore)测序还尚未有推出的时间表,但有可能是这三种当中最便宜的。纳米孔测序的优势在于它不需要对DNA进行标记,也就省去了昂贵的荧光试剂和CCD照相机。 最近,Oxford Nanopore T echnologies的Hagan Bayley及他的研究小组正致力于改善纳米孔。根据他们之前的工作,他们以a-溶血素来设计纳米孔,并将环式糊精共价结合在孔的内侧(下图)。当核酸外切酶消化单链DNA后,单个碱基落入孔中,它们瞬间与环式糊精相互作用,并阻碍了穿过孔中的电流。每个碱基ATGC以及甲基胞嘧啶都有自己特有的电流振幅,因此很容易转化成DNA序列。每个碱基也有特有的平均停留时间,它的解离速率常数是电压依赖的,+180 mV的电位能确保碱基从孔的另一侧离开。

纳米孔测序是极具前景的下一代测序技术

纳米孔测序是极具前景的下一代测序技术 Nanopore Sequencing 2019 - Patent Landscape Analysis 随着各种技术的新产品推出,哪些公司将在知识产权方面引领纳米孔测序? 纳米孔测序是极具前景的下一代测序技术 据麦姆斯咨询介绍,纳米孔测序是新一代测序(NGS)技术之一,被认为能够彻底革新DNA分析。随着时间地推移,目前已经开发出了不同形式的纳米孔测序技术,包括蛋白质纳米孔、固态纳米孔和复合纳米孔。该技术可以高速生成超长读数,减少样品制备时间以及将读数重组成原始序列所需要的数据处理时间。 这项新技术可以开发一个需要遗传指纹来快速识别癌症类型和病原体的全新客户群。根据DataBridge的数据,全球下一代测序市场将快速增长,市场规模预计将从2017年的48.3亿美元增长到2024年的163.5亿美元,2018~2024年期间的复合年增长率(CAGR)预计为19.2%。 目前,Oxford Nanopore Technologies是唯一一家将基于纳米孔的测序仪推向市场的公司。不过,还有其它几家公司正在开发自己的相关技术,Oxford Nanopore Technologies公司可能很快将不再是纳米孔测序仪的唯一供应商。例如,Two Pore Guys公司宣布将在2019年春季发布其产品套件。 随着新产品在未来的相继推出,了解纳米孔测序市场相关参与者的知识产权(IP)状况和策略,同时发现专利新申请人及其所带来的威胁至关重要。为此,著名市场研究机构Yole 子公司Knowmade深入调研了基于纳米孔的测序技术(蛋白质、固态和复合)及其应用(肿瘤学、植物遗传学等)中涉及的知识产权主要参与者。本报告可以帮助读者发现业务风险和机遇,预测新兴应用,支持战略决策以加强市场地位。 纳米孔测序全球专利申请趋势 对专利申请趋势的分析表明,从2008年到2013年,纳米孔测序相关的专利申请获得了重要增长。这一增长源自于学术研究团队(哈佛大学和加州大学)对纳米孔测序概念的验证。

一代、二代、三代测序技术

一代、二代、三代测序技术 (2014-01-22 10:42:13) 转载 第一代测序技术-Sanger链终止法 一代测序技术是20世纪70年代中期由Fred Sanger及其同事首先发明。其基本原理是,聚丙烯酰胺凝胶电泳能够把长度只差一个核苷酸的单链DNA分子区分开来。一代测序实验的起始材料是均一的单链DNA分子。第一步是短寡聚核苷酸在每个分子的相同位置上退火,然后该寡聚核苷酸就充当引物来合成与模板互补的新的DNA链。用双脱氧核苷酸作为链终止试剂(双脱氧核苷酸在脱氧核糖上没有聚合酶延伸链所需要的3-OH基团,所以可被用作链终止试剂)通过聚合酶的引物延伸产生一系列大小不同的分子后再进行分离的方法。测序引物与单链DNA模板分子结合后,DNA聚合酶用dNTP延伸引物。延伸反应分四组进行,每一组分别用四种ddNTP(双脱氧核苷酸)中的一种来进行终止,再用PAGE分析四组样品。从得到的PAGE胶上可以读出我们需要的序列。 第二代测序技术-大规模平行测序 大规模平行测序平台(massively parallel DNA sequencing platform)的出现不仅令DNA测序费用降到了以前的百分之一,还让基因组测序这项以前专属于大型测序中心的“特权”能够被众多研究人员分享。新一代DNA测序技术有助于人们以更低廉的价格,更全面、更深入地分析基因组、转录组及蛋白质之间交互作用组的各项数据。市面上出现了很多新一代测序仪产品,例如美国Roche Applied Science公司的454基因组测序仪、美国Illumina公司和英国Solexa technology公司合作开发的Illumina测序仪、美国Applied Biosystems公司的SOLiD测序仪。Illumina/Solexa Genome Analyzer测序的基本原理是边合成边测序。在Sanger等测序方法的基础上,通过技术创新,用不同颜色的荧光标记四种不同的dNTP,当DNA聚合酶合成互补链时,每添加一种dNTP就会释放出不同的荧光,根据捕捉的荧光信号并经过特定的计算机软件处理,从而获得待测DNA的序列信息。以Illumina测序仪说明二代测序的一般流程,(1)文库制备,将DNA用雾化或超声波随机片段化成几百碱基或更短的小片段。用聚合酶和外切核酸酶把DNA片段切成平末端,紧接着磷酸化并增加一个核苷酸黏性末端。然后将Illumina测序接头与片段连接。(2)簇的创建,将模板分子加入芯片用于产生克隆簇和测序循环。芯片有8个纵向泳道的硅基片。每个泳道内芯片表面有无数的被固定的单链接头。上述步骤得到的带接头的DNA 片段变性成单链后与测序通道上的接头引物结合形成桥状结构,以供后续的预扩增使用。通过不断循环获得上百万条成簇分布的双链待测片段。(3)测序,分三步:DNA聚合酶结合荧光可逆终止子,荧光标记簇成像,在下一个循环开

