高频课程设计 变容二极管调频电路设计

高频课程设计 变容二极管调频电路设计
高频课程设计 变容二极管调频电路设计

目录

1 设计摘要 (2)

2 设计原理图 (3)

3 调频电路工作原理 (4)

3.1 间接调频原理 (4)

3.2 直接调频原理 (4)

3.3变容二极管直接调频原理 (5)

4 电路各模块工作原理 (7)

4.1变容二极管工作原理 (7)

4.2 LC振荡电路工作原理 (8)

4.2.1 电容三端反馈振荡电路 (9)

4.2.2 电感三端反馈振荡电路 (10)

5 课题要求的实现 (11)

6 心得体会 (13)

7 参考文献 (14)

8 附录 (15)

1 设计摘要

调频电路具有抗干扰性能强、声音清晰等优点,获得了快速的发展。主要应用于调频广播、广播电视、通信及遥控。调频电台的频带通常大约是200~250kHz,其频带宽度是调幅电台的数十倍,便于传送高保真立体声信号。由于调幅波受到频带宽度的限制,在接收机中存在着通带宽度与干扰的矛盾,因此音频信号的频率局限于30~8000Hz的范围内。在调频时,可以将音频信号的频率范围扩大至30~15000Hz,使音频信号的频谱分量更为丰富,声音质量大为提高。

变容二极管调频电路是一种常用的直接调频电路,广泛应用于移动通信和自动频率微调系统。其优点是工作频率高,固有损耗小且线路简单,能获得较大的频偏,其缺点是中心频率稳定度较低。较之中频调制和倍频方法,这种方法的电路简单、性能良好、副波少、维修方便,是一种较先进的频率调制方案。

本课题载波由LC电容反馈三端振荡器组成主振回路,振荡频率有电路电感和电容决定,当受调制信号控制的变容二极管接入载波振荡器的振荡回路,则振荡频率受调制信号的控制,从而实现调频。

2 设计原理图

图2.1 原理图

3 调频电路工作原理

频率调制是对调制信号频谱进行非线性频率变换,而不是线性搬移,因而不能简单地用乘法器和滤波器来实现。实现调频的方法分为两大类:直接调频法和间接调频法。

3.1 间接调频原理

先将调制信号进行积分处理,然后用它控制载波的瞬时相位变化,从而实现间接控制载波的瞬时频率变化的方法,称为间接调频法。

根据前述调频与调相波之间的关系可知,调频波可看成将调制信号积分后的调相波。

这样,调相输出的信号相对积分后的调制信号而言是调相波,但对原调制信号而言则为调频波。这种实现调相的电路独立于高频载波振荡器以外,所以这种调频波突出的优点是载波中心频率的稳定性可以做得较高,但可能得到的最大频偏较小。

3.2 直接调频原理

用调制信号直接控制振荡器的瞬时频率变化的方法称为直接调频法。如果受控振荡器是产生正弦波的 LC 振荡器,则振荡频率主要取决于谐振回路的电感和电容。将受到调制信号控制的可变电抗与谐振回路连接,就可以使振荡频率按调制信号的规律变化,实现直接调频。

可变电抗器件的种类很多,其中应用最广的是变容二极管。作为电压控制的可变电容元件,它有工作频率高、损耗小和使用方便等优点。具有铁氧体磁芯的电感线圈,可以作为电流控制的可变电感元件。此外,

由场效应管或其它有源器件组成的电抗管电路,可以等效为可控电容或可控电感。

直接调频法原理简单,频偏较大,但中心频率不易稳定。在正弦振荡器中,若使可控电抗器连接于晶体振荡器中,可以提高频率稳定度,但频偏减小。

3.3变容二极管直接调频原理

变容二极管调频电路是有主振电路和调频电路构成,T为振荡管,C1、C2、C3、L1为主振回路,D为变容二极管,Cc为耦合电容隔离直流,C4为高频滤波电容,C5为耦合电容,Cb为旁路电容。R1、R2为变容二极管提供一个静态反偏电压,R3为隔离电阻,Rb1、Rb2、Re、Rc给三极管提供一个合适静态工作点。

设调制信号为uΩ(t)=UΩm cosΩt,加在二极管上的反向直流偏压为 VQ, VQ的取值应保证在未加调制信号时振荡器的振荡频率等于要求的载波频率,同时还应保证在调制信号uΩ(t)的变化范围内保持变容二极管在反向电压下工作。加在变容二极管上的控制电压为

ur (t)= VQ+ UΩm cosΩt 式(3-1)

根据式(3-1)可得,相应的变容二极管结电容变化规律为

(1)当调制信号电压uΩ(t)=0时,即为载波状态。此时ur (t)= VQ,对应的变容二极管结电容为CjQ

(2)当调制信号电压uΩ(t)=UΩm cosΩt时,对应的变容二极管的结电容与载波状态时变容二极管的结电容的关系是

令m= u Ω/(UD+VQ)为电容调制度,则可得

上式表示的是变容二极管的结电容与调制电压的关系。而变容二极管调频器的瞬时频率与调制电压的关系由振荡回路决定

无调制时,谐振回路的总电容为

Q C Q C Q C C C C C C ++=∑1;

CQ为静态工作点所对应的变容二极管节电压。

当有调制时,谐振回路的总电容为:

C ∑=Cj C Cj C C C C ++1;

这回路的总电容的变化量为:△C=C ∑-CQ ∑;频偏△C与△f 的关系:△f=1/2*f0*△C/ CQ ∑。

由变容二极管部分接入振荡器振荡回路的等效电路。调频特性取决于回路的总电容C ∑,而C ∑可以看成一个等效的变容二极管, C ∑随调制电压u Ω(t )的变化规律不仅决定于变容二极管的结电容Cj 随调制电压u Ω(t )的变化,而且还与C1和C2的大小有关。因为变容二极管部分接人振荡回路,其中心频率稳定度比全部接入振荡回路要高,但其最大频偏要减小。

4 电路各模块工作原理

4.1变容二极管工作原理

变容二极管又称可变电抗二极管"。是一种利用PN结电容(势垒电容)与其反向偏置电压Vr的依赖关系及原理制成的二极管。所用材料多为硅或砷化镓单晶,并采用外延工艺技术。反偏电压愈大,则结电容愈小。变容二极管具有与衬底材料电阻率有关的串联电阻。主要参量是:零偏结电容、零偏压优值、反向击穿电压、中心反向偏压、标称电容、电容变化范围(以皮法为单位)以及截止频率等,对于不同用途,应选用不同C和Vr特性的变容二极管,如有专用于谐振电路调谐的电调变容二极管、适用于参放的参放变容二极管以及用于固体功率源中倍频、移相的功率阶跃变容二极管等。

变容二极管是根据PN结的结电容随反向电压大小而变化的原理设计的一种二极管。它的极间结构、伏安特性与一般检波二极管没有多大差别。不同的是在加反向偏压时,变容二管呈现较大的结电容。这个结电容的大小能灵敏地随反向偏压而变化。正是利用了变容二极管这一特性,将变容二极管接到振荡器的振荡回路中,作为可控电容元件,则回路的电容量会随调制信号电压而变化,从而改变振荡频率,达到调频的目的。

已知,结电容 C j 与反向电压v R 存在如下关系:

图4.1.1变容二极管符号及电容公式

加到变容管上的反向电压,包括直流偏压 V 0 和调制信号电压 v W (t)= V W cos W t ,如图4.1.2所示,即

v R (t)= V 0 + V W cos W t

此外假定调制信号为单音频简谐信号。结电容在 v R (t) 的控制下随时间发生变化。

图4.1.2 用调制信号控制变容二极管结电容

把受到调制信号控制的变容二极管接入载波振荡器的振荡回路,则振荡频率亦受到调制信号的控制。适当选择变容二极管的特性和工作状态,可以使振荡频率的变化近似地与调制信号成线性关系。这样就实现了调频。

