数学物理方法 分离变量法习题 刁元胜

数学物理方法 分离变量法习题 刁元胜

第十章习题解答

1 求解混合问题

?utt?a2uxx?0(0?x?l,t?0)?00?x?c???? ?u(0,t)?0,u(l,t)?0,其中?(x)??v0c???x?c??

?0c???x?l?u(x,0)?0,u(x,0)??(x)?t?

解:用分离变量法:设混合问题的非零解函数为u(x,t)?X(x)T(t),则,utt(x,t)?X(x)T??(t),uxx(x,t)?X??(x)T(t)

代入混合问题中的微分方程可得:

X??(x)a2T??(t) X(x)T??(t)?aX??(x)T(t)?0????? X(x)T(t)2

由初始条件可得:u(0,t)?X(0)T(t)?u(l,t)?X(l)T(t)?0?X(0)?X(l)?0由此可得,X(x)为如下常微分方程边值问题的非零解:

??X??(x)??X(x)?0(0?x?l) ?X(0)?0,X(l)?0

若λ<0,则此定解问题的微分方程的通解为 X(x)?c1x)?c2exp(?x),

代入边值条件后可得c1?c2?0?X(x)?0,不符合要求。若λ=0,则此定解问题的微分方程的通解为

X(x)?c1?c2x,

代入边值条件后仍可得c1?c2?0?X(x)?0,不符合要求。若λ>0,则此定解问题的微分方程的通解为 X(x)?c1cos

代入边界条件后可得: X(0)?c1cosx?c2sinx, ?0?c2sin?0?c1?0?X(x)?c2sinx,2?n?? X(l)?c2sin?l?0,X(x)?0?sinl?0,???n???, ?l?

所以可取 X(x)?Xn(x)?sin

n?xl1 (n?1,2,?)

数学物理方法综合试题及答案

复变函数与积分变换 综合试题(一) 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设cos z i =,则( ) A . Im 0z = B .Re z π= C .0z = D .argz π= 2.复数3(cos ,sin )55z i ππ =--的三角表示式为( ) A .443(cos ,sin )55i ππ- B .443(cos ,sin )55i ππ- C .44 3(cos ,sin )55i ππ D .44 3(cos ,sin )55 i ππ-- 3.设C 为正向圆周|z|=1,则积分 ?c z dz ||等于( ) A .0 B .2πi C .2π D .-2π 4.设函数()0 z f z e d ζζζ= ? ,则()f z 等于( ) A .1++z z e ze B .1-+z z e ze C .1-+-z z e ze D .1+-z z e ze 解答: 5.1z =-是函数 4 1) (z z cot +π的( ) A . 3阶极点 B .4阶极点 C .5阶极点 D .6阶极点 6.下列映射中,把角形域0arg 4 z π << 保角映射成单位圆内部|w|<1的为( ) A .4411z w z +=- B .44-11z w z =+ C .44z i w z i -=+ D .44z i w z i +=- 7. 线性变换[]i i z z i z a e z i z i z a θω---= =-++- ( ) A.将上半平面Im z >0映射为上半平面Im ω>0 B.将上半平面Im z >0映射为单位圆|ω|<1 C.将单位圆|z|<1映射为上半平面Im ω>0 D.将单位圆|z|<1映射为单位圆|ω|<1 8.若()(,)(,)f z u x y iv x y =+在Z 平面上解析,(,)(cos sin )x v x y e y y x y =+,则(,)u x y = ( ) A.(cos sin )y e y y x y -) B.(cos sin )x e x y x y -

数学物理方法期末考试规范标准答案

天津工业大学(2009—2010学年第一学期) 《数学物理方法》(A)试卷解答2009.12 理学院) 特别提示:请考生在密封线左侧的指定位置按照要求填写个人信息,若写在其它处视为作弊。本试卷共有四道大题,请认真核对后做答,若有疑问请与监考教师联系。 一 填空题(每题3分,共10小题) 1. 复数 i e +1 的指数式为:i ee ; 三角形式为:)1sin 1(cos i e + . 2. 以复数 0z 为圆心,以任意小正实数ε 为半径作一圆,则圆内所有点的集合称为0z 点的 邻域 . 3. 函数在一点可导与解析是 不等价的 (什么关系?). 4. 给出矢量场旋度的散度值,即=????f ? 0 . 5. 一般说来,在区域内,只要有一个简单的闭合曲线其内有不属 ------------------------------- 密封线 ---------------------------------------- 密封线 ---------------------------------------- 密封线--------------------------------------- 学院 专业班 学号 姓名 装订线 装订线 装订线

