化学气相沉积法

化学气相沉积法
化学气相沉积法

化学气相沉积法

摘要:本文从化学气相沉积法的概念出发,详细阐述了利用化学气相沉积法制备石墨烯以及薄膜,并展望了未来化学气相沉积法可能的发展方向。

关键词:化学气相沉积法;制备;应用

一、前言

近年来,各国科学工作者对化学气相沉积进行了大量的研究,并取得一定的显著成果。例如,从气态金属卤化物(主要是氯化物)还原化合沉积制取难熔化合物粉末及各种涂层(包括碳化物、硼化物、硅化物、氮化物)的方法。其中化学沉积碳化钛技术已十分成熟。化学气相沉积还广泛应用于薄膜制备,主要为Bchir等使用钨的配合物Cl4 (RCN)W(NC3H5)作为制备氮化钨或者碳氮共渗薄膜的原料—CVD前驱体;Chen使用聚合物化学气相沉积形成的涂层提供了一个有吸引力的替代目前湿法化学为主的表面改善方法。同时,采用CVD方法制备CNTS 的研究也取得很大的进展和突破,以及通过各种实验研究了不同催化剂对单壁纳米碳管的产量和质量的影响,并取得了一定的成果。

二、化学气相沉积法概述

1、化学沉积法的概念

化学气相沉积(Chemical vapor deposition,简称CVD)是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。它本质上属于原子范畴的气态传质过程。与之相对的是物理气相沉积(PVD)。

化学气相沉积是一种制备材料的气相生长方法,它是把一种或几种含有构成薄膜元素的化合物、单质气体通入放置有基材的反应室,借助空间气相化学反应在基体表面上沉积固态薄膜的工艺技术。

2、化学气相沉积法特点

(1) 在中温或高温下,通过气态的初始化合物之间的气相化学反应而形成固体物质沉积在基体上。

(2) 可以在常压或者真空条件下负压“进行沉积、通常真空沉积膜层质量较好

(3) 采用等离子和激光辅助技术可以显著地促进化学反应,使沉积可在较低的温度下进行

(4) 涂层的化学成分可以随气相组成的改变而变化,从而获得梯度沉积物或者得到混合镀层。

(5) 可以控制涂层的密度和涂层纯度。

(6) 绕镀件好。可在复杂形状的基体上以及颗粒材料上镀膜。适合涂覆各种复杂形状的工件。由于它的绕镀性能好,所以可涂覆带有槽、沟、孔,甚至是盲孔的工件。

(7) 沉积层通常具有柱状晶体结构,不耐弯曲,但可通过各种技术对化学反应进行气相扰动,以改善其结构。

(8) 可以通过各种反应形成多种金属、合金、陶瓷和化合物涂层。

三、化学气相沉积法的应用

现代科学和技术需要使用大量功能各异的无机新材料,这些功能材料必须是高纯的,或者是在高纯材料中有意地掺入某种杂质形成的掺杂材料。但是,我们过去所熟悉的许多制备方法如高温熔炼、水溶液中沉淀和结晶等往往难以满足这些要求,也难以保证得到高纯度的产品。因此,无机新材料的合成就成为现代材料科学中的主要课题。

化学气相淀积是近几十年发展起来的制备无机材料的新技术。化学气相淀积法已经广泛用于提纯物质、研制新晶体、淀积各种单晶、多晶或玻璃态无机薄膜材料。这些材料可以是氧化物、硫化物、氮化物、碳化物,也可以是III-V、II-IV、IV-VI族中的二元或多元的元素间化合物,而且它们的物理功能可以通过气相掺杂的淀积过程精确控制。目前,化学气相淀积已成为无机合成化学的一个新领域。

1、化学气相沉积法制备石墨烯

化学气相沉积(CVD)法是近年来发展起来的制备石墨烯的新方法,具有产物质量高、生长面积大等优点,逐渐成为制备高质量石墨烯的主要方法。石墨烯是由单层碳原子紧密堆积成的二维蜂窝状结构,是构成其他维数碳材料的基本结构单元。

化学气相沉积法制备石墨烯早在20世纪70年代就有报道,当时主要采用单晶Ni作为基体,但所制备出的石墨烯主要采用表面科学的方法表征,其质量和

连续性等都不清楚。随后,人们采用单晶等基体。在低压和超高真空中也实现了石墨烯的制备,但直到2009年初与韩国成均馆大学利用沉积有多晶Ni膜的硅片作为基体制备出大面积少层石墨烯,并将石墨烯成功地从基体上完整地转移下来,从而掀起了化学气相沉积法制备石墨烯的热潮。

石墨烯的CVD生长主要涉及三个方面:碳源;生长基体和生长条件;气压、载气、温度等。

石墨烯的CVD法制备最早采用多晶Ni膜作为生长基体, 麻省理工学院的J.Kong研究组,通过电子束沉积的方法,在硅片表面沉积500nm的多晶Ni膜作为生长基体,利用CH4为碳源,氢气为载气。的CVD法生长石墨烯,生长温度为900益~1000益。韩国成均馆大学的B.H.Hong研究组,采用类似的CVD法生长石墨烯:生长基体为电子束沉积的300nm的Ni膜,碳源为CH4生长温度为1000益,载气为氢气和氩气的混合气。采用该生长条件制备的石墨烯的形貌图。由于Ni生长石墨烯遵循渗碳析碳生长机制,因此所得石墨烯的层数分布很大程度上取决于降温速率。采用Ni膜作为基体生长石墨烯具有以下特点:石墨烯的晶粒尺寸较小层数不均一且难以控制在晶界处往往存在较厚的石墨烯,少层石墨烯呈无序堆叠。此外,由于Ni与石墨烯的热膨胀率相差较大,因此降温造成石墨烯的表面含有大量褶皱。

2、化学气相法制备薄膜

化学气相沉积法是通过气相或者在基板表面上的化学反应,在基板上形成薄膜。用化学气相沉积法可以制备各种薄膜材料。选用适合的CVD装置,采用各种反应形式,选择适当的制备条件可以得到具有各种性质的薄膜材料。一般来说,化学气相沉积方法更适合于半导体薄膜材料的制备。用化学气相沉积方法制备薄膜材料时,为了合成出优质的薄膜材料,必须控制好反应气体组成、工作气压、基板温度、气体流量以及原料气体的纯度等。

四、结语

近年来,在传统化学气相沉积技术的基础上,又发展处一些新技术新方法,而且还被广泛地用于科学研究与实际生产当中。比如金属有机化学气相沉积法(MO-CVD)、等离子体化学气相沉积法(P-CVD)、激光化学气相沉积法(L-CVD)等。

化学气相沉积(CVD)技术的开发较早,也属于经典的合成方法。对它的研究也更深入一些,由于化学气相沉积法在纳米材料以及一些半导体材料、薄膜制备、表面改性等方面的广泛应用,以及其对于设备的相对较低的要求,该方法越来越多地被利用与各种无机化合物的制备中。随着一些新技术比如等离子体化学气相沉积法(P-CVD)、激光化学气相沉积法(L-CVD)、金属有机化学气相沉积法(MO-CVD)的出现,它越来越广泛地被用于科学研究和实际生产。我相信,今后会有更多有关化学沉积法的报道和研究出现,这一技术的发展也会更加迅速。参考文献

【1】张艳荣. 化学气相沉积法的研究现状及应用[ J] . 中国科技信息,2008.