4.2 LC 振荡电路工作原理

LC 三点式振荡组成原理图如图4.2.1,其振荡频率f=LC 21

。当1X

图4.2.1 三点式振荡电路组成

和2X 为容性,3X 为感性时称为电容反馈振荡器,其中C=212

1C C C C ;当1X 和

2X 为感性,3X 为容性时称为电容反馈振荡器,其中 L=1L +2L 。当我们

相应变化电容值时就能使频率作出相应的变化,以达到调频的目的。

4.2.1 电容三端反馈振荡电路

图4.2.2电容三端反馈振荡电路交流电路

对于一个振荡器,当其负载阻抗及反馈系数F 已经确定的情况,静态工作点的位置对振荡器的起振以及稳定平衡状态(振幅大小,波形好

坏)有着直接的影响。要想起振,首先三极管应该工作在静态工作点。电路应选择合适的静态工作点的位置。

电容三端反馈振荡电路利用电容C3和C2作为分压器,该电路满足相位条件,选取合适时满足振幅起振条件,即:10>?F A ,该电路就可振荡。可得到振荡频率近似为

LC f g π21=

式中:C 是振荡回路的总电容。 该电路与电感三端反馈振荡电路相比,输出波形较好,波形更接近正弦波。适当地加大电路电容,就可减弱不稳定因素对振荡频率的影响,从而提高电路的稳定度。

这种振荡电路的特点是振荡频率可做得较高,一般可达到100MHz 以上,由于C 3对高次谐波阻抗小,使反馈电压中的高次谐波成分较小,因而振荡波形较好。电路的缺点是频率调节不便,这是因为调节电容来改变频率时,(既使C 1、C 2 采用双连可变电容)C 1与C 2也难于按比例变化,从而引起电路工作性能的不稳定。因此,该电路只适宜产生固定频率的振荡。

4.2.2 电感三端反馈振荡电路

图4.2.3电感三端反馈振荡电路等效交流电路

由于L1与L2之间有互感的存在,所以容易起振。其次改变回路电容来调整频率时,基本上不影响电路的反馈系数。

它的输出振荡波形较差,这是由于反馈电压取自电感的两端,而电感对高次谐波的阻抗较大,不能将它短路,从而使U f 中含有较多的谐波分量,因此,输出波形中也就含有较多的高次谐波。工作频率愈高,分布参数的影响也愈严重,甚至可能使F 减小到满不了起振条件。

电容三端反馈振荡电路利用电容L1和L2作为分压器,该电路满足相位条件,选取合适时满足振幅起振条件,即:10>?F A ,该电路就可振荡。可得到振荡频率近似为

LC f g π21=

式中:L=L1+L2+2M 是振荡回路的总电容。

5 课题要求的实现

该电路电源电压12V ,高频三极管3DG100,变容二极管ZCC1C(VQ=4V ,CQ=75PF ,Q 处的斜率Kc=△j/△v=12.5PF/V)。已知VQ=4V ,取R2=10K ,R1=20k,来稳定静态电压VQ 。隔离电压R3>>R1、R2,取R3=150k,令接入系数P=0.2,根据VQ 和P 值,P=Cc/(Cc+Cj),当VQ=4v 时,可得到Cc=20PF 。由于调制信号的频率几HZ ~几KHZ ,可取耦合电容C5=4.7uf,高频扼流圈L2=47uH 。高频旁路电容C4对调制信号成高阻抗,取C4=5100PF 。为稳定三极管的静态稳定点,取Rb1=60K ,Rb2=20K ,Rc=3K ,Re=2k ,旁路电容Cb=50uF 。

变容二极管部分接人振荡回路,其中心频率稳定度比全部接入振荡回路要高,但其最大频偏要减小。

图5.1变容二极管部分接人振荡回路

该电路为了减少结电容对回路振荡频率的影响,C2和C3常取值较大,C1<

121LC f g π=(公式5.1) 主振频率F0=5MHZ,取C2/C3=1/2,取C2=510PF ,则C3=1100P F ,取C1=15PF ,由公式5.1的取L1=66.7uH 。

最大的频偏△f=10KHZ ,由公式o C C

C C C p +=和C Co p p k 2**=得

K=0.05,由△f1=KA1.f0得A1=0.04,2CC1C 为突变结变容二极管,r=1/2;则A1=1/16*m*(8+3/4m*m),得m=2A1=0.08;A0=1/16*m*m,则中心频偏△f0=KA0.f0=62.5HZ ;则频率稳定度△f0/f0=62.5/5M=1.24*10-5<5*10-4,满足频率稳定度得要求。

调节三极管的稳定度和电阻参数,可使三极管的放大输出电压V0>=1V 。

6 心得体会

通过学习高频电子线路这门课程,使我能综合运用电工技术,高频电子技术课程中的所学到的理论知识来完成设计和分析电路,熟悉了工程实践中高频电子电路的设计方法和规范,达到综合应用电子技术的目的。学会了文件检索和查找数据手册的能力。学会了应用protel软件的使用。还学会了整理和总结设计文档报告。学到很多东西,但就我个人感觉而言,学到的东西,对我后面一年的学习有重要的指导作用,不敢说以后,但在毕业前的这段时间内,这次学习对我的确很重要。

学到了如何务实,如何去学一门技术,同时也知道了如何学习,什么才是学习。这次设计,使我由理论学习向实际生产的方向更近了一步。让我对自己所学的专业有了更加清晰的理解,也对自己现在的专业技术水平有了更加明确的理解。这次的设计中,我体验到了一名专业电子设计工程师设计产品的各个过程,让我对自己的未来的职业定位有了充分的心里准备。总而言之,此次课程设计让我感到受益匪浅。

同时我认为我们的工作是一个团队的工作,团队需要个人,个人也离不开团队,必须发扬团结协作的精神。某个元素的离群都可能导致整项工作的失败。设计中只靠一个人知道的是远远不够的,我们要综合运用各项知识。才能适应发展。

回顾起此次高频课程设计,至今我仍感慨颇多,在整整一星期的日子里,可以说得是苦多于甜,但是可以学到很多很多的的东西,同时不仅可以巩固了以前所学过的知识,而且学到了很多在书本上所没有学到过的知识。通过这次课程设计使我懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,

从理论中得出结论,才能真正为社会服务,从而提高自己的实际动手能力和独立思考的能力。在设计的过程中遇到问题,可以说得是困难重重,我毕竟不是专家级的,难免会遇到过各种各样的问题,同时在设计的过程中发现了自己的不足之处,对以前所学过的知识理解得不够深刻,掌握得不够牢固,

通过对高频电路的学习,了解了现实社会中的某些东西的运用都是通过运行才实现的。在此次课程设计过程中,我们解决了一些主要问题,以便能解决实际问题,也通过老师的指导顺利的完成了课程设计。在以后的实验过程中,我会克服更多的困难,去学习,以便进行实践。

这次课程设计终于顺利完成了,在设计中遇到了很多问题,最后在同学和老师的辛勤指导下,终于游逆而解。同时,在老师的身上我学到很多实用的知识,在此我表示感谢!在本次高频设计的过程中,老师们给了我很大的指导和帮助。不仅使我在规定的时间内完成了系统的设计,同时还使我学到了很多有益的经验。在此,我谨向他们表示最衷心的感谢。

很感激学院让我们有这次学习的机会,这次学习对于我们没有真正实践经验的同学来说,绝对是一次成长的机会。

7 参考文献

[1] 李银华.电子线路设计指导.北京航空航天大学出版社,2005.6

[2] 谢嘉奎,宣月清,冯军.电子线路.高等教育出版社,2000.5

[3] 张肃文.高频电子线路.第五版高等教育出版社,2004.11

[4] 谢自美.电子线路设计.实验.测试华中科技大学出版社,2003.10

[5] 胡宴如.高频电子线路.北京:高等教育出版社,1993.5

8 附录

附表一元件清单

电容:

1 47u C5

1 510P C

2 1 15P C1 1 1100P C

3 1 5100P C4

1 50u Cb

色环电阻:

1 47K R1

1 10K R2

1 150K R3

1 20K Rb2

1 60K Rb1

1 3K Re

1 2K Rc

色环电感:

1 66.7uH L1 1 47uH L2

变容二极管:

1 ZCC1C D1 三极管:

1 3DG100 T1

变容二极管调频课程设计..