于该区域的点,这样的区域称为 复通区域 . 6. 若函数)(z f 在某点0z 不可导,而在0z 的任意小邻域内除0z 外处处可导,则称0z 为)(z f 的 孤立奇点 . 7. δ函数的挑选性为 ? ∞ ∞ -=-)()()(00t f d t f ττδτ. 8. 在数学上,定解条件是指 边界条件 和 初始条件 . 9. 常见的三种类型的数学物理方程分别为 波动方程 、 输运方程 和 稳定场方程 . 10. 写出l 阶勒让德方程: 0)1(2)1(222 =Θ++Θ -Θ-l l dx d x dx d x . 二 计算题(每小题7分,共6小题) 1. )(z 的实部xy y x y x u +-=22),(,求该解析函数

数学物理方法习题答案[1]

数学物理方法习题答案: 第二章: 1、(1)a 与b 的连线的垂直平分线;以0z 为圆心,2为半径的圆。 (2)左半平面0,x <但是除去圆22(1)2x y ++=及其内部;圆2211()416x y -+= 2、2 ,cos(2)sin(2)i e i π ππ+; 32,2[cos(sin(3)i e i π ππ+; ,(cos1sin1)i e e e i ?+ 3、22k e ππ--; (623)i k e ππ+; 42355cos sin 10cos sin sin ?????-+; 11()sin ()cos 22b b b b e e a i e e a --++- 1 ()cos 2 y y ay b e e x e ---- 4、(1) 2214u υ+= 变为W 平面上半径为1 2的圆。 (2)u υ=- 平分二、四象限的直线。 5、(1) z ie iC -+; 2(1) 2i z -; ln i z - (2) 选取极坐标 ,, ()2 2 u C f z ?? υ==+=6、ln C z D + 第三章: 1、 (1) i π (2)、 i ie π-- (3)、 0 (4)、i π (5)、6i π 2、 设 ()!n z z e f n ξ ξ= z 为参变数,则 () 1 220 1 1 () 1(0)2!2! 1()()!!! ! n z n n n l l n n n n z z n z e d f d f i n i n z d z z e e n n d n n ξξξξξξξξπξξπξ ξ +=== ====? ? 第四章: 1、(1) 23 23 ()()ln 22z i z i z i i i i i ---+-+- (2)23313 (1) 2!3!e z z z ++++ (3) 211111()()[(1)(1)](1)11222k k k k k k z z i i i z z z i z i z i ∞=---=-=--++--<+-+∑ 2、(1) 1 n n z ∞ =--∑ (2) 11()43f z z z =--- ①3z <时 11011()34k k k k z ∞ ++=-∑ , 34z <<时

数学物理方法习题

第一章 分离变量法 1、求解定解问题: 2000 000 00,(01), ||0, ,(0),|(),(),|0,(0). tt xx x x l t t u a u x u u n h l x x l n u h l l x x l l n l n u x l ====-=<<==?≤≤??? =?-≤≤?- ???=≤≤(P-223) 2、长为l 的弦,两端固定,弦中张力为T ,在距一端为0x 的一点以力0F 把弦拉开,然后撤出这力,求解弦的震动。[提示:定解问题为 200 0000 00,(0),(0,)(,)0, ,(0),(,0)(),(), |0. tt xx t t u a u x l u t u l t F l x x x x T l u x F x l x x x l T l u =-=<<==-?<???? ==?==? ??===??=?

4、长为l 的均匀杆,两端受压从而长度缩为(12)l ε-,放手后自由振动,求解杆的这一振动。[提示:定解问题为 20000,(0),||0,2 |2(),|0.tt xx x x x x l t t t u a u x l u u u x l u ε====?-=<