【2】慈立杰, 魏秉庆, 梁吉等. 石墨烯的制备[ J]. 新型炭材料, 1998.

【3】贾志杰, 马仁志, 梁吉. 化学气相沉积法新型材料, 1998 .

【4】安会芬, 王现荣.薄膜制备技术进展[ J] . 材料导报,2005 .

【5】方玉诚等. 冶金多孔材料新型制备与应用技术的探讨,稀有金属,2005,29 (5) : 791

化学气相沉积法制备石墨烯材料

化学气相沉积法新材料的制备 1 化学气相沉积法 化学气相沉积(CVD)是半导体工业中应用最为广泛的用来沉积多种材料的技术,包括大范围的绝缘材料,大多数金属材料和金属合金材料。从理论上来说,它是很简单的:两种或两种以上的气态原材料导入到一个反应室内,然后他们相互之间发生化学反应,形成一种新的材料,沉积到晶片表面上。淀积氮化硅膜(Si3N4)就是一个很好的例子,它是由硅烷和氮反应形成的。 1.1 化学气相沉积法的原理 化学气相沉积法是利用气相反应,在高温、等离子或激光辅助灯条件下,控制反应器呀、气流速率、基板材料温度等因素,从而控制纳米微粒薄膜的成核生长过程;或者通过薄膜后处理,控制非晶薄膜的晶化过程,从而或得纳米结构的薄膜材料。 CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,同时让高熔点物质可以在较低温度下制备。 1.2 分类 用化学气相沉积法可以制备各种薄膜材料,包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件—基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜才来。 通过反应类型或者压力来分类,可以将化学气相沉积法分为:低压CVD(LPCVD),常压CVD(APCVD),亚常压CVD(SACVD),超高真空CVD(UHCVD),等离子体增强CVD(PECVD),高密度等离子体CVD(HDPCVD)以及快热CVD(RTCVD),以及金属有机物CVD(MOCVD) 化学气相沉积的化学反应形式,主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。具体表现如下表: 表1-1 化学气相沉积的各种反应形式

论述物理气相沉积和化学气相沉积地优缺点

论述物理气相沉积和化学气相沉积的优缺点 物理气相沉积技术表示在真空条件下,采用物理方法,将材料源——固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。物理气相沉积的主要方法有,真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。发展到目前,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等。 真空蒸镀基本原理是在真空条件下,使金属、金属合金或化合物蒸发,然后沉积在基体表面上,蒸发的方法常用电阻加热,高频感应加热,电子柬、激光束、离子束高能轰击镀料,使蒸发成气相,然后沉积在基体表面,历史上,真空蒸镀是PVD法中使用最早的技术。 溅射镀膜基本原理是充氩(Ar)气的真空条件下,使氩气进行辉光放电,这时氩(Ar)原子电离成氩离子(Ar+),氩离子在电场力的作用下,加速轰击以镀料制作的阴极靶材,靶材会被溅射出来而沉积到工件表面。如果采用直流辉光放电,称直流(Qc)溅射,射频(RF)辉光放电引起的称射频溅射。磁控(M)辉光放电引起的称磁控溅射。电弧等离子体镀膜基本原理是在真空条件下,用引弧针引弧,使真空金壁(阳极)和镀材(阴极)之间进行弧光放电,阴极表面快速移动着多个阴极弧斑,不断迅速蒸发甚至“异华”镀料,使之电离成以镀料为主要成分的电弧等离子体,并能迅速将镀料沉积于基体。因为有多弧斑,所以也称多弧蒸发离化过程。 离子镀基本原理是在真空条件下,采用某种等离子体电离技术,使镀料原子部分电离成离子,同时产生许多高能量的中性原子,在被镀基体上加负偏压。这样在深度负偏压的作用下,离子沉积于基体表面形成薄膜。 物理气相沉积技术基本原理可分三个工艺步骤: (1)镀料的气化:即使镀料蒸发,异华或被溅射,也就是通过镀料的气化源。 (2)镀料原子、分子或离子的迁移:由气化源供出原子、分子或离子经过碰撞后,产生多种反应。 (3)镀料原子、分子或离子在基体上沉积。 物理气相沉积技术工艺过程简单,对环境改善,无污染,耗材少,成膜均匀致密,与基体的结合力强。该技术广泛应用于航空航天、电子、光学、机械、建筑、轻工、冶金、材料等领域,可制备具有耐磨、耐腐饰、装饰、导电、绝缘、光导、压电、磁性、润滑、超导等特性的膜层。 随着高科技及新兴工业发展,物理气相沉积技术出现了不少新的先进的亮点,如多弧离子镀与磁控溅射兼容技术,大型矩形长弧靶和溅射靶,非平衡磁控溅射靶,孪生靶技术,带状泡沫多弧沉积卷绕镀层技术,条状纤维织物卷绕镀层技术等,使用的镀层成套设备,向计算机全自动,大型化工业规模方向发展。 化学气相沉积是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。它本质上属于原子范畴的气态传质过程。现代科学和技术需要使用大量功能各异的无机新材料,这些功能材料必须是高纯的,或者是在高纯材料中有意地掺人某种杂质形成的掺杂材料。但是,我们过去所熟悉的许多制备方法如高温熔炼、水溶液中沉淀和结晶等往往难以满足这些要求,也难以保证得到高纯度的产品。因此,无机新材料的合成就成为现代材料科学中的主要课题。 化学气相沉积是近几十年发展起来的制备无机材料的新技术。化学气相淀积法已经广泛用于提纯物质、研制新晶体、淀积各种单晶、多晶或玻璃态无机薄膜材料。这些材料可以是氧化物、硫化物、氮化物、碳化物,也可以是III-V、II-IV、IV-VI族中的二元或多元的元素间化合物,而且它们的物理功能可以通过气相掺杂的淀积过程精确控制。目前,化学气相