成绩评定表

课程设计任务书

目录 摘要 (4) 1.引言 (5) 2. Protel 99 SE 简介 (6) 3.实验步骤 (7) 3.1 Protel 99 SE 绘图环境设置 (7) 3.1.1新建一个设计库 (7) 3.1.2添加元件库 (10) 3.2绘制原理图 (12) 3.2.1选取元件 (12) 3.2.2摆放元件 (13) 3.2.3元件连接 (13) 3.2.4放置输入/输出点 (14) 3.2.5更改元件属性 (15) 3.2.6 ERC(电气规则检查) (16) 3.3 PCB制图 (16) 3.3.1自动生成PCB文件 (16) 3.3.2自动布线 (18) 3.4仿真应用 (20) 4.课设总结 (22) 5.参考文献 (22)

摘要 本次课设的要求和目的是掌握Protel的应用。本文以Protel99SE为例,详细具体地介绍这个软件的用法与应用。文章首先介绍了Protel99SE基本知识,然后提出需用该软件解决的实际问题,结合实际问题一步步介绍Protel99SE的用法,如:基础原理图设计,印制电路板基础,PCB元件的制作,电路仿真分析,综合案例演练等。接着分析应用Protel99SE软件的过程中可能遇到的问题及一些应对方法。课设最后进行总结,检查课设的完整性和彻底性,检验自己对Protel99SE软件的掌握程度及应用情况。

Protel 99 SE应用课程设计 ——变容二极管的调频电路 1·引言 人类社会已进入到高度发达的信息化社会,信息社会的发展离不开电子产品的进步。现代电子产品在性能提高、复杂度增大的同时,价格却一直呈下降趋势,而且产品更新换代的步伐也越来越快,实现这种进步的主要原因就是生产制造技术和电子设计技术的发展。前者以微细加工技术为代表,目前已进展到深亚微米阶段,可以在几平方厘米的芯片上集成数千万个晶体管;后者的核心就是EDA技术。EDA是指以计算机为工作平台,融合了应用电子技术、计算机技术、智能化技术最新成果而研制成的电子CAD通用软件包,主要能辅助进行三方面的设计工作:IC设计,电子电路设计以及PCB设计。其中最基本也是最常用的是以PCB设计为目的的电路设计、仿真和验证技术。 PCB设计业界称为电子装联设计。从最近两年的统计数据来看,中国大陆的电子装联产品占世界市场份额第一。Protel软件最成功的地方就是其PCB设计功能。其中Protel 99 SE 版本在PCB设计方面已经比较成熟,价廉物美、容易上手、功能满足基本需求,这是用户选择它的真正原因。

高频电子线路实验报告变容二极管调频

太原理工大学现代科技学院高频电子线路课程实验报告 专业班级测控1001班 学号 姓名 指导教师

实验四 变容二极管调频 一、实验目的 1、掌握变容二极管调频的工作原理; 2、学会测量变容二极管的Cj ~V 特性曲线; 3、学会测量调频信号的频偏及调制灵敏度。 二、实验仪器 1、双踪示波器一台 2、频率特性扫频仪(选项)一台 三、实验原理与线路 1、实验原理 (1)变容二极管调频原理 所谓调频,就是把要传送的信息(例如语言、音乐)作为调制信号去控制载波(高频振荡信号)的瞬 时频率,使其按调制信号的规律变化。 设调制信号:()t V t Ω=ΩΩcos υ ,载波振荡电压为:()t A t a o o ωcos = 根据定义,调频时载波的瞬时频率()t ω随()t Ωυ成线性变化,即 ()t t V K t o f o Ω?+=Ω+=Ωcos cos ωωωω (6-1) 则调频波的数字表达式如下: ()??? ? ?? ΩΩ+=Ωt V K t A t a f o o f sin cos ω 或 ()() t m t A t a f o o f Ω+=sin cos ω (6-2) 式中:Ω=?V K f ω 是调频波瞬时频率的最大偏移,简称频偏,它与调制信号的振幅成正比。比例常 数Kf 亦称调制灵敏度,代表单位调制电压所产生的频偏。 式中:F f V K m f f ?=Ω?=Ω=Ωω称为调频指数,是调频瞬时相位的最大偏移,它的大小反映了 调制深度。由上公式可见,调频波是一等幅的疏密波,可以用示波器观察其波形。 如何产生调频信号?最简便、最常用的方法是利用变容二极管的特性直接产生调频波,其原理电路 图6—1所示。

常用变容二极管

常用变容二极管 变容二极管(Varactors ),又称为电压调谐电容(Voltage variable Capactors ,VVC )或调谐二极管(Tuning Diodes ),当在二极管两端加上反向偏压时,会产生电容效应,通常变容二极管的电容量,随反向偏压增大而减小。变容二极管优点主要表现在:(1)体型小巧易于安装;(2)易于实现自动电子调谐(Auto Electronic Tuning ),方便遥控的电子调谐器的设计。如今的电视系统或通信系统中的频道选择及呼叫等电路,基本上都由变容二极管完成。 1、 变容二极管工作原理 变容二极管的等效电路如图1(a )所示。 图1 (a )变容二极管的等效电路 (b )变容二极管的简化等效电路 其中,R p ——反向偏压的结电阻(Junction Resistance ); 's L ——外部引线电感; s L ——内部引线电感; c C ——封装电容; s R ——二极管体电阻; j C ——结电容。 通常,等效电路中的电感与封装电容等都可略去不计,简化后的等效电路如图1(b )所示。一般地,变容二极管与外加电压的关系可表示为 (1) j j D C C v V γ = - (1) j C 为变容二极管的结电容,0j C 为变容管加零偏压时的结电容;V D 为变容管PN 结内建 电位差(硅管V D =0.7V ,锗管V D =0.3V );γ为变容二极管的电容变化指数,与频偏的大小有关;v 为变容管两端所加的反向电压。在小频偏情况下,选γ=1的变容二极管可近似实现线性调频;在大频偏情况下,必须选γ=2的超突变结变容二极管,才能实现较好的线性调频。 变容二极管的j C v - 特性曲线如图2所示。当加入的反向电压为 cos Q Q m v V v V V t ΩΩ=+=+Ω时,设电路工作在线性调制状态,在静态工作点Q 处,可得曲线的斜率为/c k C V =??。

2 光电二级管特性

课程设计任务书 课程设计任务书

目录: 实验目的 (1) 实验内容 (1) 实验仪器 (1) 实验原理 (1) 注意事项 (4) 实验步骤 (5) 实验结果 (12) 实验总结 (15) 参考文献 (15)

