第四章 层流流动与湍流流动

第四章 层流流动与湍流流动
第四章 层流流动与湍流流动

第四章层流流动及湍流流动

由于实际流体有粘性,在流动时呈现两种不同的流动形态:层流流动及湍流流动,并在流动过程中产生阻力。

对可压缩流体,阻力使流体受压缩。

对不可压缩流体,阻力使流体的一部分机械能转化为热能散失,这个转变过程不可逆。散失的热量称为能量损失。

单位质量(或单位体积)流体的能量损失,称为水头损失(或压力损失),并以h w(或Δp)表示。

本章首先讨论流体的流动状态,再对粘性流体在两种流动状态下的能量损失进行分析。

第一节流动状态及阻力分类

一、流体的流动状态

1.雷诺试验:1882年雷诺作了如教材45页图4-1所示的流体流动形态试验。

试验装置:在圆管的中心用细玻璃管向圆管的水流中引入红色液体的细流。

试验情况:

(1)当水的流速较小时(图4-1a),红色液体细流不与周围水混和,自己保持直线形状与水一起向前流动。

(2)如把水的流速逐渐增大,至一定程度时,红色细流便开始上下振荡,呈波浪形弯曲(如图4-1b)。

(3)当再把水流速度增大,红色细流的振荡加剧,至水的流速增大至某一速度后,圆管中红色细流消失,红色液体混入整个圆管的水中(如图4-1c)。

试验的三种不同状况说明:

(1)对(图4-1a)所示,表明水的质点只有向前流动的位移,没有垂直水流方向的移动,即各层水的质点不相互混和,都是平行地移动的,这种流动称为层流;

(2)对(图4-1b)所示,说明流动的水质点已开始有垂直水流方向的位移,离开圆管轴线较远的部位水的质点仍保持平行流动的状态;

(3)对(图4-1c)所示,说明流动中水的质点运动已变得杂乱无章,各层水相互干扰,这种流动形态称为紊流或湍流。

2.雷诺数:

流体之所以出现不同的流动形态,主要由流体质点流动时其本身所具有的惯性力和所受的粘性力的数值比例决定。

惯性力相对较大时,流体趋向于作紊流式的流动;

粘性力则起限制流体质点作纵向脉动的作用,遏止紊流的出现。

雷诺根据此原理提出了一个判定流体流动状态的无量纲参数——雷诺数(Re):

对在圆管中流动的流体而言,雷诺数的表现形式为

v:圆管内流体的平均流速(m/s);ε:动力粘度(Pa·s)。

D:圆管直径(m);ν:运动粘度(m2/s)。

实验确定,流体开始由层流形态向紊流转变时,称为下临界雷诺数,

Re=2100~2320;当Re>10000~13800时流体的流动形态为稳定的紊流,称上临界雷诺数;当Re=(2100~2320)~(10000~13800),流动形态为过渡状态,可以是紊流或层流。临界雷诺数随体系的不同而变化,即使同一体系,它也会随其外部因素(如圆管内表面粗糙度和流体中的起始扰动程度等)的不同而改变,所以临界雷诺数为一个范围数。

对于非圆管中的流体流动,雷诺数的表现形式为

R:水力半径(m);A:流体的有效截面积(m2);

x:截面上与流体接触的固体周长(湿周)(m)。

(但水力半径R不是圆截面的几何半径r,如充满流体圆管的水力半径为:

这里,取下临界雷诺数为500。对工程中常见的明渠水流,下临界雷诺数常取300。

当流体绕过固体(如绕过球体)流动时,出现层状绕流(物体后无旋涡)和紊状绕流(物体后形成旋涡)的现象,此时雷诺数用下式计算:

l:固体的特征长度(球形物体为直径); v:主流体的绕流速度。

[例]:在水深h=2cm,宽度b=80cm的槽内,水的流速v=6cm/s,已知水的运动粘度ν=0.013cm2/s。问水流处于什么运动状态?如需改变其流态,速度v应为多大?

解:这是非圆管内的流体流动,先计算水力半径

水力半径cm 其雷诺数为

>300

故水流状态为紊流状态。

如需改变流动状态,则先算出层流的临界速度,即

cm/s 即水流速度v≤1.95cm/s时水流将改变为层流状态。

二、层流和边界层

层流:流体质点在流动方向上分层流动,各层互不干扰和渗混,这种流线呈平行状态的流动称为层流。

层流是在流体具有很小的速度或粘度较大的流体流动时才出现。

若流体沿平板流动,则分层互不干扰。

若流体在圆管内流动,则形成同心圆筒流动。

对管内流动,由于实际流体的粘性而在流层之间及流体与管壁之间产生摩擦阻力,原来均匀分布的速度逐渐变得不均匀,在管壁附件一定厚度的区域内流体的速度要减低,形成速度的曲线分布规律(如教材46页图4-2b)。

在接近管壁处,由流速为零的壁面对速度分布较均匀的地方(速度为均匀速度的99%的地方),这一流体层称为边界层,或附面层。

边界层厚度为δ表示,δ随流体流进管内的距离的增加而增大。

流体粘性大,δ增大就快。

管内流体速度分布变化:

1.流体刚流入管内时,同一截面上速度相同;

2.由于粘性阻力和摩擦阻力的影响,形成边界层,边界层内流体速度降低;

3.流过管子各截面的流量不变,而边界层内流速降低,引起边界层处流速的提高;如教材46页图4-2a所示。

层流时圆管内流体速度分布最终呈旋转抛物面。

图4-2中AC管段称为“层流起始段”。对于直径为d的直管,层流起始段长度l=0.065Re。

三、紊流及紊流边界层

紊流(湍流):流体流动时,流体质点在不同方向上作复杂的无规则运动,互相干扰地向前运动。

在总的向前运动过程中,流体微团具有各个方向上的脉动,即在紊流流场空间中任一点上,流体质点的运动速度在方向和大小上均随时间而变,这种运动状态可称为紊流脉动。如书图4-3所示。

紊流时,流场空间中任一质点速度均随时间而变,为瞬时速度。瞬时速度在一定时间t内的平均值,称为瞬时平均速度。

紊流边界层:(其结构与层流边界层不同。)由于粘性力作用,紧贴壁面的那一层流体对邻近层流体产生阻滞作用。

管口处,管内紊流与边界层均未充分发展,边界层极薄,边界层内为层流流动。

管内一定距离后(l=25~40d),紊流边界层包括层流底层和外面的紊流部分。

四、流动阻力分类

流体运动时,由于外部条件不同,其流动阻力与能量损失分为以下两种形式:

1.沿程阻力:(摩擦阻力)沿流动路程上由于各流体层之间的内摩擦力而产生的流动阻力。

层流时,沿程阻力完全由粘性摩擦产生。

紊流时,沿程阻力主要由流体微团的迁移和脉动造成,一小部分由边界层内的粘性摩擦产生。

2.局部阻力:流体在流动中因遇到局部障碍而产生的阻力。

局部障碍:流道发生弯曲、流通截面扩大或缩小、流道中设置了各种阻碍等。

第二节流体在圆管中的层流运动

一、有效断面上的速度分布

如教材49页图4-6所示,取一长度为l,半径为r0的圆管,粘度为ε的流体在左端压力和自身重力的作用下在管中作等速v的层流运动。

初始条件:现观察半径为r的圆柱形流体段,设1-1及2-2断面的中心距基准面O-O的垂直高度为z1和z2;压力分别为p1和p2;圆柱侧表面上的切应力

为τ;圆柱形流体段的重力为。

流体段沿管轴作等速v的直线运动,流体段沿管轴方向满足力平衡条件,即

。。。。。。。。。。。。。。。。。。。(4-2)

其中,另由牛顿粘性定律可得,代入(4-2)得

。。。。。。。。。。。。。。。。。。。。。。(4-3)

再由1-1、2-2两断面的伯努利方程得

圆管内流体作等速运动,v1=v2,则得

代入式(4-3)得

积分后得

边界条件:r=r0时,v=0,则积分常数C:

所以得出速度的表达式:,这就是管中层流有效断面上的速度分布公式。可见速度在半径方向上的分布曲线是抛物线,最大流速v max位于圆

管轴线部位,此时r=0,。。。。。(4-5)

二、平均流速和流量

圆管内流体平均流速 为圆管流体流量Q除以圆管有效截面积,其中dA=2πrdr,则

。。(4-6)

可知,平均流速为管轴上最大流速的一半。

圆管中层流的流量Q:Q= A=d0:圆管直径。。。。。。(4-7)