数学物理方法第二次作业答案解析

第七章 数学物理定解问题 1.研究均匀杆的纵振动。已知0=x 端是自由的,则该端的边界条件为 __。 2.研究细杆的热传导,若细杆的0=x 端保持绝热,则该端的边界条件为 。 3.弹性杆原长为l ,一端固定,另一端被拉离平衡位置b 而静止,放手任其振动,将其平衡位置选在x 轴上,则其边界条件为 00,0x x l u u ==== 。 4.一根长为l 的均匀弦,两端0x =和x l =固定,弦中力为0T 。在x h =点,以横向力0F 拉弦,达到稳定后放手任其振动,该定解问题的边界条件为___ f (0)=0,f (l )=0; _____。 5、下列方程是波动方程的是 D 。 A 2tt xx u a u f =+; B 2 t xx u a u f =+; C 2t xx u a u =; D 2tt x u a u =。 6、泛定方程20tt xx u a u -=要构成定解问题,则应有的初始条件个数为 B 。 A 1个; B 2个; C 3个; D 4个。 7.“一根长为l 两端固定的弦,用手把它的中 点朝横向拨开距离h ,(如图〈1〉所示)然后放 手任其振动。”该物理问题的初始条件为( D )。 A .?????∈-∈==] ,2[),(2]2,0[,2l l x x l l h l x x l h u o t B .???? ?====00 t t t u h u C .h u t ==0 D .???????=???? ?∈-∈===0 ],2[),(2]2,0[,200t t t u l l x x l l h l x x l h u 8.“线密度为ρ,长为l 的均匀弦,两端固定,开始时静止,后由于在点)0(00l x x <<受谐变 u x h 2 /l 0 u 图〈1〉

数学物理方法填空题答案

1. 复数1i e -的模为 ,主辐角为 弧度。 2. 函数 f (z)=e iz 的实部 Re f (z)=______________。 3. ln1=_________. 4. =ix e _________。 5. ln(1)i --=23(21)(2),0,1,2,2 n n n π-++=±±L 。 6.复数 =-)4ln(),2,1,0()12(4ln Λ±±=++k i k π。 7. 复数=i cos 2/)(1-+e e 。 8. 若解析函数),(),()(y x iv y x u z f +=的虚部xy y x y x v +-=22),(, 则实部=),(y x u c xy y x +--22/)(2 2 。 9. 若解析函数),(),()(y x iv y x u z f +=的虚部(,)v x y x y =+且(0)1f =,则解析函数为 z zi +。 10. 积分 dz z z z ?=12sin =______ . 11. 求积分=?=1cos z dz z z _________ 12. 2000 |2009|3(2011)z z dz --=-=?? 0 。 13. 设级数为∑∞ =1n n n z ,求级数的收敛半径_______________。 14.设级数为)211n n n n z z + ∑∞=(, 求级数的收敛区域 。

15. ) 3)(2(1)(--=z z z f 在3||2<时,()0f x =。则函数的()f x 傅里叶变换为2()(1cos 2)B ωωπω=- 25. 函数 ???><=)1|(|0 )1|(|)(t t t t f 的傅里叶变换为)/()/sin cos (2πωωωω+-。 26.=+??-dx x ] )6([sinx 2009 2008 πδ -1/2 。

数学物理方法习题解答(完整版)

数学物理方法习题解答 一、复变函数部分习题解答 第一章习题解答 1、证明Re z 在z 平面上处处不可导。 证明:令Re z u iv =+。Re z x =,,0u x v ∴==。 1u x ?=?,0v y ?=?, u v x y ??≠??。 于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。 2、试证()2 f z z = 仅在原点有导数。 证明:令()f z u iv =+。()2 2222,0f z z x y u x y v ==+ ∴ =+=。 2,2u u x y x y ??= =??。v v x y ?? ==0 ??。 所以除原点以外,,u v 不满足C -R 条件。而 ,,u u v v x y x y ???? , ????在原点连续,且满足C -R 条件,所以()f z 在原点可微。 ()00 00x x y y u v v u f i i x x y y ====???????? '=+=-= ? ?????????。 或:()()()2 * 00 0lim lim lim 0z z x y z f z x i y z ?→?→?=?=?'==?=?-?=?。 2 2 ***0* 00lim lim lim()0z z z z z z z zz z z z z z z z z =?→?→?→+?+?+??==+??→???。 【当0,i z z re θ≠?=,*2i z e z θ-?=?与趋向有关,则上式中**1z z z z ??==??】