光电二极管特性测试实验 一、实验目的 1、学习光电二极管的基本工作原理; 2、掌握光电二极管的基本特性参数及其测量方法,并完成对其光照灵敏度、伏安特性、时间响应特性和光谱响应特性的测量; 3、通过学习,能够对其他光伏器件有所了解。 二、实验内容 1、光电二极管暗电流测试实验 2、光电二极管伏安特性测试实验 3、光电二极管光照特性测试实验 4、光电二极管时间特性测试实验 5、光电二极管光谱特性测试实验 三、实验仪器 1、光电二极管综合实验仪 1个 2、光通路组件 1套 3、光照度计 1个 4、电源线 1根 5、2#迭插头对(红色,50cm) 10根 6、2#迭插头对(黑色,50cm) 10根 7、三相电源线 1根 8、实验指导书 1本 四、实验原理 1、概述 随着光电子技术的发发展,光电检测在灵敏度、光谱响应范围及频率我等技术方面要求越来越高,为此,近年来出现了许多性能优良的光伏检测器,如硅锗光电二极管、PIN光电二极管和雪崩光电二极管(APD)等。光敏晶体管通常指光电二极管和光电三极管,通常又称光敏二极管和三敏三极管。 光敏二极管的种类很多,就材料来分,有锗、硅制作的光敏二极管,也有III-V族化合物及其他化合物制作的二极管。从结构我来分,有PN结、PIN结、异质结、肖特基势垒及点接触型等。从对光的响应来分,有用于紫外光、红外光等种类。不同种类的光敏二极管,具胡不同的光电特性和检测性能。例如,锗光敏二极管与硅光敏二极管相比,它在红外光区域有很大的灵敏度,如图所示。这是由于锗材料的禁带宽度较硅小,它的本征吸收限处于红外区域,因此在近红外光区域应用;再一方面,锗光敏二极管有较大的电流输出,但它比硅光敏二极管有较大的反向暗电流,因此,它的噪声较大。又如,PIN型或雪崩型光敏二极管与扩散型PN结光敏二极管相比具有很短的时间响应。因此,在使用光敏二极管进要了解其类型及性能是非常重要的。 光敏二极管和光电池一样,其基本结构也是一个PN结。与光电池相比,它的突出特点是结面积小,因此它的频率特性非常好。光生电动势与光电池相同,

(整理)常用变容二极管

常用变容二极管变容二极管(Varactors ),又称为电压调谐电容(Voltage variable Capactors ,VVC )或调谐二极管(Tuning Diodes ),当在二极管两端加上反向偏压时,会产生电容效应,通常变容二极管的电容量,随反向偏压增大而减小。变容二极管优点主要表现在:(1)体型小巧易于安装;(2)易于实现自动电子调谐(Auto Electronic Tuning ),方便遥控的电子调谐器的设计。如今的电视系统或通信系统中的频道选择及呼叫等电路,基本上都由变容二极管完成。 1、 变容二极管工作原理 变容二极管的等效电路如图1(a )所示。 图1 (a )变容二极管的等效电路 (b )变容二极管的简化等效电路 其中,R p ——反向偏压的结电阻(Junction Resistance ); 's L ——外部引线电感; s L ——内部引线电感; c C ——封装电容; s R ——二极管体电阻; j C ——结电容。 通常,等效电路中的电感与封装电容等都可略去不计,简化后的等效电路如图1(b )所示。一般地,变容二极管与外加电压的关系可表示为 (1) j j D C C v V γ = - (1) j C 为变容二极管的结电容,0j C 为变容管加零偏压时的结电容;V D 为变容管PN 结内建 电位差(硅管V D =0.7V ,锗管V D =0.3V );γ为变容二极管的电容变化指数,与频偏的大小有关;v 为变容管两端所加的反向电压。在小频偏情况下,选γ=1的变容二极管可近似实现线性调频;在大频偏情况下,必须选γ=2的超突变结变容二极管,才能实现较好的线性调频。 变容二极管的j C v - 特性曲线如图2所示。当加入的反向电压为 cos Q Q m v V v V V t ΩΩ=+=+Ω时,设电路工作在线性调制状态,在静态工作点Q 处,可得曲线的斜率为/c k C V =??。

光电子技术课程设计-2014

光电子技术课程设计-2014

《光电子技术》课程设计 指导书

湖北汽车工业学院理学部光信息教研室 2009年5月

设计一、红外报警器 一、概述 红外报警器是利用在红外波段的光电探测器制 作的一种光电探测系统,它可以代替人看守或监视一定范围的场所,当有人或异物进入时,可发出声、光 或以其它方式进行报警,告诉它的主人出现了意外情况,以便采取应急措施。 常用的红外报警器,按其工作方式可分为主动式和被动式两种。 驱 动电 路 红 外 发 射 光 源 红外 探测 器及 偏置 放 大 及 处 理 报 警 电 路发射部分接收部分 图1-1 主动式红外报警器的原理框图图1-1是主动式红外报警器的原理框图。由红外光源发出的红外辐射被红外探测器接收,红外辐射信号变为电信号,经信号放大和处理电路后送报警电路。这种报警器实际上分成发送和接收两部分,分开放置。当没有人和物进入这两部分之间时,红外辐射没有被阻断,报警器处于一种状态,不报警;当有人或物进入这两部分之间时,红外辐射被阻挡,报警器立即翻转到另一种状态,即可发出报警信号。 报警电路放 大 及 处 理 红外 探测 器及 偏置 图1-2 被动式红外报警器的原理框图

被动式红外报警器的原理框图如图1-2所示,这种报警器实际上只有接收部分,当有人和物进入其监视范围内时,人或物体发出的红外辐射被相应的红外 探测器接收后,经过信号放大和处理,就会发出报警。 因此,在设计和选用红外报警器时,必须根据不同的应用场合,作出合理的选择。这种选择是多种因素综合考虑的结果,答案不是唯一的。 二、设计任务 设计一个主动式红外报警器,要求: 1、发射部分与接收部分之间距离为1米,当有人或物进入两者之间时,红外报警器发出报警信号(LED闪烁); 2、使用交流市电,但在停电时,报警器应能正常工作,即应有备用电源; 3、设计方案经济、实用、可靠。 三、设计步骤 1、查阅资料,进行调查。 2、复习有关课程内容,如光电子技术、电子技术基础等。 3、选择红外发光元件及接收元件。 4、设计发射部分电路。 5、设计接收部分电路。 6、在面包板上进行安装调试,应根据电路原理图画出元件布线图,再按图施工。 7、测试关键节点的电压波形,并作记录。 四、设计示例框图 要设计一个主动红外报警器,必须选择合适的红外发射二极管和光电二极管(或光电三极管),主要是使它们的发光波段与接收波段能够相互对应。 首先查阅光电器件手册,经多种因素考虑选择红外发射二极管SE301A,其发光波段在940nm附近,相应的接收器件选择PH302,其光谱响应曲线的峰值也在940nm附近,这样,发射与接收的光波是相对应的。

高频变容二极管调频器

深圳大学实验报告课程名称:通信电子线路 实验项目名称:变容二极管调频器学院:信息工程学院 专业: 指导教师: 报告人:学号:班级: 实验时间: 实验报告提交时间: 教务部制