化学气相沉积法

化学气相沉积法 摘要:本文从化学气相沉积法的概念出发,详细阐述了利用化学气相沉积法制备石墨烯以及薄膜,并展望了未来化学气相沉积法可能的发展方向。 关键词:化学气相沉积法;制备;应用 一、前言 近年来,各国科学工作者对化学气相沉积进行了大量的研究,并取得一定的显著成果。例如,从气态金属卤化物(主要是氯化物)还原化合沉积制取难熔化合物粉末及各种涂层(包括碳化物、硼化物、硅化物、氮化物)的方法。其中化学沉积碳化钛技术已十分成熟。化学气相沉积还广泛应用于薄膜制备,主要为Bchir等使用钨的配合物Cl4 (RCN)W(NC3H5)作为制备氮化钨或者碳氮共渗薄膜的原料—CVD前驱体;Chen使用聚合物化学气相沉积形成的涂层提供了一个有吸引力的替代目前湿法化学为主的表面改善方法。同时,采用CVD方法制备CNTS 的研究也取得很大的进展和突破,以及通过各种实验研究了不同催化剂对单壁纳米碳管的产量和质量的影响,并取得了一定的成果。 二、化学气相沉积法概述 1、化学沉积法的概念 化学气相沉积(Chemical vapor deposition,简称CVD)是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。它本质上属于原子范畴的气态传质过程。与之相对的是物理气相沉积(PVD)。 化学气相沉积是一种制备材料的气相生长方法,它是把一种或几种含有构成薄膜元素的化合物、单质气体通入放置有基材的反应室,借助空间气相化学反应在基体表面上沉积固态薄膜的工艺技术。 2、化学气相沉积法特点 (1) 在中温或高温下,通过气态的初始化合物之间的气相化学反应而形成固体物质沉积在基体上。 (2) 可以在常压或者真空条件下负压“进行沉积、通常真空沉积膜层质量较好

化学气相沉积技术的应用与发展

化学气相沉积技术的应用与进展 一、化学气相沉积技术的发展现状 精细化工是当今化学工业中最具活力的新兴领域之一,是新材料的重要组成部分,现代科学和技术需要使用大量功能各异的无机新材料,这些功能材料必须是高纯的,或者是在高纯度材料中有意地掺人某种杂质形成的掺杂材料。但是,我们过去所熟悉的许多制备方法如高温熔炼、水溶液中沉淀和结晶等往往难以满足这些要求,也难以保证得到高纯度的产品。因此,无机新材料的合成就成为现代材料科学中的主要课题。 化学气相沉积技术(Chemical vapor deposition,简称CVD)是近几十年发展起来的制备无机材料的新技术。化学气相沉积法已经广泛用于提纯物质、研制新晶体、沉积各种单晶、多晶或玻璃态无机薄膜材料。这些材料可以是氧化物、硫化物、氮化物、碳化物,也可以是二元或多元的元素间化合物,而且它们的物理功能可以通过气相掺杂的沉积过程精确控制。目前,用CVD技术所制备的材料不仅应用于宇航工业上的特殊复合材料、原子反应堆材料、刀具材料、耐热耐磨耐腐蚀及生物医用材料等领域,而且还被应用于制备与合成各种粉体料、新晶体材料、陶瓷纤维及金刚石薄膜等。 二、化学气相沉积技术的工作原理 化学气相沉积是指利用气体原料在气相中通过化学反应形成基本粒 子并经过成核、生长两个阶段合成薄膜、粒子、晶须或晶体等个主要

阶段:反应气体向材料表面5固体材料的工艺过程。它包括 扩散;反应气体吸附于材料的表面;在材料表面发生化学反应;生成物从材料的表面脱附;(5)产物脱离材料表面。 目前CVD技术的工业应用有两种不同的沉积反应类型即热分解反应和化学合成反应。它们的共同点是:基体温度应高于气体混合物;在工件达到处理温度之前气体混合物不能被加热到分解温度以防止在 气相中进行反应。 三、化学气相沉积技术的特点 化学气相沉积法之所以得以迅速发展,是和它本身的特点分不开的,与其他沉积方法相比,CVD技术除了具有设备简单、操作维护方便、灵活性强的优点外,还具有以下优势: (1)沉积物众多,它可以沉积金属、碳化物、氮化物、氧化物和硼化物等,这是其他方法无法做到的; (2)能均匀涂覆几何形状复杂的零件,这是因为化学气相沉积过程有高度的分散性; (3)涂层和基体结合牢固; (4)镀层的化学成分可以改变, 从而获得梯度沉积物或者得到混合镀层; (5)可以控制镀层的密度和纯度; (6)设备简单,操作方便。 随着工业生产要求的不断提高,CVD的工艺及设备得到不断改进,但是在实际生产过程中CVD技术也还存在一些缺陷:

化学气相沉积法制备碳纳米管

化学气相沉积法制备碳纳米管 材料化学专业 制备原料 碳源多为乙烯或者乙炔;催化剂颗粒多为亲碳的、过渡金属的纳米粒子如铁、镍、镁、钼等。 制备工艺 在高温条件下碳源气体在过渡金属纳米颗粒的催化作用下分解,碳原子在催化剂例粒子中熔解、饱和。在催化剂粒子中饱和并析出碳形成了小管状的碳固体即碳纳米管。 碳纳米管的性能 力学性能: 碳纳米管中碳原子采取SP2杂化S轨道成分比较大,使其具有高模量、高强度,具有优异的力学性能。理想的碳纳米管的抗拉强度可高达100GPa。一般碳纳米管的抗拉强度可达50-200GPa,是钢的100倍,密度却只有钢的1/6,弹性模量高达1TPa,与金刚石的弹性模量相当,约为钢的5倍。不同的SP2和SP3杂化几率使碳纳米管其表现出优良的弹性,柔韧性,易拉伸,十分柔软,同时它还具有与金刚石相当的硬度和极大的长径比,可以作为理想的高强度纤维材料,被称为未来的“超级纤维”。 导电性能: 碳原子最外层有4个电子,碳纳米管具有类石墨结构,石墨的每个碳原子最外层的三个电子与三个最邻近的碳原子以SP2杂化,呈现层状结构。碳原子的另一个未成对电子位于垂直于层片的π轨道上,碳纳米管具有石墨的良好导电性能。碳纳米管由石墨片卷曲而来,其导电性能由石墨片的卷曲方式决定,即导电性能取决于它的管径和手性。不同手性的碳纳米管可分别呈现金属性、半导体性。给定的碳纳米管的手性矢量Ch=na1+ma2,若n.m=3k(k为整数),那么该方向碳纳米管呈现金属性,可视为良好的导体。其中,若n=m,碳纳米管电导率可高达铜的l万倍,导电性极好。当n.m不等于3k(k为整数)时,该方向碳纳米管视