三代测序原理技术比较

导读从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。 摘要:从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序 技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。 图1:测序技术的发展历程 生命体遗传信息的快速获得对于生命科学的研究有着十分重要的意义。以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法或者是1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解). 并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2’和3’都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA 合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP(分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为 sanger测序法制作了一个小短片,形象而生动。 值得注意的是,就在测序技术起步发展的这一时期中,除了Sanger法之外还出现了一些其他的测序技术,如焦磷酸测序法、链接酶法等。其中,焦磷酸测序法是后来Roche公司454技术所使用的测序方法2–4,而连接酶测序法是后来ABI公司SOLID技术使用的测序方法2,4,但他们的共同核心手段都是利用了Sanger1中的可中断DNA合成反应的dNTP。

下一代测序技术

下一代测序技术 摘要:DNA测序技术对生物学的发展有着最根本的意义。Sanger法测序经过了30年的应用和发展,而在过去三年中,以454, solexa, SOLiD为代表的高通量测序平台已经大幅度降低了测序成本,提高了测序速度,成为基因组测序市场的主流。在此基础上,各种下一代测序技术正在快速研发,将使基因组测序和重测序的通量和成本更加平民化,为基因组学、遗传学、生物医学和健康科学等领域的发展创造更加广阔的前景。本文将对所有新的测序技术的原理、优势和应用进行总结和展望。 1977年Maxim、Gilbert发明的化学降解法测序技术和Sanger发明的双脱氧末端终止法测序技术不仅为他们赢得了诺贝尔奖,也使得从DNA序列层面研究分子遗传学成为可能。特别是后者,从最开始的凝胶电泳到越来越高通量的毛细管电泳,从开始的手工操作到越来越多自动测序仪的出现,各种改进的Sanger 测序技术统治了DNA测序领域三十年,至今仍在长片段测序,大片段文库测序方面有广泛的应用。人类基因组计划(HGP)的完成就是靠Sanger测序法。 在耗费了庞大成本的人类基因组计划宣布完成之后,越来越多的物种基因组测序工作对测序成本和通量提出了更高的要求,新一代测序技术(也被称为第二代测序技术)开始登上历史舞台。2005年454 life science公司率先推出了焦磷酸测序技术,使测序成本较Sanger法降低了100倍,速度快了(提高)100倍,人类基因组测序逐步进入了100,000美元时代。如今,454 FLX测序仪(Roche Applied Science)、基于“边合成边测序”的Solexa测序仪(Illumina Inc.)和使用“边连接边测序”的SOLiD测序仪(Applied Biosystems)已经成为基因组测序市场的主流机型。除此之外,2008年一年内又有HeliScope单分子测序仪(Helicos)和Polonator(Dover/Harvard)两种测序机型商品化。 在NHGRI(美国人类基因组研究中心)的支持和推动下,未来几年内测序成本将在目前基础上再下降100倍,最终使个人基因组测序成本降至1000美元,人类将革命性的进入个人基因组时代。高通量和低成本的测序技术将进入到普通实验室,基因组测序的简单化将使分子生物学飞跃发展,个人基因组测序产业化也将对健康医学等领域产生革命性的影响。本文将首先对目前已经商品化的新一代测序技术(454、Solexa、SOLiD、HeliScope)做一介绍和比较,再对正在研发中的各种下一代测序方法(第三代测序技术)的原理和应用做一详细的介绍和展望。 1. Roche 454测序技术 2005年454生命科学公司在《自然》杂志发表论文,介绍了一种区别于传统Sanger法的全新高通量测序方法,将测序成本降低了100倍以上,开创了第二代测序技术的先河,454测序仪也成为最先商品化的第二代测序仪。正是在此基础上,其它如Solexa、SOLiD等第二代测序仪才相继问世。454测序技术的原理在于首先使用乳液PCR(emulsion PCR)技术(图一a)扩增已经连接上接头的基因组文库片段,扩增子结合在28 μm的磁珠表面,将乳液破坏后用变性剂处理磁珠,再将含有扩增子的磁珠富集到芯片表面,用测序引物进行测序。在测序过程中,454使用了一种“焦磷酸测序技术”(Pyrosequencing),即在合成DNA 互补链的过程中,每加入一种单核苷酸(dNTP),如与模板链配对结合,就会释放出一个焦磷酸,与底物腺苷-5’-磷酸硫酸(APS)在A TP硫酸化酶作用下合成A TP,与荧光素(Luciferin)一起在荧光素酶(Luciferase)的作用下,会发出一个光信号,由芯片背后连接的电荷耦合装置(CCD,Charge Coupled Device)捕捉。454测序技术合成DNA链使用的是普通单核苷酸,没有任何标记,合成中也没有切割基团等生化反应,因此读长可以达到300-400bp。但没有阻断(block)和去阻断(de-block)过程也意味着对连续重复单核苷酸的阅读只能根据信号强度来判断,容易对其中插入和缺失碱基阅读错误。454测序技术相比较其他第二代测序技术如Solexa和SOLiD, 在读长上有着巨大的优势,但是目前成本要略高。总体而言,高读长使得454技术比较利于De Novo拼接和测序。