实验目的与要求: 1.熟悉电子元器件和高频电子线路实验系统。 2.掌握用变容二极管调频振荡器实现FM的方法。 3.了解变容二极管串接电容的数值对FM波产生的影响。 4.理解静态调制特性、动态调制特性概念和测试方法。 方法、步骤: 1.实验准备 ⑴在箱体右下方插上实验板4。接通实验箱上电源开关,此时箱体上±12V、±5V电 源指示灯点亮。 ⑵把实验板4上变容二极管调频振荡器单元(简称调频器单元)的电源开关(K2) 拨到ON位置,就接通了+12V电源(相应指示灯亮),即可开始实验。 2.静态调制特性测量 输入IN端先不接音频信号,将频率计接到调频器单元OUT端的C点(在本单元最右 边中部)。调节W2使得BG2射极到地之间的电压为4V(即集电极电流I c0=1mA,因为 R7=1kΩ),此后应保持不变。 ⑴电容C3(=100pF)不接(开关K1置OFF)时的测量 调整W l使得振荡频率f0=6.5MHz(用频率计测量),用万用表测量此时A点(在调频 器单元最左边中部)电位值,填入表8.1中。然后重新调节电位器W l,使A点电位在0.5~ 8V范围内变化,并把相应的频率值填入表8.1。最后仍需将振荡频率调回到6.5MHz。 ⑵电容C3接入(开关K1置ON)时的测量:同上,将对应的频率填入表8.1。最后仍 需将振荡频率调回到6.5MHz。 ⑶调节W2以改变BG2级工作点电压,观测它对于调频器输出波形的影响。最后仍 需将BG2射极到地之间的电压调回到4V ⑷调节W3以改变输出(OUT)电压幅度,观测它对于调频器输出波形的影响。 表8.1 V A(V) 0.5 1 2 3 4 5 6 7 8 f0(MHz)不接C3 6.5 空格接入C3空格 6.5 3.动态调制特性测量 ⑴实验准备 ①先把相位鉴频器单元(简称鉴频器单元)中的+12V电源接通(开关K7置ON,相应指示灯亮),再把鉴频器单元电路中的K2、K3、K5置ON位置,K1、K4、K6置OFF 位置(此时三个固定电容C5、C9、C10接通,三个可变电容C4、C11、C12断开,从而鉴

变容二极管直接调频电路课程设计-精品

2014 ~2015学年第 1 学期 《高频电子线路》 课程设计 题目:变容二极管直接调频电路的设计 班级: 12电子信息工程(2)班 姓名: 指导教师: 电气工程系 2014年12月6日

1、任务书

摘要 调频电路具有抗干扰性能强、声音清晰等优点,获得了快速的发展。主要应用于调频广播、广播电视、通信及遥控。调频电台的频带通常大约是200~250kHz,其频带宽度是调幅电台的数十倍,便于传送高保真立体声信号。由于调幅波受到频带宽度的限制,在接收机中存在着通带宽度与干扰的矛盾,因此音频信号的频率局限于30~8000Hz的围。在调频时,可以将音频信号的频率围扩大至30~15000Hz,使音频信号的频谱分量更为丰富,声音质量大为提高。 变容二极管调频电路是一种常用的直接调频电路,广泛应用于移动通信和自动频率微调系统。其优点是工作频率高,固有损耗小且线路简单,能获得较大的频偏,其缺点是中心频率稳定度较低。较之中频调制和倍频方法,这种方法的电路简单、性能良好、副波少、维修方便,是一种较先进的频率调制方案。 本课题载波由LC电容反馈三端振荡器组成主振回路,振荡频率有电路电感和电容决定,当受调制信号控制的变容二极管接入载波振荡器的振荡回路,则振荡频率受调制信号的控制,从而实现调频。 关键字:变容二极管;直接调频;LC振荡电路。

目录 第一章设计思路 (1) 第二章调频电路工作原理 (2) 2.1 间接调频原理 (2) 2.2 直接调频原理 (2) 2.3 变容二极管直接调频原理 (2) 第三章电路设计 (5) 3.1 主振电路设计原理分析 (5) 3.2 变容二极管直接调频电路设计原理分析 (6) 第四章电路元器件参数设置 (8) 4.1 LC震荡电路直流参数设置 (8) 4.2 变容管调频电路参数设置 (8) 4.3 T2管参数设置 (8) 5.1 mulitisim11软件介绍 (9) 5.2 电路仿真 (9) 小结 (12) 附录一元器件清单 (13) 附录二参考文献 (14)

实验五FM调频波信调制

实验五 FM 调频波信号调制 一、仿真实验目的 (1)掌握变容二极管调频电路的原理。 (2)了解调频电路的调制特性及测量方法。 (3)观察调频波波形,观察调制信号振幅对频偏的影响。 (4)观察寄生调幅现象,了解其产生及消除的方法。 二、FM 调制原理(变容二极管调频电路) 调频即为载波的瞬时频率受调制信号的控制。许多中小功率的发射机都采用变容二极管直接调频技术,直接调频法即在工作于发射载频的LC 振荡回路上直接调频,具体采用的方法是用模拟基带信号控制振荡回路变容二极管的大小,使振荡器输出信号的瞬时频率随基带信号做线性变化。其频率的变化量与调制信号成线性关系。 变容二极管j C 通过耦合电容1C 并接在N LC 回路的两端,形成振荡回路总电容的一部分。因而,振荡回路的总电容C 为:j N C C C += 振荡频率为: ) (2121j N C C L LC f +==ππ 变容二极管是一种电抗可变的非线性元件,通过改变外加反向电压可以改变空间电荷区的宽度,从而改变势垒电容的大小。变容二极管在反向偏置直接调频电路中,不能工作于正向偏压区,必须加上一个大于调制信号振幅的反向直流偏压。 变容二极管调频产生的调频信号的调制指数较大,但载频稳定性较差。除了这种方法还可直接用锁相环产生调制指数较大,载频很稳定的调频信号。 三、仿真电路 变容二极管调频电路如图所示。该电路为一种针对克拉泼电路做的一种改进型电容三端式电路——西勒电路。变容二极管的结电容以部分接入的形式纳入在回路中。该高频等效电路未考虑负载电阻。 所以,振荡频率f 0=1/2πN LC 。西勒电路在分立元件系统或集成高频电路系统中均获得广泛的应用。 调频波:从示波器上看到的波形频率变化不明显,从频率计(XFC1)可看出频率不停变化。载波信号80kHz ,调制信号3kHz ,从示波器看不出明显的调频波频率的变化。调频广播载波频率范围是(88~108)MHz ,低频调制信号最高20kHz,从载波波形也看不出频率的变化。 FM 调频波信号调制电路图 FM 调频波信号波形图 四、实验步骤和测试内容 (1) 测试变容二极管的静态调制特性,即拿掉3V ,保留直流电压1V ,观察02=V 以及取其它值时振荡频率的变化,这时的振荡器属于压控振荡器。 (2)观察调频波波 形。 (3)观察调制 信号振幅对频偏的影响,观察寄生调幅现象。 五、实验报告要求

变容二极管模型

Varactor SPICE Models for RF VCO Applications APN1004 Varactor Equivalent Circuit Model Definitions A simplified equivalent circuit of varactor is shown in Figure 1. This varactor model is useful for RF VCO applications although it neglects some parasitic components often needed for higher frequency microwave applications, such as the distributed line package model and some capacitance due to ground proximity.For most RF VCO applications, to about 2.5 GHz, these parasitic components would not be important unless higher harmonics generated by the varactor affects performance of the VCO.In this case, a more detailed equivalent circuit model is needed.The technique used should be based on the varactor model extraction procedure from S-parameter data. A SPICE model, defined for the Libra IV environment, is shown in Figure 2, with the description of the parameters employed.It neglects the package capacitance, C P , its typical 0.10 pF value is absorbed within the junction capacitance C V . Application Note Parallel Capacitance Figure 1.Simplified Equivalent Circuit of Varactor Figure 2.Libra IV SPICE Model