3、设333322 ()z 0 ()z=0 0x y i x y f z x y ?+++≠? =+??? ,证明()z f 在原点满足C -R 条件,但不可微。 证明:令()()(),,f z u x y iv x y =+,则 ()332222 22 ,=0 0x y x y u x y x y x y ?-+≠? =+?+??, 332222 22 (,)=0 0x y x y v x y x y x y ?++≠? =+?+?? 。 3 300(,0)(0,0)(0,0)lim lim 1x x x u x u x u x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x u y u y u y y →→--===-; 3300(,0)(0,0)(0,0)lim lim 1x x x v x v x v x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x v y v y v y y →→-===。 (0,0)(0,0),(0,0)(0,0)x y y x u v u v ∴ = =- ()f z ∴ 在原点上满足C -R 条件。 但33332200()(0)() lim lim ()()z z f z f x y i x y z x y x iy →→--++=++。 令y 沿y kx =趋于0,则 333333434322222 0()1(1)1(1) lim ()()(1)(1)(1)z x y i x y k i k k k k i k k k x y x iy k ik k →-++-++-++++-+==+++++ 依赖于k ,()f z ∴在原点不可导。 4、若复变函数()z f 在区域D 上解析并满足下列条件之一,证明其在区域D 上

数学物理方法习题及解答

2. 试解方程:()0,044>=+a a z 444244 00000 ,0,1,2,3 ,,,,i k i i z a a e z ae k ae z i i ππππωωωωω+=-=====--若令则 1.计算: (1) i i i i 524321-+-+ (2) y = (3) 求复数2 ?? 的实部u 和虚部v 、模r 与幅角θ (1) 原式= ()()()12342531081052916 2525255 i i i i i i +?+-?+-++=+=-+-- (2) 3 32( )10205 2(0,1,2,3,4)k i e k ππ+==原式 (3) 2 223 221cos sin cos sin ,3333212u v 1,2k ,k 0,1,2,23 i i i e r π πππππ θπ??==+=+==-+ ?????=-===+=±± 原式所以:, 3.试证下列函数在z 平面上解析,并分别求其导数. (1)()()y i y y ie y y y x e x x sin cos sin cos ++- 3.

()()()()()()()()cos sin ,cos sin ,cos sin cos ,sin sin cos ,cos sin sin sin ,cos sin cos ,,,x x x x x x x x u e x y y y v e y y x y u e x y y y e y x u e x y y y y y v e y y x y e y y x v e y y y x y y u v u v x y y x u v z f z u iv z u f z =-=+?=-+??=---??=++??=-+?????==-????=+?'= ?证明:所以:。 由于在平面上可微 所以在平面上解析。()()()cos sin cos cos sin sin .x x x x v i e x y y y e y i e y y x y e y x x ?+=-++++? 由下列条件求解析函数()iv u z f += (),1,22i i f xy y x u +-=+-= 解: ()()()()()()()222222222212,2,21 2,2,,,2112, 2211 1,0,1,1,, 221112. 222u v x y v xy y x x y v u v y x y x x x x x c x y x f z x y xy i xy y x c f i i x y c c f z x y xy i xy x y ??????==+∴=++?????''=+=-=-+∴=-=-+?????=-+++-+ ??? =-+==+==? ?=-++-++ ???而即所以由知带入上式,则则解析函数 2. ()21,3,,.i i i i i i e ++试求

新版数学物理方程学习指导书第4章 分离变量法

第4章 分离变量法 物理学、力学和工程技术等方面的许多问题都可归结为偏微分方程的定解问题,上一章我们已初步看到怎样把具体的物理问题表达为定解问题.下面一个重要任务是怎样去解决这些定解问题,也就是说在已经列出的方程与定解条件之后,怎样去求既满足方程又满足定解条件的解. 从微积分学得知,在计算诸如多元函数的微分及重积分时总是把它们转化为单元函数的相应问题来解决.与此类似,求解偏微分方程的定解问题也是要设法把它们转化为常微分方程问题,分离变量法就是常用的一种转化手法.本章我们将通过实例来说明分离变量法的步骤和实质.在4.2我们讨论了如何处理第三类齐次边界条件(当然也包括第二类边界条件).在4.3说明如何在极坐标系下使用分离变量法.在4.4及4.5我们讨论了如何处理非齐次方程及非齐次边界条件的问题,本章的最后还安排了两个较为综合性的例子作为总结. 4.1 有界弦的自由振动 为了使读者了解什么是分离变量法以及使用分离变量法应该具备什么条件,我们选取两端固定的弦的自由振动问题为例,通过具体地求解逐步回答这些问题. 根据第3章所得的结论,讨论两端固定的弦的自由振动,就归结为求解下列定解问题 22222 000,0,0; (4.1) 0, 0;(4.2) (),(). (4.3) x x l t t u u a x l t t x u u u u x x t ?ψ====????=<<>???? ==?? ??==??? 这个定解问题的特点是:偏微分方程是线性齐次的,边界条件也是齐次的,求解这样的问题,可以运用叠加原理.我们知道.在求解常系数线性齐次常微分方程的初值问题时,是先求出足够多个特解(它们能构成通解),再利用叠加原理作这些特解的线性组合,使满足初始条件.这就启发我们,要解问题(4.1),(4.2),(4.3),先寻求齐次方程(4.1)的满足齐次边界条件(4.2)的足够多个具有简单形式(变量被分离的形式)的特解,再利用它们作线性组合使满足初始条件(4.3). 现在我们试求方程(4.1)的变量分离形式(,)()()u x t X x T t =的非零解,并要求它满足齐次边界条件(4.2),式中(),()X x T t 分别表示仅与x 有关及仅与t 有关的待定函数. 由 (,)()()u x t X x T t = 得 2222''()(),()''(),u u X x T t X x T t x t ??==??