一、二、三代测序技术

一代、二代、三代测序技术 第一代测序技术-Sanger链终止法 一代测序技术是20世纪70年代中期由Fred Sanger及其同事首先发明。其基本原理是,聚丙烯酰胺凝胶电泳能够把长度只差一个核苷酸的单链DNA分子区分开来。一代测序实验的起始材料是均一的单链DNA分子。第一步是短寡聚核苷酸在每个分子的相同位置上退火,然后该寡聚核苷酸就充当引物来合成与模板互补的新的DNA链。用双脱氧核苷酸作为链终止试剂(双脱氧核苷酸在脱氧核糖上没有聚合酶延伸链所需要的3-OH基团,所以可被用作链终止试剂)通过聚合酶的引物延伸产生一系列大小不同的分子后再进行分离的方法。测序引物与单链DNA模板分子结合后,DNA聚合酶用dNTP延伸引物。延伸反应分四组进行,每一组分别用四种ddNTP(双脱氧核苷酸)中的一种来进行终止,再用PAGE分析四组样品。从得到的PAGE胶上可以读出我们需要的序列。 第二代测序技术-大规模平行测序 大规模平行测序平台(massively parallel DNA sequencing platform)的出现不仅令DNA测序费用降到了以前的百分之一,还让基因组测序这项以前专属于大型测序中心的“特权”能够被众多研究人员分享。新一代DNA测序技术有助于人们以更低廉的价格,更全面、更深入地分析基因组、转录组及蛋白质之间交互作用组的各项数据。市面上出现了很多新一代测序仪产品,例如美国Roche Applied Science公司的454基因组测序仪、美国Illumina公司和英国Solexa

technology公司合作开发的Illumina测序仪、美国Applied Biosystems公司的SOLiD测序仪。Illumina/Solexa Genome Analyzer测序的基本原理是边合成边测序。在Sanger等测序方法的基础上,通过技术创新,用不同颜色的荧光标记四种不同的dNTP,当DNA聚合酶合成互补链时,每添加一种dNTP就会释放出不同的荧光,根据捕捉的荧光信号并经过特定的计算机软件处理,从而获得待测DNA的序列信息。以Illumina测序仪说明二代测序的一般流程,(1)文库制备,将DNA用雾化或超声波随机片段化成几百碱基或更短的小片段。用聚合酶和外切核酸酶把DNA片段切成平末端,紧接着磷酸化并增加一个核苷酸黏性末端。然后将Illumina测序接头与片段连接。(2)簇的创建,将模板分子加入芯片用于产生克隆簇和测序循环。芯片有8个纵向泳道的硅基片。每个泳道内芯片表面有无数的被固定的单链接头。上述步骤得到的带接头的DNA 片段变性成单链后与测序通道上的接头引物结合形成桥状结构,以供后续的预扩增使用。通过不断循环获得上百万条成簇分布的双链待测片段。(3)测序,分三步:DNA 聚合酶结合荧光可逆终止子,荧光标记簇成像,在下一个循环开始前将结合的核苷酸剪切并分解。(4)数据分析 第三代测序技术-高通量、单分子测序 被称为第三代的测序的He-licos单分子测序仪,PacificBioscience的SMRT技术和 Oxford Nanopore Technologies 公司正在研究的纳米孔单分子测序技术正向着高通量低成本长读取长度的方向发展。不同于第二代测序依赖于DNA模板