此式表明,流量与沿程损失水头及管径四次方成正比。由于式中Q、γ、h f、l及d0都可测出,则利用上式可求得流体的动力粘度ε。

三、管中层流沿程损失的达西公式

常用能量损失形式,即液柱高度h来描述圆管长度上流体受管壁摩擦阻力所出现的能耗,这种损失又称沿程损失,其单位为m,式(4-6)中的h f即为沿程损失。由式(4-6)得

。。。。。。。。。。。。。。。。。。。。。。。。(4-8)

上式即为圆管中沿程损失水头的表达式。

由雷诺数,可将上式改写为,令

,则

或。。。。。。。。。。。(4-10)

此式为达西公式,其中Δp f为沿程压力损失。

若流量为Q的流体,在管中作层流运动时,其沿程损失的功率为

。。。。。。。。。。。。。。。。。。。。。。。。。。。。(4-11)

此式表明,在一定的长度,流量时,流体的动力粘度越小,则损失的功率越小。

加热后石油的动力粘度降低,所以在长距离输送石油时,常预先将石油加热到某一温度后再输送。

[例4-2]:沿直径d=305mm的管道,输送密度ρ=980kg/m3,运动粘度ν=4cm2/s 的重油。若流量Q=60L/s,管道起点标高z1=85m,终点标高z2=105m,管长l=1800m。试求管道中重油的压力降及损失功率各为多少?

解:(1)所求压力降,指管道起点与终点之间的静压力之差Δp。

列起点和终点之间的伯努利方程:

其中由于管道的流量Q不变,管道截面积一定,则流速不变,上式成为

式中只有h f未知,下面来求解h f。

先确定流动类型,计算雷诺数Re:Q=60L/s=0.06m3/s,

平均流速m/s

雷诺数Re:<2320,流动状态为层流。

按达西公式(4-10):m (为重油柱高度)

所以压力降为

=394000N/m2

(2)计算损失功率:

由式(4-11),

第三节流体在平行平板间的层流运动

两平行平板间的流体层流流动在很多机械中存在,如导轨、导槽、方形导孔等,在铸造中也常可遇到金属液充填较薄的平板型腔的现象。在上述导向零件的表面之间都有一个很小的充满润滑油的缝隙,其中一个表面往往以一定的速度移动,就会促使润滑油在缝隙中作层流运动。

现设有由两块平行平板构成的流道(教材54页图4-8、图4-10、图4-11所示),有粘度为η的流体在x轴方向上的压力差dp/dx的作用和上面平板沿x

轴方向以速度v0的带动之下,在流道中只作x轴方向上的层流流动,板的长度L和宽度W都比流道的高度h大得很多,故可忽略流道侧壁影响及入口、出口效应,同时可忽略质量力的影响。因此

(速度不随时间变化),(y、z方向上速度分量为零),则,

(忽略质量力的影响)

假定平板沿y方向无限宽,y方向的边界面对流体运动无影响,故

流体作稳定的层流流动,沿x方向上速度不变化,由连续性方程,,故。

将上述条件用到纳维尔-斯托克斯方程:(下式为纳维尔-斯托克斯方程)

得到:此三式上后两式说明,压力只与x方向有关,故有

又有速度v x只是z的函数,则,则上三式中第一式成为

对此式两次积分,得

。。。。。。。。。。。。。。(4-15)下面分三种情况求解速度:

1.(即无压力差),上板以定速度v0运动,下板不动,如图4-8所示。

边界条件:时,;时,代入式(4-15)得,

则速度v:

2.,两平板均静止,如图4-10所示。

边界条件:时,;时,代入式(4-15)得,

则速度v:

3.,上板以v0运动,如图4-11所示。

求出速度v:

第四节流体在圆管中的紊流运动

实际工程中,流体的流动只有很少一部分是层流流动,绝大部分是紊流流动,下面就来分析紊流流动。

一、紊流的脉动现象及时均化

紊流的流体质点和微团的流动是极不规则的,除了直线流动外,还常作旋涡形的流动,其大小和强度各不相同。

这种变化着的流动常是三维的。

在流场的任意点来观察紊流流动,其流动参数,如速度、压力、温度等都随时间产生不规则的连续改变,而且改变规律也总是在变化着的。

但如果对这些杂乱无章变化着的参数进行概率统计,则可发现它们的平均值往往是不随时间变化,或按一定规律随时间作缓慢的变化,而整个变化在足够长的时间内,始终围绕这一“平均值”而上下摆动。这种围绕某一“平均值”而上下变动的现象,称为脉动现象。

二、速度的时均化原则及时均速度

上面提到,在紊流场中,对这些杂乱无章变化着的参数进行概率统计,则可发现它们的平均值往往是不随时间变化,或按一定规律随时间作缓慢的变化,因此可把这种在时间间隔T内测得的时间平均参数值称为时均值。

对具体的速度而言:

紊流的速度时均化原则:在某一足够长的时间段T内,以平均值的速度 (教材56页图4-12所示)流经一微小有效断面积ΔA的流体体积,应等于在同一时间段内以真实的有脉动的速度v流经同一微小有效断面积的流体体积。

。。。。。。。。。。。。。。。。(4-20)

即。。。。。。。。。。。。。。。。。。(4-21)

这就是在足够长时间段内,某点速度的平均值,称为时间平均速度,简称时均速度。

其几何意义:,是图中横坐标长度为T的真实速度曲线下的面积,可用矩形面积 T来代替。此矩形面积的高度就是时均速度 。

真实速度与时均速度之间的关系为

。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。(4-22)

式中v’是脉动的真实速度与时均速度的差值,称为脉动速度或附加速度。

同样对紊流中的压力,也可写出:

。。。。。。。。。。。。。。。。。。。。。。。。。。(4-23)

可以认为紊流的脉动现象就是紊流特征的表现。

三、水力光滑管和水力粗糙管

输送流体的管道内表面总是凹凸不平的,可用“Δ”表示管壁表面凹凸不平的程度——称为绝对粗糙度。

如层流边界层厚度δ大于Δ(δ>Δ),管壁的凹凸不平处全淹没在层流边界层,Δ对流体紊流流动没有影响,流动阻力主要由流体粘性决定,这种情况类似于流体在完全光滑的管路中运动。这种管道称为水力光滑管。

如δ<Δ,管壁凸出高度暴露在层流边界层之外,当流体经过凸出部分时即形成碰撞,加剧紊动,且在凸出部分后形成旋涡,消耗能量。这种管道称为水力粗糙管。

同一管道(其凸出高度Δ相同)可以为水力光滑管或水力粗糙管,主要取决于流体的流动情况,即紊流强度或雷诺数(影响层流边界层厚度δ)。

雷诺数相同时(层流边界层厚度δ相同),不同管道(凸出高度Δ不同)对流体的阻力不同。

管道在使用过程中,由于锈蚀和流体内固态物的沉淀,其Δ值会发生很大变化。

四、紊流运动中的速度分布

不多讲,自己看看书即可。

五、紊流沿程损失的基本关系式

1.紊流沿程损失基本公式

紊流中沿程损失的影响因素比层流复杂得多。

实验研究表明,管中紊流的沿程压力(实为压强)损失Δp与断面平均流速v、流体密度ρ、管径d、管长l、流体的粘性系数ε以及管壁的绝对粗糙度Δ等有关。即

目前还不能完全从理论上求出这些变量之间的解析表达式,一般采用量纲分析法来分析。量纲分析得出Δp与v的关系式为

。。。。。。。。。。。。。。。。。。。。。。。。。。

(4-29)

或水头损失。。。。。。。。。。。。。。。。。。。。。。。(4-30)

其中紊流沿程阻力系数λ为。。。。。。。。。。。。(4-31)

式(4-29)和式(4-30)即为管中紊流沿程损失的基本公式,其沿程阻力系数λ是两个无量纲数Re和Δ/d的函数,只能由实验确定。在紊流沿程阻力系数λ的经验公式中,一般都含有Re和Δ/d这两个无量纲数。紊流时的λ值,已与层流时的λ=64/Re不同。

在流体力学中,Δ/d称为相对粗糙度。其值越大,表示管壁越粗糙。

2.非圆形管道沿程损失公式

由于圆形截面的特征长度是直径d,非圆形截面的特征长度是水力半径R,而且d=4R,故只需将式(4-30)中的d改为4R便可应用。其式为

。。。。。。。。。。。。。。。。。。。。。。。。(4-32)

