A Strategy for Precise and Large-Scale Identification of Core Fucosylated Glycoproteins

A Strategy for Precise and Large-Scale Identification of Core Fucosylated Glycoproteins
A Strategy for Precise and Large-Scale Identification of Core Fucosylated Glycoproteins

A Strategy for Precise and Large Scale

Identification of Core Fucosylated

Glycoproteins*□S

Wei Jia?§?,Zhuang Lu???,Yan Fu?**,Hai-Peng Wang**,Le-Heng Wang**,Hao Chi**,Zuo-Fei Yuan**,Zhao-Bin Zheng?,Li-Na Song?,Huan-Huan

Han?,Yi-Min Liang?,

Jing-Lan Wang?,Yun Cai?,Yu-Kui Zhang ?,Yu-Lin Deng ?,Wan-Tao Ying???,

Si-Min He**§§,and Xiao-Hong Qian???

Core fucosylation (CF)patterns of some glycoproteins are more sensitive and specific than evaluation of their total respective protein levels for diagnosis of many diseases,such as cancers.Global profiling and quantitative charac-

terization of CF glycoproteins may reveal potent biomar-kers for clinical applications.However,current tech-niques are unable to reveal CF glycoproteins precisely on a large scale.Here we developed a robust strategy that integrates molecular weight cutoff,neutral loss-depend-ent MS 3,database-independent candidate spectrum fil-tering,and optimization to effectively identify CF glyco-proteins.The rationale for spectrum treatment was innovatively based on computation of the mass distribu-tion in spectra of CF glycopeptides.The efficacy of this strategy was demonstrated by implementation for plasma from healthy subjects and subjects with hepatocellular

carcinoma.Over 100CF glycoproteins and CF sites were identified,and over 10,000mass spectra of CF glycopep-tide were found.The scale of identification results indi-cates great progress for finding biomarkers with a partic-ular and attractive prospect,and the candidate spectra will be a useful resource for the improvement of database searching methods for glycopeptides.Molecular &Cel-lular Proteomics 8:913–923,2009.Glycoproteins are implicated in a wide range of biological processes such as fertilization,development,the immune response,cell signaling,and apoptosis.Altered glycosylation patterns can affect the conformations of glycoproteins and their functions and interactions with other molecules (1,2).Abnormal glycosylation has been demonstrated in many pathological processes.Targeted glycosylation research is considered increasingly important as a way to find novel therapeutic approaches (2,3),and core fucosylation (CF)1glycoproteomics has attracted particularly great attention (4,5).Previous reports show that CF glycoproteins are involved in many important physiological processes,such as trans-forming growth factor-?1(6)and epidermal growth factor signaling pathways (7).They also play key roles in many pathological processes,such as hepatocellular carcinoma (HCC)(8,9),pancreatic cancer (10,11),lung cancer (6,12),ovarian cancer (13),and prostate cancer (14).Moreover the CF patterns of several glycoproteins have been reported to serve as more sensitive and specific biomarkers than their total respective protein levels (8,9,15,16).The combination of a biomarker panel of CF glycoproteins is expected to serve as a more reliable diagnostic standard (13).

Glycoproteomics research has been conducted for several years and has led to the generation of many effective evalu-ation methods.Most of these methods use lectin or the chem-ical reagent hydrazide to enrich glycopeptides.The oligosac-charide chains are then completely released by treatment of

the glycopeptides with peptide-N -glycosidase F.Finally the

deglycosylated peptides and the deglycosylation sites are

identified by tandem mass spectrometric analysis (17,18).Although impressive results have been attained,this com-monly used strategy is not an ideal choice for CF glycopro-teins research.First,the enrichment specificity of lectin is not satisfactory (19)as hydrazide chemical reactions irreversibly

destroy glycan structures,particularly fucose tags.Second,

the deglycosylation site is determined by the 0.9840-Da mass shift caused by the asparagine to aspartic acid transfer;its confidence can be compromised by deamination of the Asn.Besides that,the CF site can no longer be distinguished from

other glycosylation sites in the same glycoprotein.Thus,the ideal way to precisely identify CF glycoproteins on a large From the ?State Key Laboratory of Proteomics-Beijing Proteome Research Center-Beijing Institute of Radiation Medicine,No.33Life Science Park Road,Changping District,Beijing 102206,China,§In-stitute of Biophysics,Chinese Academy of Sciences,No.15Datun

Road,Chaoyang District,Beijing 100101,China,?Beijing Institute of Technology,No.5South Zhongguancun Street,Haidian District,Bei-jing 100081,China,and **Institute of Computing Technology,Chi-nese Academy of Sciences,No.6Kexueyuan South Road,

Beijing 100190,China Received,November 5,2008,and in revised form,January 7,2009Published,MCP Papers in Press,January 12,2009,DOI 10.1074/mcp.M800504-MCP2001The abbreviations used are:CF,core fucosylation;HCC,hepato-cellular carcinoma;rhEPO,recombinant human erythropoietin;RP,reversed phase;S 2,symbol ion 2;S 3,symbol ion 3;HS,Hereman-Schmid;SCX,strong cation exchange;LTQ,linear trap quadrupole.Research

?2009by The American Society for Biochemistry and Molecular Biology,Inc.Molecular &Cellular Proteomics 8.5913This paper is available on line at https://www.360docs.net/doc/0c11059405.html, by Xiaohong Qian on May 1, 2009

https://www.360docs.net/doc/0c11059405.html, Downloaded from /DC1https://www.360docs.net/doc/0c11059405.html,/cgi/content/full/M800504-MCP200Supplemental Material can be found at:

scale is to provide direct evidence for the existence

of CF modification.Traditional approaches,such as lectin blots,are not sufficiently powerful to meet this requirement.Instead recent advancements in high end MS-based techniques have ignited the hope to reach this challenging goal (20,21).Our group has developed an innovative and systematic strategy for the precise and large scale identification of CF glycoproteins.Several steps were taken leading up to the development of our strategy.1)We established a novel en-richment step for CF glycopeptides,combining the use of lectin for CF glycoprotein enrichment with ultrafiltration for further enrichment of glycopeptide.Glycopeptide enrichment by ultrafiltration based on molecular weight cutoff technology has the added merit of integrating enrichment,desalting,and concentration into a one-step operation.2)We established a neutral loss-dependent MS 3scan method that specifically

captures partially deglycosylated CF glycopeptides (with fu-cosyl-N -acetylglucosamines residue retained).In MS 3,the intensity distribution of the fragment peaks is much more homogeneous,and there are fewer theoretical fragment ions and interfering peaks than in MS 2.3)We established a novel database-independent candidate spectrum-filtering method for selecting partially deglycosylated CF glycopeptides and a spectrum optimization method.By introducing several strict and appropriate criteria into a scoring system,high quality candidate spectra can be selected before searching the da-tabase,which not only increases the database search effi-ciency but also improves the identification credibility.Further-more by statistically analyzing candidate spectra,some important glycan-related fragmentation patterns were re-vealed.Based on these observations,many kinds of interfer-ing peaks due to glycan fragmentation that are always very intensive and would decrease the accuracy of peptide scoring can be localized and removed from the spectra.This treat-ment can effectively increase the number of identifications through database searching or de novo analysis.The efficacy of this strategy was testified by implementing it on both healthy and HCC plasma.Respectively,105and 106CF sites were identified from 72and 79glycoproteins,includ-ing 19annotated potential glycosylation sites and 25novel ones.This study holds promise for the large scale determina-tion of core fucosylated biomarker panels from clinical sam-ples,either body fluids or tissue biopsies.

EXPERIMENTAL PROCEDURES

Materials—The apotransferrin,fetuin,ribonuclease B,endoglyco-sidase F3,formic acid,TFA,?-cyano-4-hydroxycinnamic acid,and Lens culinaris lectin (agarose conjugate,saline suspension)were pur-chased from Sigma,methyl-?-D -mannopyranoside was purchased from Fluka (St.Louis,MO),and sodium-3-[(2-methyl-2-undecyl-1,3-

dioxolan-4-yl)methoxy]-1-propanesulfonate (RapiGest TM SF)was

purchased from Waters.Sequencing grade porcine trypsin was pur-chased from Promega (Madison,WI);IgG was purified by use of a HiTrap Protein G HP column from GE Healthcare.The PD-10desalt-ing column was also from GE Healthcare.Deionized water was pro-duced by a Milli-Q A10system from Millipore (Bedford,MA).HPLC-

grade quality ACN was purchased from J.T.Baker Inc.

Iodoacetamide and DTT were obtained from ACROS.The Handee F IG .1.The efficiency of the ultrafil-

tration method for enriching glyco-

peptide.MS spectra from ultrafiltration

experiments are shown with the reten-

tate fraction (top ),filtrate fraction (mid-

dle ),and untreated fraction (bottom ).

Glycopeptide C #GLVPVLAENYN*K (A )

from apotransferrin only appeared in the

retentate fraction.LC #PDC #PLLA-

PLN*DSR (B ),VVHAVEVALATFNAESN*-

GSYLQLVEISR (F ),and RPTGEVYDIEID-

TLETTC #HVLDPTPLAN*C #SVR (G )were

from fetuin;GQALLVN*SSQPWEPLQ-

LHVDK (C )and EAEN*ITTGC #AEHC-

#SLNEN*ITVPDTK (E )were from rhEPO;

QQQHLFGSN*VTDC #SGNFC #LFR (D )

was from apotransferrin.*,annotated gly-

cosite;#,carbamidomethylation.

Precise and Large Scale CF Glycoprotein Identification

914Molecular &Cellular Proteomics 8.5 by Xiaohong Qian on May 1, 2009

https://www.360docs.net/doc/0c11059405.html, Downloaded from

mini spin column kit was purchased from Pierce.The

C 18ZipTip and Microcon YM-3were purchased from Millipore.Recombinant human erythropoietin (rhEPO)was a gift from the National Institute for the Control of Pharmaceutical and Biological Products.Healthy human plasma (0.8ml for each experiment)was obtained from a healthy donor.Samples of hepatocellular carcinoma plasma were mixed from eight patients with 0.1ml from each person.IgG Extraction—Plasma was supplemented with IgG binding buffer (20m M sodium phosphate,pH 7.0),and then IgG was depleted by trapping on a column of HiTrap Protein G.The unbound samples were desalted by a PD-10column.Lectin Affinity—Samples were supplemented with 1.6ml of lectin binding buffer (20m M Tris-buffered saline,0.3M NaCl,1m M MnCl 2,1m M CaCl 2,pH 7.4).The samples were incubated for 16h at 4°C with L.culinaris lectin in a spin column (about 300?l of lectin-agarose and 400?l of sample in each column).After unbound proteins were re-moved by washes with binding buffer,the CF glycoproteins were eluted with elution buffer (binding buffer supplemented with 200m M ?-

D -methylmannoside),then desalted (by PD-10column),and lyophilized.Reduction,Alkylation,and Trypsin Digestion—Samples were dis-solved in 200?l of solution that contained 8M urea and 5m M DTT and were reduced at 37°C for 4h.Then iodoacetamide was added to the solution (final concentration,15m M ),which was then further incu-bated for 1h in darkness at room temperature.Afterward 50m M NH 4HCO 3was added to reduce the concentration of urea below 1M ,and sequencing grade trypsin was added at a ratio of enzyme to protein of 1:50.The mixture was then vortexed and incubated at 37°C overnight.0.1%RapiGest SF was used instead of urea for protein denaturation in the repeat experiment of healthy and HCC plasma.TFA was added to the digested protein samples (final TFA concentration was 0.5%,pH ?2),and the samples were incubated at 37°C for 45min.Finally the acid-treated samples were centrifuged at 13,000rpm for 10min,and the supernatants were collected.Enrichment,Desalting,and Concentration of Glycopeptides—Tryp-tic digests were pipetted into Microcon YM-3centrifugal filter de-vices.The absolute amount of glycoprotein in the digests was between 200and 300?g for each filter device,and the sample volume was diluted to 500?l for each filter device.The samples were centrifuged at 8000?g to reduce the sample volume from 500?l to about 20?l;this required about 3h.Then 450?l of deionized water were added to the reservoir and centrifuged at 8000?g for 3h;this was repeated twice.After that,the retentate fraction was transferred to a vial,and the reservoir was thrice washed with 20%ACN.All of the retentate fractions and wash solutions were pooled and lyophilized.

Endoglycosidase F3Digestion—Glycopeptides were resuspended in 100?l of sodium acetate solution (50m M ,pH 4.5)and then incubated with endoglycosidase F3overnight at 37°C.Ammonium acetate (50m M ,pH 4.5)was used instead of the sodium acetate in the repeat experiments of healthy and HCC plasma.

Strong Cation Exchange (SCX)Peptide Fractionation—10%en-riched samples were directly analyzed with RP HPLC-MS two times.Other enriched CF glycopeptides were reconstituted with 300?l of 5m M ammonium chloride,pH 3.0,25%acetonitrile and fractionated by SCX chromatography on a BioBasic SCX 250?4.6-mm column (Thermo Fisher).The particle size of the column was 5?m and pore size was 300?.The separations were performed at a flow rate of 0.5ml/min using the Elite HPLC system,and mobile phases consisted of 5m M ammonium chloride,pH 3.0,25%acetonitrile (A)and 500m M ammonium chloride,pH 3.0,25%acetonitrile (B).After loading 300?l of sample onto the column,the gradient was maintained at 100%A for 10min.Peptides were then separated using a gradient of 0–15%B over 1min followed by a gradient of 15–50%B over 49min.Then the gradient was changed to 50–100%over 5min.The gradient was then held at 100%B for 5min.A total of 15fractions were collected,and each fraction was dried under vacuum.