焦磷酸测序技术的原理

Pyrosequencing技术的原理 Pyrosequencing是一项全新的DNA测序技术,可以快速、准确地测定一段较短的目标片段。其基本原理如下: 第1步:1个特异性的测序引物和单链DNA模板结合,然后加入酶混合物(包括DNA Polymerase、ATP Sulfurylase、Luciferase和Apyrase)和底物混合物(包括APS和Luciferin)。 第2步:向反应体系中加入1种dNTP,如果它刚好能和DNA模板的下一个碱基配对,则会在DNA 聚合酶的作用下,添加到测序引物的3‘末端,同时释放出一个分子的焦磷酸(PPi)。 第2步图示(图片来自互联网) 第3步:在ATP硫酸化酶的作用下,生成的PPi可以和APS结合形成ATP;在荧光素酶的催化下,生成的ATP又可以和荧光素结合形成氧化荧光素,同时产生可见光。通过CCD光学系统即可获得一个特异的检测峰,峰值的高低则和相匹配的碱基数成正比。 第3步图示(图片来自互联网) 第4步:反应体系中剩余的dNTP和残留的少量ATP在Apyrase的作用下发生降解。 第4步图示(图片来自互联网) 第5步:加入另一种dNTP,使第2-4步反应重复进行,根据获得的峰值图即可读取准确的DNA序列信息。

第4步图示(图片来自互联网) Pyrosequecing技术操作简单,结果准确可靠,可应用于SNP位点检测、等位基因频率测定、细菌和病毒分型等领域。 →如果您认为本词条还有待完善,请编辑词条 上一篇SNP(单核苷酸多态性)下一篇阅读质粒图谱 具体事例 【摘要】建立了一种将序列标记反转录聚合酶链反应(PCR)与焦磷酸测序技术结合的相对基因表达量测定法(简称“SRPP”)。先用来源特异性引物对不同来源的同一基因通过反转录标记上特异性标签,PCR后用焦磷酸测序法对扩增产物进行序列解码,使得测序结果中的序列代表基因的来源,峰高代表基因在不同来源中的相对表达量。用实时荧光定量PCR法对本方法的准确性进行了验证,结果表明,SRPP可以同时准确测定同一基因在3个不同来源中的表达量,并实际测定了Egr1基因在糖尿病、肥胖和正常小鼠肝中的表达量差异。 【关键词】序列标记反转录, 聚合物链反应,焦磷酸测序,基因表达 1 引言 差异表达基因与疾病密切相关,深入研究可在基因水平揭示疾病的发病机制。目前,用于检测基因表达水平的技术主要有SAGE法[1]、实时荧光定量PCR法[2,3]和基因芯片法[4]等。但这些方法存在仪器设备昂贵、定量性能差以及同时测定基因表达量的来源数目受限等缺点。 焦磷酸测序技术是新近发展起来的一种基于酶催化化学反应的测序技术[5~8],不需要使用荧光标记,定量性能好。目前,焦磷酸测序技术多用于单核苷酸多态性(SNP)分析、微生物分型和基因甲基化分析等。本研究将焦磷酸测序技术用于基因表达量差异的比较分析,考察了其可行性和准确性,并将其应用于检测Egr1基因在糖尿病、肥胖症和正常小鼠中的差异表达。 2 实验部分 仪器、试剂与材料