第五节沿程阻力系数λ值的确定

一、尼古拉兹实验

沿程阻力系数λ是反映边界粗糙度和流体运动状态对能量损失影响的一个

系数。在紊流运动中,λ是Re及Δ/d(或Δ/r,r为半径)的函数,这三个量间的关系要由实验来确定。其中最具有代表性的是尼古拉兹实验。

1932年~1933年尼古拉兹采用六种不同Δ/r的管子,并使流体通过,以改变Re的办法进行阻力系数λ的测定,得出了λ与Re的对数关系曲线,称为尼古拉兹实验图。

先取长度为l的某种Δ/r的管路,设法使其中流体的流速逐渐由慢变快(Re 数由小变大)通过管路,同时陆续测定其间的水头损失h f,按式(4-30)求出λ与Re的对应关系点,并逐点地描在横坐标为lgRe和纵坐标为lg(100λ)的对数坐标图上,得出此管路的λ与Re的对数关系曲线。

再依次取用其它Δ/r的管路,重复上述实验,便可绘出尼古拉兹实验图。

根据λ的变化规律,这些曲线可分成五个区域:(如教材60页图4-15所示)

Ⅰ区——层流区,雷诺数Re<2320(lgRe<3.36)。λ与Δ/r无关(即λ与管壁粗糙度无关),只与Re有关,且λ=64/Re。沿程损失h f与速度v成

正比。

Ⅱ区——层流变成紊流的过渡区,雷诺数范围是2300<Re<4000(3.36<lgRe <3.6=。该区域内的层流极易转变为紊流,可按紊流区的情况处理。

目前还不能整理出λ与Re关系的数学式。

Ⅲ区——水力光滑管区,4000<Re<59.8(d/Δ)8/7。此时流体已处于紊流状态,但层流边层较厚,大于绝对粗糙度,即δ>Δ,故λ仍与Δ/r无关,

只与Re有关。

在4000<Re<105时,可用布拉休斯公式求λ:

。。。。。。。。。。。。。(4-33)

105<Re<106时,可用尼古拉兹(光滑管)公式:

。。。(4-34)

Ⅳ区——由水力光滑管转变为水力粗糙管的过渡区,。

在这个区间内,各种Δ/r管流的λ与Re及Δ/r都可能有关,可用以

下实验式计算λ:

。。。。。。。。。。。。。。。(4-35)

Ⅴ区——水力粗糙管区,其雷诺数。或称为完全粗糙区或阻力平方

区。此时,Re已足够大,层流边界层厚度远小于管壁粗糙度,对管壁

已完全不起遮盖作用,其凸起部分已深入紊流核心区中,故λ与Re无

关,只与Δ/r有关。此区内用尼古拉兹粗糙管公式计算λ,即

。。。。。。。。。。。。。。。。。。。。。。

(4-36)

由于沿程损失h f与速度v的平方成正比,故水力粗糙区又称阻力平方

区。

工程上还提出了一个适合于整个紊流的经验公式:

。。。。。。。。。。。。。(4-37)

[例4-3]:长度l=1000m,内径d=200mm的普通镀锌钢管,用来输送运动粘度系数ν=0.355cm2/s的重油,已测得其流量Q=38L/s。问其沿程损失为若干?(查手册,Δ=0.39,重油密度为880kg/m3)

解:流体平均流速:v=Q/A=1.2 (m/s)

雷诺数:Re=vd/ν=6817>4000 且59.8(d/Δ)8/7=32243 可知流动状态处于尼古拉兹实验图的Ⅲ区,为水力光滑管。

采用式(4-33)得λ=0.0348

故沿程水头损失:h f=(λl v2)/(2dg)=12.78 (油柱)

沿程压力损失:Δp=γh f=11.04×104Pa

第六节局部阻力

实际的流体管道,除了在各直管段产生沿程阻力外,流体流过各个接头、阀门等局部障碍时都要产生一定的流动损失,即局部损失。

产生局部阻力的原因很复杂,所以对于大多数情况下的局部阻力只能通过实验来确定。

一、断面突然扩大的局部损失

设有突然扩大的管道截面如图4-16所示。平均速度的流线在小管中是平直的,经过一个扩大段以后,到2-2截面上流线又恢复到平直状态。扩大段的沿程摩擦阻力可忽略不计。由截面1-1与2-2之间液流的伯努利方程(取动能修正系数α1=α2≈1),可得

因此,压力损失Δp:

若以水头损失表示,则有。。。。。。。。。。

(4-38)

这里h f为局部水头损失。

由动量方程(取动量修正系数β1=β2≈1)可得

同时又有Q=A2v2,由实验测得p0≈p1,代入得

。。。。。。。。。。。。。。(4-39)

联立式(4-38)和式(4-39)后求解得

根据连续性方程,Q=v1A1=v2A2,上式可改写为

或。。。。(4-40)

式中δ1或δ2称为局部阻力系数,其值随比值A1/A2不同而不同(见教材63页表4-1)。

二、其它类型的局部损失

管道中的各种局部阻力系数可从专门的手册中查到。

在流体力学中常以管径突然扩大的水头损失计算公式作为通用的计算公式,然后根据具体情况乘以不同的局部阻力系数,即

。。。。。。。。。。。。。。。。。。。。。。。。。。(

第四章 层流流动与湍流流动

第四章层流流动及湍流流动 由于实际流体有粘性,在流动时呈现两种不同的流动形态:层流流动及湍流流动,并在流动过程中产生阻力。 对可压缩流体,阻力使流体受压缩。 对不可压缩流体,阻力使流体的一部分机械能转化为热能散失,这个转变过程不可逆。散失的热量称为能量损失。 单位质量(或单位体积)流体的能量损失,称为水头损失(或压力损失),并以h w(或Δp)表示。 本章首先讨论流体的流动状态,再对粘性流体在两种流动状态下的能量损失进行分析。 第一节流动状态及阻力分类 一、流体的流动状态 1.雷诺试验:1882年雷诺作了如教材45页图4-1所示的流体流动形态试验。 试验装置:在圆管的中心用细玻璃管向圆管的水流中引入红色液体的细流。 试验情况: (1)当水的流速较小时(图4-1a),红色液体细流不与周围水混和,自己保持直线形状与水一起向前流动。 (2)如把水的流速逐渐增大,至一定程度时,红色细流便开始上下振荡,呈波浪形弯曲(如图4-1b)。 (3)当再把水流速度增大,红色细流的振荡加剧,至水的流速增大至某一速度后,圆管中红色细流消失,红色液体混入整个圆管的水中(如图4-1c)。 试验的三种不同状况说明: (1)对(图4-1a)所示,表明水的质点只有向前流动的位移,没有垂直水流方向的移动,即各层水的质点不相互混和,都是平行地移动的,这种流动称为层流; (2)对(图4-1b)所示,说明流动的水质点已开始有垂直水流方向的位移,离开圆管轴线较远的部位水的质点仍保持平行流动的状态; (3)对(图4-1c)所示,说明流动中水的质点运动已变得杂乱无章,各层水相互干扰,这种流动形态称为紊流或湍流。

2.雷诺数: 流体之所以出现不同的流动形态,主要由流体质点流动时其本身所具有的惯性力和所受的粘性力的数值比例决定。 惯性力相对较大时,流体趋向于作紊流式的流动; 粘性力则起限制流体质点作纵向脉动的作用,遏止紊流的出现。 雷诺根据此原理提出了一个判定流体流动状态的无量纲参数——雷诺数(Re): 对在圆管中流动的流体而言,雷诺数的表现形式为 v:圆管内流体的平均流速(m/s);ε:动力粘度(Pa·s)。 D:圆管直径(m);ν:运动粘度(m2/s)。 实验确定,流体开始由层流形态向紊流转变时,称为下临界雷诺数, Re=2100~2320;当Re>10000~13800时流体的流动形态为稳定的紊流,称上临界雷诺数;当Re=(2100~2320)~(10000~13800),流动形态为过渡状态,可以是紊流或层流。临界雷诺数随体系的不同而变化,即使同一体系,它也会随其外部因素(如圆管内表面粗糙度和流体中的起始扰动程度等)的不同而改变,所以临界雷诺数为一个范围数。 对于非圆管中的流体流动,雷诺数的表现形式为 R:水力半径(m);A:流体的有效截面积(m2); x:截面上与流体接触的固体周长(湿周)(m)。 (但水力半径R不是圆截面的几何半径r,如充满流体圆管的水力半径为: ) 这里,取下临界雷诺数为500。对工程中常见的明渠水流,下临界雷诺数常取300。 当流体绕过固体(如绕过球体)流动时,出现层状绕流(物体后无旋涡)和紊状绕流(物体后形成旋涡)的现象,此时雷诺数用下式计算:

第三章,湍流模型

第三章,湍流模型 第一节, 前言 湍流流动模型很多,但大致可以归纳为以下三类: 第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。即: 2 1 21 x u u u t ??=-μρ 3-1 推广到三维问题,若用笛卡儿张量表示,即有: ij i j j i t j i k x u x u u u δρμρ32 -??? ? ????+ ??=''- 3-2 模型的任务就是给出计算湍流粘性系数t μ的方法。根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。 第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。 第三类是大涡模拟。前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。 实际求解中,选用什么模型要根据具体问题的特点来决定。选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。 FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。 湍流模型种类示意图 第二节,平均量输运方程 包含更多 物理机理 每次迭代 计算量增加 提的模型选 RANS-based models

雷诺平均就是把Navier-Stokes 方程中的瞬时变量分解成平均量和脉动量两部分。对于速度,有: i i i u u u '+= 3-3 其中,i u 和i u '分别是平均速度和脉动速度(i=1,2,3) 类似地,对于压力等其它标量,我们也有: φφφ'+= 3-4 其中,φ表示标量,如压力、能量、组分浓度等。 把上面的表达式代入瞬时的连续与动量方程,并取平均(去掉平均速度i u 上的横线),我们可以把连续与动量方程写成如下的笛卡儿坐标系下的张量形式: 0)(=?? +??i i u x t ρρ 3-5 () j i j l l ij i j j i j i i u u x x u x u x u x x p Dt Du -?? +???????????? ????-??+????+??-=ρδμρ32 3-6 上面两个方程称为雷诺平均的Navier-Stokes (RANS )方程。他们和瞬时Navier-Stokes 方程有相同的形式,只是速度或其它求解变量变成了时间平均量。额外多出来的项j i u u ''-ρ是雷诺应力,表示湍流的影响。如果要求解该方程,必须模拟该项以封闭方程。 如果密度是变化的流动过程如燃烧问题,我们可以用法夫雷(Favre )平均。这样才可以求解有密度变化的流动问题。法夫雷平均就是出了压力和密度本身以外,所有变量都用密度加权平均。变量的密度加权平均定义为: ρρ/~ Φ=Φ 3-7 符号~表示密度加权平均;对应于密度加权平均值的脉动值用Φ''表示,即有: Φ''+Φ=Φ~ 。很显然,这种脉动值的简单平均值不为零,但它的密度加权平均值等于零,即: 0≠Φ'', 0=Φ''ρ Boussinesq 近似与雷诺应力输运模型 为了封闭方程,必须对额外项雷诺应力j i u u -ρ进行模拟。一个通常的方法是应用Boussinesq 假设,认为雷诺应力与平均速度梯度成正比,即: ij i i t i j j i t j i x u k x u x u u u δμρμρ)(32 ??+-??? ? ????+??=''- 3-8 Boussinesq 假设被用于Spalart-Allmaras 单方程模型和ε-k 双方程模型。Boussinesq 近似 的好处是与求解湍流粘性系数有关的计算时间比较少,例如在Spalart-Allmaras 单方程模型中,只多求解一个表示湍流粘性的输运方程;在ε-k 双方程模型中,只需多求解湍动能k 和耗散率ε两个方程,湍流粘性系数用湍动能k 和耗散率ε的函数。Boussinesq 假设的缺点是认为湍流粘性系数t μ是各向同性标量,对一些复杂流动该条件并不是严格成立,所以具有其应用限制性。

湍流流动的近壁处理详解

壁面对湍流有明显影响。在很靠近壁面的地方,粘性阻尼减少了切向速度脉动,壁面也阻止了法向的速度脉动。离开壁面稍微远点的地方,由于平均速度梯度的增加,湍动能产生迅速变大,因而湍流增强。因此近壁的处理明显影响数值模拟的结果,因为壁面是涡量和湍流的主要来源。 实验研究表明,近壁区域可以分为三层,最近壁面的地方被称为粘性底层,流动是层流状态,分子粘性对于动量、热量和质量输运起到决定作用。外区域成为完全湍流层,湍流起决定作用。在完全湍流与层流底层之间底区域为混合区域(Blending region),该区域内分子粘性与湍流都起着相当的作用。近壁区域划分见图4-1。 图4-1,边界层结构 第一节,壁面函数与近壁模型 近壁处理方法有两类:第一类是不求解层流底层和混合区,采用半经验公式(壁面函数)来求解层流底层与完全湍流之间的区域。采用壁面函数的方法可以避免改进模型就可以直接模拟壁面存在对湍流的影响。第二类是改进湍流模型,粘性影响的近壁区域,包括层流底层都可以求解。 对于多数高雷诺数流动问题,采用壁面函数的方法可以节约计算资源。这是因为在近壁区域,求解的变量变化梯度较大,改进模型的方法计算量比较大。由于可以减少计算量并具有一定的精度,壁面函数得到了比较多的应用。对于许多的工程实际流动问题,采用壁面函数处理近壁区域是很好的选择。 如果我们研究的问题是低雷诺数的流动问题,那么采用壁面函数方法处理近壁区域就不合适了,而且壁面函数处理的前提假设条件也不满足。这就需要一个合适的模型,可以一直求解到壁面。FLUENT提供了壁面函数和近壁模型两种方法,以便供用户根据自己的计算问题选择。

4.1.1壁面函数 FLUENT 提供的壁面函数包括:1,标准壁面函数;2,非平衡壁面函数两类。标准壁面函数是采用Launder and Spalding [L93]的近壁处理方法。该方法在很多工程实际流动中有较好的模拟效果。 4.1.1.1 标准壁面函数 根据平均速度壁面法则,有: **1 ln()U Ey k = 4-1 其中,1/41/2 * /p p w U C k U μτρ ≡ ,1/41/2 * p p C k y y μρμ≡,并且 k =0.42,是V on Karman 常数;E =9.81,是实验常数;p U 是P 点的流体平均速度;p k 是P 点的湍动能;p y 是P 点到壁面的距离;μ是流体的动力粘性系数。 通常,在*30~60y >区域,平均速度满足对数率分布。在FLUENT 程序中,这一条件改变为*11.225y >。 当网格出来*11.225y <的区域时候,FLUENT 中采用层流应力应变关系,即:**U y =。这里需要指出的是FLUENT 中采用针对平均速度和温度的壁面法则中,采用了*y ,而不是y +(/u y τρμ≡)。对于平衡湍流边界层流动问题,这两个量几乎相等。 根据雷诺相似,我们可以根据平均速度的对数分布,同样给出平均温度的类似分布。FLUENT 提供的平均温度壁面法则有两种:1,导热占据主要地位的热导子层的线性率分布;2,湍流影响超过导热影响的湍流区域的对数分布。 温度边界层中的热导子层厚度与动量边界层中的层流底层厚度通常都不相同,并且随流体介质种类变化而变化。例如,高普朗特数流体(油)的热导子层厚度比其粘性底层厚度小很多;对于低普朗特数的流体(液态金属)相反,热导子层厚度比粘性底层厚度大很多。 1/41/2 * ()w p p P T T c C k T q μρ-≡ '' 4-2 =()1/41/2 *2*1/41/222 1Pr Pr 21Pr ln()1Pr Pr Pr 2p p t p t p t c C k y U q Ey P k C k U U q μμρρ?+?''? ????++???? ??????+-??''?? ** **()()T T y y y y <> 4-3