光电子课程设计

光电子课程设计 一.课程设计目的: 1.学会用振荡电路设计发光管调制电源的方法; 2.了解微弱信号放大电路的设计思想; 3.熟悉集成运算放大器的各类性能参数; 4.了解带通滤波器从躁声中检出弱信号的方法; 5.学会多重反馈有源带通滤波器的设计步骤和参数计算; 6.练习如何进行光电信号检测系统的联调试验; 二. 课程设计简介: 主要采用了NE555定时器构成多谐振荡器电路,产生振荡信号,驱动砷化镓红外发光二极管HG412A ,并使用2CU2D 硅光敏二极管探测该红外信号,得到的微弱电流信号经低噪声集成运放LF353放大,再经运放uA741对放大后的信号滤波,信号中心频率为5KHz ,滤波后的信号送至光电报警电路。 当红外发光管与硅光敏二极管之间的区域被隔断时,报警电路部分的红灯亮。而当电路正常接受到5KHz 光脉冲时,发光二极管不亮,设计思路见下图 三.课程设计内容: 1.发光二极管调制电源设计 [1]设计要求: 利用LM555CN 为HG412A 砷化镓发光二极管的调制电源。电源调制频率在最小可调范围为3kHz~7KHz ,输出波形占空比为50%,且发光二极管的输出功率可以调节。 [2]工作原理: 输出端OUT 的高电平通过可变电阻R1对电容器U2充电,使U2逐渐升高到2VCC/3,输出端OUT 跳变为地电平,电容器U2又通过可变电阻R1向输出端OUT 放电,当U2下降到VCC/3时,输出端OUT 又变为高电平。电容器在VCC/3和2VCC/3之间充电和放电,输出端OUT 输出连续的矩形脉冲。由于充放电通道相同,所以输出的波形占空比为50%。 [3]计算过程: 充电时间T1=放电的时间T2: T1=T2=ln2*RC=0.7R 输出的电平的矩形脉冲的频为: f=1/(T1+T2)=1/(1.4RC )

变容二极管调频实验报告(高频电子线路实验报告)

变容二极管调频实验 一、实验目的 1、掌握变容二极管调频电路的原理。 2、了解调频调制特性及测量方法。 3、观察寄生调幅现象,了解其产生及消除的方法。 二、实验内容 1、测试变容二极管的静态调制特性。 2、观察调频波波形。 3、观察调制信号振幅时对频偏的影响。 4、观察寄生调幅现象。 三、实验仪器 1、信号源模块1块 2、频率计模块1块 3、 3 号板1块 4、双踪示波器1台 5、万用表1块 6、频偏仪(选用)1台 四、实验原理及电路 1、变容二极管工作原理 调频即为载波的瞬时频率受调制信号的控制。其频率的变化量与调制信号成线性关系。常用变容二极管实现调频。 变容二极管调频电路如图1所示。从P3处加入调制信号,使变容二极管的瞬时反向偏置电压在静态反向偏置电压的基础上按调制信号的规律变化,从而使振荡频率也随调制电压的规律变化,此时从P2处输出为调频波(FM)。C15为变容二级管的高频通路,L2为音频信号提供低频通路,L2可阻止外部的高频信号进入振荡回路。本电路中使用的是飞利浦公司的BB910型变容二极管,其电压-容值特性曲线见图12-4,从图中可以看出,在1到10V的区间内,变容二极管的容值可由35P到8P左右的变化。电压和容值成反比,也就是TP6的电平越高,振荡频率越高。

图2表示出了当变容二极管在低频简谐波调制信号作用情况下,电容和振荡频率的变化示意图。在(a )中,U 0是加到二极管的直流电压,当u =U 0时,电容值为C 0。u Ω是调制电压,当u Ω为正半周时,变容二极管负极电位升高,即反向偏压增大;变容二极管的电容减小;当u Ω为负半周时,变容二极管负极电位降低,即反向偏压减小,变容二极管的电容增大。在图(b )中,对应于静止状态,变容二极管的电容为C 0,此时振荡频率为f 0。 因为LC f π21= ,所以电容小时,振荡频率高,而电容大时,振荡频率低。从图(a ) 中可以看到,由于C-u 曲线的非线性,虽然调制电压是一个简谐波,但电容随时间的变化是非简谐波形,但是由于LC f π21= ,f 和C 的关系也是非线性。不难看出,C-u 和f-C 的 非线性关系起着抵消作用,即得到f-u 的关系趋于线性(见图(c ))。

电容三点式振荡器与变容二极管直接调频电路设计

咼频实验报告(二) --- 电容三点式振荡器与 变容二极管直接调频电路设计 组员 座位号16 __________________ i

实验时间__________ 周一上午 ________ 目录 一、实验目的 (3) 二、实验原理 (3) 2.1 电容三点式振荡器基本原理 (3) 2.2 变容二极管调频原理 (5) 2.3 寄生调制现象 (8) 2.4 主要性能参数及其测试方法 (9) 三、实验内容 (10) 四、实验参数设计 (11) 五、实验参数测试 (14) 六、思考题 (15) ii

实验目的 1. 掌握电容三点式LC 振荡电路的基本原理。 2. 掌握电容三点式LC 振荡电路的工程设计方法。 3. 了解高频电路中分布参数的影响及高频电路的测量方法。 4. 熟悉静态工作点、反馈系数、等效 Q 值对振荡器振荡幅度和频谱纯度的影响。 5. 掌握变容二极管调频电路基本原理、调频基本参数及特性曲线的测量方法。 实验原理 2.1电容三点式振荡器基本原理 电容三点式振荡器基本结构如图所示: 在谐振频率上,必有 X i + X 2 + X 3 =0,由于晶体管的 V b 与V c 反相,而根据振荡器的 振荡条件|T| = 1,要求V be = — V ce ,即i X i = i X 2,所以要求 X i 与X 2为同性质的电抗。 综合上述两个条件,可以得到晶体管 LC 振荡器的一般构成法则如下:在发射极上连 接的两个电抗为同性质电抗,另一个为异性质电抗。 原理电路如图3.2所示: 图3.2原理电路 共基极实际电路如图3.3所示: Xi ―I X 2 I — 图3.1电容三点式振荡器基本结构 C1 C2 图3.3共基极实际电路

传感器课程设计

传感器课程设计半导体吸收式光纤温度传感器

2010年12月30日 目录 序言 (3) 方案设计及论证 (4) 部件图纸 (6) 心得体会 (6)

主要参考文献 (7) 序言 1、简介 光纤温度传感器采用一种和光纤折射率相匹配的高分子温敏材料涂覆在二根熔接在一起的光纤外面,使光能由一根光纤输入该反射面出另一根光纤输出,由于这种新型温敏材料受温度影响,折射率发生变化,因此输出的光功率与温度呈函数关系。其物理本质是利用光纤中传输的光波的特征参量,如振幅、相位、偏振态、波长和模式等,对外界环境因素,如温度,压力,辐射等具有敏感特性。它属于非接触式测温。 2、特点