F I

G .2.The neutral loss peaks in MS 2

spectra of partially deglycosylated CF

glycopeptides.The intensities of the

highest peaks are several times higher

than that of the second most intense

peak in all of these MS 2spectra in the

ion trap,resulting from loss of the fucose

residue in CID.a ,b ,and c are MS 2spec-

tra from the same partially deglycosy-

lated CF glycopeptide,EEQYJSTYR

(from human IgG).Intensities of the base

peaks were 1.86e 5,2.10e 4,and 2.53e 3,

respectively.d and e are MS 2spectra of

simplified CF glycopeptides GQA-

LLVJSSQPWEPLQLHVDK (intensity,

3.21e 4;from rhEPO)and QQQHLFG-

SJVTDC #SGNFC #LFR (intensity,7.59e 4;

from apotransferrin).The MS 2spectra in

FT-ICR were collected to check the

identities of the strongest peaks:f for

IgG,g for d ,and h for e .J,CF site;#,

carbamidomethylation.

Precise and Large Scale CF Glycoprotein Identification

Molecular &Cellular Proteomics 8.5915 by Xiaohong Qian on May 1, 2009

https://www.360docs.net/doc/0c11059405.html, Downloaded from

RP HPLC-MS n Analysis—RP HPLC-MS n experiments were

per-formed on an LTQ-FT mass spectrometer (Thermo Fisher)equipped with a nanospray source and Agilent 1100high performance liquid chromatography system (Agilent Technologies).Peptide mixes were separated on a fused silica microcapillary column with an internal diameter of 75?m and an in-house prepared needle tip with an internal diameter of ?15?m.Columns were packed to a length of 10cm with a C 18reversed phase resin (GEAgel C 18SP-300-ODS-AP;particle size,5?m;pore size,300?;Jinouya,Beijing,China).Sepa-ration was achieved using a mobile phase from 1.95%ACN,97.95%H 2O,0.1%FA (phase A)and 79.95%ACN,19.95%H 2O,0.1%FA (phase B),and the linear gradient was from 5to 50%buffer B for 80min at a flow rate of 300nl/min.The LTQ-FT mass spectrometer was operated in the data-dependent mode.A full-scan survey MS exper-iment (m /z range from 400to 2000;automatic gain control target,5e 5ions;resolution at 400m /z ,100,000;maximum ion accumulation time,750ms)was acquired by the FT-ICR mass spectrometer,and the five most abundant ions detected in the full scan were analyzed by MS 2scan events (automatic gain control target,1e 4ions;maximum ion accumulation time,200ms).The scan model of MS 2was set as the profile.An MS 3spectrum was automatically collected when one of the three most intense peaks from the MS 2spectrum corre-sponded to a neutral loss event of 73.0290m /z ,48.6860m /z ,or 36.5145m /z (charges of parent ions were not collected).The normal-ized collision energy was 35.On-line Two-dimensional LC-MS n —The autosampler was used to inject samples onto the SCX column (BioX-SCX,5cm)after which they were eluted onto a trap column using a stepwise gradient of 0,20,30,40,50,60,70,80,90,and 100%SCX-B.Peptides on the trap column were desalted and then eluted onto the RP column and into the mass spectrometer (the same method as RP HPLC-MS n analysis,but the linear gradient was from 5to 50%buffer B for 120min).Mobile phase buffer for SCX-A was 10m M citric ammonia buffer,pH 3.0,and mobile phase buffer for SCX-B was 50m M citric ammonia buffer,pH 8.5.Experiments of HCC samples were analyzed by this system (Eksigent NanoLC-2D)and repeated one time.

Database Search and Analysis—Dta files were generated by Bio-works 3.2with default parameters and then treated by spectrum-filtering and spectrum optimization tools in pFind 2.1Studio.The candidate spectra of MS 3were searched against UniProt Knowledge-base Release 12.6(human,76,137entries;UniProt Knowledgebase Release 12.6consists of UniProtKB/Swiss-Prot Release 54.6of De-cember 4,2007and UniProtKB/TrEMBL Release 37.6of December 4,2007)using the pFind 2.1search engine.The database was modified by substituting the letter N in glycosylation sequence N X (S/T/C)with J,which was defined to have the same mass as Asn (21),and then the target and reversed decoy database were combined for the search.Carbamidomethylation was considered for all Cys residues.Variable modifications contained oxidation of Met residues,carbamidomethy-lation and carbamylation (carbamylation was only considered as a F IG .3.MS 2and MS 3spectra of fucosyl-GlcNAc-attached peptides.The peak intensity distribution of the MS 3spectrum is much more homogeneous than that of MS 2,so better peptide sequence information can be obtained;the direct assignment of CF glycosites can be deduced from the b-type and y-type ion series attached with a GlcNAc residue in MS 3.a and b are MS 2and MS 3spectra of GLC #VJASAVSR from insulin-like growth factor-binding protein 3,respectively.The peaks of b-type and y-type ions with or without GlcNAc residues appear synchronously and frequently,such as y 7?and b 6?.c and d are MS 2and MS 3spectra of a candidate that was analyzed de novo ,respectively.The resulting de novo sequence GVEIJR (because the m /z of ion b 1is too low to detect,the sequence of the first two residues can also be “VG,”and “I”can also be “L”because of their same mass)was not found in the peptide database of tryptic digests (J located in the sequon N X (S/T/C)where X is any amino acid except proline).D 1,C 8H 14NO 5(GlcNAc);D 2,C 8H 12NO 4;D 3,C 8H 10NO 3;D 4,C

6H 10NO 3;D 5,C 7H 8NO 2.The y 7G ?identifies the GlcNAc residue with the same sequence as y 7?.J,CF site;#,carbamidomethylation.

Precise and Large Scale CF Glycoprotein Identification

916Molecular &Cellular Proteomics 8.5 by Xiaohong Qian on May 1, 2009

https://www.360docs.net/doc/0c11059405.html, Downloaded from

variable modification in experiments that used urea as the protein

denature reagent)of peptide N-terminal and Lys residues,and a 203.0794-Da variable addition to J residues.At most,two missed tryptic cleavage sites were allowed.Tolerance of parent ions was?20 ppm,and tolerance of fragment ions was?0.5m/z for the primary search.The final identified results had a1%false-positive rate(22), and the tolerance for parent ions was?10ppm.

MALDI-TOF MS Analysis—After desalting with the C

18

ZipTip,all of the samples were mixed1:9with5mg/ml?-cyano-4-hydroxycin-namic acid in50%acetonitrile supplemented with0.1%TFA,and0.5?l of sample was applied to the MALDI target plate.The mass spectra were obtained using a4800Proteomics Analyzer MALDI-TOF/TOF instrument(Applied Biosystems).Prior to analysis,the mass spec-trometer was externally calibrated with seven peptides obtained from tryptic digest of myoglobin.The m/z range of the MS scan was from 600to4000.Mass spectra were acquired in the positive reflector mode.

RESULTS AND DISCUSSION

Core-fucosylated Glycopeptide Enrichment from Plasma—Robust and convenient operation procedures were estab-lished to obtain partially deglycosylated CF glycopeptides. After IgG depletion,plasma proteins were mixed with L.culi-naris lectin to enrich for the CF glycoproteins.Binding pro-teins were digested by trypsin,and the resulting glycopep-tides were enriched through a molecular weight cutoff technique.N-Linked glycopeptides usually have larger molec-ular weights than non-glycopeptides(19,23);therefore,an ultrafiltration membrane with a molecular mass limit of3000 Da was utilized to enrich for glycopeptides.This step inte-grates enrichment,desalting,and concentration into one op-eration.Glycopeptides were then treated with endoglycosi-dase F3,which specifically cleaves the glycosidic bond between the two proximal N-acetylglucosamines(GlcNAc) and leaves the fucosyl-GlcNAc residues on the peptides. Endoglycosidase F3was chosen here for treating CF glyco-protein because a large number of the glycans of plasma glycoproteins have biantennary structure,which is a more

efficient substrate for endoglycosidase F3(24).For other structures,such as tetraantennary and other bulky glycans, the reactivity of endoglycosidase F3is poor,so there may need to be additional evaluation to choose the proper glyco-sidase for other kinds of samples like tissue biopsies.

A tryptic peptide mixture from four standard glycoproteins, apotransferrin,fetuin,rhEPO,and ribonuclease B,was used to illustrate the efficiency of the ultrafiltration method(Fig.1). Half of this tryptic peptide mixture was directly treated with peptide-N-glycosidase F(untreated sample);the other half was separated by ultrafiltration into a retentate fraction(high molecular weight)and a filtrate fraction(low molecular weight),and then both fractions were treated with peptide-N-glycosidase F.The deglycosylated glycopeptides were de-tected by the?0.984-Da mass drift on Asn to Asp.

In total,eight N-glycopeptides were reported for four glycoproteins.Six of these glycopeptides were directly found in untreated samples by MALDI-TOF MS.However,in addition to these six glycopeptides,one more glycopeptide (CGLVPVLAENYN*K from apotransferrin;N*represents the annotated glycosite)was detected in the retentate fraction. The relative intensities of all deglycosylated glycopeptides were heightened compared with the untreated sample.In the untreated sample,the failure to detect CGLVPVLA-ENYN*K is ascribed to suppression by a non-glycopeptide with similar mass.In the filtrate fraction,the relative intensity of deglycosylated glycopeptides decreased to a very low level,illustrating that few glycopeptides were lost.One re-ported glycopeptide was not detected in the three fractions (N*LTK from ribonuclease B).One possible reason is that its sequence is too short to detect.

Development of Neutral Loss-dependent MS3Scan Meth-od—A neutral loss-dependent MS3method specifically de-signed for partially deglycosylated CF glycopeptides was de-veloped.During CID,the glycosidic bond that links the two remaining sugars is prone to breakage compared with the other bonds(25).In our experiments on three partially degly-cosylated CF glycopeptides,the highest peaks in the MS2

F IG.4.The process of the strategy for CF glycoprotein identi-

fication.CF glycoprotein identification was achieved through enrich-ment of CF glycopeptides,partial deglycosylation of CF glycopep-tides,HPLC neutral loss-dependent MS3,candidate spectrum

filtering,spectrum optimization,and database searching.F

1

identifies the intensity ratio of the second strongest peaks(logogram:second

strong peak(SSP),which does not contain different states for S

2

,

such as a different charge state or states of H

2

O and NH

3

loss)to S

2

;

F

2

identifies the difference between the calculated and experimental

m/z of S

2

;F

3

identifies the intensity ratio of the second strongest peak

(logogram:SSP?)to S

3

within the range of the S

3

monoisotopic peak ?3m/https://www.360docs.net/doc/0c11059405.html,rmation on different charge state ions of S3is considered, and the better result is recorded.Additionally the absolute intensities

of S

2

and S

3

are required to be higher than500and50,respectively. As shown,different scores correspond to different signal qualities. The confidence of the spectrum is sorted into five ranks by total score.?,fucose residue;f,GlcNAc residue.2D,two-dimensional; Endo,endoglycosidase;LCH,L.culinaris lectin.

Precise and Large Scale CF Glycoprotein Identification

Molecular&Cellular Proteomics8.5917 by Xiaohong Qian on May 1, 2009 https://www.360docs.net/doc/0c11059405.html, Downloaded from

spectra all resulted from subtraction of 146Da (mass

of the fucose residue)from the parent ions that had the same charge state as the corresponding parent ions (Fig.2).Based on this trait,a neutral loss-dependent MS 3scan method was utilized as an automatic event in the LTQ-FT mass spectrometer:MS 3spectra were automatically collected when one of the three most intense peaks from the MS 2spectrum corresponded to a neutral loss event of the fucose residue mass.MS 3spectra were generated from fragmentation of the GlcNAc-attached https://www.360docs.net/doc/0c11059405.html,pared with the MS 2spectra,which were gen-erated from fragmentation of the fucosyl-GlcNAc-attached peptides,the MS 3spectra have three remarkable advantages.1)They have better spectrum quality:the peak intensity distribution of the MS 3spectrum is much more homogene-ous.This is beneficial because there are more fragment ion signals with good signal to noise ratios.2)They have sim-pler spectrum information:the number of theoretical frag-ment ions in the MS 3spectrum is fewer.This makes the algorithm for peak matching simpler and easier.3)They have clearer spectrum signals:two parent ion selections (from MS to MS 2and from MS 2to MS 3)reduce the proba-bility of collecting interference signals adjacent to parent ions in the full scan (Fig.3).In addition,direct assignment of CF glycosites can be deduced from the b-type and y-type ions series attached with a GlcNAc residue,providing much higher confidence levels of glycosite assignment compared with the 0.984-Da mass shift method.It should be noted that the retained intact GlcNAc residues were found to be lost from the b and y ions (Fig.3);therefore,these kinds of special product ions must be considered in addition to GlcNAc attached b and y ions when searching the data-base.This observation was taken into account for peptide scoring in the pFind 2.1search engine (26–28).Compared with other popular software tools,pFind discovered more results (supplemental Data 1).