雷诺试验 层流和湍流

§1.4.2流动类型与雷诺准数 现在开始介绍流体流动的内部结构。流动的内部结构是流体流动规律的一个重要方面。因为化工生产中的许多过程都和流动的内部结构密切联系。例如实际流体流动时的阻力就与流动结构紧密相关。其它许多过程,如流体的热量传递和质量传递也都如此。流动的内部结构是个极为复杂的问题,涉及面广。以下紧接着的内容只作简单的介绍,因而在许多方面只能限于定性的阐述。 1、流动类型——层流和湍流 1883年著名的雷诺实验揭示出流动的两种截然不同的型态。 雷诺实验装置如图所示: 在水箱内装有溢流装置,以维持水位稳定,水 箱的底部安装一个带喇叭型进口的直径相同的 玻璃管,管出口处装有一个阀门用来调节流量, 水箱上方安装有内有颜料的小瓶,有色液体可 经过细管子注入玻璃管内。在水流经过玻璃管 的过程中,同时把有色液体送到玻璃管以后的 管中心位置上。 雷诺实验观察到: ⑴、水流速度不大时,有色细流成一直线,与水不混合。此现象表明:玻璃管内的水的质点是沿着与管轴平行的方向作直线运动。即流体分层流动,层次分明,彼此互不混杂,掺和(唯其如此,才能使有色液体保持直线)这种流型叫层流或滞流。 ⑵、水流速度增大到某临界值时,有色细流开始抖动,弯曲,继而断裂,细流消失,与水完全混合在一起,整根玻璃管呈均匀颜色,此现象表明,玻璃管内的水的质点除了沿着管道向前运动外,各质点还作不规则的,杂乱的运动,且彼此间相互碰撞,相互混合,质点速度的大小和方向随时发生变化,这种流型叫湍流或紊流。 2、流型的判据—雷诺准数 对管流而言,影响流型的因素有,流道的几何尺寸(管径d)流动的平均速度u 和流体的物理性质(密度ρ和粘度μ)。 雷诺发现,可以将这些影响因素综合成一个无因次数群duρ/μ,作为流型的判据。此数群称为雷诺(Reynolds)数,以R e表示,即:

湍流与层流_湍流研究概述

第一篇 大气的组成与物理特性 第一章 第二章 第三章 第四章 第五章 大气的气体成份 大气中的粒子群 大气的运动、能量与构造 大气的光学特性 大气的电学特性
1

第二篇 大气湍流
粘性流体的两种形态: 层流和湍流。 层流是流体运动中较简单的状态, 普遍的却是湍流。
2

湍流研究的意义
湍流的研究与国防建设和国民经济中 的航空、船运、环境保护、气象、化工、 冶金、水利、医学等学科密切相关,如果 能掌握它的运动规律,对它进行合理的应 用和有效的控制,那么对基础研究与实际 应用将有重大的意义。
3

湍流研究的成果
人们对湍流结构、湍流边界层、湍流 剪切流、湍流的传热传质、湍流扩散、湍 流统计模型、大气湍流、晴空湍流、等离 子湍流、湍流测量等问题进行了广泛的研 究,并取得了丰硕的成果。
4

本节的内容
湍流的一般定义和描述; 湍流与层流的区别; 湍流理论发展的历史; 湍流理论简介; 湍流的特点; 大气湍流的复杂性; 湍流研究技术的发展。
5

湍流的一般定义和描述
1. 湍流是随机的(Reynolds,Taylor,Von Karman ,Hinze等),又具有拟序结 构。 2. 流体的湍流运动是由各种大小和涡量 不同的涡旋叠加而成的,其中最大涡 尺度与流动环境密切相关,最小涡尺 度则由粘性确定;流体在运动过程中, 涡旋不断破碎、合并,流体质点轨迹 不断变化。
6

近壁面函数的简单理解

一个成功的湍流计算离不开好的网格。在许多的湍流中,空间的有效粘性系数不同,是平均动量和其它标量输运的主要决定因素。因此,如果需要有足够的精度,这就需要保证湍流量要比较精确求解。由于湍流与平均流动有较强的相互作用,因此求解湍流问题比求解层流时候更依赖网格。对于近壁网格而言,不同的近壁处理对网格要求也不同。下面对常见的几种近壁处理的网格要求做个说明。采用壁面函数时候的近壁网格:第一网格到壁面距离要在对数区内。对数区的y+ >30~60。FLUENT在y+ <时候采用层流(线性)准则,因此网格不必要太密,因为壁面函数在粘性底层更本不起作用。对数区与完全湍流的交界点随压力梯度和雷诺数变化。如果雷诺数增加,该点远离壁面。但在边界层里,必须有几个网格点。壁面函数处理时网格划分采用双层模型时近壁网格要求当采用双层模型时,网格衡量参数是y+ ,并非y* 。最理想的网格划分是需要第一网格在y+ =1位置。如果稍微大点,比如=4~5,只要位于粘性底层内,都是可以接收的。理想的网格划分需要在粘性影响的区域内(Rey<200 )至少有十个网格,以便可以计算粘性区域内的平均速度和湍流量。采用双层区模型时网格划分采用Spalart-Allmaras 模型时的近壁网格要求该模型属于低雷诺数模型。这就要求网格能满足求解粘性影响区域内的流动,引入了阻尼函数,用以削弱粘性底层的湍流粘性影响。因此,理想的近壁网格要求和采用双层模型时候的网格要求一致。采用大涡模拟的近壁网格要求对于大涡模拟,壁面条件采用了壁面法则,因此对近壁网格划分没有太多限制。但是,如果要得到比较好的结果,最好网格要细,最近网格距离壁面在 y+=1的量级上。 for Hexa mesh, ==>Y+是第一层高度一半和 viscous length scale 的比值 for Tetra mesh==>Y+是第一层高度1/3和 viscous length scale 的比值 y+就是Yplus,它跟你在湍流模型里采用的近壁面函数选取有关,若Yplus为个位数,选增强型壁面函数,若在两位数以上,选标准或非平衡的壁面函数。 y+的意思是底层网格必须划分在对数率成立的区域内。 一般应使y+的值为15~300,但是y+是模拟完成后才知道的。 而且同一个模型不同地方不同流速y+不一样,所以不是很精确。如果模拟传热应注意y+对结果的影响。

第三章_湍流模型

第三章 湍流模型 第一节 前言 湍流流动模型很多,但大致可以归纳为以下三类: 第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。即: 2 1 21 x u u u t ??=''-μρ 3-1 推广到三维问题,若用笛卡儿张量表示,即有: ij i j j i t j i k x u x u u u δρμρ32 -??? ? ????+ ??=''- 3-2 模型的任务就是给出计算湍流粘性系数t μ的方法。根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。 第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。 第三类是大涡模拟。前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。 实际求解中,选用什么模型要根据具体问题的特点来决定。选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。 FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。 湍流模型种类示意图 Direct Numerical Simulation 包含更多 物理机理 每次迭代 计算量增加 提的模型选 RANS-based models

层流和紊流

层流和紊流 cengliu he wenliu 层流和紊流 laminar flow and turbulent flow 实际液体由于存在粘滞性而具有的两种流动形态。液体质点作有条不紊的运动,彼此不相混掺的形态称为层流。液体质点作不规则运动、互相混掺、轨迹曲折混乱的形态叫做紊流。它们传递动量、热量和质量的方式不同:层流通过分子间相互作用,紊流主要通过质点间的混掺。紊流的传递速率远大于层流。水利工程所涉及的流动,一般为紊流。 雷诺数表征液流惯性力与粘滞力相对大小,可用以判别流动形态的无因次数,记作。雷诺数的定义式为: [19-01]式中、、分别为液体的密度动力粘滞系数、运动粘滞系数;、为流动的特征速度和特征长度。雷诺数小时,粘性效应在整个流场中起主要作用,流动为层流。雷诺数大时,紊动混掺起决定作用,流动为紊流。对于同样的液流装置,由层流转换为紊流时的雷诺数恒大于紊流向层流转换的雷诺数。前者称上临界雷诺数,其值随试验条件而变,很不稳定;后者称下临界雷诺数,其值比较稳定,对于一般条件下的管流(圆管直径为特征长度,断面平均流速为特征速度),约为2300。 层流只存在粘滞切应力。在简单的剪切流中,粘滞切应力: [19-02]式中[19-03]为剪切变形速度,亦即速度沿垂直方向的变化率;为动力粘滞系数,只和液体种类及温度有关的常数。此式表达了著名的牛顿内摩擦定律。层流中摩擦阻力及沿程水头损失均与流速的一次方成正比,流速分布呈抛物线型。圆管层流流速分布如图1[ 层流和紊流流速分布比较] 所示。 紊流又称湍流。液体运动呈随机性,即速度、压强等均随时间、空间作不规则的脉动,是紊流的基本特征(图2[紊流流