光纤传感器是一种新型传感器,它用光信号传感和传递被测量,具有动态范围大,频响宽,不受电磁干扰等优点。由于光纤可被拉至距测量点几十米以外,能使信号处理的电子线路远离干扰源,固而可较少受到空间电磁干扰。另外光纤传感器均为可控有源传感器,这使得在硬件和软件设计中可采用一些特殊手段来完成某些较复杂的功能。 3、现状 随着工业自动化程度的提高及连续生产规模的扩大, 对温度参数测量的快速性提出了更高的要求。目前, 普遍采用的热电偶很难实现对温度快速、准确地测量。这种接触式测量也难以保证温度场的原有特征, 易引起误差。在较高温度的测量中, 价格昂贵的金属热电偶必须接触被测高温物体, 所以损坏快, 增加了成本。光纤温度检测技术是近些年发展起来的一项新技术,由于光纤本身具有电绝缘性好、不受电磁干扰、无火花、能在易燃易爆的环境中使用等优点而越来越受到人们的重视,各种光纤温度传感器发展极为迅速。目前研究的光纤温度传感器主要利用相位调制、热辐射探测、荧光衰变、半导体吸收、光纤光栅等原理。其中半导体吸收式光纤温度传感器作为一种强度调制的传光型光纤传感器,除了具有光纤传感器的一般优点之外,还具有成本低、结构简单、可靠性高等优点,非常适合于输电设备和石油以及井下等现场的温度监测,近年来获得了广泛的研究 原理分析 1、本征吸收原理 当一定波长的光通过半导体材料时,主要引起的吸收是本征吸收,即电子从价带激发到导带引起的吸收。对直接跃迁型材料,能够引起这种吸收的光子能量hv必须大于或等于材料的禁带宽度Eg,即 式中,h为普朗克常数:v是频率。从式(1)可看出,本征吸收光谱在低频方向必然存在一个频率界限vg,当频率低于vg时不可能产生本征吸收。一定的频率vg对应一个特定的波长,λg=c/vg,称为本征吸收波长。 2、半导体测温原理 λ,半导体材料对信号光的透过率随温度变化,但对参考光的透过率不变。设信号光的透过率为()T 参考光的透过率为rλ。光纤定向耦合器的分光比为α,光纤传输损耗和探头与光纤的联接损耗为β。令

实验四 变容二极管调频

实验四变容二极管调频 一.实验目的 1、掌握变容二极管调频的工作原理。 2、学会测量静态特性曲线,理解动态特性的含义。 3、学会测量调频信号的频偏及调制灵敏度。 4、观察寄生调幅现象。 二.实验原理 1、变容二极管调频原理 所谓调频,就是把要传送的信息(例如语言、音乐)作为调制信号去控制载波(高频振荡)的瞬时频率,使其按调制信息的规律变化。 设调制信号:υΩ(t)= VΩcosΩt,载波振荡电压为:a ( t ) = A o cosωo t 根据定义,调频时载波的瞬时频率ω(t)随υΩ(t)成线性变化,即 ω(t)= ωo + K f VΩcosΩt =ωo + ΔωcosΩt (4-1) 则调频波的数字表达式如下: a f (t) = A o cos(ωo t+ ΩΩ V K f sinΩt) 或a f (t) = A o cos(ωo t+ m f sinΩt) (4-2) 式中:Δω= K f VΩ是调频波瞬时频率的最大偏移,简称频偏,它与调制信号的振幅成正比。比例常数K f亦称调制灵敏度,代表单位调制电压所产生的频偏。 式中:m f = K f VΩ/Ω= Δω/Ω =Δf / F 称为调频指数,是调频瞬时相位的最大偏移,它的大小反映了调制深度。如何产生调频信号?最简便、最常用的方法是利用变容二极管的特性直接产生调频波,其原理电路如图4-1所示。 图4-1 变容二极管调频原理电路 变容二极管C j通过耦合电容C1并接在LC N回路的两端,形成振荡回路总电容的一部分。因而,振荡回路的总电容C为: C = C N + C j(4-3) 加在变容二极管上的反向偏压为: V R = V Q(直流反偏)+υΩ(调制电压)+υo(高频振荡,可忽略)

变容二极管调频电路

摘要 调频广播具有抗干扰性能强、声音清晰等优点,获得了快速的发展。调频电台的频带通常大约是200~250kHz,其频带宽度是调幅电台的数十倍,便于传送高保真立体声信号。由于调幅波受到频带宽度的限制,在接收机中存在着通带宽度与干扰的矛盾,因此音频信号的频率局限于30~8000Hz的范围内。在调频时,可以将音频信号的频率范围扩大至30~15000Hz,使音频信号的频谱分量更为丰富,声音质量大为提高。 目前,变容二极管直接调频电路是目前应用最广泛的直接调频电路,它是利用变容二极管反向所呈现的可变电容特性实现调频的,具有工作频率高固有损耗小等特点。现有的对于调频电路的研究与仿真主要集中在锁相环电路,变容二极管直接调频电路研究较少,对于变容二极管静态调制特性的研究更是几乎无人涉及。 变容二极管为特殊二极管的一种。当外加顺向偏压时,有大量电流产生,PN(正负极)接面的耗尽区变窄,电容变大,产生扩散电容效应;当外加反向偏压时,则会产生过渡电容效应。但因加顺向偏压时会有漏电流的产生,所以在应用上均供给反向偏压。 在变容二极管直接调频电路中,变容二极管作为一压控电容接入到谐振回路中,有所学的正弦波振荡器章节中,我们知道振荡器的振荡频率由谐振回路的谐振频率决定。因此,当变容二极管的结电容随加到变容二极管上的电压变化时,由变容二极管的结电容和其他回路元件决定的谐振回路的谐振频率也就随之变化,若此时谐振回路的谐振频率与加到变容二极管上的调制信号呈线性关系,就完成了调频的功能,这也是变容二极管调频的原理。 关键词:LC振荡电路、变容二极管、调频

1.设计要求 (1)主振频率=8MHZ (2)频率稳定度/≤0.0005/h (3)主振级的输出电压 (4)最大频偏 (5)电源电压= 5V 2.电路原理分析 变容二极管为特殊二极管的一种。当外加顺向偏压时,有大量电流产生,PN(正负极)接面的耗尽区变窄,电容变大,产生扩散电容效应;当外加反向偏压时,则会产生过渡电容效应。但因加顺向偏压时会有漏电流的产生,所以在应用上均供给反向偏压。变容二极管直接调频电路由于变容二极管的电容变化范围大,因而工作频率变化就大,可以得到较大的频偏,且调制灵敏度高、固有损耗小、使用方便、构成的调频器电路简单。 在变容二极管直接调频电路中,变容二极管作为一压控电容接入到谐振回路中,有所学的正弦波振荡器章节中,我们知道振荡器的振荡频率由谐振回路的谐振频率决定。因此,党变容二极管的结电容随加到变容二极管上的电压变化时,由变容二极管的结电容和其他回路元件决定的谐振回路的谐振频率也就随之变化,若此时谐振回路的谐振频率与加到变容二极管上的调制信号呈线性关系,就完成了调频的功能,这也是变容二极管调频的原理。 3.电路设计 3.1 主振电路设计 本文中所用电路采用常见的电容三点式振荡电路实现LC振荡,简便易行。式中,L为LC振荡电路的总电感量,C为振荡电路中的总电容,主要取决于C3、C7、C8、Cc1及变容二极管反偏时的结电容Cj。,变容二极管电容Cj作为组成LC振荡电路的一部分,电容值会随加在其而端的电压的变化而变化,从而达到变频的目的。R4、R5、R6、R7和W2调节并设置电容三点式振荡器中T1管的静态工作点,R8、R9、R10调节并设置T2管的静态工作点,C7、C9、C10以及L4、