Development of Candidate Spectrum-filtering and Spec-trum Optimization Methods—Due to the complexity of real samples and the massive spectra generated in these large scale glycopeptide analyses,more professional and special-

ized processing methods are absolutely necessary.Here a database-independent method for discovery of spectra of partially deglycosylated CF glycopeptides was developed.Two kinds of ions in MS 2were scrutinized and used to judge whether the precursor was a CF glycopeptide:ions of a peptide attached to a GlcNAc residue (symbol ion 2,logo-gram:S 2,attained from the breakage of the glycosidic bond between the remaining two monosaccharide residues)and ions of a pure peptide (symbol ion 3,logogram:S 3,obtained from fragmentation between the GlcNAc and the Asn residue of the peptide).By introduction of the highly accurate parent ion mass from a full scan (recorded in FT-ICR),we can cal-culate the m /z of symbol ions.Next according to the quality of the symbol ions in MS 2,several criteria were established to sort out the spectra.First of all the strongest peak in MS 2F IG .5.Frequency histogram of in-

tact and partial GlcNAc loss peaks in

candidate MS 3spectra of charge 2.

The m /z values of S 2were set as 0m /z .

Offsets with high peak frequencies re-

veal potential masses of neutral losses

that frequently occur on peptide-at-

tached GlcNAc residues.The possible

loss groups are shown in the table .

Precise and Large Scale CF Glycoprotein Identification

918Molecular &Cellular Proteomics 8.5 by Xiaohong Qian on May 1, 2009

https://www.360docs.net/doc/0c11059405.html, Downloaded from

T ABLE I

Bold “J”indicates the CF site.Bold

“j”indicates the possible CF site.ADAM,a disintegrin and metalloprotease;ADAMTS,a disintegrin and metalloprotease with thrombospondin type 1motifs.

Protein name UniProt Core fucosylated glycopeptide Site

ADAMTS-13Q76LX8WV J YSCLDQAR 707a Afamin P43652J CCNTENPPGCYR 383b

YAEDKF J ETTEK c 402

?1-Antitrypsin P01009YLG J ATAIFFLPDEGK c 271?2-HS-glycoprotein P02765VCQDCPLLAPL J DTR c 156?2-Macroglobulin P01023GCVLLSYL J ETVTVSASLESVR 55

VS J QTLSLFFTVLQDVPVR c 1424

VS J QTLSLFFTVLQDVPVRDLKPAIVK 1424

AN1-type zinc finger and ubiquitin domain-containing protein 1

Q86XD8MKNM J LSKK 235b Angiopoietin-related protein 6Q8NI99VL J ASAEAQR 145Apolipoprotein D P05090ADGTVNQIEGEATPV J LTEPAK c 98

ADGTVNQIEGEATPV J LTEPAKLEVK 98

Attractin O75882GIC J SSDVR 300

EWLPL J R c 383

J HSCSEGQISIFR 731

?2-Glycoprotein 1P02749PSAG J NSLYR c 162

VYKPSAG J NSLYR c 162

Biotinidase P43251F J DTEVLQR c 130C10orf111protein Q49AL1AFCVPTA J VSVVGLNCHLEK 9b C1q and tumor necrosis factor-related protein 3Q0VAN4TGTVD J NTSTDLK c 70b Cadherin-5P33151EVYPWY J LTVEAK c 442Calumenin O43852J ATYGYVLDDPDPDDGFNYK 131a Ceruloplasmin P00450EHEGAIYPD J TTDFQR c 138

AGLQAFFQVQEC J K 358

E J LTAPGSDSAVFFEQGTTR c 397

ELHHLQEQ J VSNAFLDK c 762

ELHHLQEQ J VSNAFLDKGEFYIGSK 762

Cholinesterase P06276E J ETEIIK c 284Clusterin P10909EDAL J ETR c 86

KKEDAL J ETR 86

LA J LTQGEDQYYLR c 374

Coiled coil domain-containing protein 146Q8IYE0IK J ATEKMMALVAELSMK 815b Complement C1r subcomponent-like protein Q9NZP8PVTPIAQ J QTTLGSSR c 242Complement C2P06681TMFP J LTDVR c 651Complement C4-A P0C0L4GL J VTLSSTGR c 1328Complement component C7P10643J YTLTGR c 754Complement factor H P08603IPCSQPPQIEHGTI J SSR c 882

ISEE J ETTCYMGK c 911

MDGAS J VTCINSR 1029a

Complement-activating component of Ra-reactive factor P48740FGYILHTD J R 178a

N J LTTYK c 385a

Contactin-1Q12860A J STGTLVITDPTR 494Dopamine ?-hydroxylase P09172SLEAI J GSGLQMGLQR c 184E3ubiquitin-protein ligase Mdm2Q00987LE J STQAEEGFDVPDCKK 349b Exportin 5Q5JTE9TRS J YTKVSR 138b Extracellular matrix protein 1Q16610HIPGLIH J MTAR 444Fibrinogen ?chain P02679DLQSLEDILHQVE J K 78

VDKDLQSLEDILHQVE J K 78

Fibronectin P02751DQCIVDDITYNV J DTFHK 528

HEEGHML J CTCFGQGR 542

LDAPTNLQFV J ETDSTVLVR c 1007

Fibulin-1P23142CATPHGD J ASLEATFVK c 98a Ficolin-3O75636VELEDFNG J R c 189Galectin-3-binding protein Q08380ALGFE J ATQALGR c 69

DAGVVCT J ETR 125

GL J LTEDTYKPR c 398

AAIPSALDT J SSK c 551

TVIRPFYLT J SSGVD c 580

Precise and Large Scale CF Glycoprotein Identification

Molecular &Cellular Proteomics 8.5919 by Xiaohong Qian on May 1, 2009

https://www.360docs.net/doc/0c11059405.html, Downloaded from

T ABLE I—continued

Protein name UniProt Core

fucosylated glycopeptide Site

Haptoglobin P00738MVSHH J LTTGATLINEQWLLTTAK c 184

NLFL j HSE j ATAK c ,d 207,211

VVLHP JYSQVDIGLIK c 241

Hemopexin P02790SWPAVGJCSSALR c 187

ALPQPQ J VTSLLGCTH c 453

Hyaluronidase-4Q2M3T9LISDMGK J VSATDIEYLAK 177b Ig ?-1chain C region P01876PALEDLLLGSEA J LTCTLTGLR c 144

LSLHRPALEDLLLGSEA J LTCTLTGLR 144

PTHV J VSVVMAEVDGTCY c 340

LAGKPTHV J VSVVMAEVDGTCY c 340

Ig ?-2chain C region P01877TPLTA J ITK c 205Ig ?-1chain C region P01857EEQY J STYR 180Ig ?-2chain C region P01859EEQF J STFR 176Ig ?-4chain C region P01861EEQF J STYR 177b Ig ?chain C region P01871YK J NSDISSTR c 46

GLTFQQ J ASSMCVPDQDTAIR c 210

Immunoglobulin J chain P01591E J ISDPTSPLR c 49

IIVPLNNRE J ISDPTSPLR 49

Insulin-like growth factor-binding protein 3P17936GLCV J ASAVSR c 116

AYLLPAPPAPG J ASESEEDR c 136

VDYESQSTDTQ J FSSESK 199

Inter-?-trypsin inhibitor heavy chain H1P19827ICDLLVANNHFAHFFAPQ J LTNMNK 285Interleukin-6receptor subunit ?P40189LTV J LTNDR 390b Kallistatin P29622DFYVDE J TTVR 238Kininogen-1P01042YNSQ J QSNNQFVLYR 48

ITYSIVQT J CSK 205

LNAEN J ATFYFK c 294

Ligand-dependent nuclear receptor corepressor-like protein

Q8N3X6J GTVDGTSENTEDGLDRKDSK 493b Metalloproteinase inhibitor 1P01033FVGTPEV J QTTLYQR c 53Multimerin-1Q13201FNPGAESVVLS J STLK c 136Otoancorin Q7RTW8J LSAVFKDLYDK 211a Phospholipid transfer protein P55058EGHFYY J ISEVK c 64

VS J VSCQASVSR c 143

J WSLPNR c 245

Plasma protease C1inhibitor P05155DTFV J ASR c 238

GVTSVSQIFHSPDLAIRDTFV J ASR 238

VLS J NSDANLELINTWVAK c 253

VGQLQLSH J LSLVILVPQNLK 352

Polymeric immunoglobulin receptor P01833VPG J VTAVLGETLK c 469Potassium voltage-gated channel subfamily H member 6Q9H252Y J GSDPASGPSVQDK 449b Pro-low density lipoprotein receptor-related protein 1Q07954IETILL J GTDR 729Prostaglandin-H 2D -isomerase P41222SVVAPATDGGL J LTSTFLR c 78Protein phosphatase 1regulatory subunit 1C Q8WVI7HLKGQ J ESAFPEEEEGTNER 89b Putative uncharacterized protein DKFZp686O16217Q6N041HYT J SSQDVTVPCR c 250b

MAGKPTHI J VSVVMAEADGTCY 485b

Putative uncharacterized protein DKFZp566E164Q9NTU4J ISKTRGWHSPGR c 58b Selenoprotein P P49908EGYS J ISYIVVNHQGISSR 83Serotransferrin P02787QQQHLFGS J VTDCSGNFCLFR c 630Signal peptide peptidase-like 2A Q8TCT8DMNQTLGD J ITVK 155b Sulfhydryl oxidase 1O00391J GSGAVFPVAGADVQTLR c 130Tomoregulin-2Q9UIK5SYD J ACQIKEASCQKQEK 204b Uncharacterized protein ENSP00000375008A6NH92J TSISTAYMELSSLR 92b Vitronectin P04004J ISDGFDGIPDNVDAALALPAHSYSGR 242von Willebrand factor P04275IGEADF J R c 1515Zinc-?2-glycoprotein P25311DIVEYYNDS J GSHVLQGR c 109

FGCEIEN J R 125

4F2cell surface antigen heavy chain P08195SLVTQYL J ATGNR 323ADAMTS-like protein 2Q86TH1DR J VTGTPLTGDK e 428a Afamin P43652DIENF J STQK e 33ADAM DEC1O15204EHAVFTSNQEEQDPA J HTCGVK e 184a Precise and Large Scale CF Glycoprotein Identification

920Molecular &Cellular Proteomics 8.5 by Xiaohong Qian on May 1, 2009

https://www.360docs.net/doc/0c11059405.html, Downloaded from

must be S

2(?0.5m/

z errors)with the same charge state as the parent ion.Additional information of symbol ions is then used to further evaluate their confidence into five ranks(Fig.

4).The spectra in the top two ranks are retained,and their relevant MS3spectra are regarded as candidates.This strict spectrum-filtering method greatly improved the credibility of identification.Furthermore by statistically analyzing candidate spectra,many important neutral loss signals,which result from GlcNAc-related fragmentation,were revealed.These fragmentation patterns are always accompanied by very strong signals and had not been reported previously(Fig.5). In addition,diagnostic ions of GlcNAc residues were ob-served in MS3spectra(Fig.3).Based upon these observa-tions,these interfering peaks from GlcNAc fragmentation that are very intense and would decrease the accuracy of peptide scoring were localized and subtracted from the spectra.This novel optimization method can effectively increase the iden-tification efficacy.Both the spectrum-filtering and the spec-trum-optimizing processes have been performed automati-cally in pFind Studio.In addition,the unidentified candidates

T ABLE I—continued

Protein name UniProt Core fucosylated glycopeptide Site ADAMTS-13Q76LX8YGEEYG J LTR e667 ADAMTS-like protein4Q6UY14LVSG J LTDR e490

?1-Antitrypsin P01009ADTHDEILEGLNF J LTEIPEAQIHEGFQELLR e107 Attractin O75882CI J QSICEK e1073a Cadherin-5P33151J TSLPHHVGK e61a

LDRE J ISEYHLTAVIVDK e112 Cholesteryl ester transfer protein P11597SIDVSIQ J VSVVFK e105a Complement factor I P05156FLN J GTCTAEGK e103 Complement component C9P02748AV J ITSENLIDDVVSLIR e415 Complement factor H P08603SPDVI J GSPISQK e217b Desmoglein-2Q14126YVQ J GTYTVK e462 Desmocollin-2Q02487A J YTILK e392 Glutaminase kidney isoform O94925W J NTPMDEALHFGHHDVFK e620b Golgi membrane protein GP73Q8NBJ4AVLVN J ITTGER e109 Heparin cofactor2P05546J LSMPLLPADFHK e49 Histidine-rich glycoprotein P04196HSHN jj SSDLHPHK e344or345a IgGFc-binding protein Q9Y6R7VITVQVA J FTLR e1317b

Ig?chain C region P01871J NSDISSTR c46 Intercellular adhesion molecule1P05362A J LTVVLLR e145 FER protein Q6PEJ9GSTVQMNYVS J VSKSWLLMIQQTEQLSRIMK e66b Leucine-rich?