为半导体。另外,在碳纳米管的管壁上往往有成对的五元环和七元环出现,这些缺陷会导致新的导电行为,为碳纳米管的导电性做贡献。 传热性能: 碳纳米管的类石墨结构使得其具有良好的传热性能,另外,准一维结构使得沿着碳纳米管轴向方向的热交换极易进行,由此,可以通过制备定向的碳纳米管阵列从而获得某个方向热传导性能极好的产品。要想获得某些特定方向上热传导性能优异的产品,需要在制备碳纳米管时通过适当地改变实验条件或调整各项参数等来控制产物的取向。 吸附性能:碳纳米管是一种强吸附剂,吸附容鞋极大,比活性炭的吸附性高十倍之多。碳纳米管对多种会属(如Au,Cd,Co,Cu,Cr,Fe,Mn,Ni,Pb,Zn)、稀土元素(如Sm,Gd,Yb)等有很强的吸附fl:J1j。作为吸附剂,碳纳米管的制备成本低、吸附分离效果好受到广泛关注。 化学性能: 碳纳米管的化学性能非常稳定,同时它具有较好的催化作用。碳纳米管尺寸为纳米级别,具有极大的比表面积,并且表面的键念和电子态与颗粒内部不同,表面的原子配位不全,从而导致表面的活性位置增加,这些条件为碳纳米管的催化性奠定了基础。它的主要催化作用为:提高反应速率,决定反应路径,有优良的选择性(如只进行氢化脱氢反应,不发生氢化分解和脱水反应),降低反应温度。对碳纳米管进行处理可改善其催化活性,引入新的官能团,例如用硝酸、浓硫酸处理碳纳米管,不仅能够对样品进行提纯、切断,还可以在其表面引入羟基。碳纳米管在催化领域的潜力引起了广大科研者的关注,相关催化性能的研究与应用也日趋成熟。 场发射性能: 碳纳米管是良好的电导体,载流能力特别大,能够承受较大的场发射电流。相关测试表明,碳纳米管作为阴极能够产生4A/cm2的电流密度。碳纳米管机械强度高、韧性好,在场发射过程中不易发生折断或者变形,化学性质稳定,不易与其他物质反应,在2000℃的真空环境中也不会烧损。呈现金属性的碳纳米管表面功函数要比一般的金属低0.2.0.4ev,呈现半导体性的碳纳米管表面功函数要比一般金属高0.6ev。因而通过选择金属性的碳纳米管作为场发射阴极材料,可进而获取低能耗、轻便、性能更加优异的平板显示。 碳纳米管的应用前景 碳纳米管在微电子、生物、医学、仪器等领域显示了广阔的应用前景。显示技术方面为人们展示着丰富多彩的世界,在教育、工业、交通、通讯、军事、医疗、航空航天、卫星遥感等各个领域被广泛应用。FED集合了高亮度、真彩色、体积小、重量轻等众多优点,成为21世纪最具潜力的显示器。对于高附加值的显示器件方面的应用如平板显示器和纳米集成电路,碳纳米管在汽车用燃料电池储氢材料方面。在材料科学领域碳纳米管可以制成高强度碳纤维材料利用碳纳米管制成的复合材料在土木、建筑等方面具有广阔前景。 参考文献 李世胜,侯鹏翔,刘畅.超疏水叠杯状碳纳米管薄膜的制备[J]新型炭材料,2013,28(4)韩立静,多壁碳纳米管薄膜的制备及其场发射性能研究[C]浙江大学硕士学位论文2011,5 张秉檐,漆昕,生长温度对TCVD法制备定向碳纳米管薄膜影响[J]制造业自动化,2010,32(12)

石墨烯的化学气相沉积法制备 2

石墨烯的化学气相沉积法制备

摘要:化学气相沉积(CVD)法是近年来发展起来的制备石墨烯的新方法,具有产物质量高、生长面积大等优点,逐渐成为制备高质量石墨 烯的主要方法。通过简要分析石墨烯的几种主要制备方法(胶带剥离法、化学剥离法、SiC外延生长法和CVD方法)的原理和特点,重点 从结构控制、质量提高以及大面积生长等发面评述了CVD法制备石墨 烯及其转移技术的研究进展,并展望了未来CVD法制备石墨烯的可能 发展方向,如大面积单晶石墨烯、石墨烯带和石墨烯宏观体的制备与 无损转移等。 关键词:石墨烯制备化学气相沉积法转移 Abstract chemical vapor deposition(CVD) is an effective way for the preparation of preparation of graphene with large area and high quality.In this review,the echanism and characteristics of the four main preparation methods of graphene are briefly introduced ,including microm echanical Cleavage,chemical exfoliation,SiC epitaxial growth and CVD. The recent advances in the CVD growth of graphene and the related transfer techniques in term of structure contral, quality improvement and large area graphene synthesis were discussed .Other possible methods single crystalline graphene ,graohene nanoribbons and graphene avrostructures. Keywords : Graphene,Preparation, Chemical vapor deposition; transfe

石墨烯的化学气相沉积法制备_图文(精)

收稿日期:2010 12 31; 修回日期:2011 02 14 基金项目:国家自然科学基金(50872136,50972147,50921004、中国科学院知识创新项目(K J CX 2 YW 231. 通讯作者:任文才,研究员.E m ai:l w cren@i m r .ac .cn;成会明,研究员.E m ai:l chen g @i m r .ac .cn ;高力波.E m ai:l l bgao @i m r .ac .cn 作者简介:任文才(1973-,男,山东东营人,博士,研究员,主要研究方向为石墨烯和碳纳米管的制备、物性和应用. E m ai:l w cren @i m r .ac .cn 文章编号: 1007 8827(201101 0071 10 石墨烯的化学气相沉积法制备 任文才, 高力波, 马来鹏, 成会明 (中国科学院金属研究所沈阳材料科学国家(联合实验室,辽宁沈阳110016 摘要: 化学气相沉积(CVD 法是近年来发展起来的制备石墨烯的新方法,具有产物质量高、生长面积大等优点,逐渐成为制备高质量石墨烯的主要方法。通过简要分析石墨烯的几种主要制备方法(胶带剥离法、化学剥离法、S i C 外延生长法和CV D 方法的原理和特点,重点从结构控制、质量提高以及大面积生长等方面评述了CV D 法制备石墨烯及其转移技术的研究进展,并展望了未来CVD 法制备石墨烯的可能发展方向,如大面积单晶石墨烯、石墨烯带和石墨烯宏观体的制备与无损转移等。关键词: 石墨烯;制备;化学气相沉积法;转移中图分类号: TQ 127.1+1 文献标识码: A 1 前言 自从1985年富勒烯[1] 和1991年碳纳米管[2]