层流与紊流

紊流是流体力学中的一个术语,是指流体从一种稳定状态向另一种稳定状态变化过程中的一种无序状态。具体是指流体流动时各质点间的惯性力占主要地位,流体各质点不规则地流动。 紊流一般相对“层流”而言。一般用雷诺数判定。雷诺数小,意味着流体流动时各质点间的粘性力占主要地位,流体各质点平行于管路内壁有规则地流动,呈层流流动状态。雷诺数大,意味着惯性力占主要地位,流体呈紊流流动状态,一般管道雷诺数Re<2000为层流状态,Re>4000为紊流状态,Re=2000~4000为过渡状态。在不同的流动状态下,流体的运动规律.流速的分布等都是不同的,因而管道内流体的平均流速与最大流速的比值也是不同的。因此雷诺数的大小决定了粘性流体的流动特性。 流体在管内流动时,其质点沿着与管轴平行的方向作平滑直线运动。此种流动称为层流或滞流,亦有称为直线流动的。流体的流速在管中心处最大,其近壁处最小。管内流体的平均流速与最大流速之比等于0.5,根据雷诺实验,当雷诺准数Re<2100时,流体的流动状态为层流。 粘性流体的层状运动。在这种流动中,流体微团的轨迹没有明显的不规则脉动。相邻流体层间只有分子热运动造成的动量交换。常见的层流有毛细管或多孔介质中的流动、轴承润滑膜中的流动、绕流物体表面边界层中的流动等。层流只出现在雷诺数Re(Re=ρUL/μ)较小的情况中,即流体密度ρ、特征速度U和物体特征长度L都很小,或流体粘度μ很大的情况中。当Re超过某一临界雷诺数Recr时,层流因受扰动开始向不规则的湍流过渡,同时运动阻力急剧增大。临界雷诺数主要取决于流动形式。对于圆管,Recr≈2000,这里特征速度是圆管横截面上的平均速度,特征长度是圆管内径。层流远比湍流简单,其流动方程大多有精确解、近似解和数值解。层流一般比湍流的摩擦阻力小,因而在飞行器或船舶设计中,应尽量使边界层流动保持层流状态。 也就是说是层流还是紊流与不由速度决定,而由雷诺数决定 层流:沿程损失与流速的1次方成正比; 紊流光滑区:沿程损失与断面平均流速的1.75次方成正比; 紊流粗糙区;沿程损失与断面平均流速的2次方成正比。(

湍流的产生和解释

湍流的产生和解释 湍流是如何产生的有哪些模型可以预测和解释湍流现象 关于第一个问题,可以先从流体的流动讲起。假设有这样一根管道,我在一头加上一个水龙头,然后通过调节水龙头的大小来控制水的速度。一开始,水龙头开度比较小,这时候是层流(如下图)。 细致地调节细管中红水的流速,当它与主流管内水流速度相近时,可以看到清水中有稳定而清晰的红色水平流线,表明这时主流管中各水层互不干扰地流动。逐渐加大水龙头的开度,层流就慢慢的变成湍流了。这时流线不再清楚可辨,流场中有许多小漩涡,层流被破坏,相邻流层间不但有滑动,还有混合。这时的流体作不规则运动,有垂直于流管轴线方向的分速度产生(如下图)

所以我们现在可以说,层流与湍流的最大区别就是流速了(单单对于上例来说)。流速较小的时候,流动比较规则,分层现象比较明显。流速大了之后就开始乱了,各种漩涡,滑动。 现在来看看究竟怎么区别层流和湍流,或者说究竟与哪些因素有关。这里我们先引入雷诺数的概念。雷诺数(Reynolds number)一种可用来表征流体流动情况的无量纲数,以Re 表示,Re=ρvd/ η,其中v、ρ、η分别为流体的流速、密度与黏性系数,d 为一特征长度。黏性就是指当流体运动时,层与层之间有阻碍相对运动的内摩擦力。举个例子,假如有一群人手拉手的往前跑,大家开始跑得都很慢,突然有一个人不想跟他们一起玩这个脑残的游戏了,所以任性的加快了速度。如果手拉的不紧,他就很容易逃脱—这就是黏性比较小,相互之间摩擦力较小;如果手拉的越紧,他就越不容易逃脱—这就是黏性比较大,相互之间摩擦力较大。另一方面,要是不容易逃脱,他只要加快速度,终究是可以逃脱的。 这个例子或许不那么恰当,但是可以说明雷诺数的概念了。雷诺数其实是一个无量纲数,表示作用于流体微团的惯性力与粘性力之比。当雷诺数较小时,黏滞力对流场的影响大于惯性力,流场中流速的扰动会因黏滞力而衰减,流体流动稳定,为层流;反之,若雷诺数较大时,惯性力对流场的影响大于黏滞力,流体流动较不稳定,流速的微小变化容易发展、增强,形成紊乱、不规则的湍流流场。这里贴一张从层流发展为湍流的图(中间有一段过渡段,这也很容易理解,数值上的绝对反映到实际情况下,基本都有一段过渡段)。 再简单的概况一下,湍流就是当流体的惯性力影响大于黏滞力时,流动有 较规则分层明显的层流变为不规则的运动的情况。 对于第二个问题,有哪些模型可以预测和解释湍流现象 现在的模型大多都是近似的模型。如果硬要说说预测和解释的话,应该是连续方程和N-S方程,这两个方程基本上可以描述世界上所有的流动现象。但是由于各种原因(理论上,这个偏微分方程的求解是世界性的难题,计算流体力学方面,直接求解对计算机的

第四章 湍流流动的近壁处理

第四章,湍流流动的近壁处理 壁面对湍流有明显影响。在很靠近壁面的地方,粘性阻尼减少了切向速度脉动,壁面也阻止了法向的速度脉动。离开壁面稍微远点的地方,由于平均速度梯度的增加,湍动能产生迅速变大,因而湍流增强。因此近壁的处理明显影响数值模拟的结果,因为壁面是涡量和湍流的主要来源。 实验研究表明,近壁区域可以分为三层,最近壁面的地方被称为粘性底层,流动是层流状态,分子粘性对于动量、热量和质量输运起到决定作用。外区域成为完全湍流层,湍流起决定作用。在完全湍流与层流底层之间底区域为混合区域(Blending region),该区域内分子粘性与湍流都起着相当的作用。近壁区域划分见图4-1。 图4-1,边界层结构 第一节,壁面函数与近壁模型 近壁处理方法有两类:第一类是不求解层流底层和混合区,采用半经验公式(壁面函数)来求解层流底层与完全湍流之间的区域。采用壁面函数的方法可以避免改进模型就可以直接模拟壁面存在对湍流的影响。第二类是改进湍流模型,粘性影响的近壁区域,包括层流底层都可以求解。 对于多数高雷诺数流动问题,采用壁面函数的方法可以节约计算资源。这是因为在近壁区域,求解的变量变化梯度较大,改进模型的方法计算量比较大。由于可以减少计算量并具有一定的精度,壁面函数得到了比较多的应用。对于许多的工程实际流动问题,采用壁面函数处理近壁区域是很好的选择。

如果我们研究的问题是低雷诺数的流动问题,那么采用壁面函数方法处理近壁区域就不合适了,而且壁面函数处理的前提假设条件也不满足。这就需要一个合适的模型,可以一直求解到壁面。FLUENT 提供了壁面函数和近壁模型两种方法,以便供用户根据自己的计算问题选择。 4.1.1壁面函数 FLUENT 提供的壁面函数包括:1,标准壁面函数;2,非平衡壁面函数两类。标准壁面函数是采用Launder and Spalding [L93]的近壁处理方法。该方法在很多工程实际流动中有较好的模拟效果。 4.1.1.1 标准壁面函数 根据平均速度壁面法则,有: **1ln()U Ey k = 4-1 其中,1/41/2*/p p w U C k U μτρ≡,1/41/2* p p C k y y μρμ≡,并且 k =0.42,是V on Karman 常数;E =9.81,是实验常数;p U 是P 点的流体平均速度;p k 是P 点的湍动能;p y 是P 点到壁面的距离;μ是流体的动力粘性系数。 通常,在* 30~60y >区域,平均速度满足对数率分布。在FLUENT 程序中,这一条件改变为*11.225y >。 当网格出来*11.225y <的区域时候,FLUENT 中采用层流应力应变关系,即:**U y =。这里需要指出的是FLUENT 中采用针对平均速度和温度的壁面法则中,采用了*y ,而不是y +(/u y τρμ≡)。对于平衡湍流边界层流动问题,这两个量几乎相等。 根据雷诺相似,我们可以根据平均速度的对数分布,同样给出平均温度的类似分布。FLUENT 提供的平均温度壁面法则有两种:1,导热占据主要地位的热导子层的线性率分布;2,湍流影响超过导热影响的湍流区域的对数分布。 温度边界层中的热导子层厚度与动量边界层中的层流底层厚度通常都不相同,并且随流体介质种类变化而变化。例如,高普朗特数流体(油)的热导子层厚度比其粘性底层厚度小很多;对于低普朗特数的流体(液态金属)相反,热导子层厚度比粘性底层厚度大很多。 1/41/2* ()w p p P T T c C k T q μρ-≡''& 4-2