2

-glycoprotein P02750MFSQ J DTR e325

LPPGLLA J FTLLR e186 Macrophage mannose receptor2Q9UBG0VTPAC J TSLPAQR e69a Membrane copper-amine oxidase Q16853YLYLAS J HSNK e592 Neuronal cell adhesion molecule Q92823VNVV J STLAEVHWDPVPLK e858a Pigment epithelium-derived factor P36955VTQ J LTLIEESLTSEFIHDIDR e285 Properdin P27918J VTFWGR e428 Prothrombin P00734J FTENDLLVR e416 Platelet glycoprotein V P40197LLDLSGN J LTHLPK181

J LSSLESVQLDHNQLETLPGDVFGALPR e243a Protein HEG homolog1Q9ULI3L jj STGLQSSSVSQTK e313b or314a Polycystin-2Q13563VR J GSCSIPQDLRDEIK e328a Protein PARM-1Q6UWI2J ISIESR e80a Poliovirus receptor-related protein1Q15223NP J GTVTVISR e202

Pro-low density lipoprotein receptor-related protein1Q07954WTGH J VTVVQR e1511a Proteasome subunit?type-4P28070FR J ISR e83b Protein phosphatase1H Q9ULR3DF J MTGWAYKTIEDEDLKFPLIYGEGK e354b Roundabout homolog4Q8WZ75IQLE J VTLLNPDPAEGPKPR e246 Scavenger receptor cysteine-rich type1protein M130Q86VB7APGWA J SSAGSGR e105 Tetratricopeptide repeat protein6P02790j GTGHG j STHHGPEYMR d,e240,246 Type-1angiotensin II receptor P30556MIL JSSTEDGIKRIQDDCPK e4a Vitronectin P04004NJATVHEQVGGPSLTSDLQAQSK e86 Vasorin Q6EMK4LHEIT J ETFR e117

a Potential glycosite is in the database.

b The glycosite is not annotated in the database.

c The CF site was identifie

d in both th

e healthy and HCC samples.

d Both sites wer

e identified as glycosylation sites,and one must be core-fucosylated.

e The CF site was identified only in the HCC sample.

Precise and Large Scale CF Glycoprotein Identification

Molecular&Cellular Proteomics8.5921 by Xiaohong Qian on May 1, 2009 https://www.360docs.net/doc/0c11059405.html, Downloaded from

can be analyzed de novo .This can supply novel

information,which is not in the database (Fig.3).Identified Results and Their Illumination for Further Clinical Research—The efficacy of our strategy was first demon-strated by implementation on healthy human plasma (IgG-extracted);115different CF glycopeptides (105CF sites)from 72glycoproteins were identified.To further demonstrate its feasibility for clinical samples,we applied this strategy to plasma from HCC patients;108different CF glycopeptides (106CF sites)from 79glycoproteins were identified.Alto-gether 25novel glycosylation sites and 19annotated potential sites were identified from these two experiments (Table I).The scale of our results shows that these innovative methods provide a breakthrough in CF glycoproteomics research and may meet the needs of clinical medicine.Although the com-parison between two types of samples was not a designated outcome of this study,it still gave us illuminations in several aspects.First,the CF sites of many glycoproteins whose CF levels have been reported as altered in patients with HCC were confirmed in our research,such as ?1-antitrypsin (one site),?2-HS-glycoprotein (one site),?2-macroglobulin (two sites),apolipoprotein D (one site),?2-glycoprotein 1(one site),ceruloplasmin (four sites),fibrinogen ?chain (one site),hap-toglobin (three sites),histidine-rich glycoprotein (one site),Ig ?-2chain C region (one site),Ig ?-1chain C region (one site),and serotransferrin (one site)(9,15).Direct evidence of a CF site by MS would not only help to enhance the reliability of the CF modification as a biomarker but may also lead to further clinical research at a deeper modification site level instead of the protein level.As shown previously,the CF patterns of some glycoproteins may be used as biomarkers because they are more sensitive and specific than evaluation of the respec-tive total protein levels (19).The question of whether the specific CF site would be the more effective “marker”is interesting.This question could not be answered previously because of the limitations of the traditional techniques,but it can be tackled by application of this strategy.Second,a specific marker,CF GP-73,was reported to be more sensitive and specific for HCC diagnosis than ?-fetoprotein (15).This marker was specifically identified in the HCC samples in our research,whereas hemopexin (two CF sites identified),IgM (two sites),and kininogen (three sites)were identified in both of our two experiments.These glycoproteins have not previ-ously been reported in healthy plasma (9).These results re-mind us that although CF glycoproteomics research has sig-nificantly advanced during recent years and impressive results have been obtained in clinical research more extensive research is needed.This further research inevitably depends on the acquisition of massive qualitative and quantitative data on CF glycoproteins and CF sites.Recently fucosylated hap-toglobin was reported as a novel marker for pancreatic can-cer,and site-specific increases in fucosylation were observed (29).However,the specificity of this marker is still not ideal for diagnosis;evaluation of the CF levels of a combination of glycoproteins would permit more reliable discrimination among different disease stages.In our research,all three tryptic CF glycopeptides of haptoglobin were identified.Moreover our strategy possesses the merit that stable isotope labeling techniques can be embedded for quantitative re-search.The relative abundance of CF glycoproteins in some diseases,such as pancreatic cancer,could be quantified with the strategy.It should be mentioned that because lectin en-richment strategy was used in the early step the quantitation information obtained would only represent the relative differ-ence in CF glycoprotein abundance,whereas the ratios be-tween glycans with and without core fucose could not be reached as reported in other researches (8,9).In conclusion,this study holds promise for the large scale identification of CF glycoproteins,which can serve as a tool for the discovery of novel biomarker panels from clinical sam-ples,such as body fluids or tissue biopsies.In addition,it is our hope that both identified and unidentified candidate spec-tra (over 10,000)will be a useful resource for the improvement of database searching methods for glycopeptides.Spectra data sets of this sort are rare and should arouse the interest of scientists in both glycoproteomics and bioinformatics re-search fields.Acknowledgments—We thank Ji-Yang Zhang,You Li,Chao Liu,Wen-Ping Wang,Li-yun Xiu,Xue-qun Zhang,and Lin-Juan Tian for

contributions.We also thank the Digestive Department of the First

Affiliated Hospital,College of Medicine,Zhejiang University for the offering of HCC plasma.*This study was supported by National Natural Science Founda-tion of China Grants 30621063and 20735005;National Key Pro-

gram for Basic Research Grants 2006CB910801,2002CB713807,

2004CB518707,and 2007CB914104;Hi-Tech Research and Devel-opment Program of China Grants 2006AA02A308,2007AA02Z315,and 2008AA02Z309;and Chinese Academy of Sciences Knowledge Innovation Program Grant KGGX1-YW-13.□S The on-line version of this article (available at http://www.

https://www.360docs.net/doc/0c11059405.html,)contains supplemental material.

?These authors contributed equally to this work.??To whom correspondence may be addressed.E-mail:yingwtll@https://www.360docs.net/doc/0c11059405.html,.§§To whom correspondence may be addressed.E-mail:smhe@https://www.360docs.net/doc/0c11059405.html,.

??To whom correspondence may be addressed.E-mail:qianxh1@

https://www.360docs.net/doc/0c11059405.html,.REFERENCES 1.Parodi,A.J.(2000)Protein glucosylation and its role in protein folding.Annu.Rev.Biochem.69,69–932.Walsh,G.,and Jefferis,R.(2006)Post-translational modifications in the context of therapeutic proteins.Nat.Biotechnol.24,1241–1252

3.Dwek,R.A.,Butters,T.D.,Platt,F.M.,and Zitzmann,N.(2002)Targeting

glycosylation as a therapeutic approach.Nat.Rev.Drug Discov.1,65–754.Kondo,A.,Li,W.,Nakagawa,T.,Nakano,M.,Koyama,N.,Wang,X.,Gu,J.,Miyoshi,E.,and Taniguchi,N.(2006)From glycomics to functional gly-

comics of sugar chains:identification of target proteins with functional

changes using gene targeting mice and knock down cells of FUT8as

examples.Biochim.Biophys.Acta 1764,1881–18895.Ma,B.,Simala-Grant,J.L.,and Taylor,D.E.(2006)Fucosylation in pro-

karyotes and eukaryotes.Glycobiology 16,158–184

Precise and Large Scale CF Glycoprotein Identification 922Molecular &Cellular Proteomics 8.5 by Xiaohong Qian on May 1, 2009

https://www.360docs.net/doc/0c11059405.html, Downloaded from

6.Wang,X.,Inoue,S.,Gu,J.,Miyoshi,E.,Noda,

K.,Li,W.,Mizuno-Horikawa,Y.,Nakano,M.,Asahi,M.,Takahashi,M.,Uozumi,N.,Ihara,S.,Lee,S.H.,Ikeda,Y.,Yamaguchi,Y.,Aze,Y.,Tomiyama,Y.,Fujii,J.,Suzuki,K.,Kondo,A.,Shapiro,S.D.,Lopez-Otin,C.,Kuwaki,T.,Okabe,M.,Honke,K.,and Taniguchi,N.(2005)Dysregulation of TGF-?1receptor activation leads to abnormal lung development and emphysema-like phenotype in core fucose deficient mice.Proc.Natl.Acad.Sci.U.S.A.102,15791–157967.Wang,X.,Gu,J.,Ihara,H.,Miyoshi,E.,Honke,K.,and Taniguchi,N.(2006)Core fucosylation regulates epidermal growth factor receptor-mediated intracellular signaling.J.Biol.Chem.281,2572–25778.Block,T.M.,Comunale,M.A.,Lowman,M.,Steel,L.F.,Romano,P.R.,Fimmel,C.,Tennant,B.C.,London,W.T.,Evans,A.A.,Blumberg,B.S.,Dwek,R.A.,Mattu,T.S.,and Mehta,A.S.(2005)Use of targeted glycoproteomics to identify serum glycoproteins that correlate with liver cancer in woodchucks and humans.Proc.Natl.Acad.Sci.U.S.A.102,779–https://www.360docs.net/doc/0c11059405.html,unale,M.A.,Lowman,M.,Long,R.E.,Krakover,J.,Philip,R.,See-holzer,S.,Evans,A.A.,Hann,H.W.,Block,T.M.,and Mehta,A.S.(2006)Proteomic analysis of serum associated fucosylated glycoproteins in the development of primary hepatocellular carcinoma.J.Proteome Res.5,308–31510.Okuyama,N.,Ide,Y.,Nakano,M.,Nakagawa,T.,Yamanaka,K.,Moriwaki,K.,Murata,K.,Ohigashi,H.,Yokoyama,S.,Eguchi,H.,Ishikawa,O.,Ito,T.,Kato,M.,Kasahara, A.,Kawano,S.,Gu,J.,Taniguchi,N.,and Miyoshi,E.(2006)Fucosylated haptoglobin is a novel marker for pan-creatic cancer:a detailed analysis of the oligosaccharide structure and a possible mechanism for fucosylation.Int.J.Cancer 118,2803–280811.Barrabe ′s,S.,Page `s-Pons,L.,Radcliffe,C.M.,Tabare ′s,G.,Fort,E.,Royle,L.,Harvey,D.J.,Moenner,M.,Dwek,R.A.,Rudd,P.M.,De Llorens,R.,and Peracaula,R.(2007)Glycosylation of serum ribonuclease 1indicates a major endothelial origin and reveals an increase in core fucosylation in pancreatic cancer.Glycobiology 17,388–40012.Geng,F.,Shi,B.Z.,Yuan,Y.F.,and Wu,X.Z.(2004)The expression of core fucosylated E-cadherin in cancer cells and lung cancer patients:prog-nostic implications.Cell Res.14,423–43313.Saldova,R.,Royle,L.,Radcliffe,C.M.,Abd Hamid,U.M.,Evans,R.,Arnold,J.N.,Banks,R.E.,Hutson,R.,Harvey,D.J.,Antrobus,R.,Petrescu,S.M.,Dwek,R.A.,and Rudd,P.M.(2007)Ovarian cancer is associated with changes in glycosylation in both acute-phase proteins and IgG.Glycobiology 17,1344–135614.Tabare ′s,G.,Radcliffe,C.M.,Barrabe ′s,S.,Ramírez,M.,Aleixandre,R.N.,Hoesel,W.,Dwek,R.A.,Rudd,P.M.,Peracaula,R.,and de Llorens,R.(2006)Different glycan structures in prostate-specific antigen from pros-tate cancer sera in relation to seminal plasma PSA.Glycobiology 16,132–14515.Drake,R.R.,Schwegler,E.E.,Malik,G.,Diaz,J.,Block,T.,Mehta,A.,and Semmes,O.J.(2006)Lectin capture strategies combined with mass spectrometry for the discovery of serum glycoprotein biomarkers.Mol.Cell.Proteomics 5,1957–196716.Wright,L.M.,Kreikemeier,J.T.,and Fimmel,C.J.(2007)A concise review of serum markers for hepatocellular cancer.Cancer Detect.Prev.31,