最新物理气相沉淀和化学气相沉积法

液相制备纳米材料的原理、方法和形成机理 液相法实在液体状态下通过化学反应制取纳米材料方法的总称,又称为湿化学法或溶液法。现在,有各种各样的制备方法,文献中无公认一致的分类方法,相反还有些凌乱。为清晰醒目,特点明显,便于理解。这里将液相材料的纳米制备方法分为:沉淀法、溶胶-凝胶(sol-gel)法、水热法、化学还原法、化学热分解法、微乳胶法、声化学法、电化学法和水中放电法等9中。本章就沉淀法、溶胶-凝胶(sol-gel)法加以讨论。 沉淀法 沉淀法是在金属盐溶液中加入沉淀剂,进行化学反应,生成难容性的反应物,在溶液中沉淀下来,或将沉淀物加热干燥和煅烧,使之分解得到所需要的纳米材料的方法。沉淀法又主要分为共沉淀(CP),分布沉淀(SP),均匀沉淀(HP)等几种。下面对这几种沉淀法做一简要分析。 含1种或多种阳离子的溶液中加入沉淀剂后,所有离子完全沉淀的方法称共沉淀法。(包括:单项共沉淀发和混合共沉淀法)下图给出共沉淀法的典型工艺流程。 沉淀物为单一化合物或单相固溶体时,称为单相共沉淀,亦称化合物沉淀法。其原理为溶液中的金属离子是以具有与配比组成相等的化学计量化合物形式沉淀的,因而,当沉淀颗粒的金属元素之比就是产物化合物的金属元素之比时,沉淀物具有在原子尺度上的组成均匀性。但是,对于由二种以上金属元素组成的化

合物,当金属元素之比按倍比法则,是简单的整数比时,保证组成均匀性是可以的。然而当要定量的加入微量成分时,保证组成均匀性常常很困难,靠化合物沉淀法来分散微量成分,达到原子尺度上的均匀性。如果是形成固溶体的系统是有限的,固溶体沉淀物的组成与配比组成一般是不一样的,则能利用形成固溶体的情况是相当有限的。要得到产物微粒,还必须注重溶液的组成控制和沉淀组成的管理。为方便理解其原理以利用草酸盐进行化合物沉淀的合成为例。反应装置如图: 图 利用草酸盐进行化合物沉淀的合成装置 实验原理:在Ba 、Ti 的硝酸盐溶液中加入草酸沉淀剂后,形成了单相化合物BaTiO3(C2H4)2?4H2O 沉淀;BaTiO3(C2H4)?4H2O 沉淀由于煅烧,分解形成BaTiO3微粉。 化学方程式如下所示: (1)BaTiO 3(C 2H 4)2?4H 2O BaTiO 3(C 2H 4)2 + 4H 2O (2)BaTiO 3(C 2H 4)2 + ? O 2 BaCO 3(无定形)+TiO 2(无定形)+ CO +CO 2 (3)BaCO 3(无定形)+TiO 2(无定形) BaCO 3(结晶)+TiO 2(结晶) 如果沉淀产物为混合物时,称为混合物共沉淀。四方氧化锆或全稳定立方氧化锆的共沉淀制备就是一个很普通的例子。举例:用ZrOCl 2?8H 2O 和Y 2O 3(化学纯)为原料来制备ZrO 2- Y 2O 3的纳米粒子。反应过程:Y2O3用盐酸溶解得到YCl3, 然后将ZrOCl 2?8H 2O 和Y 2O 3配置成一定浓度的混合溶液,在其中加NH 4OH 后便有

实验指导书-化学气相沉积上课讲义

实验指导书-化学气相 沉积

化学气相沉积技术实验 一、实验目的 1.了解化学气相沉积制备二硫化钼的基本原理; 2.了解化学气相沉积方法制备二硫化钼薄膜材料的基本流程及注意事项; 3.利用化学气相沉积方法制备二硫化钼薄膜材料。 二、实验仪器 该实验中用到的主要实验仪器设备以及材料有:干燥箱、CVD生长系统、电子天平、超声清洗机,去离子水机等,现将主要设备介绍如下: 1.CVD生长系统 本实验所用CVD生长系统由生长设备,真空设备,气体流量控制系统和冷却设备四部分组成,简图如下 图1 CVD设备简图 2.电子天平 本实验所用电子天平采用电磁力平衡被称物体重力原理进行称量,特点是称量准确可靠、显示快速清晰并且具有自动检测系统、简便的自动校准装置以及超载保护等装置。在本实验中电子天平主要用于精确称量药品,称量精度可精确到小数点后第五位。 三、实验原理

近年来,各国科学工作者对化学气相沉积进行了大量的研究,并取得一定的显著成果。例如,从气态金属卤化物(主要是氯化物)还原化合沉积制取难熔化合物粉末及各种涂层(包括碳化物、硼化物、硅化物、氮化物)的方法。其中化学沉积碳化钛技术已十分成熟。化学气相沉积还广泛应用于薄膜制备,主要为Bchir等使用钨的配合物Cl4 (RCN)W(NC3H5)作为制备氮化钨或者碳氮共渗薄膜的原料—CVD前驱体;Chen使用聚合物化学气相沉积形成的涂层提供了一个有吸引力的替代目前湿法化学为主的表面改善方法。同时,采用CVD方法制备CNTS的研究也取得很大的进展和突破,以及通过各种实验研究了不同催化剂对单壁纳米碳管的产量和质量的影响,并取得了一定的成果。 一、化学气相沉积法概述 1、化学沉积法的概念 化学气相沉积(Chemical vapor deposition,简称CVD)是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。它本质上属于原子范畴的气态传质过程。与之相对的是物理气相沉积(PVD)。 化学气相沉积是一种制备材料的气相生长方法,它是把一种或几种含有构成薄膜元素的化合物、单质气体通入放置有基材的反应室,借助空间气相化学反应在基体表面上沉积固态薄膜的工艺技术。 2、化学气相沉积法特点 (1) 在中温或高温下,通过气态的初始化合物之间的气相化学反应而形成固体物质沉积在基体上。