管内湍流流动速度分布和温度分布的推导

管内湍流流动速度分布和温度分布的推导 一、流体在圆管内的速度分布 流体在圆管内的速度分布是指流体流动时管截面上质点的速度随半径的变化关系。无论是层流或是湍流,管壁处质点速度均为零,越靠近管中心流速越大,到管中心处速度为最大。但两种流型的速度分布却不相同。由于速度场与雷洛数有十分密切的关系所以在此我们先介绍下流型判据——雷洛数: 1、流型判据——雷诺准数 流体的流动类型可用雷诺数Re 判断。 μρu d =R e (1-28) Re 准数是一个无因次的数群。 大量的实验结果表明,流体在直管内流动时, (1) 当Re ≤2000时,流动为层流,此区称为层流区; (2) 当Re ≥4000时,一般出现湍流,此区称为湍流区; (3) 当2000< Re <4000 时,流动可能是层流,也可能是湍流,与外界干扰有关,该区称为不稳定的过渡区。 雷诺数的物理意义 Re 反映了流体流动中惯性力与粘性力的对比关系,标志流体流动的湍动程度。其值愈大,流体的湍动愈剧烈,内摩擦力也愈大。 下面我们重点推到湍流时管内的速度场: 2、湍流时的速度分布 湍流时流体质点的运动状况较层流要复杂得多,截面上某一固定点的流体质点在沿管轴向前运动的同时,还有径向上的运动,使速度的大小与方向都随时变化。湍流的基本特征是出现了径向脉动速度,使得动量传递较之层流大得多。此时剪应力不服从牛顿粘性定律表示,但可写成相仿的形式: dy u d e . )(+=μτ (1) 式中e 称为湍流粘度,单位与μ相同。但二者本质上不同:粘度μ是流体的物性,反映了分子运动造成的动量传递;而湍流粘度e 不再是流体的物性,它反映的是质点的脉动所造成的动量传递,与流体的流动状况密切相关。 湍流时的速度分布目前尚不能利用理论推导获得,而是通过实验测定,结果如图1所示,

FLUENT常用的湍流模型及壁面函数处理

FLUENT常用的湍流模型及壁面函数处理 本文内容摘自《精通CFD工程仿真与案例实战》。实际上也是帮助文档的翻译,英文好的可直接参阅帮助文档。 FLUENT中的湍流模型很多,有单方程模型,双方程模型,雷诺应力模型,转捩模型等等。这里只针对最常用的模型。 1、湍流模型描述 2、湍流模型的选择

有两种方法处理近壁面区域。一种方法,不求解粘性影响内部区域(粘性子层及过渡层),使用一种称之为“wall function”的半经验方法去计算壁面与充分发展湍流区域之间的粘性影响区域。采用壁面函数法,省去了为壁面的存在而修改湍流模型。 另一种方法,修改湍流模型以使其能够求解近壁粘性影响区域,包括粘性子层。此处使用的方法即近壁模型。(近壁模型不需要使用壁面函数,如一些低雷诺数模型,K-W湍流模型是一种典型的近壁湍流模型)。

所有壁面函数(除scalable壁面函数外)的最主要缺点在于:沿壁面法向细化网格时,会导致使数值结果恶化。当y+小于15时,将会在壁面剪切力及热传递方面逐渐导致产生无界错误。然而这是若干年前的工业标准,如今ANSYS FLUENT采取了措施提供了更高级的壁面格式,以允许网格细化而不产生结果恶化。这些y+无关的格式是默认的基于w方程的湍流模型。对于基于epsilon方程的模型,增强壁面函数(EWT)提供了相同的功能。这一选项同样是SA模型所默认的,该选项允许用户使其模型与近壁面y+求解无关。(实际上是这样的:K-W方程是低雷诺数模型,采用网格求解的方式计算近壁面粘性区域,所以加密网格降低y+值不会导致结果恶化。k-e方程是高雷诺数模型,其要求第一层网格位于湍流充分发展区域,而此时若加密网格导致第一层网格处于粘性子层内,则会造成计算结果恶化。这时候可以使用增强壁面函数以避免这类问题。SA模型默认使用增强壁面函数)。 只有当所有的边界层求解都达到要求了才可能获得高质量的壁面边界层数值计算结果。这一要求比单纯的几个Y+值达到要求更重要。覆盖边界层的最小网格数量在10层左右,最好能达到20层。还有一点需要注意的是,提高边界层求解常常可以取得稳健的数值计算结果,因为只需要细化壁面法向方向网格。与增加精度向伴随的是计算开销的增加。对于非结构网格,建议划分10~20层棱柱层网格以提高壁面边界层的预测精度。棱柱层厚度应当被设计为保证有15层或更多网格节点。这可以在获得计算结果后,通过查看边界层中心的最大湍流粘度,该值提供了边界层的厚度(最大值的两倍位置即边界层的边)。棱柱层大于边界层厚度是必要的,否则棱柱层会限制边界层的增长。 一些建议:(1)对于epsilon方程,使用enhanced壁面函数。(2)若壁面函数有助于epsilon方程,则可以使用scalable壁面函数。(3)对于基于w 方程的模型,使用默认的增强壁面函数。(4)SA模型,使用增强壁面处理。 以上内容翻译自Fluent理论文档P121。 1、标准壁面函数 ANSYS FLUENT中的标准壁面函数是基于launder与spalding的工作,在工业上有广泛的应用。

第五章FLTRAN层流和湍流分析算例

第五章FLOTRAN层流和湍流分析算例 问题描述 该算例是一个二维的导流管分析,先分析一个雷诺数为400的层流情况,然后改变流场参数再重新分析,最后再扩大分析区域来计算其湍流情况。该算例所用单位制为国际单位制。分析区域图示如下: 分析方法及假定 用FLUID141单元来作二维分析,本算例作了如下三个分析: ·雷诺数为400的假想流的层流分析 ·降低流体粘性后(即增大雷诺数)的假想流的层流分析 ·雷诺数约为260000的空气流的湍流分析 分析时假定进口速度均匀,并且垂直于进口流场方向上的流体速度为零。在所有壁面上施加无滑移边界条件(即所有速度分量都为零);假定流体不可压缩,并且其性质为恒值,在这种情况下,压力就可只考虑相对值,因此在出口处施加的压力边界条件是相对压力为零。 第一次分析时,流场为层流,着可以通过雷诺数来判定,其公式如下: 第二次分析时,将流体粘性降低到原来的十分之一(雷诺数相应增大)后再在第一次分析的基础上重启动分析 对于内流来说,当雷诺数达到2000至3000时,流场即由层流过渡到湍流,故第三次分析(空气流,雷诺数约为260000)时,流场是湍流。对于湍流分析,上图所示的导流管的后端应加长,以使流场能得到充分发展。此时,应在该次求解之前改变ANSYS的工作名以防止程序在上一次分析结果的基础上作重启动分析。 几何尺寸及流体性质 进口段长度 4 m 进口段高度 1 m 过渡段长度 2 m 出口段高度 2.5 m 层流分析时出口段长度 6 m 湍流分析时出口段长度12 m 假设流体密度 1 Kg/m3 假设流体粘性第一次分析0.01Kg/m-s;第二次分析0.001 Kg/m-s