一代测序、高通量测序等各种测序相关概念介绍

什么是高通量测序? 高通量测序技术(High-throughput sequencing,HTS)是对传统Sanger测序(称为一代测序技术)革命性的改变, 一次对几十万到几百万条核酸分子进行序列测定, 因此在有些文献中称其为下一代测序技术(next generation sequencing,NGS )足见其划时代的改变, 同时高通量测序使得对一个物种的转录组和基因组进行 细致全貌的分析成为可能, 所以又被称为深度测序(Deep sequencing)。 什么是Sanger法测序(一代测序) Sanger法测序利用一种DNA聚合酶来延伸结合在待定序列模板上的引物。直到掺入一种链终止核苷酸为止。每一次序列测定由一套四个单独的反应构成,每个反应含有所有四种脱氧核苷酸三磷酸(dNTP),并混入限量的一种不同的双脱氧核苷三磷酸(ddNTP)。由于ddNTP缺乏延伸所需要的3-OH基团,使延长的寡聚核苷酸选择性地在G、A、T或C处终止。终止点由反应中相应的双脱氧而定。每一种dNTPs和ddNTPs的相对浓度可以调整,使反应得到一组长几百至几千碱基的链终止产物。它们具有共同的起始点,但终止在不同的的核苷酸上,可通过高分辨率变性凝胶电泳分离大小不同的片段,凝胶处理后可用X-光胶片放射自显影或非同位素标记进行检测。 什么是基因组重测序(Genome Re-sequencing) 全基因组重测序是对基因组序列已知的个体进行基因组测序,并在个体或群体水平上进行差异性分析的方法。随着基因组测序成本的不断降低,人类疾病的致病突变研究由外显子区域扩大到全基因组范围。通过构建不同长度的插入片段文库和短序列、双末端测序相结合的策略进行高通量测序,实现在全基因组水平上检测疾病关联的常见、低频、甚至是罕见的突变位点,以及结构变异等,具有重大的科研和产业价值。 什么是de novo测序 de novo测序也称为从头测序:其不需要任何现有的序列资料就可以对某个物种进行测序,利用生物信息学分析手段对序列进行拼接,组装,从而获得该物种的基因组图谱。获得一个物种的全基因组序列是加快对此物种了解的重要捷径。随着新一代测序技术的飞速发展,基因组测序所需的成本和时间较传统技术都大大降低,大规模基因组测序渐入佳境,基因组学研究也迎来新的发展契机和革命性突破。利用新一代高通量、高效率测序技术以及强大的生物信息分析能力,可以高效、低成本地测定并分析所有生物的基因组序列。 什么是外显子测序(whole exon sequencing) 外显子组测序是指利用序列捕获技术将全基因组外显子区域DNA捕捉并富集后进行高通量测序的基因组分析方法。外显子测序相对于基因组重测序成本较低,对研究已知基因的SNP、Indel等具有较大的优势,但无法研究基因组结构变异如染色体断裂重组等。

三代测序原理技术比较

导从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测导序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从读长到短,再从短到长。 摘要:从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到 长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势 位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变 革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在 这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。 图1 :测序技术的发展历程 生命体遗传信息的快速获得对于生命科学的研究有着十分重要的意义。以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson )开创的链终止法或者是1976-1977年由马克西姆(Maxam和吉尔伯特(Gilbert )发明的化学法(链降解)?并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱 基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。 研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基 因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2' 和3'都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA 合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为san ger测序法制作了一个小短片,形象而生动。 值得注意的是,就在测序技术起步发展的这一时期中,除了San ger法之外还出现了一 些其他的测序技术,如焦磷酸测序法、链接酶法等。其中,焦磷酸测序法是后来Roche公司454技术所使用的测序方法2 - 4,而连接酶测序法是后来ABI公司SOLID技术使用的测序方 法2,4,但他们的共同核心手段都是利用了Sanger1中的可中断DNA合成反应的dNTP 图2: Sanger法测序原理