35–4417.Zhang,H.,Li,X.J.,Martin,D.B.,and Aebersold,R.(2003)Identification and quantification of N-linked glycoproteins using hydrazide chemistry stable isotope labeling and mass spectrometry.Nat.Biotechnol.21,660–66618.Kaji,H.,Saito,H.,Yamauchi,Y.,Shinkawa,T.,Taoka,M.,Hirabayashi,J.,Kasai,K.,Takahashi,N.,and Isobe,T.(2003)Lectin affinity capture,isotope-coded tagging and mass spectrometry to identify N-linked gly-

coproteins.Nat.Biotechnol.21,667–672

19.Zhao,J.,Simeone,D.M.,Heidt,D.,Anderson,M.A.,and Lubman,D.M.(2006)Comparative serum glycoproteomics using lectin selected sialic

acid glycoproteins with mass spectrometric analysis:application to pan-

creatic cancer serum.J.Proteome Res.5,1792–180220.Ha ¨gglund,P.,Bunkenborg,J.,Elortza,F.,Jensen,O.N.,and Roepstorff,P.(2004)A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrich-ment and partial deglycosylation.J.Proteome Res.3,556–566

21.Ha ¨gglund,P.,Matthiesen,R.,Elortza,F.,H?jrup,P.,Roepstorff,P.,Jensen,

O.N.,and Bunkenborg,J.(2007)An enzymatic deglycosylation scheme enabling identification of core fucosylated N-glycans and O-glycosyla-tion site mapping of human plasma proteins.J.Proteome Res.6,3021–3031

22.Peng,J.,Elias,J.E.,Thoreen,C.C.,Licklider,L.J.,and Gygi,S.P.(2003)

Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS)for large-scale protein analysis:the yeast proteome.J.Proteome Res.2,43–5023.Alvarez-Manilla,G.,Atwood,J.,III,Guo,Y.,Warren,N.L.,Orlando,R.,and Pierce,M.(2006)Tools for glycoproteomic analysis:size exclusion chro-

matography facilitates identification of tryptic glycopeptides with N-

linked glycosylation sites.J.Proteome Res.5,701–70824.Tarentino,A.L.,Quinones,G.,Changchien,L.M.,and Plummer,T.H.(1993)Multiple endoglycosidase F activities expressed by Flavobacte-rium meningosepticum endoglycosidases F2and F3.J.Biol.Chem.268,

9702–9708

25.Wuhrer,M.,Catalina,M.I.,Deelder, A.M.,and Hokke, C.H.(2007)Glycoproteomics based on tandem mass spectrometry of glycopep-

tides.J.Chromatogr.B Anal.Technol.Biomed.Life Sci.849,115–128

26.Fu,Y.,Yang,Q.,Sun,R.,Li,D.,Zeng,R.,Ling,C.X.,and Gao,W.(2004)Exploiting the kernel trick to correlate fragment ions for peptide identifi-cation via tandem mass spectrometry.Bioinformatics 20,1948–195427.Li,D.,Fu,Y.,Sun,R.,Ling,C.X.,Wei,Y.,Zhou,H.,Zeng,R.,Yang,Q.,He,

S.,and Gao,W.(2005)pFind:a novel database-searching software

system for automated peptide and protein identification via tandem mass spectrometry.Bioinformatics 21,3049–305028.Wang,L.H.,Li,D.Q.,Fu,Y.,Wang,H.P.,Zhang,J.F.,Yuan,Z.F.,Sun,R.X.,Zeng,R.,He,S.M.,and Gao,W.(2007)pFind 2.0:a software

package for peptide and protein identification via tandem mass spec-

trometry.Rapid Commun.Mass Spectrom.21,2985–299129.Miyoshi,E.,and Nakano,M.(2008)Fucosylated haptoglobin is a novel marker for pancreatic cancer:detailed analyses of oligosaccharide struc-

tures.Proteomics 8,3257–3262

Precise and Large Scale CF Glycoprotein Identification

Molecular &Cellular Proteomics 8.5923 by Xiaohong Qian on May 1, 2009 https://www.360docs.net/doc/0c11059405.html, Downloaded from

小说鉴赏方法

小说鉴赏方法: 小说的鉴赏必须要注意三点:(1)要了解小说所反映的社会背景,作者写作、 发表时的社会背景及作者的写作意图,在此基础上,领会小说所揭示的主题思想; (2)要认真分析人物形象,通过对有关描写方法的研究,剖析人物形象,理 解典型环境中的典型性格,从而深入领会小说的思想与艺术; (3)要研究小说的故事情节、线索、结构就是怎样为塑造形象、表达主题服 务 的。 第一、分析典型人物 分析人物可从以下几个方面入手 ①注意人物外貌特征的描写。如祥林嫂的外貌。 ②注意人物语言的个性化。如鲁四老爷的个性化语言,就反映出她伪善、冷酷、自私的性格特征。 ③注意人物的行动描写。如药里刽子手康大叔卖人血馒头的一系列动作,就刻画出她凶残、贪婪的丑恶形象。 ④注意人物的心理描写。如项链中对玛蒂尔德大段心理描写,就揭示了她小资产阶级的虚荣心。 ⑤刻画人物形象的方法。 第二、分析故事情节。

情节就是叙事性文学作品中所描写的事件及其发展变化的过程,它由一系列具 有矛盾冲突的具体事件组成。 分析故事情节可从以下几个方面入手: ①理清结构。小说的情节大体由开端、发展、高潮、结局几部分构成,可以据此划分层次。 ②寻找线索。线索就是情节发展中的脉胳,有时还就是矛盾冲突的焦点。通过寻找线索,有利于掌握情节,有时也有利于抓住小说的矛盾冲突,便于把握主题。 ③抓住场面。情节由场面组成。有的小说情节复杂,有的小说情节不连贯, 在这种情况下,抓住场面分析就可以不受情节、结构的限制,直接掌握作品的中心事件与主要矛盾。 第三、分析典型环境。 ①典型环境就是指文学作品中形成人物性格并驱使人物行动的生活场所,就 是一 定历史时代、社会现实及其发展趋势的具体体现。 ②典型环境就是指文艺作品中典型人物所生活的形成其性格并驱使其行动 的 特定环境。 典型环境主要就是社会环境,也包括自然环境。 分析典型环境从以下方面入手:

心理学上的四种气质类型及如何培养

心理学上的四种气质类型 气质是一个古老的概念,在日常生活中一般指“脾气”、“性情”等等。孩子因气质不同而千差万别;有的孩子平静安稳,害怕生人;有的孩子则好动,活动爱说话;有的孩子反应快,行动敏捷;有的孩子则反应迟缓,动作慢条斯理等等。 所谓气质是指那些主要是与生俱来的心理和行为特征,也就是那些由遗传和生理决定的心理和行为特征。气质实际上是人格中最稳定的、在早年就表现出来的,受遗传和生理影响较大而受文化和教养影响较小的那些层面。 通常在心理学上把气质分为四种类型,即胆汁质(直率热情、好动、脾气急等)、多血质(活动、敏感、反应快、情绪不稳等)、黏液质(安静稳重、反应慢、沉默寡言)、抑郁质(孤独、反应迟缓、多愁善感等)。 多血质 多血质的神经特点:感受性低;耐受性高;不随意反应性强;具有可塑性;情绪兴奋性高;反应速度快而灵活。 多血质的心理特点:活泼好动,善于交际;思维敏捷;容易接受新鲜事物;情绪情感容易产生也容易变化和消失,容易外露;体验不深刻等。 多血质的典型表现:多血质又称活泼型,敏捷好动,善于交际,在新的环境里不感到拘束。在工作学习上富有精力而效率高,表现出机敏的工作能力,善于适应环境变化。在集体中精神愉快,朝气蓬勃,愿意从事合乎实际的事业,能对事业心向神往,能迅速地把握新事物,在有充分自制能力和纪律性的情况下,会表现出巨大的积极性。兴趣广泛,但情感易变,如果事业上不顺利,热情可能消失,其速度与投身事业一样迅速。从事多样化的工作往往成绩卓越。 多血质合适的职业:导游、推销员、节目主持人、演讲者、外事接待人员、演员、市场调查员、监督员等等。 粘液质 粘液质的神经特点:感受性低;耐受性高;不随意反应低;外部表现少;情绪具有稳定性;反应速度慢但灵活。 粘液质的心理特点:稳重,考虑问题全面;安静,沉默,善于克制自己;善于忍耐。情绪不易外露;注意力稳定而不容易转移,外部动作少而缓慢。 粘液质的典型表现:这种人又称为安静型,在生活中是一个坚持而稳健的辛勤工作者。由于这些人具有与兴奋过程向均衡的强的抑制,所以行动缓慢而沉着,

白居易题王处士郊居赏析翻译

题王处士郊居 唐代 半依云渚半依山,爱此令人不欲还。负郭田园九八顷, 向阳茅屋两三间。寒松纵老风标在,野鹤虽饥饮啄闲。 一卧江村来早晚,著书盈帙鬓毛斑。 这是一首兰于:的诗 翻译 赏析 个人作品 主题 题材集中是白居易讽喻诗的艺术特色之一。他一般只选择最典型的一件事,突出一个主题,“一吟悲一事”,主题非常明确。为使主题更明确传达给读者,或诗题下加小序点明主题,或“卒章显其志”突出主题。其次,白诗的艺术特色还表现在刻画人物上,他能抓住人物的特征,用白描方法勾勒出鲜明生动的人物形象。但白诗的诗意并不浅显,他常以浅白之句寄托讽喻之意,取得怵目惊心的艺术效果。《轻肥》一诗描写了内臣、大夫、将军们赴会的气概和席上酒食的丰盛,结句却写道:“是岁江南旱,衢州人食人”,这是一幅多么惨烈的情景。

闲适诗和讽喻诗是白居易特别看重的两类诗作,二者都具有尚实、尚俗、务尽的特点,但在内容和情调上却很不相同。讽喻诗志在“兼济”,与社会政治紧相兰联,多写得意激气烈;闲适诗则意在“独善”,“知足保和,吟玩性情” ,仍而 表现出淡泊平和、闲逸悠然的情调。 白居易的闲适诗在后代有很大影响,其浅切平易的语言风格、淡泊悠闲的意绪情调,都曾屡屡为人称道,但相比之下,这些诗中所表现的那种退避政治、知足保和的“闲适”思想,以及归趋佛老、效法陶渊明的生活态度,因与后世文人的心理较为吺吅,所以影响更为深远。如白居易有“相争两蜗角,所得一牛毛”、“蜗 牛角上争何事,石火光中寄此身”的诗句,而“后之使蜗角事悉稽之”。即以宋人所取名号论,“醉翁、迂叟、东坡之名,皆出于白乐天诗云”。宋人周必大指出:“本朝苏文忠公不轻许可,独敬爱乐天,屡形诗篇。盖其文章皆主辞达,而忠厚好施,刚直尽言,与人有情,于物无着,大略相似。谪居黄州,始号东坡,其原必起于乐天忠州之作也。”凡此种种,都展示出白居易及其诗的影响轨迹。 诗歌理论 白居易的思想,综吅儒、佛、道三家,以儒家思想为主导。孟子说的“达则兼济天下,穷则独善其身”是他终生遵循的信条。其“兼济”之志,以儒家仁政为主,也包括黄老之说、管萧之术和申韩之法;其“独善”之心,则吸取了老庄的知足、齐物、逍遥观念和佛家的“解脱”思想。二者大致以白氏被贬江州司马为界。白居易不仅留下近三千首诗,还提出一整奖诗歌理论。他把诗比作果树,提出“根情、苗言、华声、实义”的观点,他认为“情”是诗歌的根本条件,“感人心者莫先乎情”,而情感的产生又是有感于事而系于时政。因此,诗歌创作不能离开现实,必须取材于现实生活中的各种事件,反映一个时代的社会政治状况。他继承了《诗经》以来的比兴美刺传统,重视诗歌的现实内容和社会作用。强调诗歌揭露、批评政治弊端的功能。他在诗歌表现方法上提出一系列原则。《与元九书》中他提出了著名的“文章吅为时而著,歌诗吅为事而作”的现实主义创作原则。