【最最最最最新】数学物理方法试卷(附答案)

福师大物理系《数学物理方法》B 课程考试题 一、简答题(共70分) 1、试阐述解析延拓的含义。解析延拓的结果是否唯一?(6分) 解析延拓就是通过函数的替换来扩大解析函数的定义域。替换函数在原定义域上与替换前的函数相等。 无论用何种方法进行解析延拓,所得到的替换函数都完全等同。 2、奇点分为几类?如何判别?(6分) 在挖去孤立奇点Zo而形成的环域上的解析函数F(z)的洛朗级数,或则没有负幂项,或则只有有限个负幂项,或则有无限个负幂项,我们分别将Zo称为函数F(z)的可去奇点,极点及本性奇点。 判别方法:洛朗级数展开法 A,先找出函数f(z)的奇点; B,把函数在的环域作洛朗展开 1)如果展开式中没有负幂项,则为可去奇点; 2)如果展开式中有无穷多负幂项,则为本性奇点; 3)如果展开式中只有有限项负幂项,则为极点,如果负幂项的最高项为,则为m阶奇点。 3、何谓定解问题的适定性?(6分) 1,定解问题有解;2,其解是唯一的;3,解是稳定的。满足以上三个条件,则称为定解问题的适定性。 4、什么是解析函数?其特征有哪些?(6分) 在某区域上处处可导的复变函数 称为该区域上的解析函数. 1)在区域内处处可导且有任意阶导数. 2) () () ? ? ? = = 2 1 , , C y x v C y x u 这两曲线族在区域上正交。 3)()y x u,和()y x v,都满足二维拉普拉斯方程。(称为共轭调和函数) 4)在边界上达最大值。 4、数学物理泛定方程一般分为哪几类?波动方程属于其中的哪种类型?(6分)

数学物理泛定方程一般分为三种类型:双曲线方程、抛物线方程、椭圆型偏微分方程。波动方程属于其中的双曲线方程。 5、写出)(x δ挑选性的表达式(6分) ()()()()()()?????????=-==-???∞ ∞∞-∞∞ -)()()(00000R f dv R r r f f dx x x f x f dx x x x f δδδ 6、写出复数2 31i +的三角形式和指数形式(8分) 三角形式:()3sin 3cos 231cos sin 2 321isin cos 222ππ? ?ρ??ρi i i +=++=+=+ 指数形式:由三角形式得: 313πρπ?i e z === 7、求函数 2)2)(1(--z z z 在奇点的留数(8分) 解: 奇点:一阶奇点z=1;二阶奇点:z=2 1)2)(1()1(lim Re 21)1(=????? ?---=→z z z z sf z

数学物理方法习题及解答

2. 试解方程:()0,04 4 >=+a a z 44424400000 ,0,1,2,3 ,,,,i k i i z a a e z ae k ae z i i πππ π ωωωωω+=-=====--若令则 1.计算: (1) i i i i 524321-+ -+ (2) y = (3) 求复数2 12?? + ? ??? 的实部u 和虚部v 、模r 与幅角θ (1) 原式= ()()()12342531081052 916 2525255 i i i i i i +?+-?+-++=+=-+-- (2) 3 32( )10205 2(0,1,2,3,4)k i e k ππ+==原式 (3) 2 223 221cos sin cos sin ,3333212u v 1,2k ,k 0,1,2,223 i i i e r π πππππ θπ??==+=+==- ?????=-===+=±±L 原式所以:, 3.试证下列函数在z 平面上解析,并分别求其导数. (1)()()y i y y ie y y y x e x x sin cos sin cos ++- 3.