下一代测序技术的内容概览

下一代测序技术的内容概览 高通量DNA测序技术(下一代测序技术NGS)在过去的15年里已经有了快速的发展,新的方法也在继续实现商业化。随着技术的发展,对基础和应用科学中的相关应用范围也在增加。这篇综述的目的是提供一个对NGS方法论的概述以及相关的应用。每个简要的讨论之后都跟有制造商和基于网页的可视化。关键词搜索,例如用Google,可能也会提供有帮助的网页链接和信息。 方法的建立 DNA测序方法的建立是Sanger双脱氧合成法以及Maxam-Gilbert的化学裂解法。Maxam-Gilbert化学裂解法是基于DNA的化学修饰然后在邻近修饰过的核苷酸附件的位点进一步裂解DNA骨架。Sanger测序采用了特殊的链终止核苷酸(双脱氧核苷酸),它缺少一个 3‘OH连接位点。因此,不能够在DNA聚合酶的作用下合成磷酸二酯键,结果是正在伸长的DNA链在该位置终止了。双脱氧核苷酸是具有放射性的或者具有荧光标记的,便于分别在测序凝胶或者自动测序仪器上识别。尽管原始的Maxam-Gilbert方法的化学特性已经被进行修饰来帮助消除有毒性的反应物,但是Sanger测序通过合成双脱氧核苷酸的方法已经变成了一种测序的标准。 Sanger测序法在1977年被创建,并且在UNIT7.4中被详尽的描述了。尽管通过当前NGS 标准测序相对较慢,但是在Sanger末端终止法的改进,自动化,以及商业化这些方面已经使它能够在当前的多种应用范围中成为最适当的测序方法。特别的,超薄的凝胶板电泳已经被多通道毛细血管电泳代替了,逐渐还出现了自动填充可循环的毛细血管以及电动样品加样,这对提高Sanger测序过程的速度与便利性有很大的贡献。在Sanger测序中已经出现的最显著的创新点有:(1)荧光染色的发展,(2)采用末端循环测序降低所要求的输入DNA的质量并且用耐热聚合酶高效准确的将终止物染色与正在伸长的DNA链结合起来,(3)解释和分析序列软件的发展。在自动化的Sanger测序项目中的主导者是Applied Biosystem(AB)。当前商业化的AB测序仪全部使用的是荧光染色和毛细管电泳(CE)。用于DNA测序或者片段分析协议的机器的容量在发生改变,4组毛细血管(SeqStudio Genetic Analyzer),8到24组毛细管(3500 Series Genetic Analyzer),以及48到96组(3700 Series Genetic Analyzer)。所以的这些测序仪产生了600-1000个碱基的正确的序列。尽管多年以来,不同种类基于Sanger测序的测序仪器已经被引进,包括来自Licor,Amersham,MilliGen,Perkin Elmer 和Dupont,所以的这些除了AB仪器都已经被停产了。 Sanger测序技术在一些应用中任然非常有用,而这些应用中高通量测序是不被要求的。一些DNA测序的核心设备和以测序来获利的公司提供了Sanger测序服务。对于个体测序反应对公共的用法是在一个特殊的模板上用特殊的DNA引物,例如去检验质粒的构建和PCR 产物。既然来自大量的商家的用于DNA纯化的分子生物试剂盒和试剂以及相对较高质量的合成产物都是可用的,这就使得甚至是相对较大的Sanger测序项目都能够在合理的时间框架和成本范围内完成。 除了检测DNA的序列AB仪器上的毛细管电泳(CE)还被应用到测量酶对基于荧光标记的DNA底物的选择活性,列如,可以分析DNA片段的大小。毛细管电泳同样能够用来同时分析一个单反应中的多个底物,产物或者反应介质,通过不同的荧光标记。CE被用在DNA 聚合酶和DNA连接酶动力学,以及包括冈崎片段和核糖核苷酸的删除修复的偶联酶通路的研究中。AB CE在在糖生物学中也是很有用的,可以用来分析荧光标记的多糖。 第二代测序方法 术语“下一代”隐含着DNA测序技术发展的下一步,同时也表明将会产生一个以下一代命名的新技术。我们更喜欢用下一代,第三代等这些术语,因为我们意识到上述的自动化的

新一代高通量测序技术SOLiD简介

新一代高通量测序技术SOLiD简介 目前市场上有四种高通量测序仪,分别是Solexa,454 (GS-FLX),SOLiD和Polonator。根据测序原理,它们可以被分为两大类:使用合成法测序(Sequencing by Synthesis)的Solexa和454,及使用连接法测序(Sequencing by Ligation)的Polonator和SOLiD。这些高通量测序仪的共同点是不需要大肠杆菌系统进行DNA模板扩增,且测序所得序列较短:其中的454序列最长,为200~300个碱基,其余三种序列都只有几十个碱基。测序原理及序列长度的差异决定了各种高通量测序仪具有不同的应用领域。这就要求我们在熟悉各种高通量测序仪内在技术特点的基础上进行选择。 基因组所引进的SOLiD (Sequencing by Oligonucleotide Ligation and Detection)是ABI(Applied Biosystems)公司生产的高通量测序仪。目前这台SOLiD运行稳定,SOLiD实验及数据分析小组也可以为大家提供专业的技术服务。所以接下来的关键是如何把SOLiD测序仪应用到符合其技术特点的科研项目中。本短文将简单介绍SOLiD测序流程,双碱基编码原理及数据分析原理,以帮助大家了解SOLiD测序仪的技术特点和应用范围。 1.SOLiD关键技术及其原理 SOLiD使用连接法测序获得基于“双碱基编码原理”的SOLiD颜色编码序列,随后的数据分析比较原始颜色序列与转换成颜色编码的reference序列,把SOLiD颜色序列定位到reference上,同时校正测序错误,并可结合原始颜色序列的质量信息发现潜在SNP位点。 1.1. SOLiD文库构建 使用SOLiD测序时,可根据实际需要,制备片段文库(fragment library)或末端配对文库(mate-paired library)。简单地说,制备片段文库就是在短DNA片段(60~110 bp)两端加上SOLiD 接头(P1、P2 adapter)。而制备末端配对文库,先通过DNA环化、Ecop15I酶切等步骤截取长DNA片段(600bp到10kb)两末端各25 bp进行连接,然后在该连接产物两端加上SOLiD接头。两种文库的最终产物都是两端分别带有P1、P2 adapter的DNA双链,插入片段及测序接头总长为120~180 bp。 1.2:油包水PCR 我们知道,文库制备得到大量末端带P1、P2 adapter但内部插入序列不同的DNA双链模板。和普通PCR一样,油包水PCR也是在水溶液进行反应,该水相含PCR所需试剂,DNA模板及可分别与P1、P2 adapter结合的P1、P2 PCR引物。但与普通PCR不同的是,P1引物固定在P1磁珠球形表面(SOLiD将这种表面固定着大量P1引物的磁珠称为P1磁珠)。PCR反应过程中磁珠表面的P1引物可以和变性模板的P1 adapter负链结合,引导模板合成,这样一来,P1引物引导合成的DNA链也就被固定到P1磁珠表面了。 油包水PCR最大的特点是可以形成数目庞大的独立反应空间以进行DNA扩增。其关键技术是“注水到油”,基本过程是在PCR反应前,将包含PCR所有反应成分的水溶液注入到高速旋转的矿物油表面,水溶液瞬间形成无数个被矿物油包裹的小水滴。这些小水滴就构成了独立的PCR 反应空间。理想状态下,每个小水滴只含一个DNA模板和一个P1磁珠,由于水相中的P2引物和磁珠表面的P1引物所介导的PCR反应,这个DNA模板的拷贝数量呈指数级增加,PCR反应结束后,P1磁珠表面就固定有拷贝数目巨大的同来源DNA模板扩增产物。A BI公司提供的SOLiD 实验手册已经把小水滴体积及水相中DNA模板和磁珠的个数比等重要参数进行了技术优化和流程固定,尽可能提高“优质小水滴”(水滴中只含一个DNA模板一个P1磁珠)的数量,为后续SOLiD 测序提供只含有一种DNA模板扩增产物的高质量P1磁珠。