小说鉴赏的基本常识

小说的基本常识 (一)小说的基本常识 1、小说是通过人物、情节和环境的具体描写来反映现实生活的一种文学体裁。人物、情节、环境是小说的三要素。 2、小说刻画人物形象的方法包括:语言描写、肖像描写、行动描写、心理描写和细节描写。 3、小说中的环境包括自然环境和社会环境。 4、小说的叙述方式包括顺叙、倒叙、插叙等。 (二)小说的特点 1、完整的故事情节 2、鲜明的人物形象 3、典型的环境 4、深刻的主题 5、精巧的构思 (三)高考命题要点 1.把握故事情节 2.揣摩人物形象 3.注意环境描写 4.概括主题内容 5.品味语言特色 6.分析写作技巧 一、小说情节的把握 把握好故事情节,是读懂小说的关键,是欣赏小说艺术特点的基础,也是整体感知文章的起点。命题者在为小说命题时,也必定以此为出发点,先从整体上设置理解文章内容的试题。 (一)高考中有关小说情节的命题指向 1、用一句话或简明的语句概括故事情节,或文中共写了哪几件事,请依次加以概括; 2、对某一情节的特点和作用进行分析; 3、对情节的高潮部分或结尾部分作用的理解; 4、小说在叙述故事情节过程中顺叙、倒叙、插叙等方法的使用; 5、哪一个情节最吸引你; 6、情节的合理性探究。(二)小说中情节的作用 1、交代人物活动的环境; 2、设置悬念,引起读者阅读的兴趣; 3、为后面的情节发展作铺垫或埋下伏笔; 4、照应前文; 5、线索或推动情节发展; 6、刻画人物性格; 7、表现主旨或深化主题。(三)情节安排的方式及作用 1、就全文来说有一波三折式。作用是引人入胜,扣人心弦,增强故事的戏剧性、可读性。 2、就开头结尾来说有首尾呼应式。作用是使结构紧密、完整。 3、就开头来说有倒叙式(把结局放到开头来写),如《祝福》,先写祥林嫂的死,然后再写祥林嫂是怎样一步步被封建礼教逼向死亡之地的。起到制造悬念的作用。 4、就结尾来说有戛然而止,留下空白式。此外,还有出人意料式、悲剧、喜剧式等。 5、贯穿情节的线索。可作线索的小说因素有:事、物、人、情、时间、空间,如《药》中的“人血馒头”、《故乡》中的“我”等。 (四)分析小说情节的入手方式: 1、抓住场面; 2、寻找线索; 3、理清小说的结构。 (五)分析小说情节时的注意事项 1、情节的发展变化是矛盾冲突发展的体现,分析小说的情节时必须抓住主要的矛盾冲突。 2、分析情节不是鉴赏小说的目的,而是手段,是为理解人物性格、把握小说主题服务的。所以,在分析情节的过程中,要随时注意体会它对人物性格的形成及对揭示小说主题的作用。 (六)情节安排的顺序及作用 1、顺叙:按时间(空间)顺序来写,情节发展脉络分明,层次清晰。

四种气质类型分析

学生气质类型分析 通过实验研究发现,神经系统的兴奋和抑制过程具有强度、平衡性、灵活性三种基本特性。根据这三种特性的差异组合,将人的高级神经活动分为四种类型,而这四种类型与古希腊医生希波克拉特的分类恰好相对应,高级神经活动类型是人的气质的生理基础。这两种类型相吻合,人的气质可分为四种典型的类型(胆汁质、多血质、粘液质、抑郁质)。 我国学者曾利用问卷调查法调查我国城乡儿童的气质分布情况,发现我国儿童的气质除了上述四种型典型的气质类外,还有相当部分的混合气质类型。在现实生活中,并不是每个人的气质都能归入上述某一典型的气质类型当中。除一半人具有某种气质类型的典型特征之外,有一半人都偏向于混合型,也就是说,他们较多地具有某一种质类类型的特点,同时又具有其它气质类型的一些特点。据《中国青少年气质分布与发展研究》课题组研究表明:四种典型气质类型的人数占一半稍多一点,而主要的混合型气质中以胆汁-多血质为最多,占12%-21%,多血-抑郁质为最少,占3%。 二、不同气质类型特征在人类生活中的意义 气质是人的心理活动的动力特征的总和,它是人们典型的、稳定的行为色彩。这些特点一般不受个人活动的目的、动机、内容等的影响。在人们生活中的意义主要表现为:(一)气质不决定人的智力水平和社会价值。人的气质本身没有好坏之分,每一种气质类型都具有容易使人形成积极的性格特征,也具有容易使人形成消极的性格特征的一面。 (二)气质特征是职业选择的依据之一。进行气质特征与职业之间的合理匹配,成了时代发展的自然要求,个体通过了解自己的气质特征,可以扬长避短,充分发挥自己的潜能和气质优势,克服自己气质特征中消极的一面。 (三)气质在教育工作中的意义 1、由于气质特点不同,同一种教学方法在不同学生身上产生的教育效果不同。这就要求真正做到“因材施教”。 2、气质有可塑性,教师可引导学生认识自己气质中积极的一面,帮助学生克服不同气质类型中的消极影响。使学生的潜力得到充分的发挥。 三、气质类型及教育措施 事实证明,对不同气质类型的学生采取不同的教育态度与策略,所产生的实际效果是不同的。 (一)胆汁质。这种气质类型的学生表现为精力旺盛,反应迅速,情感体验强烈,情绪发生快而强,易冲动但平息也快,直率爽快,开朗热情,外向,但急躁易怒,往往缺乏自制力,有顽强的拼劲和果敢性,但缺乏耐心。概括起来,以精力旺盛,表里如一、刚强、易感情用事为主要特征,整个心理活动充满着迅速而突变的色彩。 对这种气质类型的人教育时,要注意加强在耐心、沉着和自制力等方面的心理修养。进行教育时,教师要先讲明道理,然后耐心说服,态度要平静、安详、严格,使其多干细致的事,并用时间来约束,以便磨练和培养耐心细致的习惯。要多进行检查和鼓励。及时提醒这部分学生注意控制自己的情绪,不能随便发脾气,防止任性、粗暴。注意培养其沉着、坚持到底的精神和有自制力的品质。 (二)多血质。这种气质类型的学生表现为活泼好动,反应迅速,行动敏捷、思维灵活;注意力易转移,情绪发生快而多变,易适应环境,喜欢交往,做事粗枝大叶,表情丰富、外向,易动感情且体验不深,往往不求甚解,华而不实,粗枝大叶为特征。

医科达Precise型直线加速器真空故障维修研究

医科达Precise型直线加速器真空故障维修研究 发表时间:2019-07-18T12:42:30.247Z 来源:《科技尚品》2018年第10期作者:丁春江冯惠华戴晓敏梁兵梁卫聪 [导读] 随着我国科学技术的发展,医学设备也在不断的增加,而医科达Precise型直线加速器作为医院重要的医学设备,提高对其的故障检修是其中的重点和关键,本文从医科达加速器的概述、真空系统的组成以及医科达Precise型直线加速器真空故障维修等方面进行简要的分析和研究,进而为研究故障出现的原因和因素,针对其因素采取相应的解决方式,进而保障其加速器的正常运行。 开平市中心医院放疗中心 前言 在医院的临床手术中,医科达Precise型直线加速器是其中的重要设备,它的作用是避免加速管内放电击穿,防止电子枪阴极中毒,即钨丝材料的热子或灯丝氧化,减少电子与残余气体杂质的碰撞损失,因此,对医科达Precise型直线加速器真空系统的故障进行排除是其中的重要工作,在故障的排除中,要加强对原因的分析,并对故障进行科学的检修,进而保障加速器的正常使用。 1.医科达加速器的概述 1.1特点 在进行医科达加速器的真空系统的维修中,要先对医科达加速器进行熟悉和了解,通过对其结构和特征的熟悉,能够更加针对的预测其故障发生,其主要有以下几个特点: 首先,其加速器在使用的过程中可以避免加速管内放电击穿,进而提高加速器的使用效率,故此,该加速器具有较大的优势。 其次,在医院的使用中,医科达加速器可以避免出现钨丝材料灯丝或者热子氧化的问题,同时防止电子枪的阴极出现中毒的问题。 最后,医科达加速器能够有效降低电子和残余气体发生碰撞的概率,避免造成势能损失。 由此可见该直线加速器在医院的使用中能够提高其使用效率,并为医院的手术等提供高效率的使用,保障手术的正常进行。 1.2结构 在对医科达Precise型直线加速器进行分析中,要先对其结构进行熟悉,医科达Precise直线加速器是行波加速,用的是可拆卸密封的行渡加速管,其结构示意图如下: 从上图中可以看出,医科达Precise直线加速器的结构较为复杂,在进行故障的维修过程中,呀针对其结构进行故障分析,进而得出故障所在。故此,要加强对医科达直线加速器的结构分析,进而提高维修效率。 2.真空系统 在医科达Precise型直线加速器真空系统中,要对真空系统进行分析,其加速器的真空系统构成较为复杂,在进行故障的分析中,可以借助科学技术和信息技术对医科达直线加速器的真空系统进行检测,进而对其故障因素进行分析,进而保障真空系统的安稳运行,同时,加速器对真空的检测主要是通过对离子泵的工作电流的检测换算过来的,真空监测主要是加速器可以对真空度、真空联锁以及真空电路进行监测,在监测的过程中可以对加速器的情况进行观察。 3.医科达Precise型直线加速器真空故障维修 3.1故障表现 在对医科达Precise型直线加速器真空维修前要先对故障表现进行了解,进而能够快速的找到其故障所在。医科达加速器在使用的过程中,如果长时间的没有进行检修,其真空系统就会出现故障,进而影响加速器的使用,因此,在使用加速器要定期对其进行检修,医科达Precise直线加速器使用时起,如果在6MV电子线治疗模式时剂量不稳,同时低剂量联锁,治疗暂停,经常报Magnetron timer,其它电子线及X线治疗模式均正常,这时就是出现故障,需要对其加速器进行检修,这时,需要对加速器进行检修,故此,在医科达Precise型直线加速器使用过程中,要加强对其加速器故障的检测,如果一旦出现故障要及时进行处理,避免由于故障而影响其使用。 3.2故障分析和排除 在对医科达Precise型直线加速器的故障分析中,首先要先对其真空系统出现故障的因素进行分析,一般医科达直线加速器的真空故障有两个原因,其一是可能加速器的真空系统有泄漏点,该泄漏点导致真空系统出现故障,进而影响其正常使用,其二,可能加速器的 离子泵泵体故障损伤无法工作,这些是加速器真空系统可能出现故障的因素,通过对因素的分析进而对故障进行分析,在医科达工程师到达后,初步诊断为离子泵性能减退,通过测试,关闭枪端钛泵,靶端真空值上升,但是真空值还是未达到工作条件。再次判断为真空系统有泄漏点,在对故障分析完成之后,要对其可能出现的故障进行排除,找出真正出现故障的因素,在进行故障排除的过程中,针对一些可能出现的特殊故障要采取针对性的措施,进而进而提高故障排除的效率。 3.3故障处理 故障处理是加速器真空系统运行中的重要环节,在对医科达Precise型直线加速器真空系统的故障分析和排除之后,要对其故障进行处

心理学上的四种气质类型

分析四种典型的气质类型特点 什么气质类型的人适合从事什么职业,这是许多心理学专家一直研究的课题。下面无锡人才网张老师介绍一下四种典型的气质类型特点以及适合的职业,供毕业生择业时参考。 1.胆汁质型 胆汁质型属于热情、直率、外露、急躁的类型。其特点是,情绪高涨,抑制性差;日常生活中表现表现为积极热情,精力旺盛,坚韧不拔,快言快语;富于表情,喜欢新的活动和热闹场面,办事果断,性情直率;但易急躁,热情忽高忽低,办事粗心,有时刚愎自用、傲慢不恭。胆汁质型的人一般适合做导游、勘探工作者、推销员、节目主持人、外事接待员、演员等工作,他们适应热闹、繁杂的工作环境,而对长期安坐的细致工作很难胜任。 2.多血质型 多血质型属于活拨、好动、敏感的气质类型。其特点是,举止敏捷、姿态活拨;情绪色彩鲜明,具有较强的可塑性和外向性;语言表达能力、感染能力强,善于交际,感情外露但又显得粗心浮躁;办事多凭兴趣,富于幻想,缺乏忍耐力和毅力。多血质的人工作能力强,一般容易适应新环境,适应面较广泛,适合做政府及企事业单位管理工作、外事工作、公关工作、驾驶员、医生、律师、运动员、新闻工作者、演员、公安侦察员和服务员等,而不适合做过细的工作,单调机械的工作也很难胜任。 3.黏液质型

黏液质型属于稳重、自制、内向的类型。其特点是,情感不易变化和暴露,平素心平气和,不易激动,但一引起波动就变得强烈、稳固而深刻;他们说话慢且言语少,遇事谨慎,善于克制忍让,对工作埋头苦干,有耐久力,注意力不易转移;但往往不够灵活,容易固执拘谨。黏液质型的人一般适合当外科医生、法官、组织者、财会、统计和播音员等工作。 4.抑郁质型 抑郁质型的人感情细腻,做事小心谨慎,善于观察不到的微小细节,在团体中表现积极认真、努力向上、毫不懈怠,无论置身于何种岗位,只要担负了责任,就以所从事的工作为荣,努力解决困难,这是抑郁质型人的长处。抑郁质型的人适应能力差,易于疲劳,行动迟缓、羞涩、孤僻且不大合群,遇事不是单凭聪明去处理,而喜欢把自己所掌握的有关情况在头脑中组合、计算,确定方针,然后在这个范围内一个一个地去做,把问题处理好。他们一般较适合从事需要持久耐心、操作精细的工作,如实验研究、文献管理、财务出纳、化验分析、教育培训等工作,而不适合做需要与各色人物打交道、变化多端、大量消耗体力和脑力的工作。

医科达电子直线加速器技术参数(上海

医科达电子直线加速器技术参数 1、双模式的数字化加速器,提供宽范围的X线和电子线能量,充分满足放射治疗外照射的临床需要。 2、射线束能量:多能量可定制性:多至2档X射线能量(4~18MV)和6档电子线能量(4~20MeV) 3、主机性能及配置: (1)独特设计的滚筒式机架:高度可靠性和稳定性,开放的机架结构,便于维修,最低的等中心高度(124cm),最大的等中心到治疗头的净空间距离45cm。 (2)高效能的行波加速管:行波加速管二十年无条件保用,允许较低的电压梯度,对行波加速管的真空要求低,使电子枪等部件可快速拆卸并易于更换。 (3)大功率FasTraQ磁控管:专门的紧凑型微波功率源,5MW功率输出,具有快速调谐的能力,快速的束流切换特性<0.1秒,提供24个月的保用期。 (4)滑雪式偏转系统:完全的消色散系统,并维持射束的对称性,伺服控制的三极磁偏转系统,精确的靶点聚焦,极佳的半影。(5)可单独拆卸更换灯丝的电子枪:电子枪伺服系统反应快速,确保束流能量的精度。