化学气相沉积法

化学气相沉积法目前已经发展成为批量制备碳纳米管的最有效率方法之一。现代科学和技术需要使用大量功能各异的无机新材料,这些功能材料必须是高纯的,或者是在高纯材料中有意地掺人某种杂质形成的掺杂材料。但是,我们过去所熟悉的许多制备方法如高温熔炼、水溶液中沉淀和结晶等往往难以满足这些要求,也难以保证得到高纯度的产品。因此,无机新材料的合成就成为现代材料科学中的主要课题。 化学气相淀积是近几十年发展起来的制备无机材料的新技术。化学气相淀积法已经广泛用于提纯物质、研制新晶体、淀积各种单晶、多晶或玻璃态天机薄膜材料。这些材料可以是氧化物、硫化物、氮化物、碳化物,也可以是III-V、II-IV、IV-VI族中的二元或多元的元素间化合物,而且它们的物理功能可以通过气相掺杂的淀积过程精确控制。目前,化学气相淀积已成为无机合成化学的一个新领域。而流化床-化学气相沉积法更是提供了大量碳纳米管充分生长的超大空间以及均匀的传热传质环境。在此,本文将总结流化床-化学气相沉积法的主要核心。 1. 任何可以悬浮的颗粒均可以用流化床进行连续处理。所以流化床-CVD 法可以生产多种碳纳米管。碳纳米管不仅可以生长在微米级的聚团状多孔催化剂颗粒上,也可生长在毫米级的陶瓷球的表面上,还可以生长在层状无机氧化物的层间,以大量得到聚团状的碳纳米管或毫米级长度的碳纳米管阵列。 2. 双层变温流化床可以允许在不同级上的催化剂采用不同温度操作,从而可以调变催化剂的高温活性以便提高碳纳米管的收率。 3. 下行床与湍动床耦合的反应器技术可以调变催化剂还原与碳沉积的平衡,还能充分利用催化剂的活性,从而大批量制备高质量的单/双壁碳纳米管。 1)在中温或高温下,通过气态的初始化合物之间的气相化学反应而形成固体物质沉积在基体上。 2)可以在常压或者真空条件下(负压“进行沉积、通常真空沉积膜层质量较好)。 3)采用等离子和激光辅助技术可以显著地促进化学反应,使沉积可在较低的温度下进行。

流化床-化学气相沉积法可控及批量制备碳纳米管

21-I-004 流化床-化学气相沉积法可控及批量制备碳纳米管 骞伟中*,魏飞 清华大学化工系,100084,北京 E-mail: qianwz@https://www.360docs.net/doc/0412084731.html, 化学气相沉积法目前已经发展成为批量制备碳纳米管的最有效率方法之一。而流化床-化学气相沉积法更是提供了大量碳纳米管充分生长的超大空间以及均匀的传热传质环境。在此,本文将总结流化床-化学气相沉积法的主要核心。 1. 任何可以悬浮的颗粒均可以用流化床进行连续处理。所以流化床-CVD法可以生产多种碳纳米管。碳纳米管不 仅可以生长在微米级的聚团状多孔催化剂颗粒上,也可生长在毫米级的陶瓷球的表面上,还可以生长在层状无机氧化物的层间,以大量得到聚团状的碳纳米管或毫米级长度的碳纳米管阵列。 2. 双层变温流化床可以允许在不同级上的催化剂采用不同温度操作,从而可以调变催化剂的高温活性以便提高碳 纳米管的收率。 3. 下行床与湍动床耦合的反应器技术可以调变催化剂还原与碳沉积的平衡,还能充分利用催化剂的活性,从而大 批量制备高质量的单/双壁碳纳米管。 关键词:碳纳米管;流化床;化学气相沉积。 Large scale and controllable production of carbon nanotubes by fluidized bed-Chemical vapor deposition Wei-zhong Qian*, Fei Wei Department of Chemical Engineering, Tsinghua University, Beijing, 100084,China Chemical vapor deposition(CVD) has been developed as one of the most effective methods to produce carbon nanotubes to this date. Fluidized bed-CVD has the advantage of large reactor volume to offer sufficient space with uniform mass and heat transfer condition, which is crucial to the growth of carbon nanotubes in large quantities. Here, I will summarize the key point of fluidized bed CVD. One, any suspended particles can be disposed continuously in fluidized bed, which allows the fluidized bed suitable for the production of many kinds of carbon nanotubes, whether grown on the micron-sized agglomerate catalyst particles, or on the surface of millimeter-sized ceramic spheres, as well as on the layered metal oxides. Thus fluidized bed- CVD is suitable for the mass production of agglomerate carbon nanotubes and the millimeter long vertically aligned carbon nanotube array. Second, the temperature shift two-stage fluidized bed offers an unique operation of catalyst in different temperature zones in different positions, and is effective to tailor the catalyst activity for a high yield production of carbon nanotubes in high temperature. Third, the coupled down reactor and turbulent fluidized bed reactor is effective to control the balance of catalyst reduction and carbon deposition, and to utilize the maximal activity of the catalyst in the production of high quality of single or double walled carbon nanotubes. Keywords:Carbon Nanotubes; Fluidized Bed; Chemical Vapor Deposition. 4

实验指导书-化学气相沉积

化学气相沉积技术实验 一、实验目的 1.了解化学气相沉积制备二硫化钼的基本原理; 2.了解化学气相沉积方法制备二硫化钼薄膜材料的基本流程及注意事项; 3.利用化学气相沉积方法制备二硫化钼薄膜材料。 二、实验仪器 该实验中用到的主要实验仪器设备以及材料有:干燥箱、CVD生长系统、电子天平、超声清洗机,去离子水机等,现将主要设备介绍如下: 1.CVD生长系统 本实验所用CVD生长系统由生长设备,真空设备,气体流量控制系统和冷却设备四部分组成,简图如下 图1 CVD设备简图 2.电子天平 本实验所用电子天平采用电磁力平衡被称物体重力原理进行称量,特点是称量准确可靠、显示快速清晰并且具有自动检测系统、简便的自动校准装置以及超载保护等装置。在本实验中电子天平主要用于精确称量药品,称量精度可精确到小数点后第五位。 三、实验原理 近年来,各国科学工作者对化学气相沉积进行了大量的研究,并取得一定的显著成果。例如,从气态金属卤化物(主要是氯化物)还原化合沉积制取难熔化合物粉末及各种涂层(包括碳化物、硼化物、硅化物、氮化物)的方法。其中化学沉积碳化钛技术已十分成熟。化学气相沉积还广泛应用于薄膜制备,主要为Bchir等使用钨的配合物Cl4 (RCN)W(NC3H5)作为制备氮化钨或者碳氮共渗薄

膜的原料—CVD前驱体;Chen使用聚合物化学气相沉积形成的涂层提供了一个有吸引力的替代目前湿法化学为主的表面改善方法。同时,采用CVD方法制备CNTS的研究也取得很大的进展和突破,以及通过各种实验研究了不同催化剂对单壁纳米碳管的产量和质量的影响,并取得了一定的成果。 一、化学气相沉积法概述 1、化学沉积法的概念 化学气相沉积(Chemical vapor deposition,简称CVD)是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。它本质上属于原子范畴的气态传质过程。与之相对的是物理气相沉积(PVD)。 化学气相沉积是一种制备材料的气相生长方法,它是把一种或几种含有构成薄膜元素的化合物、单质气体通入放置有基材的反应室,借助空间气相化学反应在基体表面上沉积固态薄膜的工艺技术。 2、化学气相沉积法特点 (1) 在中温或高温下,通过气态的初始化合物之间的气相化学反应而形成固体物质沉积在基体上。 (2) 可以在常压或者真空条件下负压“进行沉积、通常真空沉积膜层质量较好 (3) 采用等离子和激光辅助技术可以显著地促进化学反应,使沉积可在较低的温度下进行 (4) 涂层的化学成分可以随气相组成的改变而变化,从而获得梯度沉积物或者得到混合镀层。 (5) 可以控制涂层的密度和涂层纯度。 (6) 绕镀件好。可在复杂形状的基体上以及颗粒材料上镀膜。适合涂覆各种复杂形状的工件。由于它的绕镀性能好,所以可涂覆带有槽、沟、孔,甚至是盲孔的工件。 (7) 沉积层通常具有柱状晶体结构,不耐弯曲,但可通过各种技术对化学反应进行气相扰动,以改善其结构。 (8) 可以通过各种反应形成多种金属、合金、陶瓷和化合物涂层。