()()()()()()()()cos sin ,cos sin ,cos sin cos ,sin sin cos ,cos sin sin sin ,cos sin cos ,,,x x x x x x x x u e x y y y v e y y x y u e x y y y e y x u e x y y y y y v e y y x y e y y x v e y y y x y y u v u v x y y x u v z f z u iv z u f z =-=+?=-+??=---??=++??=-+?????==-????=+?'= ?证明:所以:。 由于在平面上可微 所以在平面上解析。()()()cos sin cos cos sin sin .x x x x v i e x y y y e y i e y y x y e y x x ?+=-++++? 由下列条件求解析函数()iv u z f += (),1,22i i f xy y x u +-=+-= 解: ()()()()()()()222222222212,2,21 2,2,,,2112, 2211 1,0,1,1,, 221112. 222u v x y v xy y x x y v u v y x y x x x x x c x y x f z x y xy i xy y x c f i i x y c c f z x y xy i xy x y ??????==+∴=++?????''=+=-=-+∴=-=-+?????=-+++-+ ??? =-+==+==? ?=-++-++ ?? ?而即所以由知带入上式,则则解析函数 2. ()21,3,,.i i i i i i e ++试求

高中数学解题方法之分离变量法(含答案)

分离变量法 分离变量法是近年来发展较快的思想方法之一.高考数学试题中,求参数的范围常常与分类讨论、方程的根与零点等基本思想方法相联系.其中与二次函数相关的充分体现数形结合及分类思想方法的题目最为常见.与二次函数有关的求解参数的题目, 相当一部分题目都可以避开二次函数,使用分离变量,使得做题的正确率大大提高.随着分离变量的广泛使用,越来越多的压轴题都需要使用该思想方法. 分离变量法:是通过将两个变量构成的不等式(方程)变形到不等号(等号)两端,使两端变量各自相同,解决有关不等式恒成立、不等式存在(有)解和方程有解中参数取值范围的一种方法.两个变量,其中一个范围已知,另一个范围未知. 解决问题的关键: 分离变量之后将问题转化为求函数的最值或值域的问题.分离变量后,对于不同问题我们有不同的理论依据可以遵循.以下定理均为已知x 的范围,求a 的范围: 定理1 不等式()()f x g a ≥恒成立?[]min ()()f x g a ≥(求解()f x 的最小值);不等式()()f x g a ≤恒成立?[]max ()()f x g a ≤(求解()f x 的最大值). 定理2 不等式()()f x g a ≥存在解?[]max ()()f x g a ≥(求解()f x 的最大值);不等式()()f x g a ≤存在解?[]min ()()f x g a ≤(即求解()f x 的最小值). 定理3 方程()()f x g a =有解?()g a 的范围=()f x 的值域(求解()f x 的值域). 解决问题时需要注意:(1)确定问题是恒成立、存在、方程有解中的哪一个;(2)确定是求最大值、最小值还是值域. 再现性题组: 1、已知当x ∈R 时,不等式a+cos2x<5-4sinx 恒成立,求实数a 的取值范围。 2、若f(x)=2 33x x --在[1,4]x ∈-上有()21f x x a ≥+-恒成立,求a 的取值范围。 3、若f(x)=233x x --在[1,4]x ∈-上有2 ()251f x x a a ≥+--恒成立,求a 的取值范围。 4、若方程42210x x a -+=有解,请求a 的取值范围 5、已知32 11132 y x ax x = -++是(0,)+∞上的单调递增函数,则a 的取值范围是( ) .0A a < .22B a -≤≤ .2C a < .2D a ≤ 6、求使不等式],0[,cos sin π∈->x x x a 恒成立的实数a 的范围。 再现性题组答案: 1、解:原不等式4sin cos 25x x a ?+<-+当x ∈R 时,不等式a+cos2x<5-4sinx 恒成立max a+5>(4sinx+cos2x)?-,设f(x)=4sinx+cos2x 则 22f(x)= 4sinx+cos2x=2sin x+4sinx+1=2(sinx 1)+3 --- ∴a+5>3a<2-∴