实验十三 变容二极管调频实验

实验十三变容二极管调频实验 一、实验目的 1.掌握变容二极管调频电路的原理。 2.了解调频调制特性及测量方法。 3.观察寄生调幅现象,了解其产生及消除的方法。 二、实验内容 1.测试变容二极管的静态调制特性。 2.观察调频波波形。 3.观察调制信号振幅时对频偏的影响。 4.观察寄生调幅现象。 三、实验原理及电路 1.变容二极管工作原理 调频即为载波的瞬时频率受调制信号的控制。其频率的变化量与调制信号成线性关系。常用变容二极管实现调频。 变容二极管调频电路如图13-1所示。从J2处加入调制信号,使变容二 图13-1 变容二极管调频 极管的瞬时反向偏置电压在静态反向偏置电压的基础上按调制信号的规律变化,从而使振荡频率也随调制电压的规律变化,此时从J1处输出为调频 70

71 f f

72 波(FM )。C 15为变容二级管的高频通路,L 1为音频信号提供低频通路,L 1和C 23又可阻止高频振荡进入调制信号源。 图13-2示出了当变容二极管在低频简谐波调制信号作用情况下,电容和振荡频率的变化示意图。在(a )中,U 0是加到二极管的直流电压,当u =U 0时,电容值为C 0。u Ω是调制电压,当u Ω为正半周时,变容二极管负极电位升高,即反向偏压增大;变容二极管的电容减小;当u Ω为负半周时,变容二极管负极电位降低,即反向偏压减小,变容二极管的电容增大。在图(b )中,对应于静止状态,变容二极管的电容为C 0,此时振荡频率为f 0。 因为LC f π21= ,所以电容小时,振荡频率高,而电容大时,振荡频率 低。从图(a )中可以看到,由于C-u 曲线的非线性,虽然调制电压是一个简谐波,但电容随时间的变化是非简谐波形,但是由于LC f π21= ,f 和C 的关系也是非线性。不难看出,C-u 和f-C 的非线性关系起着抵消作用,即得到f-u 的关系趋于线性(见图(c ))。 2. 变容二极管调频器获得线性调制的条件 设回路电感为L ,回路的电容是变容二极管的电容C (暂时不考虑杂散电容及其它与变容二极管相串联或并联电容的影响),则振荡频率为 LC f π21= 。为了获得线性调制,频率振荡应该与调制电压成线性关系, 用数学表示为Au f =,式中A 是一个常数。由以上二式可得 LC Au π21 = ,将上式两边平方并移项可得2 2 22)2(1-== Bu u LA C π,这即是变容二极管调频器获得线性调制的条件。这就是说,当电容C 与电压u 的平方成反比时,振荡频率就与调制电压成正比。 3. 调频灵敏度 调频灵敏度f S 定义为每单位调制电压所产生的频偏。 设回路电容的C-u 曲线可表示为n Bu C -=,式中B 为一管子结构即电路串、并固定电容有关的参数。将上式代入振荡频率的表示式LC f π21=中,可得

光电二极管的性能测试

北方民族大学 课程设计报告 院(部、中心)电气信息工程学院 姓名学号 专业测控技术与仪器班级测控技术与仪器101 同组人员 课程名称光电技术综合技能训练 设计题目名称光敏二极管的性能测试 起止时间 成绩 指导教师签名盛洪江 北方民族大学教务处制 摘要 随着光电子技术的发发展,光电检测在灵敏度、光谱响应范围及频率我等技术方面要求越来越高,为此,近年来出现了许多性能优良的光伏检测器,如硅锗光电二极管、PIN光电二极管和雪崩光电二极管(APD)等。光敏晶体管通常指光电二极管和光电三极管,通常又称光敏二极管和三敏三极管。 关键词:光敏二极管、ELVIS实验平台、LABView8.6、OSLO软件 引言 光敏二极管的种类很多,就材料来分,有锗、硅制作的光敏二极管,也有III-V族化合物及其他化合物制作的二极管。从结构我来分,有PN结、PIN结、异质结、肖特基势垒及点接触型等。从对光的响应来分,有用于紫外光、红外光等种类。不同种类的光敏二极管,具不同的光电特性和检测性能。 光敏二极管和光电池一样,其基本结构也是一个PN结。与光电池相比,它的突出特点是结面积小,因此它的频率特性非常好。光生电动势与光电池相同,但输出电流普遍比光电池小,一般为数微安到数十微安。按材料分,光敏二极管有硅、砷化铅光敏二极管等许多种,由于硅材料的暗电流温度系数较小,工艺较成熟,因此在实验际中使用最为广泛。

目录 摘要 1 引言 1 目录 2 光敏二极管 3 光电效应 4 光电导效应 4 光生伏特效应 4 光敏二极管的工作原理 5 光敏二极管 5 LabVIEW软件5 总结 6 附录7 程序设计原理图7 结果图8 实验连线9 光敏二极管 光敏二极管的种类很多,就材料来分,有锗、硅制作的光敏二极管,也有III-V族化合物及其他化合物制作的二极管。从结构我上来分,有PN结、PIN结、异质结、肖特基势垒及点接触型等。从对光的响应来分,有用于紫外光、红外光等种类。不同种类的光敏二极管,具胡不同的光电特性和检测性能。 光敏二极管的结构和普通二极管相似,只是它的PN结装在管壳顶部,光线通过透镜制成的窗口,可以集中照射在PN结上,图1(a)是其结构示意图。光敏二极管在电路中通常处于反向偏置状态,如图1(b)所示。 光电效应 光电导效应 若光照射到某些半导体材料上时,透过到材料内部的光子能量足够大,某些电子吸收光子的能量,从原来的束缚态变成导电的自由态,这时在外电场的作用下,流过半导体的电流会增大,即半导体的电导会增大,这种现象叫光电导效应。它是一种内光电效应。 光电导效应可分为本征型和杂质型两类。前者是指能量足够大的光子使电子离开价带跃入导带,价带中由于电子离开而产生空穴,在外电场作用下,电子和空穴参与电导,使电导增加。杂质型光电导效应则是能量足够大的光子使施主能级中的电子或受主能级中的空穴跃

变容二极管调频电路

变容二极管调频电路 实现调频的方法很多,大致可分为两类,一类是直接调频,另一类是间接调频。直接调频是用调制信号电压直接去控制自激振荡器的振荡频率(实质上是改变振荡器的定频元件),变容二极管调频便属于此类。间接调频则是利用频率和相位之间的关系,将调制信号进行适当处理(如积分)后,再对高频振荡进行调相,以达到调频的目的。两种调频法各有优缺点。间接调频器间接调频的优点是载波频率比较稳定,但电路较复杂,频移小,且寄生调幅较大,通常需多次倍频使频移增加。对调频器的基本要求是调频频移大,调频特性好,寄生调幅小。调频器广泛用于调频广播、电视伴音、微波通信、锁相电路和扫频仪等电子设备 直接调频的稳定性较差,但得到的频偏大,线路简单,故应用较广;间接调频稳定性较高,但不易获得较大的频偏。常用的变容二极管直接调频电路如图Z0916(a)所示。 图中D为变容二极管,C2、L1、和C3组成低通滤滤器,以保证调制信号顺利加到调频级上,同时也防止调制信号影响高频振荡回路,或高频信号反串入调制信号电路中。调制级本身由两组电源供电。

对高频振荡信号来说,L1可看作开路,电源EB的交流电位为零,R1与C3并联;如果将隔直电容C4近似看作短路,R2看作开路,则可得到 图(b)所示的高频等效电路。不难看出,它是一个电感三点式振荡电路。变容二极管D的结电容Cj,充当了振荡回路中的电抗元件之一。所以振荡频率取决于电感L2和变容二极 变容二极管的正极直流接地(L2对直流可视为短路),负极通过R1接+EB,使变容二极管获得一固定的反偏压,这一反偏压的大小与稳定,对调频信号的线性和中心频率的稳定性及精度,起着决定性作用。

相关文档
最新文档