化学气相沉积(CVD)技术梳理

化学气相沉积(CVD)技术梳理 1. 化学气相沉积CVD的来源及发展 化学气相沉积(Chemical Vapor Deposition)中的Vapor Deposition意为气相沉积,其意是指利用气相中发生的物理、化学过程,在固体表面形成沉积物的技术。按照机理其可以划分为三大类:物理气相沉积 (Physical Vapor Deposition,简称PVD),化学气相沉积 (Chemical Vapor Deposition,简称CVD)和等离子体气相沉积(Plasma Chemical Vapor Deposition,简称PCVD)。[1]目前CVD的应用最为广泛,其技术发展及研究也最为成熟,其广泛应用于广泛用于提纯物质、制备各种单晶、多晶或玻璃态无机薄膜材料。 CVD和PVD之间的区别主要是,CVD沉积过程要发生化学反应,属于气相化学生长过程,其具体是指利用气态或者蒸汽态的物质在固体表面上发生化学反应继而生成固态沉积物的工艺过程。简而言之,即通过将多种气体原料导入到反应室内,使其相互间发生化学反应生成新材料,最后沉积到基片体表面的过程。CVD这一名称最早在Powell C F等人1966年所著名为《Vapor Deposition》的书中被首次提到,之后Chemical Vapor Deposition才为人广泛接受。[2] CVD技术的利用最早可以被追溯到古人类时期,岩洞壁或岩石上留下了由于取暖和烧烤等形成的黑色碳层。现代CVD技术萌芽于20世纪的50年代,当时其主要应用于制作刀具的涂层。20世纪60~70年代以来,随着半导体和集成电路技术的发展,CVD技术得到了长足的发展和进步。1968年Nishizawa课题组首次使用低压汞灯研究了光照射对固体表面上沉积P型单晶硅膜的影响,开启了光沉积的研究。[3] 1972年Nelson和Richardson用CO2激光聚焦束沉积碳膜,开始了激光化学气相沉积的研究。[4] 继Nelson之后,研究

化学气相淀积 4

13.5 介质常压CVD 一些最早的CVD 工艺是在大气压下进行(APCVD ),由于大的反应速率和简单的CVD 系统,特制适用于介质淀积。虽然由硅烷淀积硅(如本章前面所讨论的)可在大气压下进行,均匀性很差,在低压下,很容易得到良好的均匀性,所以APCVD -一般用在厚的介质,其淀积速率超过1000A/min ,使得这工艺非常吸引人。 图13.9示出一个简单连续供片的常压CVD 反应器。硅片在受热的传送带上从一个硅片盒传送到另一硅片盒。无论硅片在什么位置上其温度可从240到450℃[10]。气体从硅片上方喷头喷出,氧一硅烷气流比至少3:1,将得到化学的比的SiO 2。在没有充分的稀析气流,例如N 2,这反应将在气相中进行,结果有较差的表面形态。 如第15章将要讨论的,通常希望淀积含4-12%磷的二氧化硅。这些磷硅玻璃(PSG )在适中温度软化和回流,使硅片表面形状平滑及吸收许多杂质。在常压CVD 中加入磷烷(PH 2 )可形成PSG 。图13.10示出了典型的PSG 淀积速率与温度及氧气/氢化物流量比的关系曲线。对高氧浓度气氛(30:1)情况而言,淀积速率随温度急剧增加,因而很可能是反应速率限制。对低氧含量气氛(2.5: 1)而言,生长速率实际上随温度略有下降。薄膜的磷含量可通过改变磷烷和硅烷比来控制。为了改善均匀性和台阶复盖率,许多PSG 和硼磷硅玻璃(BPSG )工艺现在用金属有机化合物,例如TEOS[原硅酸配酯即Si(OC 2H 5)4]做源。应用TEOS 做为稳定的,惰性的,高蒸气压的液体,把它用在起泡器中(见3.8节)。使用TEOS 优点之一是消除了某些有容化学处理的需要。连接起泡器的管道必须加热以防止在管道壁上淀积。还研究了各种替代型金属有机化合物。Hexamethg disiloxane [(CH 3)3-Si-O-Si-(CH 3)3],一种线性的disiloxane ,也显示出与TEOS 可比拟的良好特性[12],但发现它的淀积速率与衬底材料有关,在约500℃下由hydridosphero-siloxanes 和湿气也淀积类似的薄膜[13]。 和Rosler, 1977,AIP ) APCVD 的主要近缺点是颗粒的形成。虽然中颗粒形成可由添加足够量的N 2或其它惰性气体来控制,但异质淀积同样可能在气体注入器处发生。即使这

化学气相沉积技术的应用与研究进展汇总

化学气相沉积技术的应用与研究进展 摘要:本文主要围绕化学气相沉积(cvd )技术进行展开,结合其基本原理与特点,对一些CVD 技术进行介绍。同时也对其应用方向进行一定介绍。 关键词:cvd ;材料制备;应用 引言 化学气相沉积(Chemical Vapor Deposition,简称CVD)技术是近几十年发展起来的主要应用于无机新材料制备的一种技术。[1] CVD 是一种以气体为反应物(前驱体),通过气相化学反应在固态物质(衬底)表面生成固态物质沉积的技术。它可以利用气相间的反应, 在不改变基体材料的成分和不削弱基体材料的强度条件下,赋予材料表面一些特殊的性能。 本文论述了化学气相沉积技术的基本原理、特点和最新发展起来的具有广泛应用前景的几种新技术, 同时分析了化学气相沉积技术的发展趋势, 并展望其应用前景。 1 CVD 原理 化学气相沉积( CVD, Chemical Vapor Deposition) 是把含有构成薄膜元素的气态反应剂或液态反应剂的蒸气及反应所需其它气体引入反应室, 在衬底表面发生化学反应, 并把固体产物沉积到表面生成薄 膜的过程。 图1 CVD 法示意图 CVD 的化学反应主要可分两种:一是通 过一种或几种气体之间的反应来产生沉积,如超纯多晶硅的制备、纳米材料(二氧化钛)的制备等;另一种是通过气相中的一个组分与固态基体(有称衬底)表面之间的反应来沉积形成一层薄膜,如集成电路、碳化硅器皿和金刚石膜部件的制备等。 它包括 4 个主要阶段: ① 反应气体向材料表面扩散; ② 反应气体吸附于材料的表面; ③ 在材料表面发生化学反应; ④ 气态副产物脱离材料表面。 在 CVD 中运用适宜的反应方式, 选择相应的温度、气体组成、浓度、压力等参数就能得到具有特定性质的薄膜。但是薄膜的组成、结构与性能还会受到 CVD 内的输送性质( 包括热、质量及动量输送) 、气流 的性质( 包括运动速度、压力分布、气体加热等) 、基板种类、表面状态、温度分布状态等因素的影响。[2][3][4] 2 CVD 技术特点 ① 在中温或高温下,通过气态的初始化合物之间的气相化学反应而形成固体物质沉积在基体上。 ② 可以在常压或者真空条件下(负压“进行沉积、通常真空沉积膜层质量较好)。 ③采用等离子和激光辅助技术可以显著地促进化学反应,使沉积可在较低的温度下进行。