数学物理方法第二章习题及答案整理

第二章答案 一、 简述 1. 简述状态空间描述与输入/输出描述的不同。 解:输入/输出描述是系统的外部描述,是对系统的不完全描述,用微分方程及其对应传递函数表征;状态空间描述是系统的内部描述,是对系统的完全描述,用状态空间表达式表征。 2. 线性定常系统经非奇异线性变换哪些量和性质不变?(至少列举3项) 解:特征值不变,传递矩阵不变,可控性及可观测性不变。 二、 多选题 1.对于n 阶线性定常系统 x Ax Bu =+&,下列论述正确的是( ABD ) A 当系统矩阵A 具有n 个线性无关的特征向量12,,,n υυυL 时,则矩阵A 可化为对角线规范形; B 系统矩阵A 的n 个特征值12,,,n λλλL 两两互异,则矩阵A 可化为对角 线规范形; C 系统矩阵A 有重特征值,则矩阵A 不能化为对角线规范形; D 系统矩阵A 有重特征值,但重特征值的几何重数等于其代数重数,则 矩阵A 可以化为对角线规范形。 三、 求状态空间描述 1、 给定系统的传递函数为 1 ()(4)(8)G s s s s = ++ (1)写出系统的可控标准型状态空间描述。 解:由传递函数 32 11 ()(4)(8)1232g s s s s s s s ==++++ 可写出原系统的能控标准形 01000010032121u ???????????? ????--????x =x +& 2.已知系统的传递函数为 2325 ()1510 s s G s s s ++=++ 分别写出系统的能控、能观状态空间表达式。 解:

能控标准型: 01000010101501[521]x x u y x ???? ????=+????????--????=& (2分) 能观标准型: 00105101520101[0 01]x x u y x -???? ????=-+????????????=& 3.已知系统的传递函数为 2323 ()510 s s G s s s ++=++ 分别写出系统的能控、能观状态空间表达式。 解:能控标准型: 0100001010501[321]x x u y x ???? ????=+????????--???? =& (2分) 能观标准型: 010*********[0 01]x x u y x -???? ????=-+???????????? =& 3.已知系统的传递函数为 32 20 ()43G s s s s = ++ (1)写出系统的可控标准型状态空间描述。 解:(1)由传递函数 3220 ()43G s s s s =++可写出原系统的可控标准型 []01 00001003412000u y x ???? ????????????--????=&x =x + 4.已知系统的传递函数为 210 ()1 G s s = +

数学物理方法习题解答(完整版)

数学物理方法习题解答 一、复变函数部分习题解答 第一章习题解答 1、证明Re z 在z 平面上处处不可导。 证明:令Re z u iv =+。Re z x =,,0u x v ∴==。 1u x ?=?,0v y ?=?, u v x y ??≠??。 于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。 2、试证()2 f z z = 仅在原点有导数。 证明:令()f z u iv =+。()2 2222,0f z z x y u x y v ==+ ∴ =+=。 2,2u u x y x y ??= =??。v v x y ?? ==0 ??。 所以除原点以外,,u v 不满足C -R 条件。而 ,,u u v v x y x y ???? , ????在原点连续,且满足C -R 条件,所以()f z 在原点可微。 ()00 00 00x x y y u v v u f i i x x y y ====???????? '=+=-= ? ?????????。 或:()()()2 * 00 0lim lim lim 0z z x y z f z x i y z ?→?→?=?=?'==?=?-?=?。 2 2 ***0* 00lim lim lim()0z z z z z z z zz z z z z z z z z =?→?→?→+?+?+??==+??→???。 【当0,i z z re θ≠?=,*2i z e z θ-?=?与趋向有关,则上式中**1z z z z ??==??】

3、设333322 ()z 0 ()z=0 0x y i x y f z x y ?+++≠? =+??? ,证明()z f 在原点满足C -R 条件,但不可微。 证明:令()()(),,f z u x y iv x y =+,则 ()332222 22 ,=0 0x y x y u x y x y x y ?-+≠? =+?+??, 332222 22 (,)=0 0x y x y v x y x y x y ?++≠? =+?+?? 。 3 300(,0)(0,0)(0,0)lim lim 1x x x u x u x u x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x u y u y u y y →→--===-; 3300(,0)(0,0)(0,0)lim lim 1x x x v x v x v x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x v y v y v y y →→-===。 (0,0)(0,0),(0,0)(0,0)x y y x u v u v ∴ = =- ()f z ∴ 在原点上满足C -R 条件。 但33332200()(0)() lim lim ()()z z f z f x y i x y z x y x iy →→--++=++。 令y 沿y kx =趋于0,则 333333434322222 0()1(1)1(1) lim ()()(1)(1)(1)z x y i x y k i k k k k i k k k x y x iy k ik k →-++-++-++++-+==+++++ 依赖于k ,()f z ∴在原点不可导。 4、若复变函数()z f 在区域D 上解析并满足下列条件之一,证明其在区域D 上