(6)六通道开放式结构的电离室:最新型超薄壁陶瓷材料电离室,自动校正KTP(温度、湿度、气压),监测射线的剂量、对称性和平坦度,具有长期的高灵敏和高稳定性,适合精确的伺服控制射线束流,重复精度:+/-0.5%,线性精度:+/-1%,2-10MU时的线性精度对保证IMRT的放疗精度尤其重要,旋转(运动束流)投照时的稳定性:±1%,分辨率:0.1MU。 (7)运动系统:用于操纵治疗头、机架及病人床的运动,手控盒可操纵加速器的所有动作,治疗头上有四个控制钮,可操纵治疗头的所有运动,治疗床两边各有一个控制板,可操纵床的所有运动,所有运动都是无线调速。 (8)安全连锁系统:通过硬件限位和软件防碰撞二种方式,确保病人和操作人员的安全。 (9)真空系统:维持加速管和电子枪的真空状态,在加速器中有效使用离子泵,有助于减少能源消耗,保护环境,并维持高的开机率。(10)水冷系统(内循环):保证加速器的频率稳定,进而保证能量的稳定,用于加速器的热交换。 4、控制系统:全新的第三代全集成、全数字控制系统,确保更为平顺的流程工作方式,有效地提高治疗病人的周转率,基于Windows 平台的图形用户界面,易学习和使用,模块化软件结构,配置安装各

高考复习小说鉴赏有妙招课堂实录完美版

高考复习小说鉴赏有妙招课堂实录完美版 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高考复习小说鉴赏有妙招课堂实录 导入新课: 我们知道,多年来,散文在高考语文文学作品阅读中占据老大哥的位置,但是随着高考命题逐渐呈现出多元化趋势,小说也开始来分得一杯羹。 生:没有。 师:但是山东省并非按兵不动,它也有动作。请看大屏幕: 08年的山东考试说明:“了解诗歌、散文、小说、戏剧等文学体裁的基本特征及主要手法.” 09年的山东考试说明:“了解小说、散文、诗歌、戏剧等文学体裁的基本特征及主要手法”。 师:大家看出门道了吗? 生:把小说放到了最前面。 师:这说明什么? 生:可能要考小说。 师:英雄所见略同。我也有同感。再加上09年山东省并没有考小说,这样看来明年似乎是非考不行了。但是我们不怕!我们今天的历史使命就是来解决这个问题的!今天我要教给大家两个鉴赏小说的妙招。等你掌握了这两个妙招,你肯定会这样想:真怕他明年不考小说! 那么现在我要考考大家,小说三要素是什么? 生:人物、情节、环境。 师:我这两个妙招就是针对三要素设置的,请看教学目标: 1、明确小说环境描写的作用。 2、学会抓住细节分析人物形象人物形象。 环境是人物活动的广阔的大舞台。我们先看环境。 请大家看学案第一部分,为大家设置了三段环境描写,先请大家齐读前两段祝福的开头和结尾,要求声音洪亮,读出感情。 师生共同研讨祝福的开头和结尾: 《祝福》开头: 旧历的年底毕竟最像年底,村镇上不必说,就在天空中也显出将到新年的气象来。灰白色的沉重的晚云中间时时发出闪光,接着一声钝响,是送灶的爆竹;近处燃放的可就更强烈了,震耳的大音还没有息,空气里已经散满了幽微的火药

四种性格与四种气质

人根性四类分析 (2012-08-29 11:01:03) 标签:分类: 原文地址:作者: 人,按理性、感性、直率、优柔来分,可分为力量型(理性和直率)、完美型(理性和优柔)、和平型(感性和优柔)和活泼型(感性和直率)。 话说,一个人的部分性格是天生的。 以孩子为例: 大人带着小孩去逛街,小孩儿在商店里看到了自己喜欢的东西,于是就像让大人买给她/他。这时,大人便以自己钱带得不够为理由拒绝了孩子的要求。大家来猜一下,各种类型的小孩儿会如何表现呢 力量型:“你把钱包拿出来我看看,到底是不是没有钱……” 完美型:“我下次考100分,你就给我买吧……” 和平型:“好吧,那就不买了吧……” 活泼型:“不嘛不嘛!我就要买嘛……”又吵又闹地喊着…… 再以大人们的例子: 试想,在一次旅游中,各种类型的人会分别扮演什么角色呢 大家提议带台布去野餐,这是有一人自告奋勇地说:“这事情包在我身上。”然后到了第二天,他/她一拍脑袋,说到:“啊呀,不好意思,我忘记带了。。。”他/她就是活泼型的。 在路上有人晕车了,这时有一人拿出一包话梅分给大家吃,他/她就是和平型的。 当大家在路上迷路了,不知该往何处走时,有一人拿出一张地图,说:“往这边走。。。”他/她就是完美型的。 当大家难以抉择去哪一个景点时,站出来拍板的人就是力量型的。 总的来说:

力量型的比较有决断力,对别人要求严格,但未必对自己要求严格。 完美型的做事很有计划,皮夹子里的钱都是分类、按大小摆放的;对自己要求严格,对别人也会有要求。 和平型的善于倾听,但却很少跟别人表达自己真实的想法。 活泼型的天塌下来当被子盖,平时乐于组织活动,很健谈,最怕没人重视他们。 以上就是各种性格的人的概述。。。大家觉得哪一种性格的人最固执呢觉得自己更像哪一种性格的人呢 分析四种性格优劣: 1.活泼型的人,经常丢东西,经常再找东西,找新事物,只要要求一个大概, ----(反面的性格是完美型) 2.完美型,活的非常严肃,总在思考为什么,是四种性格中是最有毅力的,把东西放在固定的东西,他的东西很有条理。 活泼型(情绪波动快)和完美型(情绪波动慢)的人是很受情绪波动的。 3.力量型,(反面性格是和平型)工作狂,发好使令,宁愿做事情也不闲下来,让人感觉三头六臂,总给别人派活。 4.和平型,他们很少有大哭大悲的表情,他总是在观察是不是大家都在做。是冷静,低调的人,大多数人都喜欢向和平型人倾诉。 多数人都是有一种主导性格和附属性格。 大多数人都是互补型结婚。相吸引。大多数人不经意间流露出自己的个性。 和平型--沙僧,完美型---唐僧,活泼型--猪八戒,力量型---孙悟空。 每一种性格都有一种英雄本色。每个人都有有长处和劣势。 活泼型,能说会道。 完美型,反复思考别人说的。总是考虑万一,很悲观。容易钻牛角尖。 力量型,总是发好使令,很不慈悲,让人感觉很武断。他的高调,让人很难让人接受。 和平型,过头了会让人很闷。很在意别人的感觉。不愿表态,表面上很合群,但内在是很方的。 如何跟不同性格的人沟通

医科达直线加速器参数

Precise全数字直线加速器 双模式的数字化加速器,提供宽围的X线和电子线能量,充分满足放射治疗外照射的临床需要。 具有如下详述的特征和配置: 1.0 射线束能量 Precise数字化加速器具有无可匹敌的多能量可定制性:2档X射线能量(4~15MV)和9档电子线能量(4~22MeV) 2.0 Precise全数字直线加速器主机系统包含如下特性: 独特设计的滚筒式机架直线加速器 -由强劲的刚性结构带来的高度可靠性和稳定性 -开放的机架结构,便于维修,需维护的重要部件均分布在易于接近的位置 -最低的等中心高度(124cm),具有最优的临床可用性 -最大的等中心到治疗头的净空间距离45cm 高效能的行波加速管 -行波加速管二十年无条件保用 -允许较低的电压梯度,对行波加速管的真空要求低,使电子枪等部件可快速拆卸并易于更换 大功率FasTraQ磁控管: -专门的紧凑型微波功率源,5MW功率输出,具有快速调谐的能力 -快速的束流切换特性<0.1秒 -提供24个月的保用期 独有的滑雪式偏转系统: -完全的消色散系统,并维持射束的对称性 -伺服控制的三极磁偏转系统 -精确的靶点聚焦,极佳的半影 可单独拆卸更换灯丝的电子枪 -电子枪伺服系统反应快速,确保束流能量的精度 -易于更换,维护费用低 六通道开放式结构的电离室 -最新型超薄壁瓷材料电离室 -自动校正KTP(温度、湿度、气压),监测射线的剂量、对称性和平坦度 -具有长期的高灵敏和高稳定性,适合精确的伺服控制射线束流 -重复精度:+/-0.5% -线性精度:+/-1% -2-10MU时的线性精度对保证IMRT的放疗精度尤其重要 -旋转(运动束流)投照时的稳定性:±1% -分辨率:0.1MU 运动系统 -用于操纵治疗头、机架及病人床的运动 -手控盒可操纵加速器的所有动作

小说鉴赏方法

小说鉴赏方法: 小说的鉴赏必须要注意三点:(1)要了解小说所反映的社会背景,作者写作、 发表时的社会背景及作者的写作意图,在此基础上,领会小说所揭示的主题思想; (2)要认真分析人物形象,通过对有关描写方法的研究,剖析人物形象,理解典型环境中的典型性格,从而深入领会小说的思想和艺术; (3)要研究小说的故事情节、线索、结构是怎样为塑造形象、表达主题服务的。 第一、分析典型人物 分析人物可从以下几个方面入手 ①注意人物外貌特征的描写。如祥林嫂的外貌。 ②注意人物语言的个性化。如鲁四老爷的个性化语言,就反映出他伪善、冷酷、自私的性格特征。 ③注意人物的行动描写。如药里刽子手康大叔卖人血馒头的一系列动作,就刻画出他凶残、贪婪的丑恶形象。 ④注意人物的心理描写。如项链中对玛蒂尔德大段心理描写,就揭示了她小资产阶级的虚荣心。 ⑤刻画人物形象的方法。 第二、分析故事情节。

情节是叙事性文学作品中所描写的事件及其发展变化的过程,它由一系列具 有矛盾冲突的具体事件组成。 分析故事情节可从以下几个方面入手: ①理清结构。小说的情节大体由开端、发展、高潮、结局几部分构成,可以据此划分层次。 ②寻找线索。线索是情节发展中的脉胳,有时还是矛盾冲突的焦点。通过寻找线索,有利于掌握情节,有时也有利于抓住小说的矛盾冲突,便于把握主题。 ③抓住场面。情节由场面组成。有的小说情节复杂,有的小说情节不连贯, 在这种情况下,抓住场面分析就可以不受情节、结构的限制,直接掌握作品的中心事件和主要矛盾。 第三、分析典型环境。 ①典型环境是指文学作品中形成人物性格并驱使人物行动的生活场所,是一 定历史时代、社会现实及其发展趋势的具体体现。 ②典型环境是指文艺作品中典型人物所生活的形成其性格并驱使其行动的 特定环境。 典型环境主要是社会环境,也包括自然环境。 分析典型环境从以下方面入手: 第四、分析小说的社会作用 小说的社会作用分为认识作用、教育作用、美感作用。

四种气质类型比较典型的特征及表现

四种气质类型比较典型的特征及表现 一、胆汁质 胆汁质的人反应速度快,具有较高的反应性与主动性。这类人情感和行为动作产生得迅速而且强烈,有极明显的外部表现;性情开朗、热情,坦率,但脾气暴躁,好争论;情感易于冲动但不持久;精力旺盛,经常以极大的热情从事工作,但有时缺乏耐心;思维具有一定的灵活性,但对问题的理解具有粗枝大叶、不求甚解的倾向;意志坚强、果断勇敢,注意稳定而集中但难于转移;行动利落而又敏捷,说话速度快且声音洪亮。 二、多血质 多血质的人行动具有很高的反应性。这类人情感和行为动作发生得很快,变化得也快,但较为温和;易于产生情感,但体验不深,善于结交朋友,容易适应新的环境;语言具有表达力和感染力,姿态活泼,表情生动,有明显的外倾性特点;机智灵敏,思维灵活,但常表现出对问题不求甚解;注意与兴趣易于转移,不稳定;在意志力方面缺乏忍耐性,毅力不强。 三、黏液质 黏液质的人反应性低。情感和行为动作进行得迟缓、稳定、缺乏灵活性;这类人情绪不易发生,也不易外露,很少产生激情,遇到不愉快的事也不动声色;注意稳定、持久,但难于转移;思维灵活性较差,但比较细致,喜欢沉思;在意志力方面具有耐性,对自己的行为