化学气相沉积法CVD

化学气相沉积(CVD)是半导体工业中应用最为广泛的用来沉积多种材料的技术,包括大范围的绝缘材料,大多数金属材料和金属合金材料。从理论上来说,它是很简单的:两种或两种以上的气态原材料导入到一个反应室内,然后他们相互之间发生化学反应,形成一种新的材料,沉积到晶片表面上。淀积氮化硅膜(Si3N4)就是一个很好的例子,它是由硅烷和氮 反应形成的。 概述 反应室中的反应是很复杂的,有很多必须考虑的因素,沉积参数的变化范围是很宽的:反应室内的压力、晶片的温度、气体的流动速率、气体通过晶片的路程(如图所示)、气体的化学成份、一种气体相对于另一种气体的比率、反应的中间产品起的作用、以及是否需要其它反应室外的外部能量来源加速或诱发想得到的反应等。额外能量来源诸如等离子体能量,当然会产生一整套新变数,如离子与中性气流的比率,离子能和晶片上的射频偏压等。 然后,考虑沉积薄膜中的变数:如在整个晶片内厚度的均匀性和在图形上的覆盖特性(后者指跨图形台阶的覆盖),薄膜的化学配比(化学成份和分布状态),结晶晶向和缺陷密度等。当然,沉积速率也是一个重要的因素,因为它决定着反应室的产出量,高的沉积速率常常要和薄膜的高质量折中考虑。反应生成的膜不仅会沉积在晶片上,也会沉积在反应室的其他部件上,对反应室进行清洗的次数和彻底程度也是很重要的。 化学家和物理学家花了很多时间来考虑怎样才能得到高质量的沉积薄膜。他们已得到的结论认为:在晶片表面的化学反应首先应是形成“成核点”,然后从这些“成核点”处生长得到薄膜,这样淀积出来的薄膜质量较好。另一种结论认为,在反应室内的某处形成反应的中间产物,这一中间产物滴落在晶片上后再从这一中间产物上淀积成薄膜,这种薄膜常常是一种劣质薄膜。 化学气相沉积法是传统的制备薄膜的技术,其原理是利用气态的先驱反应物,通过原子、分子间化学反应,使得气态前驱体中的某些成分分解,

实验指导书-化学气相沉积

实验十五化学气相沉积技术实验 一、实验目的 1.了解化学气相沉积制备二硫化钼的基本原理; 2.了解化学气相沉积方法制备二硫化钼薄膜材料的基本流程及注意事项; 3.对实验数据进行合理正确的分析。 二、实验仪器 该实验中用到的主要实验仪器设备以及材料有:干燥箱、CVD系统、电子天平、超声清洗机,去离子水机等,现将主要设备介绍如下: 1.CVD生长系统 本实验所用CVD生长系统由生长设备,真空设备,气体流量控制系统三部分组成,简图如下 图1 CVD设备简图 2.电子天平 本实验所用电子天平采用电磁力平衡被称物体重力原理进行称量,特点是称量准确可靠、显示快速清晰并且具有自动检测系统、简便的自动校准装置以及超载保护等装置。在本实验中电子天平主要用于精确称量药品,称量精度可精确到小数点后第五位。 三、实验原理 近年来,各国科学工作者对化学气相沉积进行了大量的研究,并取得一定的显著成果。例如,从气态金属卤化物(主要是氯化物)还原化合沉积制取难熔化合物粉末及各种涂层(包括碳化物、硼化物、硅化物、氮化物)的方法。其中化学沉积碳化钛技术已十分成熟。化学气相沉积还广泛应用于薄膜制备,主要为Bchir等使用钨的配合物Cl4 (RCN)W(NC3H5)作为制备氮化钨或者碳氮共渗薄

膜的原料—CVD前驱体;Chen使用聚合物化学气相沉积形成的涂层提供了一个有吸引力的替代目前湿法化学为主的表面改善方法。同时,采用CVD方法制备CNTS的研究也取得很大的进展和突破,以及通过各种实验研究了不同催化剂对单壁纳米碳管的产量和质量的影响,并取得了一定的成果。 一、化学气相沉积法概述 1、化学沉积法的概念 化学气相沉积(Chemical vapor deposition,简称CVD)是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。它本质上属于原子范畴的气态传质过程。与之相对的是物理气相沉积(PVD)。 化学气相沉积是一种制备材料的气相生长方法,它是把一种或几种含有构成薄膜元素的化合物、单质气体通入放置有基材的反应室,借助空间气相化学反应在基体表面上沉积固态薄膜的工艺技术。 2、化学气相沉积法特点 (1) 在中温或高温下,通过气态的初始化合物之间的气相化学反应而形成固体物质沉积在基体上。 (2) 可以在常压或者真空条件下负压“进行沉积、通常真空沉积膜层质量较好 (3) 采用等离子和激光辅助技术可以显著地促进化学反应,使沉积可在较低的温度下进行 (4) 涂层的化学成分可以随气相组成的改变而变化,从而获得梯度沉积物或者得到混合镀层。 (5) 可以控制涂层的密度和涂层纯度。 (6) 绕镀件好。可在复杂形状的基体上以及颗粒材料上镀膜。适合涂覆各种复杂形状的工件。由于它的绕镀性能好,所以可涂覆带有槽、沟、孔,甚至是盲孔的工件。 (7) 沉积层通常具有柱状晶体结构,不耐弯曲,但可通过各种技术对化学反应进行气相扰动,以改善其结构。 (8) 可以通过各种反应形成多种金属、合金、陶瓷和化合物涂层。

相关文档
最新文档