数学物理方法习题

数学物理方法习题 一、 复变函数 1、 填空题 (1)函数 f (z)=e iz 的实部 Re f (z)=______________。 (2)ln1=_________. (3)=ix e _________。 (4)求积分 dz z z z ?=1 2sin =______ . (5) 求积分=?=1 cos z dz z z _________。 (6) 设级数为∑∞ =1n n n z ,求级数的收敛半径_______________。 (7).设级数为)21 1 n n n n z z + ∑∞ =( ,求级数的收敛区域 _________。 (8) 求积分 ?=1z z dz =___________. (9) 求积分 ? =1 z z dz =____________. (10)设f (z)= 9 cos z z , 求Resf (0)= _________。 2、计算题 (1)导出极坐标下的C- R 条件: ?????????-=????=???ρρ ?ρρu v v u 11 (2) 己知解析函数的实部u(虚部v),求此解析函数:

a 、,cos x e u y -= b 、22y x y v +-= c 、 ()y y y x e v x sin cos +=- (3)设 f (z) 是区域D 内的解析函数,且f (z) 的模 ∣f (z)∣为常数,证明 f (z) 在D 内为常数。 (4) 设 f (z) 是区域D 内的解析函数,且f *(z)也是区域D 内的解析函数,则f (z)必常数。 (5) 求函数 f (z)= ) 1(1 2-+z z z 在下列区域 ⅰ) 0<∣z ∣< 1; ⅱ) 1< ∣z ∣<∞ 的Laurent 展开。 (6)求出下列函数的奇点,并确定它们的类别 a 、z z cos sin 1 + b 、z z e 1 - c 、 n n z z +12 n 为正整数. (7) 求下列积分 a 、 ,)1(sin 0 2dx x x x ?∞ + b 、 ? =? ?? ? ? -2 2 2sin z dz z z π c 、b 且a b a dx x bx ax ≠≥≥-?∞ ,0,0,cos cos 0 2 d 、 ? ∞ ++0 2 2sin cos dx a x x x x a ω

电磁场理论复习题(含答案)

第1~2章 矢量分析 宏观电磁现象的基本规律 1. 设:直角坐标系中,标量场zx yz xy u ++=的梯度为A ρ ,则M (1,1,1)处 A ρ= ,=??A ρ 0 。 2. 已知矢量场xz e xy e z y e A z y x ?4?)(?2 +++=ρ,则在M (1,1,1)处=??A ρ 9 。 3. 亥姆霍兹定理指出,若唯一地确定一个矢量场(场量为A ρ ),则必须同时给定该场矢量 的 旋度 及 散度 。 4. 写出线性和各项同性介质中场量D ρ、E ρ、B ρ、H ρ 、J ρ所满足的方程(结构方 程): 。 5. 电流连续性方程的微分和积分形式分别为 和 。 6. 设理想导体的表面A 的电场强度为E ρ、磁场强度为B ρ ,则 (a )E ρ、B ρ 皆与A 垂直。 (b )E ρ与A 垂直,B ρ 与A 平行。 (c )E ρ与A 平行,B ρ 与A 垂直。 (d )E ρ 、B ρ皆与A 平行。 答案:B 7. 两种不同的理想介质的交界面上, (A )1212 , E E H H ==r r r r (B )1212 , n n n n E E H H == (C) 1212 , t t t t E E H H == (D) 1212 , t t n n E E H H == 答案:C 8. 设自由真空区域电场强度(V/m) )sin(?0βz ωt E e E y -=ρ ,其中0E 、ω、β为常数。则空间位移电流密度d J ρ (A/m 2)为: (a ) )cos(?0βz ωt E e y - (b ) )cos(?0βz ωt ωE e y - ???222x y z e e e ++A ρ ??A ρ??E J H B E D ρ ρρρρρσ=μ=ε= , ,t q S d J S ??-=??ρρt J ?ρ?-=??ρ

相关文档
最新文档