有较大的自制力;态度持重,好沉默寡言,办事谨慎细致,从不鲁莽,但对新的工作较难适应,行为和情绪都表现出内倾性,可塑性差。 四、抑郁质 抑郁质的人有较高的感受性。这类人情感和行为动作进行得都相当缓慢,柔弱;情感容易产生,而且体验相当深刻,隐晦而不外露,易多愁善感;往往富于想象,聪明且观察力敏锐,善于观察他人观察不到的细微事物,敏感性高,思维深刻;在意志方面常表现出胆小怕事、优柔寡断,受到挫折后常心神不安,但对力所能及的工作表现出坚忍的精神;不善交往,较为孤僻,具有明显的内倾性。 以上介绍的是四种气质类型典型的表现。这四种人如果遇到相同的事情,其表现如何呢?苏联心理学家巧妙设计了“看戏迟到”的特定问题情境,对四种典型气质类型的人进行观察研究,结果发现,四种基本气质类型的观众,在面临同一情境时有截然不同的行为表现,气质使其心理活动染上了一种独特的色彩。 胆汁质的人面红耳赤地与检票员争吵起来,甚至企图推开检票员,冲过检票口,径直跑到自己的坐位上去,并且还会埋怨说,戏院时钟走得太快了。 多血质的人明白检票员不会放他进去,他不与检票员发生争吵,而是悄悄跑到楼上另寻一个适当的地方来看戏剧表演。 黏液质的人看到检票员不让他从检票口进去,便想反正第一场戏不太精彩,还是暂且到小卖部呆一会儿,待幕间休息再进去。

白居易讽喻诗中以植物为题诗

白居易讽喻诗中以植物为题诗 摘要:白居易曾将自己的诗歌分为讽喻、闲适、感伤和杂律四类。在 他的一百七十三首讽喻诗中,有一些是以植物为题材的诗歌。它们或 借植物来讽喻社会现状;或借植物喻古讽今;较多的则是以植物比喻 一类人。这些诗就艺术成就而言不算是上乘佳作,但它们给我们刻画 了当时形形色色的人物形象,是当时社会环境的一个缩影。 关键词:白居易讽喻诗植物 一、概述 白居易曾将自己的诗分成讽喻、闲适、感伤和杂律四大类。他给自己 的讽喻诗所下的概念,见于《与元九书》中:“自拾遗来,凡所适所感,关于美刺兴比者;又自武德讫元和,因事立题,题为新乐府者, 共一百五十首,谓之讽喻诗。”中国论文联盟编辑。 在白居易的一百七十三首讽喻诗中,有一部分是以植物为题目的。这 一类诗一共有二十三首。它们分别是:《云居寺孤桐》、《京兆府新 栽莲》、《白牡丹》、《紫藤》、《杏园中枣树》、《文柏床》、 《庐山桂》、《湓浦竹》、《东林寺白莲》、《答<桐花>》、《和<松树>》、《有木诗八首》、《涧底松》、《牡丹芳》、《隋堤柳》、 《草茫茫》。其中,《草茫茫》虽以植物为题,但只是以“草茫茫” 起兴,并非以之为题材。所以,在白居易的讽喻诗中,以植物为题材 的诗共有二十二首。在这二十二首诗中,以树为题材的有《云居寺孤桐》、《杏园中枣树》、《文柏床》、《庐山桂》、《湓浦竹》、 《和<松树>》、《有木诗八首》、《涧底松》、《隋堤柳》等十六首。剩下的六首则是以花藤为题。 二、分类 这二十二首诗,可以分为两类:一类以植物来讽喻一种社会现状;另 一类则是以植物来比喻一类人。

(一)以植物讽喻社会现状 以植物来讽喻社会现状的有两首——《牡丹芳》和《隋堤柳》。《牡 丹芳》从诗的开头到“浓姿贵彩信奇绝,杂卉乱花无比方。石竹金钱 何细碎,芙蓉芍药苦寻常”都是描写牡丹的国色天香;正因为如此,“遂使王公与卿士,游花冠盖日相望”;而这种现象,“三代以还文 胜质,人心重华不重实。重华直至牡丹芳,其来有渐非今日。”作者 所讽刺的,正是这种“重华不重实”的社会现状,他期望的是“少回 卿士爱花心,同似吾君忧稼穑”。民以食为天,农业是一个国家的根本,但是当时的上层社会却偏爱牡丹这种名贵花卉,且互相攀比;对 于农作物却毫不关心。诗中虽然有“元和天子忧农桑,恤下动天天降祥。去岁嘉禾生九穗,田中寂寞无人至。今年瑞麦分两岐,君心独喜 无人知”,但若不是皇室也对牡丹情有独钟,怎会有如此的社会影响。作者如此说,也只是为了能委婉地提出谏言,不要触了皇帝的逆鳞罢了。 《隋堤柳》和《牡丹芳》有所不同,与其说它是讽刺社会现状,不如 说是借古讽今。诗的最末句“后王何以鉴前王?请看隋堤亡国树”也 说明了这首诗的写作目的是借隋炀帝荒淫误国的旧事来告诫当朝皇帝 不要重蹈覆辙。试想,若是当时的皇帝在这方面做得很好,作者又何 必写下这首讽喻诗。所以说,它也从侧面反映了当时的社会状况,可 以与《牡丹芳》放在一类。 (二)以植物喻人 以植物来比喻人的则有二十首。根据这些植物所比喻的人的特征:贤者、小人和介于二者之间才干较为平庸的人,这些诗又可以分为三部分。 1.以植物喻贤者 以植物比喻贤者的诗有十一首:《云居寺孤桐》、《京兆府新栽莲》、《白牡丹》、《杏园中枣树》、《文柏床》、《庐山桂》、《湓浦竹》、《东林寺白莲》、《答<桐花>》、《和<松树>》、《涧底松》。

鉴赏小说的基本的方法

鉴赏小说的基本的方法 (一) 小说的基本常识 1、小说是通过人物、情节和环境的具体描写来反映现实生活的一种文学体裁。人物、情节、环境是小说的三要素。 2、小说刻画人物形象的方法包括:语言描写、肖像描写、行动描写、心理描写和细节描写。 3、小说中的环境包括自然环境和社会环境。 4、小说的叙述方式包括顺叙、倒叙、插叙等。 (二)小说的特点 1、完整的故事情节 2、鲜明的人物形象 3、典型的环境 4、深刻的主题 5、精巧的构思 (三)高考命题要点 1.把握故事情节 2.揣摩人物形象 3.注意环境描写 4.概括主题内容 5.品味语言特色 6.分析写作技巧 一、小说情节的把握 把握好故事情节,是读懂小说的关键,是欣赏小说艺术特点的基础,也是整体感知文章的起点。命题者在为小说命题时,也必定以此为出发点,先从整体上设置理解文章内容的试题。 (一)高考中有关小说情节的命题指向 1、用一句话或简明的语句概括故事情节,或文中共写了哪几件事,请依次加以概括; 2、对某一情节的特点和作用进行分析; 3、对情节的高潮部分或结尾部分作用的理解; 4、小说在叙述故事情节过程中顺叙、倒叙、插叙等方法的使用; 5、哪一个情节最吸引你; 6、情节的合理性探究。 (二)小说中情节的作用 1、交代人物活动的环境; 2、设置悬念,引起读者阅读的兴趣; 3、为后面的情节发展作铺垫或埋下伏笔; 4、照应前文; 5、线索或推动情节发展; 6、刻画人物性格; 7、表现主旨或深化主题。 (三)情节安排的方式及作用 1、就全文来说有一波三折式。作用是引人入胜,扣人心弦,增强故事的戏剧性、可读性。 2、就开头结尾来说有首尾呼应式。作用是使结构紧密、完整。 3、就开头来说有倒叙式(把结局放到开头来写),如《祝福》,先写祥林嫂的死,然后再写祥林嫂是怎样一步步被封建礼教逼向死亡之地的。起到制造悬念的作用。 4、就结尾来说有戛然而止,留下空白式。此外,还有出人意料式、悲剧、喜剧式等。 5、贯穿情节的线索。可作线索的小说因素有:事、物、人、情、时间、空间,如《药》中的“人血馒头”、《故乡》中的“我”等。 (四)分析小说情节的入手方式: 1、抓住场面; 2、寻找线索; 3、理清小说的结构。 (五)分析小说情节时的注意事项 1、情节的发展变化是矛盾冲突发展的体现,分析小说的情节时必须抓住主要的矛盾冲突。 2、分析情节不是鉴赏小说的目的,而是手段,是为理解人物性格、把握小说主题服务的。所以,在分析情节的过程中,要随时注意体会它对人物性格的形成及对揭示小说主题的作用。 (六)情节安排的顺序及作用

加速器相关英语缩略语定义(医科达)

加速器缩略语定义Abbreviation Definition ABCActive BreathingCoordinator主动呼吸协调器 ACBarm control board 臂控制板 AFCautomatic frequencycontrol 自动频率控制 AFDaxis filmdistance 轴向膜距 AIangiographicimage血管造影图像 ALARPas low as reasonablepracticable尽可能低 AmSiAmorphousSilicon 非晶硅 APSAutomatic PositioningSystem?自动定位系统? ASUassisted setup辅助设置 BCBendingCoarse弯曲粗 BEVbeam eyeview光束视角 BFBendingFine弯曲细度 BLDbeam limitingdevice限束装置 BLSbeam limitingsystem束流限制系统 BMPBitmap (imageformat)位图(图像格式) BOMbill ofmaterials材料单 CANcontroller area network控制器局域网 CATcustomer acceptancetests客户验收试验 CAXcentralaxis中央轴,中心轴 CBcircuitbreaker]断路器 CCcouchcontrol 床控制 CCPCAN calibrationprotocol CAN校准协议 CCTVclosed circuittelevision 闭路电视 CDcompactdisc CITP clients interface terminal panel (interface between Elekta product and client hardware)客户界面终端面板(Elekta产品与客户端硬件之间的接口) CMMcorrective maintenancemanual校正维护手册 CMUMClinical Mode User’s Manual 临床模式用户手册 CRPcommon referencepoint 公共参考点 CTComputerizedTomography计算机X射线断层

白居易题遗爱寺前溪松赏析翻译

题遗爱寺前溪松 唐代 偃亚长松树,侵临小石溪。静将流水对,高共远峰齐。 翠盖烟笼密,花幢雪压低。与僧清影坐,借鹤稳枝栖。 笔写形难似,琴偷韵易迷。暑天风槭槭,晴夜露凄凄。 独契依为舍,闲行绕作蹊。栋梁君莫采,留著伴幽栖。 这是一首关于:的诗 翻译 赏析 个人作品 主题 题材集中是白居易讽喻诗的艺术特色之一。他一般只选择最典型的一件事,突出一个主题,“一吟悲一事”,主题非常明确。为使主题更明确传达给读者,或诗题下加小序点明主题,或“卒章显其志”突出主题。其次,白诗的艺术特色还表现在刻画人物上,他能抓住人物的特征,用白描方法勾勒出鲜明生动的人物形象。但白诗的诗意并不浅显,他常以浅白之句寄托讽喻之意,取得怵目惊心的艺术效果。《轻肥》一诗描写了内臣、大夫、将军们赴会的气概和席上酒食的丰盛,结句却写道:“是岁江南旱,衢州人食人”,这是一幅多么惨烈的情景。

闲适诗和讽喻诗是白居易特别看重的两类诗作,二者都具有尚实、尚俗、务尽的特点,但在内容和情调上却很不相同。讽喻诗志在“兼济”,与社会政治紧相关联,多写得意激气烈;闲适诗则意在“独善”,“知足保和,吟玩性情” ,从而 表现出淡泊平和、闲逸悠然的情调。 白居易的闲适诗在后代有很大影响,其浅切平易的语言风格、淡泊悠闲的意绪情调,都曾屡屡为人称道,但相比之下,这些诗中所表现的那种退避政治、知足保和的“闲适”思想,以及归趋佛老、效法陶渊明的生活态度,因与后世文人的心理较为吻合,所以影响更为深远。如白居易有“相争两蜗角,所得一牛毛”、“蜗 牛角上争何事,石火光中寄此身”的诗句,而“后之使蜗角事悉稽之”。即以宋人所取名号论,“醉翁、迂叟、东坡之名,皆出于白乐天诗云”。宋人周必大指出:“本朝苏文忠公不轻许可,独敬爱乐天,屡形诗篇。盖其文章皆主辞达,而忠厚好施,刚直尽言,与人有情,于物无着,大略相似。谪居黄州,始号东坡,其原必起于乐天忠州之作也。”凡此种种,都展示出白居易及其诗的影响轨迹。 诗歌理论 白居易的思想,综合儒、佛、道三家,以儒家思想为主导。孟子说的“达则兼济天下,穷则独善其身”是他终生遵循的信条。其“兼济”之志,以儒家仁政为主,也包括黄老之说、管萧之术和申韩之法;其“独善”之心,则吸取了老庄的知足、齐物、逍遥观念和佛家的“解脱”思想。二者大致以白氏被贬江州司马为界。白居易不仅留下近三千首诗,还提出一整套诗歌理论。他把诗比作果树,提出“根情、苗言、华声、实义”的观点,他认为“情”是诗歌的根本条件,“感人心者莫先乎情”,而情感的产生又是有感于事而系于时政。因此,诗歌创作不能离开现实,必须取材于现实生活中的各种事件,反映一个时代的社会政治状况。他继承了《诗经》以来的比兴美刺传统,重视诗歌的现实内容和社会作用。强调诗歌揭露、批评政治弊端的功能。他在诗歌表现方法上提出一系列原则。《与元九书》中他提出了著名的“文章合为时而著,歌诗合为事而作”的现实主义创作原则。

相关文档
最新文档