三代测序技术的比较

一代、二代、三代测序技术 张祥瑞 2013/04/22 11:43 第一代测序技术-Sanger链终止法 一代测序技术是20世纪70年代中期由Fred Sanger及其同事首先发明。其基本原理是,聚丙烯酰胺凝胶电泳能够把长度只差一个核苷酸的单链DNA分子区分开来。一代测序实验的起始材料是均一的单链DNA分子。第一步是短寡聚核苷酸在每个分子的相同位置上退火,然后该寡聚核苷酸就充当引物来合成与模板互补的新的DNA链。用双脱氧核苷酸作为链终止试剂(双脱氧核苷酸在脱氧核糖上没有聚合酶延伸链所需要的3-OH基团,所以可被用作链终止试剂)通过聚合酶的引物延伸产生一系列大小不同的分子后再进行分离的方法。测序引物与单链DNA模板分子结合后,DNA聚合酶用dNTP延伸引物。延伸反应分四组进行,每一组分别用四种ddNTP(双脱氧核苷酸)中的一种来进行终止,再用PAGE分析四组样品。从得到的PAGE胶上可以读出我们需要的序列。 第二代测序技术-大规模平行测序 大规模平行测序平台(massively parallel DNA sequencing platform)的出现不仅令DNA测序费用降到了以前的百分之一,还让基因组测序这项以前专属于大型测序中心的“特权”能够被众多研究人员分享。新一代DNA测序技术有助于人们以更低廉的价格,更全面、更深入地分析基因组、转录组及蛋白质之间交互作用组的各项数据。市面上出现了很多新一代测序仪产品,例如美国Roche Applied Science公司的454基因组测序仪、美国Illumina公司和英国Solexa technology公司合作开发的Illumina测序仪、美国Applied Biosystems公司的SOLiD测序仪。Illumina/Solexa Genome Analyzer测序的基本原理是边合成边测序。在Sanger等测序方法的基础上,通过技术创新,用不同颜色的荧光标记四种不同的dNTP,当DNA聚合酶合成互补链时,每添加一种dNTP就会释放出不同的荧光,根据捕捉的荧光信号并经过特定的计算机软件处理,从而获得待测DNA的序列信息。以Illumina测序仪说明二代测序的一般流程,(1)文库制备,将DNA用雾化或超声波随机片段化成几百碱基或更短的小片段。用聚合酶和外切核酸酶把 DNA片段切成平末端,紧接着磷酸化并增加一个核苷酸黏性末端。然后将Illumina测序接头与片段连接。(2)簇的创建,将模板分子加入芯片用于产生克隆簇和测序循环。芯片有8个纵向泳道的硅基片。每个泳道内芯片表面有无数的被固定的单链接头。上述步骤得到的带接头的DNA 片段变性成单链后与测序通道上的接头引物结合形成桥状结构,以供后续的预扩增使用。通过不断循环获得上百万条成簇分布的双链待测片段。(3)测序,分三步:DNA 聚合酶结合荧光可逆终止子,荧光标记簇成像,在下一个循环开始前将结合的核苷酸剪切并分解。(4)数据分析 第三代测序技术-高通量、单分子测序