第四章层流和紊流及水流阻力和水头损失

第四章 层流和紊流及水流阻力和水头损失 1、紊流光滑区的沿程水头损失系数λ仅与雷诺数有关,而与相对粗糙度无关。 () 2、圆管紊流的动能校正系数大于层流的动能校正系数。() 3、紊流中存在各种大小不同的涡体。() 4、紊流运动要素随时间不断地变化,所以紊流不能按恒定流来处理。() 5、谢才公式既适用于有压流,也适用于无压流。() 6、' 'y u x u ρτ -=只能代表 X 方向的紊流时均附加切应力。() 7、临界雷诺数随管径增大而增大。() 8、在紊流粗糙区中,对同一材料的管道,管径越小,则沿程水头损失系数越大。() 9、圆管中运动液流的下临界雷诺数与液体的种类及管径有关。() 10、管道突然扩大的局部水头损失系数ζ的公式是在没有任何假设的情况下导出的。() 11、液体的粘性是引起液流水头损失的根源。() 11、不论是均匀层流或均匀紊流,其过水断面上的切应力都是按线性规律分布的。() 12、公式gRJ ρτ=即适用于管流,也适用于明渠水流。() 13、在逐渐收缩的管道中,雷诺数沿程减小。() 14、管壁光滑的管子一定是水力光滑管。() 15、在恒定紊流中时均流速不随时间变化。() 16、恒定均匀流中,沿程水头损失 hf 总是与流速的平方成正比。() 17、粘性底层的厚度沿流程增大。() 18、阻力平方区的沿程水头损失系数λ与断面平均流速 v 的平方成正比。() 19、当管径和流量一定时,粘度越小,越容易从层流转变为紊流。() 20、紊流的脉动流速必为正值。() 21、绕流阻力可分为摩擦阻力和压强阻力。() 22、有一管流,属于紊流粗糙区,其粘滞底层厚度随液体温度升高而减小。() 23、当管流过水断面流速符合对数规律分布时,管中水流为层流。() 24、沿程水头损失系数总是随流速的增大而增大。() 25、边界层内的流动也有层流与紊流之分。() 26、当雷诺数 Re 很大时,在紊流核心区中,切应力中的粘滞切应力可以忽略。() 27、其它条件不变,层流内摩擦力随压力的增大而() ⑴增大;⑵减小;⑶不变;⑷不定。 28、按普朗特动量传递理论,紊流的断面流速分布规律符合() ( 1 )对数分布;( 2 )椭圆分布;( 3 )抛物线分布;( 4 )直线分布。 29、其它条件不变,层流切应力随液体温度的升高而() ( 1 )增大;( 2 )减小;( 3 )不变;( 4 )不定。 30、其它条件不变,液体雷诺数随温度的增大而() ( 1 )增大;( 2 )减小;( 3 )不变;( 4 )不定。 31、谢才系数 C 与沿程水头损失系数λ的关系为() ( 1 ) C 与λ成正比;( 2 ) C 与 1/λ成正比;( 3 ) C 与λ2 成正比;( 4 ) C 与λ1 成正比。 32、A 、B 两根圆形输水管,管径相同,雷诺数相同,A 管为热水,B 管为冷水,则两管流量() ( 1 ) qvA > qvB ; ( 2 ) qvA = qvB ;( 3 ) qvA < qvB ;( 4 )不能确定大小。 33、圆管紊流附加切应力的最大值出现在() ( 1 )管壁;( 2 )管中心;( 3 )管中心与管壁之间;( 4 )无最大值。 34、粘滞底层厚度δ随 Re 的增大而() ( 1 )增大;( 2 )减小;( 3 )不变;( 4 )不定。 35、管道断面面积均为 A (相等),断面形状分别为圆形、方形和矩形,其中水流为恒定均匀流,水力坡度 J 相同,则三者的边壁切应力0τ的相互关系如下,如果沿程阻力系数λ也相等,则三管道通过的流量的相互关系如下:() ( 1 )τ0圆>τ0方>τ0矩,q v 圆>q v 方>q v 矩; ( 2 )τ0圆<τ0方<τ0矩,q v 圆τ0方>τ0矩,q v 圆q v 方>q v 矩。

湍流的产生和解释

湍流的产生和解释 湍流是如何产生的?有哪些模型可以预测和解释湍流现象? 关于第一个问题,可以先从流体的流动讲起。假设有这样一根管道,我在一头加上一个水龙头,然后通过调节水龙头的大小来控制水的速度。一开始,水龙头开度比较小,这时候是层流(如下图)。 细致地调节细管中红水的流速,当它与主流管内水流速度相近时,可以看到清水中有稳定而清晰的红色水平流线,表明这时主流管中各水层互不干扰地流动。逐渐加大水龙头的开度,层流就慢慢的变成湍流了。这时流线不再清楚可辨,流场中有许多小漩涡,层流被破坏,相邻流层间不但有滑动,还有混合。这时的流体作不规则运动,有垂直于流管轴线方向的分速度产生(如下图)。

所以我们现在可以说,层流与湍流的最大区别就是流速了(单单对于上例来说)。流速较小的时候,流动比较规则,分层现象比较明显。流速大了之后就开始乱了,各种漩涡,滑动。 现在来看看究竟怎么区别层流和湍流,或者说究竟与哪些因素有关。这里我们先引入雷诺数的概念。雷诺数(Reynolds number)一种可用来表征流体流动情况的无量纲数,以Re表示,Re=ρvd/η,其中v、ρ、η分别为流体的流速、密度与黏性系数,d为一特征长度。黏性就是指当流体运动时,层与层之间有阻碍相对运动的内摩擦力。举个例子,假如有一群人手拉手的往前跑,大家开始跑得都很慢,突然有一个人不想跟他们一起玩这个脑残的游戏了,所以任性的加快了速度。如果手拉的不紧,他就很容易逃脱—这就是黏性比较小,相互之间摩擦力较小;如果手拉的越紧,他就越不容易逃脱—这就是黏性比较大,相互之间摩擦力较大。另一方面,要是不容易逃脱,他只要加快速度,终究是可以逃脱的。 这个例子或许不那么恰当,但是可以说明雷诺数的概念了。雷诺数其实是一个无量纲数,表示作用于流体微团的惯性力与粘性力之比。当雷诺数较小时,黏滞力对流场的影响大于惯性力,流场中流速的扰动会因黏滞力而衰减,流体流动稳定,为层流;反之,若雷诺数较大时,惯性力对流场的影响大于黏滞力,流体流动较不稳定,流速的微小变化容易发展、增强,形成紊乱、不规则的湍流流场。这里贴一张从层流发展为湍流的图(中间有一段过渡段,这也很容易理解,数值上的绝对反映到实际情况下,基本都有一段过渡段)。 再简单的概况一下,湍流就是当流体的惯性力影响大于黏滞力时,流动有较规则分层明显的层流变为不规则的运动的情况。 对于第二个问题,有哪些模型可以预测和解释湍流现象? 现在的模型大多都是近似的模型。如果硬要说说预测和解释的话,应该是

湍流知识1

湍流模型的选择 1 湍流简介 湍流出现在速度变动的地方。这种波动使得流体介质之间相互交换动量、能量和浓度变化,而且引起了数量的波动。由于这种波动是小尺度且是高频率的,所以在实际工程计算中直接模拟的话对计算机的要求会很高。实际上瞬时控制方程可能在时间上、空间上是均匀的,或者可以人为的改变尺度,这样修改后的方程耗费较少的计算机。但是,修改后的方程可能包含有我们所不知的变量,湍流模型需要用已知变量来确定这些变量。 2 选择一个湍流模型 不幸的是没有一个湍流模型对于所有的问题是通用的。选择模型时主要依靠以下几点:流体是否可压、建立特殊的可行的问题、精度的要求、计算机的能力、时间的限制。为了选择最好的模型,你需要了解不同条件的适用范围和限制 这一章的目的是给出在FLUENT中湍流模型的总的情况。我们将讨论单个模型对cpu 和内存的要求。同时陈述一下一种模型对那些特定问题最适用,给出一般的指导方针以便对于你需要的给出湍流模型。 3 构建湍流模型——标准k-e模型 最简单的完整湍流模型是两个方程的模型,要解两个变量,速度和长度尺度。在FLUENT 中,标准k-e模型自从被Launder and Spalding提出之后,就变成工程流场计算中主要的工具了。适用范围广、经济、合理的精度,这就是为什么它在工业流场和热交换模拟中有如此广泛的应用了。它是个半经验的公式,是从实验现象中总结出来的。 由于人们已经知道了k-e模型适用的范围,因此人们对它加以改造,出现了RNG k-e 模型和带旋流修正k-e模型。 (附上: 3.1 RNG k-e模型 RNG k-e模型来源于严格的统计技术。它和标准k-e模型很相似,但是有以下改进: RNG模型在e方程中加了一个条件,有效的改善了精度。 考虑到了湍流漩涡,提高了在这方面的精度。 RNG理论为湍流Prandtl数提供了一个解析公式,然而标准k-e模型使用的是用户提供的常数。 然而标准k-e模型是一种高雷诺数的模型,RNG理论提供了一个考虑低雷诺数流动粘性的解析公式。这些公式的效用依靠正确的对待近壁区域; 这些特点使得RNG k-e模型比标准k-e模型在更广泛的流动中有更高的可信度和精度。3.2 带旋流修正k-e模型 带旋流修正的 k-e模型是近期才出现的,比起标准k-e模型来有两个主要的不同点:带旋流修正的k-e模型为湍流粘性增加了一个公式。为耗散率增加了新的传输方程,这个方程

相关文档
最新文档