三代基因组测序技术原理(简介)

三代基因组测序技术原理简介 【写在前面的话】:首先,这一篇博文中的内容并非原创,而是对多篇文献中内容的直接摘录,有些图片和资料还来自身边的同事(在此深表谢意!),再夹杂自己的零星想法,写在这里分享与大家,同时也是为了方便自己日后若有需要能够方便获得,文章比较长。 摘要:从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。 图1: 测序技 术的发 展历程 生命体 遗传信 息的快 速获得 对于生 命科学 的研究 有着十分重要的意义。以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法或者是1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解). 并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2’和3’都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP(分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为sanger测序法制作了一个小短片,形象而生动。

下一代测序技术

下一代测序技术 摘要|从未有过的巨大革命技术需求交付快速、廉价、准确的基因组信息。这一挑战也促进了下一代测序技术的发展。传统方法主要的优势是生产大量廉价的序列数据。在这里,我进行一下技术回顾,模板制备、测序成像、基因定位和装配方法以及当前的最新进展和短期商用的下一代测序技术。除了为解决生物问题的兴趣提供平台选择指导,再略述下一代测序技术的广泛应用。 在过去的四年里,进行基因组分析的自动化桑格测序技术的应用发生了根本性的转变。在这之前,自动化桑格技术主导该产业几乎20年,并作出了巨大的 成就,包括唯一完整的人类基因组序列。尽管在这个年代很多技术都在提高,然而自动化桑格测序技术的局限性,展现出对一种面向大量人类基因组测序的新的改良技术的需求。最近致力于研究新的方法,桑格测序可能提的会少一些。因此,本篇文章不包括桑格测序,有兴趣的读者可以读一下前面的文章。 自动化桑格方法被认为是“第一代”技术,新的方法被称为下一代基因测序。这些新技术组成不同的策略,依赖于模板准备,测序和成像,基因组比对和装配的方法结合。下一代测序技术的到来改变了我们在基础、应用和临床研究方面的 思考方式。在某些方面,下一代测序技术类似于以前的聚合酶反应链,主要使用局限在成像方面。下一代测序技术的提高在于其能廉价地生产出一个巨大的数据量,在某些情况下仪器运行超过十亿短读。这个特性扩展了实验以外的领域,不仅仅是在确定的顺序集上。例如,基因表达研究基因芯片现在被基于序列的方法所代替,这种方法可以识别和量化罕见的转录体,没有先验知识的一个特定的基因,并且提供特定基因的可变剪接和序列变化方面的相关信息。测序许多相关生 物的整个基因组的能力使得大规模的比对和进化研究被实施,这在几年前是不可 想象的。下一代测序技术最广泛的应用可能是对人类基因的重新排序以增强人们对不同的基因如何影响健康和疾病的理解。下一代测序的各种特性使得它在市场上可能共存于多个平台,因为它在特定应用上有明显的优势。 本文专注于商用技术,来自罗氏/454,lllumi na/ Solexa,LIFE/ AP窃口Polonator Helicos生物科学仪器和近期的太平洋生物科学,旨在2010年将他们的测序设备 引进市场。纳米孔测序没有被覆盖,尽管有兴趣的读者通过布兰顿和他的同事们针对一篇文章,描述了进展并对这项技术保持挑战。在这里,我提出一个技术的回顾,模板准备,测序和成像,基因组比对和装配,当前下一代基因测序平台的性能,为这些技术如何工作和如何将这些技术应用于重要的生物问题上提供指导。我强调用目标和整个基因组方法进行人类基因组重组的应用,讨论这些方法 的进展和局限性,和接下来几年即将看到的进展和预期的影响。 下一代测序技术 测序技术包括很多方法,宽泛的分为模板准备,测序和成像,数据分析。特定协议的独特结合使得一个技术区别于其他技术,决定着来自每个平台产生的数据类型。当基于数据的质量和成本比较时这些输出数据的不同面临挑战。尽管质量分数和精度估计是由每个制造商提供的,从一个平台到另一个平台“质量基础” 是没有一致性的。下文将会讨论各种测序指标。 在下面几节中,讨论模板准备和测序成像,因为它们适用于现有和近期的商业平台。下面有两种方法用于为下一代测序反应准备模板:从单个DNA分子克 隆扩增的模板,和单个DNA分子模板。合成测序,在文献中用于描述大量的脱氧核糖核苷酸的方法,在这篇文章中,因为它无法描述测序中的不同机制,所以没有用

相关文档
最新文档